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Chiral anomaly without Landau levels: From the quantum to the classical regime
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We study the chiral anomaly in disordered Weyl semimetals, where the broken translational symmetry prevents
the direct application of Nielsen and Ninomiya’s mechanism and disorder is strong enough that quantum effects
are important. In the weak disorder regime, there exist rare regions of the random potential where the disorder
strength is locally strong, which gives rise to quasilocalized resonances and their effect on the chiral anomaly
is unknown. We numerically show that these resonant states do not affect the chiral anomaly only in the case
of a single Weyl node. At energies away from the Weyl point, or with strong disorder where one is deep in the
diffusive regime, the chiral Landau level itself is not well defined and the semiclassical treatment is not justified.
In this limit, we analytically use the supersymmetry method and find that the Chern-Simons term in the effective
action which is not present in nontopological systems gives rise to a nonzero average level velocity which implies
chiral charge pumping. We numerically establish that the nonzero average level velocity serves as an indicator
of the chiral anomaly in the diffusive limit.
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I. INTRODUCTION

A classical symmetry, which is broken at the quantum
mechanical level, introduces an anomaly into quantum field
theories. Distinct anomalies appear in different dimension-
alities related to the relevant classical symmetry present in
each theory. In the context of high-energy physics, such
theories must be anomaly free and therefore are canceled
in the appropriate construction of the physical problem at
hand. However, somewhat surprisingly, such field-theoretic
anomalies are ubiquitous in condensed matter systems, with
one of the most prominent examples in two dimensions being
the parity anomaly and is responsible for the quantum Hall
effects. In odd spatial dimensions, when massless Dirac or
Weyl fermions are placed in electric (E) and magnetic (B)
fields, the axial anomaly is responsible for breaking the charge
conservation for each chirality of these massless fermions
(in three dimensions this is known as the Adler-Bell-Jackiw
anomaly [1,2]). For an unbounded dispersion, this produces a
charge pumping effect (when E and B are parallel) where one
chirality sinks below zero energy and the other chirality rises
above, this produces a “staircase” of charge moving from one
chirality to the other through an infinite Dirac (or Weyl) sea
(due to the unbounded dispersion).

The recent discovery of Dirac and Weyl semimetals (e.g.,
in the compounds Na3Bi [3,4], Cd3As2 [5–7], TaAs [8–11],
NbAs [12], and TaP [13]) that host linear touching points
between the valence and conduction bands at isolated points
in the Brilloun zone represents a unique problem to study
the effect of the axial anomaly as the low-energy effective
quasiparticles are either massless Dirac or Weyl fermions.
Two major distinctions between Dirac and Weyl semimetals
and their high-energy “cousins” is the fact that they live on
a lattice implies both that their energy dispersion relation

is bounded (due to the finite size of the Brilloun zone in
momentum space) and all Weyl nodes must come in pairs
(due to the fermion-doubling theorem [14–16]). This leads
to some fundamental distinctions such as the absence of any
chiral magnetic effect in equilibrium [17]. Interestingly, it was
predicted that a direct consequence of the axial anomaly in
solid-state systems gives rise to a large and negative mag-
netoresistance in parallel electric and magnetic fields [18].
This was also extended to the semiclassical regime of weak
magnetic field strengths [19]. Shortly after the discovery of
Dirac and Weyl semimetals, the negative magnetoresistance
has now been observed in various compounds such as Na3Bi
[20], Cd3As2 [21], TaAs [22,23], NbAs [24], TaP [25], and
NbP [26,27].

To construct the appropriate low-energy effective field the-
ory for Dirac and Weyl semimetals that are placed in electric
and magnetic fields (required to reveal the chiral anomaly),
it is of fundamental importance to incorporate the effects
of disorder, which are present in all realistic materials and
play no role in high-energy theories. Disorder can poten-
tially have nonperturbative effects on the dispersion either
at energies very close to the Weyl point [28] or for weak
magnetic fields where the scattering rate is higher than the
cyclotron frequency. At sufficiently low densities, screened
charge impurities lead to smooth potentials [29,30] that allow
us to ignore inter-Weyl-node scattering as the dominant effect.
The two approaches to understand the chiral anomaly so far,
i.e., through a chiral Landau level in the absence of disorder
[31] (or weak potential scattering [32]) and semiclassical
approaches via the Karplus-Luttinger velocity term [19] as
well as the Boltzmann hydrodynamic approach [33], involve
fermionic excitations with relatively well-defined energy and
momentum, and a sufficiently small damping rate. Therefore,
a more profound question to address is whether or not the
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existence of the anomaly requires the presence of reasonably
well-defined energy bands at all (such as the Weyl-type disper-
sion used for the computation of the chiral anomaly [31]), for
example, does the axial anomaly persist even if the disorder
completely eliminates the chiral Landau level or the Weyl
point itself that is characterized by a vanishing density of
states? This is one of the fundamental questions we aim to
answer in this paper.

In the absence of any magnetic field, disordered Dirac
and Weyl semimetals have garnered a significant amount of
theoretical attention [28,34–59]. This is due to the lack of
density of states at the Fermi energy making short-range
disorder an irrelevant perturbation (within the renormaliza-
tion group sense) and it was thought that a disorder-driven
itinerant quantum critical point separates the semimetal and
the diffusive metal at the Weyl node energy (a review from
this perspective [60]). However, the presence of short-range
disorder introduces nonperturbative rare region effects that
have been shown to fill in the low-energy density of states
and convert the weakly disordered Weyl (or Dirac) semimetal
into a diffusive metal for an infinitesimal amount of disor-
der, effectively eliminating the Weyl point in a strict sense
[28,50,56,58]. This converts the semimetal-to-diffusive metal
transition into a crossover (dubbed an avoided quantum crit-
ical point) [50,52,55,58]. The fate of such physics in the
presence of a magnetic field has been currently unknown,
and it is in no way obvious how such nonperturbative rare
region effects will affect the presence of the axial anomaly.
This is rather interesting as the axial anomaly itself is topo-
logical in nature and therefore is a separate nonperturbative
phenomenon.

In this paper, we address both the existence and the indi-
cator of the chiral anomaly in Weyl systems when the con-
ventional Nielsen-Ninomiya’s charge pumping mechanism
[31] does not (directly) apply. There are two main situations
in this category. One is when there are a low density of
rare regions in the system which affect the dispersion and
especially the chiral Landau level nonperturbatively. Due to
the drastic change in the energy bands, this case should
be investigated separately. The other is at strong disorder
or at finite chemical potential that is away from the Weyl
point. Here, disorder should potentially lead to a conventional
diffusive metal with regular Ohmic transport. However, for
small magnetic fields where the cyclotron frequency is much
smaller than the scattering rate, the emergence of the chiral
anomaly (at a quantum mechanical level) is rather unclear
from the traditional field-theory approach. This is because one
does not expect the formation of any Landau levels, let alone
the chiral Landau level. The chiral anomaly in this case can be
understood as an application of the Karplus-Luttinger velocity
to the classical model for transport of quasiparticles [19]. Such
a classical model cannot describe the chiral anomaly in the
strong disorder limit where the scattering rates and Fermi
energy become comparable. Our main purpose is to study how
disorder affects the existence of the chiral anomaly in these
cases, and develop a formal comprehensive indicator of the
chiral anomaly which can include the two cases as well as
generic Dirac and Weyl semimetals.

