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Combining the process-chain method with a symbolized evaluation, we work out in detail a high-order
symbolic strong-coupling expansion (HSSCE) for determining the quantum phase boundaries between the Mott
insulator and the superfluid phase of the Bose-Hubbard model for different fillings in hypercubic lattices of
different dimensions. With a subsequent Padé approximation we achieve for the quantum phase boundaries a
high accuracy, which is comparable to high-precision quantum Monte-Carlo simulations, and show that all the
Mott lobes can be rescaled to a single one. As a further cross-check, we find that the HSSCE results coincide
with a hopping expansion of the quantum phase boundaries, which follow from the effective potential Landau

theory.
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I. INTRODUCTION

In recent decades, strongly correlated systems have played
a crucial role in condensed matter physics. For high-
temperature superconductors [1], the on-site interaction be-
tween fermions becomes more dominant than the hopping
processes. Thus, considering the hopping term as a perturba-
tion, the Hubbard model can be reduced to the t — J model or
the Heisenberg model at half filling. The bosonic counterpart
is the Bose-Hubbard model [2], which has extensively been
studied theoretically and can be realized experimentally using
a gas of bosonic atoms in optical lattices [3,4]. By reducing the
tunneling processes via a deeper lattice potential or by using
the Feshbach resonance technique to increase the interaction,
those lattice systems can be tuned such that a quantum phase
transition from a superfluid to a Mott insulator phase can
be observed [3,4]. But, also, magnetic atoms [5], dipolar
molecules [6], or Rydberg atoms [7] can be loaded into an
optical lattice so that the strong long-range and anisotropic
dipolar interaction plays a major role. In contrast to the weakly
interacting case, strongly dipolar correlated systems exhibit
many exotic phases, such as supersolid [8—11], superradiant
solid [12], or other topological phases [13].

The Bose-Hubbard model [2], which describes the quan-
tum phase transition between the Mott insulator to the super-
fluid phase, is defined by the Hamiltonian
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where (ij) represents a sum over nearest-neighbor sites,
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(annihilates) a particle on site i, 7; = lsjl;,- abbreviates the
number operator, U stands for the on-site repulsion, and u is
the chemical potential. The quantum phase transition was first
established by using mean-field theory [2], but it is possible
to obtain more accurate results by using a strong-coupling
expansion (SCE) method, which was proposed by Freericks
and Monien some time ago [14]. The strong-coupling (SC)
ground state is given in the particle number representation,
while the hopping term is treated as a perturbation, so that the
energy of both the Mott insulator and a single particle (or hole)
excited state can be calculated perturbatively. By equating the
respective energies, the critical line between the Mott insulator
and the superfluid phase can be deduced. In comparison
with the mean-field approach [2], this SCE method shows a
higher accuracy for lower spatial dimensions, especially after
an extrapolation to higher orders. Therefore, SCE has been
used successfully to study the Bose-glass phase in the su-
perlattice [15], two-species bosons loaded into d-dimensional
hypercubic optical lattices [16,17], and the supersolid-solid
quantum phase transition [18]. In particular, the SCE method
has turned out to be efficient for the second-order transition
from an incompressible to a compressible phase. However,
the calculation effort turns out to increase with the order and
filling in form of a power law, so analytic expressions from
SCE are usually limited up to the fourth order.

To obtain higher orders than the tenth order, Eckardt
et al. developed a computer assisted process-chain algorithm
(PCA) [19,20] based on Kato’s formulation of the perturbation
calculus [21]. Using the PCA, high-precision results were
obtained for both the ground-state energy and the correla-
tion function within the Mott insulator [20]. Furthermore,
by implementing PCA for the effective potential Landau
theory (EPLT) [22,23], the critical line of the quantum phase
transition from the Mott insulator to the superfluid phase
was determined with high precision [20,24] so that even the
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corresponding critical exponents can be extracted [25]. To
deal with degenerate states, such as particle-hole excitations,
the PCA must be modified, as was shown by Heil and von
der Linden for a one-dimensional (1D) system [26]. An al-
ternative SCE approach by Elstner and Monien also obtained
high-order results, which can be applied to low dimensions
and low filling [27]. However, a general analytic expression
for quantum phase boundaries of different fillings, orders, and
dimensions is still lacking. They may help, for instance, to hint
at a scaling relation between different fillings [28]. In addition,
it is still unclear how SCE and EPLT are related although both
methods deal with a perturbative hopping expansion.

In this paper, we work out a high-order symbolic SCE
algorithm (HSSCE) and combine it with PCA for degenerate
states to obtain the quantum phase boundary of the Bose-
Hubbard model. To this end, we briefly review in Sec. II the
SCE, for which we propose an efficient method and list the
general analytic SC series up to eighth order on chain (1D),
square (2D), and cubic (3D) lattices for arbitrary filling n.
Then the respective quantum phase boundaries are obtained
in Sec. III in the thermodynamic limit by applying the Padé
resummation method to the SC series and by comparing the
results with those from numerical high-precision calculations.
In Sec. IV, based on the analytic expression of the critical line
for arbitrary filling, we rescale the Mott lobes to the infinite
filling Mott lobe. Afterward, in Sec. V, we show that the
HSSCE results coincide with a hopping expansion of the high-
order effective potential Landau theory (HEPLT). Finally, we
draw our conclusions in Sec. VI. In addition, to assist writing a
code, we work our algorithm in detail in Appendix A and also
attach the Matlab code in the Supplemental Material [29].