The rest of the paper is organized as follows. In Sec. II
we set up the lattice Hamiltonian and its continuum model

that we use throughout the paper. We also explain the φ

dispersion, which is the main object we calculate numerically,
and how it connects to our central subject of the chiral
anomaly. Then, in Sec. III we start our investigation on the
chiral anomaly beyond the Nielsen-Ninomiya picture with
the numerical study of rare regions and their effect in weak
disorder. We consider both cases of a single Weyl node and
a pair of nodes in this situation. In Sec. IV, we consider
the possibility of a chiral anomaly at an energy away from
the Weyl point where intranode scattering should lead to a
conventional diffusive metal. Scattering in the diffusive metal
is known to eliminate the low-energy fermionic degrees of
freedom in favor of diffuson modes of a nonlinear sigma
model that naturally describes Ohmic transport. We show
that the topological term [46] in this sigma model leads to
a nonzero expectation value of the level velocity as a function
of flux that can be shown to lead to the chiral anomaly with
a sign that is consistent with the Fermi-surface monopole
charge [61], but with a different scaling from the clean case
studied previously. This is explicitly checked by numerics in
the cases we have discussed in Secs. III and IV. We summarize
our results in Sec. V.

II. MODEL

A. Lattice model for Weyl fermions

Weyl materials consist of pairs of linearly dispersing Weyl
nodes at low energy. To achieve this feature on a lattice
in an efficient way, we adapt the following tight-binding
Hamiltonian defined on a simple cubic lattice [58,59] to
describe Weyl fermions:

H =
∑

i,η=x,y,z

tη ψ
†
i σzψi+η + i

∑
i,α=x,y

t ′α ψ
†
i σαψi+α + H.c.

+
∑

i

ψ
†
i (Vi − mσz)ψi. (1)

Here, ψi = (ci,↑, ci,↓)T is a two-component spinor that is
composed of fermionic operators ci,σ (c†i,σ ) that are the an-
nihilation (creation) operator at site i with spin σ ; tη, t ′α are
spin-dependent hopping parameters, which we choose tx =
ty = tz = t and t ′x = t ′y = t ′; m is a constant “mass” parameter
that controls the location of the Weyl nodes; the σ ’s are the
Pauli operators acting in spin space; and Vi is the random
disorder potential. We choose the random potential to be given
by a correlated Gaussian distribution with zero mean and
variance of W 2: 〈Vi〉 = 0, 〈V (k)V (−k)〉 = W 2e−|k|2/k2

0 . k0

is the scale of correlation: k0 → ∞ gives no correlation and
smaller values of k0 indicate stronger correlation.

We apply a constant magnetic field in the z direction
to Eq. (1), which we include by Peierls substitution: ty 	→
tye

−iBx , t ′y 	→ t ′ye
−iBx for all sites, and tx 	→ txe

−iBLxy , t ′x 	→
t ′xe

−iBLxy for the boundary hopping terms between x = Lx

and 1, where Li indicates the system size in the i direction
(Note that we are setting the lattice constant a = 1, as well
as h̄ = e = 1.) In our gauge choice, the periodic boundary
conditions in x and y directions, which will be mentioned
shortly, restrict the total magnetic flux through the system to
be integer multiples of flux quanta �0 = h/e. Since we would
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want to eliminate any boundary effect and concentrate only
on the bulk, we also impose boundary conditions to all three
dimensions. We choose a gauge defined by tz 	→ tze

−iφ/Lz ,
which allows us to use periodic boundary conditions in the
x and y directions, and a twisted boundary condition in the
z direction: ψ (x, y, z + Lz) = eiφ ψ (x, y, z). The twist can
also be understood as a flux through the three-dimensional
torus, and in the clean limit where translation symmetry is
present (Vi = 0) the twist angle φ has an effect of shifting the
crystal momentum by φ/Lz: kz → kz + φ/Lz. In the presence
of disorder, translational symmetry is broken and momentum
is no longer a good quantum number, nonetheless, we can
still probe how low-energy states disperse as a function of the
twist, which allows us to access the dispersion in a “mini-
Brillouin zone.” The number of Weyl nodes in the system is
controlled by the mass m: there are four Weyl nodes when
|m/2t | < 1, two when 1 < |m/2t | < 3, and zero otherwise
[58]. Throughout the paper, we choose the mass parameter as
1 < m/2t < 3 and work with one pair of Weyl nodes at k =
(0, 0,± cos−1(m/2t − 2)). In the numerical calculations that
follow, we use exact diagonalization to determine the energy
eigenvalues and eigenstates of Eq. (1) on a linear system size
of Lx = Ly = Lz = L = 20 (i.e., a volume V = L3).

In Sec. IV we take the low-energy limit of Eq. (1) and
work with the following continuum model for analytical
calculations:

Hct = ±vk · σ + V (x). (2)

The ± corresponds to the two different chiralities of the Weyl
fermions, and k is the distance in momentum space measured
from the Weyl node, with a Fermi velocity v, and V (x) is
the continuum limit of Vi . This linearized Hamiltonian is only
valid at sufficiently low energies (compared to the bandwidth
of the lowest-energy band) and momenta (|k| < �/v where
� is the energy cutoff).

In the following sections, we are interested in studying
the effects of disorder on the existence of the chiral anomaly
both in systems with a pair of Weyl nodes and a single Weyl
node. To investigate the latter, we need the corresponding
single-node Hamiltonian of Eqs. (1) and (2). A single-node
Hamiltonian in the continuum limit is straightforward: we
simply take one sign in Eq. (2) and it will describe the
physics of the single Weyl node of that chirality. However, in
lattice models this is less trivial due to the fermion-doubling
theorem [14–16], which enforces the fact that on a lattice
(i.e., a bounded momentum space) Weyl nodes always come
in pairs. To circumvent this feature, we add a momentum-
dependent potential U (k) to the lattice Hamiltonian (1), where
U (k) = 0 for 0 � kz < π and U (k) = U0 for π � kz < 2π ,
and concentrate on low energies. This potential is artificial
and nonlocal, but it effectively shifts the second Weyl point
(located between π � kz < 2π ). In this limit, the physics
stemming from the second Weyl node is invisible in the
low-energy regime. The shape of the potential U (k) does not
necessarily have to be a step function in kz, however, the slope
of the potential near the boundaries (kz ≈ π, 2π ) dictates
the effective energy range where we may assume to be in a
single-node limit. We use the aforementioned step function
with U0 = 2t in our numerical calculations.

B. φ dispersion and the chiral anomaly

As mentioned in the previous subsection, we will use the
phase twist in the z direction (φ) to determine the dispersion
of the energy eigenstates in the minizone. Figure 1 shows a
number of bands in the mininzone from the twist dependence
of the eigenvalues of the Hamiltonian (1) on a L = 20 cubic
lattice. In the absence of disorder (i.e., Vi = 0) the states with
a phase twist φ can be interpreted as corresponding to momen-
tum states k = (2πnx/Lx, 2πny/Ly, (2πnz + φ)/Lz) in the
full Brillouin zone, where nx, ny, nz are integers. This is
evident from the clean dispersion in Fig. 1(a) where the
eigenvalue crossings at E = 0 correspond to states from the
Weyl points and the closely spaced states at energies away
from 0 result from the quadratically increasing density of
states at higher energy.

The application of a magnetic field along the z direction
mixes the states between the different momenta kx and ky

into Landau levels with an index n. These Landau levels
still disperse along kz as well as φ, similar to Fig. 1(a).
However, the n = 0 Landau level for Weyl nodes is special
and disperses with either positive or negative velocity v(φ) =
dE/dφ depending on the topological charge of the Weyl
node. This is consistent with the spectrum in Fig. 1(b), when
the system has no disorder and one magnetic flux, where
the positive (green) and negative (blue) velocity modes arise
from different Weyl nodes. Such n = 0 Landau levels that
disperse in a particular direction carry current only in the
same direction and are referred to as chiral Landau levels
(CLLs). The application of an electric field E along the z

direction leads to an increase in momentum for electrons
E = L−1

z dφ/dt . This also results in the Fermi energy shifting
according to the equation dEF /dt = vELz, which has a sign
that depends on the topological charge of the Weyl point.
Thus, positively charged Weyl points accumulate charge for
parallel electric and magnetic fields, while negatively charged
Weyl points lose charge. The apparent violation of charge
conservation that arises from focusing at a single Weyl node
is referred to as the chiral anomaly.

The introduction of finite disorder Vi mixes the states
within the full Brillouin zone and can mix different Lan-
dau levels leading to the elimination of the CLL picture.
Figure 1(c) shows how the φ dispersion changes when we in-
clude both external magnetic flux (� = �0) and uncorrelated
Gaussian disorder (W = 0.5t and k0 → ∞) to the system of
Fig. 1(a). We find that even in the presence of disorder, which
potentially hybridizes and destroys the CLLs, two states dis-
perse with φ (from zero energy) along each of the positive
and negative z directions. While the spectrum of these states
near zero energy appears similar to CLLs, we will show that
disorder changes their character away from zero energy and
refer to them as chiral Weyl states (CWS). Even at low energy
we see that unlike CLLs, which are twofold degenerate for
the case of two flux quanta, the disorder potential breaks the
degeneracy of the CWSs, while not affecting their direction
of propagation. The splitting of these bands becomes more
prominent when W is increased. Note that the dispersion is not
symmetric under φ → 2π − φ anymore as in clean systems
due to the random potential. This will also be more prominent
in the following figures where W is larger.
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FIG. 1. φ dispersion on the “minizone” for several parameters. (a) The clean limit without disorder and also without magnetic field (W = 0,
� = 0). We can observe the two linearly dispersing Weyl nodes. (b) Again the clean limit, but now with one magnetic flux quanta (W = 0,
� = �0). Landau levels develop due to the magnetic field and the n = 0 chiral Landau level (CLL) appears. The CLL with positive (negative)
chirality is colored in green (blue). (c) The weakly disordered case with one flux quanta (W = 0.5t , � = �0). The disorder is uncorrelated
(k0 → ∞). Due to the uncorrelated disorder the internode scattering is present and thus open gaps when the CLLs with different chiralities
intersect (near φ = 0, π ). (d) System with weak correlated disorder and one flux quanta (W = 0.5t , � = �0, k0 = kN/2; kN being the z

component of the crystal momentum of a Weyl node measured from the � point). Apart from (c), the disorder correlation suppresses internode
scattering, thus significantly reducing the gap between different chirality CLLs.

As already discussed, the chiral anomaly in the clean case
is driven by the sign (or chirality) of the velocity v(φ) (=
dE/dφ) of the CLL near zero energy. From the discussion
in the previous paragraph and Fig. 1 it is evident that the
CWSs continue to have the same velocity properties near zero
energy as the CLL and therefore have the same chiral anomaly
near zero energy. However, the situation is less clear for the
disordered case for the dispersion of CWSs. For example,
Fig. 1(b) clearly has two CLLs, one of each chirality with
the corresponding positive/negative spectral flow (as φ varies
from 0 to 2π ). In contrast, the two Weyl nodes in Fig. 1(c)
interact via the uncorrelated disorder and hybridize, and as a

result a gap opens (due to an avoided level crossing) when the
two CLLs cross. Now, the hybridized band is a mix of pos-
itive and negative chiral bands and thus becomes nonchiral.
The spectral flow of these nonchiral bands is zero, which
can be explicitly seen by E(φ = 0) = E(φ = 2π ) for every
energy band in Fig. 1(c). Therefore, the nonzero spectral flow
as a function of φ is a direct indication for the nontrivial
chirality of an energy band, which is a consequence of the
chiral anomaly.

The zero spectral flow and disappearance of the chiral
anomaly from the avoided crossing of the CWSs in Fig. 1(c) is
caused by impurity scattering between different Weyl nodes.
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Such elimination of the chiral anomaly is trivial in the sense
that it invalidates the basic definition of the chiral anomaly
in terms of anomalous charge transfer between the different
Weyl nodes, which simply breaks the charge conservation
at individual Weyl nodes. Thus, to guarantee a well-defined
chiral anomaly, we use a correlated random potential with a
finite value of k0 to reduce the size of the scattering matrix
elements with a large momentum transfer. This suppresses
the matrix element by ∼e−|k|2/2k2

0 for a momentum transfer
of k. In Fig. 1(d), where we choose all parameters the same
as Fig. 1(c) but k0 = kN/2 (kN is the magnitude of the crystal
momentum measured from the � point to the Weyl node in
the clean limit) one clearly observes less band mixing between
CLLs compared to Fig. 1(c), indicating the scattering between
nodes has been suppressed. In the following sections, when
we want to suppress the internode scattering, we choose k0 =
kN/10, which will suppress the internode scattering matrix
element by a factor of ∼e−200, and we can assume disorder in-
creases randomness while (almost completely) preserving the
topological properties of the Weyl system. However, when we
want to suppress internode scattering completely, we consider
the model with a single Weyl node.

Considering the spectrum in Figs. 1(b), 1(c), and 1(d), it
is clear that CWSs can either undergo avoided level crossings
with other states or merge with the continuum and the sign
of the velocity becomes random, which effectively flips the
direction of their velocity potentially interfering with the
chiral anomalous response. The chiral anomaly in this case,
which is defined as the total rate of charge accumulation in
the vicinity of a Weyl point, depends on the velocities of
all levels near the Fermi energy. In the remaining sections
of the paper we will quantify the sense in which the chiral
anomaly survives both in the vicinity of the Weyl point and
substantially away from the Weyl point when the model is
deep in the diffusive metal regime. Also note that the effect of
the chiral anomaly will only be observable when the chemical
potential is within the bandwidth of the CLL in the clean case.
In our numerical calculations due to the single-particle nature
of the Hamiltonian in Eq. (1), the chemical potential is set
by the energy value under consideration. Therefore, although
we do not set any particular value for the chemical potential
throughout the paper, we still assume that it is within the
bandwidth of the CLL.

III. CHIRAL ANOMALY NEAR THE WEYL
POINT: RARE STATES

Using the framework in the previous section, we study
the nontrivial effects of the random potential on the chiral
anomaly. In this section, we concentrate on the effects of
weak disorder at low |E|, near the Weyl point. We define
the weak disorder regime where each sample has well-defined
low-energy bands in the minizone (as a function of φ), which
are well separated from each other. When the magnetic field
is present (in the clean limit), the CLL is clearly present in
this regime. We will distinguish trivial and chiral bands by
studying the spectral flow of an eigenstate E in one pumping
cycle, which is formally captured by

∫ 2π

0 dφ vE (φ) = E(φ =
2π ) − E(φ = 0) = δE. As we have discussed, trivial bands

have δE = 0 while chiral bands have δE �= 0, and thus this
can be directly observed from the φ dispersion.

A. Rare states

In the weak disorder and low-|E| limit, the random po-
tential will have two very distinct effects. Due to the per-
turbative irrelevance of disorder (within the renormalization
group sense), one is the change in energy levels, directly
following perturbation theory in the random potential [50]. In
the presence of the external magnetic field, this also breaks the
degeneracies of the Landau levels. However, a weak broad-
ening (in a disorder averaged sense) of the CLLs essentially
only breaks the conserved momentum but does not influence
the conventional spectral flow (Sec. II B) because the spectral
flow through each CLL will remain the same provided no gaps
open in the spectrum (which we achieve by either a correlated
disorder or a single Weyl node model). Second is the effect of
the rare regions of the random potential that produces quasilo-
calized resonances near E = 0 [28,50]. Rare regions produce
power-law-localized eigenstates with nonzero level repulsion
that are consistent with random matrix theory statistics (i.e.,
are not Anderson localized) and the rare wave function decays
at short distances (r  L) like ψ (r ) ∼ 1/r2 centered about
a rare region (site or cluster of sites) of the potential. In
the absence of a magnetic field, the rare eigenstates contribute
to the low-energy density of states (DOS) and it acquires a
nonzero average value at E = 0: ν(E) ≈ ν(0) + aE2 with
ν(0) ∼ exp[−(t/W )2] (for an uncorrelated Gaussian disorder
distribution) [28,50]. Due to the power-law nature of these
rare states, samples that have multiple rare regions will have
nonzero tunneling matrix elements between them [28,50]. In
the presence of the magnetic field, as long as the cyclotron
orbits are not sufficiently smaller than the quasilocalized wave
function, it is natural to expect them to persist (as we will show
and see in Appendix A), however, what their effect will be on
the axial anomaly is in no way clear.