II. STRONG-COUPLING EXPANSION FOR THE
BOSE-HUBBARD MODEL

The SCE method is based on treating effects of the hopping
matrix element perturbatively [30]. It can be used to determine
the second-order critical line of the incompressible phase,
whose melting is caused by a proliferation of particle or
hole excitations. Based on the work of Freericks and Monien
[14], one determines at first the unperturbed ground-state
wave function of both the incompressible state and the par-
ticle (hole) excited state. Then one calculates the respective
ground-state energies in terms of a hopping expansion by
applying nondegenerate and degenerate perturbation theory,
respectively. At last, by comparing the resulting ground-state
energies, the corresponding critical line is deduced.

Let us consider the second-order quantum phase transition
of a Mott insulator as a concrete example, which is described
by the Bose-Hubbard model Eq. (1). The dominant part is
provided by the on-site repulsive interaction together with
the chemical potential, i.e., Hy = > Wi — 1)/2 — piyl,
whereas the perturbative part is the hopping term H' =
—tz(m(l;j@j —HQ;IS,-). When the tunnel matrix element ¢
vanishes, the ground state of the Mott insulator with fill-
ing n is nondegenerate and uniquely given by |1ﬂ$)) =
I1 ; (lA)l.T )"0)/ V/n!. In contrast to that, the particle excited state

13]; |¢,§‘4))> is degenerate for ¢ = 0, since no matter at which site
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FIG. 1. Second-order arrow diagrams for (a) the ground state
of a Mott insulator of filling one, and also for (b) open and
(c) closed arrow diagrams for the case of adding one particle. As
all arrow diagrams irrelevant to site k, indicated by black dashed
arrows, cancel each other, only the arrow diagrams relevant to site
k, highlighted by red solid arrows, need to be considered.

the additional particle is located, the corresponding ground-
state energies coincide.

The ground-state energy of the Mott insulator reads in
zeroth order of the tunnel matrix element EI(S) = N[Un(n —
1)/2 — un], where N denotes the number of lattice sites. The
first-order ground-state energy correction turns out to be zero,
so the first nonvanishing correction is of second-order and
follows from Ejy = Yoy |H'|e;)(ei| H' |3y /(E}y —
E;), where |e;) denotes an excited state with energy E;.
According to Fig. 1(a), the second-order processes correspond
to the case that each particle is hopping to the nearest neighbor
site and then back. Thus, the second-order perturbation energy
yields EI(VZI) = —z(n + 1)Nt*/U, where z = 2d stands for the
coordination number of a d dimensional hypercubic lattice.
Then the ground-state energy of the Mott insulator up to
second order in the tunnel matrix element is given by Ey =
EY —z(n+ )HN2/U.

For the particle excited state, the zeroth-order ground-state
energy is given by E\ = EY — 1 +nU. The general
form of the ground state wave function is given by the
superposition [ ) =3 . a ,-ijﬁ)) with the normalization
constraint Y jla; |>=1. The first-order ground-state
energy is then determined via E(V = (w;f))U—AI 1y ?).
To minimize E;J”, we need to diagonalize the matrix

M;; = (xpjv(,’)uiﬁ ’IS}L.W;;))) and take the lowest eigenvalue
as the resulting first-order ground-state energy. Thus, in
other words, first-order perturbation lifts the degeneracy.
Based on the underlying translational symmetry of the
ground state, we obtain the first-order ground-state energy
E;l) = —z(n 4 1)t and the nondegenerate ground state turns

out to be |1ﬁ[(,0)) =Zj Q-W/(S))/\/W- Now we turn to
second-order processes, where Figs. 1(b) and 1(c) depict via
red solid arrow diagrams the two possible types, which
occur in the presence of one additional particle. The
first diagram is an open diagram, which is characterized
by [211) — |202) — |112) with |ngn,n,) denoting the
occupation of the respective sites k, p, g and has the
corresponding energy —(n + 1)t?/U. The second one is the
closed diagram |21) — [30) — |21) with |nyn,) representing
the occupation of the sites k, p and the related energy
—(n+2)t2/(2U ). Note that the open diagram Fig. 1(b)
has the multiplicity z(z — 1), whereas the multiplicity of
the closed one in Fig. 1(c) is given by z. Besides that, we
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have to take into account in Figs. 1(b) and 1(c) that there
are additional z(N — 2) closed diagrams, indicated by black
dashed arrow diagrams, which are not related to the additional
particle. Thus, the second-order ground-state energy results in
EP = —[z(N = 2)(n+1) + z2(n+2)/2+2(z—1)(n + D>/ U
and the total energy of the particle excited state is given by
E,= Eg) —pu+nU—z(n+ Dt + E;z). Finally, equating
the Mott and the particle excited ground-state energy
according to Ey = E,, we get the following critical line
up to second order in the tunnel matrix element f: ), =
nU—z(n+1)t—[z(n+2)/2+z(z—1)(n+1)—2z(n+1)]*/U.