We tune the strength of disorder in the proper range which
is not too small that the probability of finding a sample
with rare region is unrealistically small, nor too large that
rare states proliferate the entire system. In the numerical
calculations in this section, we use W = 0.7t and search
through many different disorder realizations for rare states.
With this parameter, we were able to find several disorder
realizations with rare states among 10 000 samples. We first
identify the rare state candidates in the absence of a magnetic
field by plotting the φ dispersion in the minizone for a given
disorder realization, and check the existence of a nondis-
persing state [28,50] near zero energy, that possesses a wave
function that decays like 1/r2 to within numerical accuracy
(see Appendix A).

B. Rare states in the single Weyl node model

As explained in Sec. II B, the chiral anomaly is closely tied
with the spectral flow in the φ dispersion. In this section, we
will calculate a number of different φ dispersions in many
conditions both with and without the nonperturbative rare
states. By comparing the spectral flows in the two cases we
will be able to determine the influence of nonperturbative
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FIG. 2. φ dispersions of the single Weyl node model. All four cases have an uncorrelated disorder potential of strength W = 0.7t , but with
a different disorder realization. Each state is color coded with their effective IPR localization length ξL. (a) � = �0 case when the disorder
realization does not contain any rare region. The positive chirality CLL, i.e., the linear band at low energy, can be clearly seen and the positive
spectral flow is indicated with the arrow. (b) � = �0 when the disorder realization contains one rare region. The flat band with very low ξL

is the quasilocalized rare state. Notice the hybridization of the rare state and CLL. (c) � = 2�0 case for the same disorder realization as (b).
The twofold degeneracy of Landau levels is weakly broken due to the perturbative effect of the disorder potential. (d) � = 2�0 case when the
disorder realization contains two rare regions. The two rare states both interact with the CLLs, opening gaps in all four intersections. Note that
the total chiral spectral flow is intact despite rare states in all cases (b), (c), and (d).

effects of disorder on the chiral anomaly in the system. For
conceptual clarity, we first investigate the case with a single
Weyl node. Figure 2 shows dispersions of the single-node
model with the only difference being the number of external
flux [� = �0 for Figs. 2(a) and 2(b), and � = 2�0 for 2(c)
and 2(d)], and the disorder sample [which results in no rare
state for Fig. 2(a), one rare state for Figs. 2(b) and 2(c),
and two rare states for Fig. 2(d); the disorder potential is
identical for Figs. 2(b) and 2(c)]. The extent to which states
are localized is quantified through a “localization length” that
is defined from the inverse participation ratio (IPR) of each
energy (E) eigenstate [�rσ (E)]:

ξL(E) ≡
(∑

r

[|�r↑(E)|2 + |�r↓(E)|2]2

)−1/3

. (3)

We emphasize that although we use a length scale that mea-
sures how localized the states are through the IPR, this does
not imply that the states are exponentially localized. Note that
though the rare states have a relatively short length scale of
localization, one should keep in mind that their wave functions
decay as a power law and the localization length should be
understood strictly in this IPR sense.

Figure 2(a) is shown as a reference of the spectral flow
without any rare states. One can clearly observe the positive
spectral flow from the CLL, indicating the chiral anomaly is
present; the flow is shown as an arrow with positive slope in
the figure. The dispersion in Fig. 2(b) contains one rare state,
the nondispersing band near zero energy with small ξL(E).
Since CLLs are extended states, they naturally hybridize with
the rare state and open up a gap. At first sight, the spectral
flow seems to be decreased since E(φ = 2π ) − E(φ = 0) has
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become smaller due to hybridizing with a rare state. However,
when considering the spectral flow of the CLL and rare state
combined, one can see the total flow is the same as that of the
CLL in Fig. 2(a). We therefore reach one of our main results,
namely, the net spectral flow is not affected by a single rare
state and the axial anomaly survives nonperturbative effects
of disorder for the case of a single Weyl node. At energies in
the vicinity of the rare states where the spectral flow continues
through the rare states, the character of the rare states is clearly
different from the CLLs and therefore should be considered as
part of the broader CWSs.

This feature is not restricted to one flux quanta or single
rare state. Figure 2(c) shows the spectral flow with two flux
quanta. Due to the hybridization of the rare state with both
CLLs, the two CLLs are hybridized with each other through
the rare state. But, as in the � = �0 case, the total spectral
flow of all three states is unchanged from the existence of the
rare state; this can be generalized to multiple fluxes through
the system. Figure 2(d) is when � = 2�0 and with two rare
regions in the system. It can be seen from the dispersion that
basically the same mechanism will hold for samples with
multiple rare regions; this may be generalized to cases that
have any number of rare regions in the system. Combining
these observations, we conclude that the total spectral flow is
not affected by rare states in any external field, indicating that
the chiral anomaly is intact despite the presence of rare states
in the single-node model.

C. Rare states in the two Weyl node model

Now, we turn to the physically more realistic case of sys-
tems with two Weyl nodes with internode scattering. Figure 3
is the φ dispersion calculated for such systems, with either
one or two external flux quanta threading though the system,
respectively. As we have mentioned earlier, the hybridization
of CLLs of opposite chirality occurs in the vicinity of high-
symmetry points φ = 0, π in this model with weak disorder.
Therefore, by choosing a disorder realization where the rare
state band and CLLs cross at φ far from 0 or π and at a
much lower (absolute value of) energy, we can single out
how the nonperturbative rare states affect the CLLs and the
chiral anomaly separately from typical states that hybridize
with each other at much higher energies.

To be concrete, let us take a look at Fig. 3(a). This shows a
particular system where � = �0 and W = 0.7t . It is apparent
from the gaps at φ = 0, π that the CLLs have lost their chiral
properties. However, the rare state which has an energy of
E/t ≈ 0.02 does not cross the CLL on these values of φ. So,
to investigate the rare state effect on the CLLs we only need
to consider the regions where the rare state and CLL band
meets, i.e., we may concentrate on the energy window of, for
example in this case, 0 < E/t < 0.05. In the two crossing
points where the rare state dispersion intersects with the two
CLLs separately, we can see that the gap opens at both points.
These gaps destroy the chiral nature of the CLLs, and the
energy band crossing E = 0 will not have any spectral flow as
we tune φ from 0 to 2π (again, regardless of any possible gap
openings in other points of the spectrum). In other words, the
two different CLLs do not only interact directly, but can also
interact via the rare states and lose their topological properties.

FIG. 3. φ dispersion for rare states with two Weyl nodes. The
disorder strength is the same as in Fig. 2, W = 0.7t , and the specific
disorder realization is chosen as the one with a single rare region. (a)
� = �0 case. One can observe the rare state (low ξL state around
E/t ≈ 0.02) hybridize with both CLLs. The CLL loses its chirality
after hybridizing, which can also be checked from the zero spectral
flow as φ is increased from 0 to 2π . (b) � = 2�0 case for the same
disorder realization. The rare state mixes with all CLLs and the gap
opens in four places. Note the difference from (a) that only one
pair (with lower energy) of the CLLs has lost its chirality due to
hybridization with the rare state. The other pair of CLLs still remain
chiral and survive as a channel of charge pumping.

Thus, in this particular case of Fig. 3(a) the system does not
exhibit the chiral anomaly due to internode scattering, but
even assuming that there was no internode scattering (which
is in principle possible by increasing the correlation of the
disorder), the anomaly would be destroyed by the rare state
separately hybridizing with each CLL.

This is a demonstration of one case where the rare state
mediates an interaction between the two CLLs, but we can
argue that this effect is in fact general. Since rare states decay
in space as ψ (r ) ∼ 1/r2, their wave function in momentum
space is spread out and can hybridize with (essentially) any
plane-wave-like state [56]. Therefore, the rare states generally
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have wave-function overlap with CLLs with both chiralities
and thus hybridize with them. The overlap with each CLL
wave function will dictate the size of each gap, which will
both be nonzero. Thus, the argument for Fig. 3(a) will gener-
ally hold for any disorder realization with rare states.

We next consider Fig. 3(b), the case with the same disorder
realization and parameters from Fig. 3(a) but the external
flux is doubled to � = 2�0. Similar to the case with one
flux quantum, we may only concentrate on the small energy
window around that of the rare state and ignore all other
features of the dispersion. The rare states cross with two CLLs
of each chirality and a gap opens at all four level crossings. Let
us first consider the CLLs with lower energy. The situation
for the low-energy CLLs is very similar to that of the system
with one flux: they hybridize with the rare state and the two
opposite chirality CLLs are connected via the rare state. These
are no longer a channel for charge pumping. However, the
CLLs with higher energy behave differently. They indeed
hybridize with the rare state at first, but they again hybridize
with the lower-energy CLL. As a result, the higher-energy
CLL does not lose its topological properties and remain chiral,
surviving as a channel of the spectral flow. From this we see
that due to the interaction with each rare state, the number of
CLLs contributing to the chiral anomaly decreases by one.

Our observation leads to a conclusion that the effect on the
chiral anomaly is modified on a microscopic level. Without
rare states, the charge imbalance between the two chiralities
in the presence of parallel electric and magnetic field is
proportional to E · B, which is directly related to the number
of flux through the system and the degeneracy of the CLLs.
Now, as per our observation of each rare state eliminating the
chirality of one CLL, the pumped charge will be modified by
a factor of “(number of fluxes−number of rare states)/number
of fluxes.” In the thermodynamic limit, the number of fluxes
scales like ∼L2 whereas the number of rare states scales like
∼L3. Thus, the rare state effect will dominate the system in the
thermodynamic limit except for potentially thin-film samples.

IV. DIFFUSIVE TOPOLOGICAL METAL LIMIT

Now, we turn to the case where the Fermi energy is away
from the Weyl point, i.e., the case of the so-called topological
metal [61], and see whether the chiral anomaly survives in the
diffusive limit. We follow Haldane in defining the topological
metal to be the Weyl semimetal at a Fermi energy sufficiently
far from the Weyl point so that the Landau level spacing
in a magnetic field is much smaller than the Fermi energy.
The CLL is then only one of the many Landau levels. The
addition of weak disorder should lead to a diffusive metal with
a mean-free path that is shorter than the system size so that the
DOS becomes independent of the boundary phase twist φ. The
application of a small magnetic field with a magnetic length
that is longer than the mean-free path leads to a situation
where there are no Landau levels and no quantum oscillations
of the DOS from the magnetic field. One can see this from
the fact that quantum mechanically the energy levels do not
separate into bands but instead are sufficiently dense and the
CLL itself is not well defined. Therefore, the spectral flow
through a few CWSs, which signals the existence of the chiral
anomaly in the low-energy (or clean) limit, is insufficient to

describe the chiral anomaly in the diffusive topological metal
limit.

The difficulty of defining the chiral anomaly in the diffu-
sive metal limit is resolved by considering the spectral flow of
all the states near the Fermi energy E. Specifically, the charge
added in the vicinity of a specific Weyl point as the phase φ is
incremented by 2π is

�q =
∫ 2π

0
dφ ∂φ

∑
j

�[E − Ej (φ)]

= −
∫ 2π

0
dφ

∑
j

vj (φ) δ[E − Ej (φ)], (4)

where Ej (φ) is the j th eigenstate with a twist of φ and
vj (φ) = ∂Ej/∂φ. Defining the average DOS, ν(E, φ), as

ν(E, φ) = 1

V

∑
i

δ[E − Ei (φ)], (5)

where V is the volume of the system, we can relate the
pumped charge �q to the average velocity

vavg(E, φ) = 1

V ν(E, φ)

∑
j

vj (φ) δ[E − Ej (φ)] (6)

through the equation

�q = −V

∫
dφ ν(E, φ) vavg(E, φ). (7)

In the limit of a system that is much larger than the mean-
free path at energy E, we expect both the DOS and vavg to be
independent of φ so that we obtain a simpler relation

�q = −2πV ν(E)vavg(E). (8)

The average velocity vavg(E) vanishes for most nontopolog-
ical metals since the spectrum is periodic in the twist φ.
Thus, the average velocity vavg(E) represents the process of
the spectral flow that leads to the chiral anomaly in a single
Weyl cone. In what follows, we will show that the topological
response of the diffusive topological metal indeed leads to a
nonzero value of vavg(E) analytically (Sec. IV B) which also
agrees with the numerical result (Sec. IV C). We emphasize
that this nonzero vavg(E) can serve as a more general indicator
of chiral charge pumping and chiral anomaly.

A. Topological supersymmetric NLσM

We start by reviewing the supersymmetric nonlinear sigma
model (NLσM) [62] approach to determine disorder-averaged
spectral properties of noninteracting systems. For a metal,
this NLσM takes the form of a translationally invariant field
theory where the disorder Fermi surface is replaced by a
Goldstone mode that describes Ohmic transport. Specifically,
it is known that the statistical properties at a Fermi energy E

of the states of a conventional diffusive metal with a system
size larger than the mean-free path l = vF τ (vF is the mean
Fermi velocity and τ is the mean scattering time) is described
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by the following supersymmetric NLσM [62–64]:

F [Q] = πν

8

∫
dr str

[
D

(
∇Q − ie

c
[Q, Aτ3]

)2

+2iω�Q

]
.

(9)

D = v2
F τ/d is the diffusion constant, A is the gauge-invariant

vector potential, and ω is the frequency difference between
the two operators in the correlator we are interested in. The
microscopic fermion field has been replaced by an 8 × 8
supermatrix field Q; � and τ3 (not to be confused with the
mean scattering time) are constant 8 × 8 supermatrices; “str”
is the supertrace. Details on the fields, parameters, and the
NLσM itself will follow in Appendix B and may also be found
in Refs. [62–64]. The NLσM, which can be derived from a
Hubbard-Stratonovich transformation followed by a gradient
expansion about a saddle-point approximation applied to the
disordered microscopic Hamiltonian, leads to a microscopic
description of Ohmic transport [62–64].

As we show in Appendix C (where we closely follow
the derivation in Ref. [46]), from the continuum model for
a disordered single Weyl node,

H = v
(

k − e

c
a(φ)

)
· σ + V (r), (10)

the topological response of the diffusive topological metal
[61] also appears as a term in the supersymmetric action (a
corresponding term also appears in replica analysis [46]):

FCS = i

16π

∑
s=±

s

∫
dr εijk str(P s (∂xi

Aj )P sAk ). (11)

Here, a is the vector potential in the system, including that
from the external magnetic field and the phase twist, and
P ± = (1 ± �)/2 is the projection operator. In addition to
FCS, there is an additional topological term in the action that is
responsible for the anomalous Hall effect in Weyl semimetals
[46], but since this term does not play a role in the zero-mode
approximation that we use below, we do not need to consider
it here.

We now consider applying the NLσM description of dis-
ordered Weyl materials reviewed above to compute the level
velocity correlator in a magnetic field. As discussed in previ-
ous works computing the level velocity correlator [46,64], in
the diffusive regime such correlators can be reasonably deter-
mined from the zero-mode approximation of the field theory.
The definition of the level velocity depends on the imposition
of a phase twist (�δφ/Lzẑ) across the system. Furthermore,
the magnetic field is introduced into the theory through a
vector potential that satisfies ∇ × a = Bẑ in Eq. (10). The
combination of the vector potential from the magnetic field
and the phase twist leads to an interesting contribution from
the Chern-Simons term [Eq. (11)], which is proportional to
str(�Q). Following these transformations, the action within
the zero-mode approximation for a Weyl metal (including the
Chern-Simons term) is written as

F0[Q] = π

8�
str

[
−D

(
e

c
[Q, Aτ3]

)2

+ 2i

(
ω − Bδφ

4π2Lzν

)
�Q

]
. (12)

Here, � = 1/(V ν) is the mean level spacing. An important
feature of Eq. (12) is that the actions with B �= 0 and B = 0
are connected by a simple shift in frequency ω → ω − Bδφ

4π2Lzν
.

This action will be the key ingredient in determining the
topological contribution to the level velocity.

B. Chiral charge pumping

We can express the average velocity (vavg) in terms of the
DOS correlator

K (ω, δφ) = 〈ν(E, φ) ν(E + ω, φ + δφ)〉, (13)

where the DOS operator is defined as in Eq. (5), 〈 . . . 〉
indicates an average over a range of energy, phase twist, and
disorder realizations. As mentioned earlier, this correlator can
be calculated using the NLσM introduced in Sec. IV A. The
mean level velocity is now written as

vavg(E, φ)〈ν(E, φ)〉

= lim
δφ→0

1

V

∑
j

〈
Ej (φ + δφ) − Ej (φ)

δφ
δ[E − Ej (φ)]

〉

= lim
δφ→0

V

∫
�ω

dω
ω

δφ
K (ω, δφ). (14)

Note that Eq. (14) assumes that �ω, which represents a range
for the integration of ω, to be an amount that is much smaller
than the mean level spacing [� = 1/(V ν)] so that the double
sum implicit in Eq. (13) can be approximated by the single
sum over states in Eq. (14).

Now, we can calculate vavg(E, φ) for the single Weyl node
Hamiltonian (10), which results in the NLσM of Eq. (12).
Motivated by the shift of frequency in Eq. (12) eliminates
its B dependence, it is convenient to shift ω → ω + Bδφ

4π2Lzν
.

Applying this, vavg(E, φ) takes the form

vavg(E, φ)〈ν(E, φ)〉

= lim
δφ→0

V

∫
�ω

dω

[
ω

δφ
+ B

4π2Lzν

]
K

(
ω + Bδφ

4π2Lzν
, δφ

)
.

(15)

Considering the ω dependence of Eq. (12), one can observe
that K (ω + Bδφ

4π2Lzν
, δφ) = K0(ω, δφ), where K0 is the corre-

lation function at B = 0 [i.e., with the B dependence of the
frequency term in Eq. (12) canceled] and also the NLσM
for a nontopological system. Furthermore, the ω

δφ
contribution

to Eq. (15), which is identical to the level velocity of the
nontopological system, must vanish so that

vavg(E, φ)〈ν(E, φ)〉 = B

4π2Lzν
lim

δφ→0
V

∫
�ω

dω K0(ω, δφ).

(16)

Using the same assumption of small �ω as in Eq. (14), we can
calculate the integral as well as the limit δφ → 0 which en-
sures that the limδφ→0

∫
�ω

dω K0(ω, δφ) = V −2 ∑
i〈δ[E −

Ei (φ)]〉 = V −1〈ν(E, φ)〉. This (and also restoring the units)
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leads us to the key result of this section:∫ 2π

0
dφ vavg(E, φ) = B

2πLzν(h̄/e)

= �

h/e
�. (17)

Here, � ≡ BLxLy is the total flux though the system, and
� = 1/(V ν) is the mean level spacing. The above relation
suggests that the integration of the mean level velocity from
0 to 2π , which is directly connected to the chiral charge
pumping, is a product of (i) the number of flux quanta through
the system, and (ii) the mean level spacing.

C. Numerical results

We now analyze our numerical data in light of the deriva-
tion in the previous section. The result for the average velocity
of an ideal single Weyl node [Eq. (17)] can be confirmed in our
numerical calculations. Since our calculation of the φ disper-
sion includes diagonalizing the tight-binding Hamiltonian, we
have all the eigenstates of the system together with their cor-
responding eigenvalues. To obtain the information of the level
velocity, we use the Hellman-Feynman theorem and calculate
the expectation value of ∂φH , where H is the tight-binding
Hamiltonian in Eq. (1): vEi

(φ) = 〈Ei (φ)|∂φH |Ei (φ)〉. Here,
the subscript in the right-hand side indicates expectation value
for the state i with twist phase φ. Note that the φ dependence
of Eq. (1) is implicit in the equation for the sake of clarity.

Now, we define a function f (E) which sums the level
velocity for all states in the φ dispersion which have energy
less than E. Also, as per Eq. (17), f (E) should be linear in
energy with the slope being the number of flux quanta when E

is within the CLL bandwidth. Combining these we can write

f (E) =
∑
Ei�E

∫ 2π

0
dφ vEi

(φ)

= �

h/e
(E − E0). (18)

Here, E0 is the onset energy of f (E), which corresponds to
the lowest energy of the CLL in the clean limit. Note that
f (E) is not a disorder-averaged quantity, and the mean level
spacing in Eq. (17) is replaced by the actual energy difference
of the particular disorder realization, i.e., dividing Eq. (18) by
the number of states (between energy E and E0) and disorder
averaging both sides of the equation leads to Eq. (17). This
equation only holds for a single Weyl node system since it is
a direct consequence of Eq. (17). When we calculate f (E)
for the system with two Weyl nodes (of opposite chirality),
the contributions from each node will cancel and give zero
exactly. Lastly, the quantity f (E) is well defined for lattice
models, but it can be made finite even for continuum models
by introducing a lower bound on the energy sum. Such a lower
bound is not expected to qualitatively change the result since
f (E) is an averaged quantity.

Figures 4(a) and 4(b) show a numerical calculation of the
φ dispersion and a plot of its corresponding f (E) function.
The system has W/t = 6.0, � = �0, and k0 = kN/10. For
this case, we find f (E) has a slope of �/�0 = 1 for an

energy range near E = 0, which is consistent with Eq. (18).
(The red line is a guide to the eye, which has exactly a slope
of one.) It is important to observe that the energy window
satisfying Eq. (18) is not limited to the very vicinity of E = 0
where states are relatively sparse (in other words, the CLL
is relatively apparent), but extends deep into the “diffusive”
region where the φ dispersion shows no evident structure.

Note that the overall profile of f (E) is not of the form
we have expected, as we can see from the deviation of the
data from the red linear line. However, this is an artifact of
the particular way we have constructed the single Weyl node
lattice Hamiltonian (Sec. II A). We note that there is also an
arbitrary shift in the y axis to make the data pass through the
origin. The energy range which appears to be linear in the
f (E) plot can also be viewed as where the effective single-
node approximation of the lattice Hamiltonian is valid.

The field-theory calculations in the previous subsections
strictly apply in the limit of the topological metal, where
the Fermi energy is away from the Weyl point and writing
the NLσM is justified. However, we find that the derived
average level velocity and its dependence of flux [Eq. (17)]
also holds in the presence of rare regions discussed in Sec. III.
Figure 4(c) is the same φ dispersion as in Fig. 2(d), and
Fig. 4(d) is the corresponding f (E) of the system. The f (E)
now has a slope of �/�0 = 2 (which is the slope of the red
solid line) for the energy range including the two rare states.
This shows that the level velocity can be a good indicator of
the chiral anomaly near and away from the Weyl point. Here,
the data fall off of the linear energy dependence at smaller
energies than in Fig. 2(b) because we have not suppressed
intervalley scattering in this sample and at these energies the
two Weyl nodes (at different energies) begin to scatter more
strongly.

V. DISCUSSION

We have shown the existence of the chiral anomaly in two
situations where disorder leads to strong violations of being
able to define sharp energy bands in momentum space. In
the first situation involving the rare states, disorder leads to
quasilocalized states that have no well-defined momentum
so that they contribute to a featureless continuum in the
spectral function [56]. Understanding the chiral anomaly in
this state requires pumping of electrons through states which
are hybrids of the chiral Landau level and the rare states. The
second situation we have studied involves a diffusive metal
with strong disorder. One way this can occur is when the
Fermi level is away from the Weyl point and the magnetic field
is small enough so that the cyclotron frequency is smaller than
the disorder scattering rate. The chiral anomaly here, despite
the absence of chiral Landau levels, has previously been un-
derstood semiclassically through the Karplus-Luttinger term
[19] or even with interaction using hydrodynamics [33]. In
contrast, both the field theory and numerical results described
in this paper are completely quantum mechanical and there-
fore capable of describing quantum interference effects that
are needed to describe the competition between localization
and the chiral anomaly that forbids localization [65–68].
Another way the second situation happens is when a diffusive
metal arises from strong disorder near the Weyl point. The
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FIG. 4. Numerical data on verifying the relation (18). (a) φ dispersion of a system with parameters W = 6.0t , k0 = kN/10, and � = �0.
Notice in the energy range of |E/t | > 0.5, the DOS does not have any structure in φ and can be considered as a topological metal in the
diffusive limit. (b) The f (E) function (18), for the system in (a). The data are linear in energy with the coefficient of one, the number of flux,
and this feature persists to the diffusive metal limit (|E/t | > 0.5). The red solid line is the guide to the eye with slope of one. (c) The same φ

dispersion as in Fig. 2(d), where there are rare states near the Weyl point and � = 2�0. (d) The f (E) function for the system in (c). The data
match well that it is linear with the coefficient of two. The red solid line is the guide to the eye with slope of two.

semiclassical approach to the chiral anomaly [19] is not appli-
cable to this situation because the quasiparticle scattering rate
is larger than the Fermi energy (which approaches zero). How-
ever, our analysis continues to apply since our field-theoretic
results do not depend on the existence of well-defined energy
bands. The chiral anomaly in disordered Weyl semimetals has
previously been described using the replica sigma model [46].
In these works, the conserved charge current is computed
to determine transport properties. The charge current in a
single Weyl cone receives contributions from energies that
are arbitrarily below the Fermi energy and are therefore a
quantity that technically depends on the regularization used.
In fact, most natural regularization schemes in these mate-
rials lead to the appearance of a finite current at vanishing
electric field [46,69], which is known to be unphysical in
real materials [17,70–73]. In contrast, this work focuses on
the characterization of the anomaly in terms of the level
velocity correlator near the Fermi energy. Since our indicator

in Eq. (17) depends only on states near the Fermi energy,
the quantity we compute has no direct dependence on the
regularization [although the action (9) is derived with the
same regularization used in Ref. [46]]. In fact, we expect
that our approach of computing the effects of the anomaly
through level velocity correlators might be a direct way to
study anomalies in disordered topological systems in other
symmetry classes. Finally, the quantum description of the
chiral anomaly in strongly disordered system likely paves the
way for an understanding of how the chiral anomaly preempts
Anderson localization.
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APPENDIX A: RARE STATE WAVE FUNCTION

In this appendix, we quantitatively explore the dependence
of the magnetic field on the quasilocalized rare wave func-
tions. In Fig. 5, we show a rare eigenstate for the single-
node Weyl model with one magnetic flux. We find for short
distances the power-law decay of the wave function is un-
affected from the absence of a magnetic field and we find
ψ (r ) ∼ 1/r2.15 for r  L, which is in good agreement with
the analytic prediction without a magnetic field ψ (r ) ∼ 1/r2

FIG. 5. (a) The probability density projected to the xy plane
(
∑

z |ψ (x, y, z)|2) of a rare state wave function with one flux quan-
tum in the single-node Weyl model [here we are showing the rare
state displayed in the dispersion in Fig. 2(b)]. The rare state is
chosen to be the eigenstate shown in Fig. 2(b), φ = π (the state
with low ξL and E/t ≈ 0.06). We can see the probability density is
(quasi)localized about a rare region of the random potential. (b) The
decay of this rare state wave function. To see the decay behavior,
we made a “binned” wave function with equally spaced bins (in
distance r from its maximum), and assigned the average value of
the wave functions in the bin. The dashed line is a linear fit from data
r < 6.4 and has a slope of −2.15. This shows the power-law decay
of the rare state wave function ψ ∼ 1/r−2.15.

FIG. 6. The decay of the rare state wave function in the presence
of a magnetic field. Here, the rare state is found in the two Weyl
model and is the same state we show in the dispersion in Fig. 3, φ =
π . The dashed line is the linear fit for the � = 0 data, showing the
power-law decay ψ ∼ 1/r−1.9. The data show even in the presence
of a strong magnetic field (note that � = 20�0 corresponds to 1/20
flux per plaquette and the magnetic length lB/a ≈ 1.78) the small-r
behavior is not drastically changed.

[28]. At larger r we find that the wave function falls off
faster than power law, here we attribute this to the single-node
approximation we have made in the model, as this feature is
not present at the same magnetic field strength in the two-node
Weyl model.

To study the dependence on the magnetic field we focus
on the two-node Weyl model and find a rare state with
no magnetic field that decays like ψ (r ) ∼ 1/r1.9 and then
systematically increase the magnetic flux (focusing on the
same rare state). We show the decay of the rare wave function
in Fig. 6; interestingly we find that the power-law decay of
ψ (r ) at small r  L is unaffected over a broad range of
magnetic fields, whereas the large-r behavior falls off the
power-law form more strongly for increasing magnetic flux.
Nonetheless, even for the largest field strengths shown in
Fig. 6 (with a magnetic length lB ≈ 2a) the small-r behavior
is not dramatically affected. Thus, our results demonstrate the
robustness of rare states in disordered Weyl semimetals to
magnetic fields.

APPENDIX B: SHORT REVIEW ON NLσM

In this appendix, we give a brief sketch on the derivation
of the NLσM [Eq. (9)]. This is not a thorough derivation,
nor an original work of the paper; rather, we summarize
the concepts which are essential in understanding the main
text. We use the supersymmetry method [62–64,74,75] to
evaluate the DOS autocorrelator. There are many literatures
[62–64,74,75] which worked on the details of this procedure
and the symmetry of the NLσM. Here, we closely follow
especially Ref. [64].

245109-12

http://www.it.umd.edu/hpcc


CHIRAL ANOMALY WITHOUT LANDAU LEVELS: FROM … PHYSICAL REVIEW B 98, 245109 (2018)

Let us state again the autocorrelator of the DOS, Eq. (13):

K (ω, δφ) = 〈ν(E, φ) ν(E + ω, φ + δφ)〉

= 1

V 2

〈∑
i

δ(E − Ei (φ))
∑

j

δ(E + ω − Ej (φ + δφ))

〉
. (B1)

We denote the average 〈. . . 〉 over a range of energy, twist 0 � φ < 2π , and disorder realizations. We first express K (ω, δφ) in
terms of Green functions. When ϕi (r) is the eigenstate of the Hamiltonian (10) with eigenvalue Ei , i.e., Hϕi = Eiϕi , we can
write the Green function as

G
R,A
E,φ (r, r′) =

∑
i

ϕi (r)ϕ∗
i (r′)

E − Ei (φ) ± iδ
. (B2)

Now we can rewrite Eq. (B1) as follows:

K (ω, δφ) = −�2ν2

4π2

∫
dr dr′〈(GA

E,φ (r, r) − GR
E,φ (r, r)

)(
GA

E+ω,φ+δφ (r′, r′) − GR
E+ω,φ+δφ (r′, r′)

)〉
. (B3)

Here, we also substituted the inverse volume by the product of average level spacing (�) and average DOS (ν). Of the four
terms in Eq. (B3), 〈GAGA〉 and 〈GRGR〉 can be calculated from conventional perturbation theory. On the other hand, 〈GAGR〉
and 〈GRGA〉 are more difficult to handle perturbatively and we express these as a path integral over the eight-component
supervector ψ :

GA
E,φ (r, r)GR

E+ω,φ+δφ (r′, r′) =
∫

Dψ Dψ̄ ψ1
α (r)ψ̄1

α (r) ψ2
β (r′)ψ̄2

β (r′) exp[−L], (B4)

with the Lagrangian defined as

L = i

∫
dr ψ̄ (r)

[
−v

(
k − e

c
τ3 a(φ)

)
· σ − V (r) + E + ω

2
− (ω + iδ)

2
�

]
ψ (r). (B5)

ψ is given as ψT = 1√
2
(χ1∗, χ1, S1∗, S1, χ2∗, χ2, S2∗, S2) where the superscripts 1 and 2 are the advanced/retarded space; χ ’s

are Grassmann variables and S’s are commuting variables. α, β are arbitrary components within the advanced and retarded
spaces, respectively. � is an 8 × 8 supermatrix defined as � = diag(14,−14) in this basis, and τ3 is the third Pauli matrix in
(χ∗, χ ) and (S∗, S) space.

Now, we can disorder average the theory exactly and replace V ψ̄ψ by i
4πντ

(ψ̄ψ )2, where τ is the quasiparticle lifetime. As
the disorder-averaged Lagrangian now looks like an interacting theory without disorder, we can perform Hubbard-Stratonovich
transformation introducing an 8 × 8 supermatrix field Q(r). Integrating out the original supervector field ψ (r), which is now
quadratic, we obtain an effective action F [Q]:

F [Q] =
∫

dr
[
−1

2
str ln

(
−iH0 − i

2
(ω + iδ)� + Q(r)

2τ

)
+ πν

8τ
str Q(r)2

]
, (B6)

where H0 is

H0 = v
(

k − e

c
τ3 a(φ)

)
· σ − E − ω

2
. (B7)

Now, considering the small fluctuations around the saddle-point solution of Eq. (B6), we obtain the desired NLσM (9). Note
that we have not used any details of the Hamiltonian up to this point, and emphasize this NLσM is a general result.

APPENDIX C: DERIVATION OF CHERN-SIMONS TERM

In the following, we show that when we assume a topological Hamiltonian as in Eq. (10), the action [Eq. (9)] has an additional
Chern-Simons term which will significantly affect the value of the average level velocity. The strategy is to use the derivative
expansion to Eq. (B6) as in Ref. [46], where a similar term is derived in the replica framework. We stress that such a gradient
expansion cannot capture the rare-region effects and we are focusing on deep in the diffusive regime.

First, we perform a similarity transform to change F [Q] into F [A]. Here, we consider the ω = 0 sector. The long-wavelength
expansion of Eq. (B6) consists of a NLσM coming from the large degeneracy of ω = 0 sector, and ω linear terms. The Chern-
Simons term we are interested in appears in the former and we can safely restrict ourselves to ω = 0. Performing the similarity
transformation with V , and considering Q(r) = V (r)�V̄ (r),

F [A] =
∫

dr
[
−1

2
str ln V̄

(
−iH0 + Q(r)

2τ

)
V + πν

8τ
strV̄ QV V̄ QV

]

=
∫

dr
[
−1

2
str ln

(
−i(/k − i /A − ε) + �

2τ

)]
. (C1)
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The gauge-independent vector potential is Ai = V̄ (∂i − iτ3ai )V , and the slash notation is defined as /k ≡ k · σ .
Now, we are in a good position to expand the logarithm and write F [A] as a power series of A. Only the action in the second

power of A is important in the derivation of AdA Chern-Simons term:

F (2)[A] =
∫

dr

[
−1

4
str

(
ε − /k − i�

2τ

)−1

/A(r)

(
ε − /k − i�

2τ

)−1

/A(r)

]
. (C2)

We define Gk = (ε − /k − i�
2τ

)−1 = ∑
s=± Gs

kP
s , where G±

k = (ε − /k ∓ i
2τ

)−1 and P ± = (1 ± �)/2 the projection operator.
Using the Moyal product expansion,

F (2)[A] � −1

4

∫
dr dk str

(
Gk /A(r) − i

2
∂ki

Gk∂xi
/A(r)

)(
Gk /A(r) − i

2
∂ki

Gk∂xi
/A(r)

)

= · · · + i

4

∫
dr dk str(∂ki

Gk )(∂xi
/A(r))Gk /A(r) + · · ·

= · · · + i

4

∑
s,s ′

∫
dr dk strP s

(
∂ki

Gs
k

)
(∂xi

Aj )σjP
s ′
Gs ′

k Amσm

= · · · + i

4

∑
s,s ′

∫
dk tr

(
Gs

kσiG
s
kσjG

s ′
k σm

) ∫
dr str(P s∂xi

AjP
s ′
Am) + · · · . (C3)

The leading order “. . . ” will become the (∂Q)2 term, and we focus on the subleading term written above. Note that we have
used ∂ki

Gs
k = Gs

kσiG
s
k in the last equality.

We expand the tr (GσGσGσ ) term to obtain the desired Chern-Simons term

FCS = −1

2

∑
s,s ′

Fss ′

∫
dr εijk str

(
P s (∂xi

Aj )P s ′
Ak

)
,

Fss ′ =
∫

dk
(
ε2
s − k2

)−2(
ε2
s ′ − k2

)−1
(

ε2
s εs ′ − k2

3
(2εs + εs ′ )

)
. (C4)

Here, εs ≡ ε − is
2τ

. The Fss ′ integral can be done directly as they nicely converge:

Fss ′ = 1

8π

{
−is (s = s ′),

4ετ/3 (s �= s ′).
(C5)

The s = s ′ combination results in the action proportional to iεijk

∑
s=± s

∫
dr str(AiP

s∂xj
AkP

s ). Writing this term explicitly,

FCS = i

16π

∑
s

s

∫
dr εijk str

(
P s

(
∂xi

Aj

)
P sAk

)
. (C6)

We arrived at the form of Chern-Simons term as in Eq. (11).
Now, we use the zero-mode approximation and ignore the spatial dependence of V , which gives Ai = V̄ (−iτ3ai )V , and use

a as described in the main text [∇ × a = Bẑ with a curl-free term (�δφ/Lzẑ)]:

FCS = − i

16π

∑
s

s

∫
dr str

[
P s (V̄ Bτ3V )P s

(
V̄

�δφ

Lz

τ3V

)]

= − iBδφ

64πLz

∑
s

s

∫
dr str

[
(1 + s�)(V̄ τ3V )(1 + s�)(V̄ �τ3V )

]

= − iBδφ

32πLz

∫
dr str

[
�(V̄ τ3V )(V̄ �τ3V ) + (V̄ τ3V )�(V̄ �τ3V )

]
= − iBδφ

16πLz

∫
dr str(�Q ) (C7)

In the zero-mode approximation, the Chern-Simons term becomes proportional to str(�Q), which is the last term in Eq. (12).
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