However, the number of arrow diagrams is of the order of
the lattice size N, so this calculation is not practical in the
thermodynamic limit even with the process-chain approach.
Therefore, we introduce here a concise SC method, which
turns out to be more practical and efficient as it is quite
suitable for a computer implementation. From the above
derivation of the second-order result for the critical line, we
read off that perturbative calculations follow more easily from
neglecting all energy contributions, which are not related to
the site k, where the additional particle is located, as all those
contributions irrelevant to site k in £y and E, cancel each
other at the end. Thus, to obtain the critical line to higher
orders in the tunnel matrix element most efficiently, we need
to consider the following three steps:

(i) We calculate the energies of the diagrams related to the
site k based on the ground state |1//$)), and name them energy
corrections. To this end, we only need to find all closed arrow
diagrams related to site k and calculate the contribution for
each diagram to the nondegenerate ground-state energy. In
Fig. 1(a), we have z hopping processes, where a particle at
site k hops to a nearest-neighbor site and then back, as well as
z hopping processes, where a particle at a neighbor site hops
to site k and back, thus the second-order energy correction
result is —2z(n + 1)t2/U.

(i) We only determine the energy, which is related to the
additional particle, and name it strong-coupling (SC) energy.
To this end, we need to find all arrow diagrams related to
site k and calculate the contribution of each diagram to the
degenerate ground-state energy. In Figs. 1(b) and 1(c), the
diagrams have the multiplicity z and z(z — 1), respectively,
thus the corresponding SC energies read —z(n + 2)t2/(2U)
and —z(z — 1)(n + D%/ U.

(iii) Equating the energy of processes (i) and (ii), we obtain
the resulting SCE critical line.

Based on this SCE method, we only need to consider
a finite number of diagrams, combine their evaluation with
the process-chain method, and then obtain their perturbative
value. Note that for the case of the hole excitation, the calcu-
lations proceed similarly, except that the arrows point then in
the direction where the hole moves.

To implement this method, we used an algorithm proposed
by Heil and von der Linden [26], but in our case each step
is realized in terms of a symbolic calculation. Then, the
representation of the coefficients in each order is an analytic
function of both the filling n and the hopping amplitude ¢. To
make the implementation of the algorithm more explicit, we
explain the details in Appendix A, and make the correspond-
ing Matlab code available in the Supplemental Material [29].
With this we have determined the critical lines of the quantum

phase diagram of the Bose-Hubbard model for a general Mott
lobe n, which were obtained with symbolic calculations up to
the eighth order. The SC results for both the upper and the
lower critical line of the Mott insulator with respect to both
particle and hole excitations are defined according to

P _ _ZOO o LY
U _1 i=l1 ﬁu <U) (2)
and
w1
U= ;:1 Ba <U> , (3)

respectively. The analytic expressions with coefficients up to
eighth order are given in Appendix B.

III. QUANTUM PHASE DIAGRAM FOR
BOSE-HUBBARD MODEL

To reconstruct from such perturbative results the whole
quantum phase diagram in the thermodynamic limit, we need
to know the scaling behavior of the quantum phase transi-
tion. According to previous works [2,31], the Mott-superfluid
quantum phase transition of the Bose-Hubbard model with
dimension d > 2 belongs to the d + 1 dimensional XY uni-
versality class. But in 1D, the quantum phase transition turns
out to be of the Berezinsky-Kosterlitz-Thouless (BKT) type,
which has to be treated separately.

A. BKT universality class

In the 1D case, the quantum phase boundary can be
rewritten as W,y = B(t) = A(t)/2, where the SC series for
both the mean energy B(f) = (i1, + 114)/2 and the energy
gap A(t) = up — py follow from from Eqgs. (B1) and (B2),
respectively. On the other hand, we know for the universality
class of Berezinsky-Kosterlitz-Thouless that the energy gap
A(t) is characterized by a nonanalytic behavior slightly below
the critical point 7, according to [14,32]

w
t.—1)’

with some coefficients A and W, so we conclude
[log A(#)]?> o (t. — t)~'. Such a divergent behavior could be
recovered from the SC series of [log A(1)]?, which is available
in terms of Egs. (B1) and (B2) in Appendix B. up to the eighth
order by applying the Padé resummation method [33]:

ZmTéamtm
log A(1)]> = =200 |
L+ mb,t"

To this end, the corresponding Taylor series of the left- and
right-hand side of Eq. (5) are used to obtain the respective
coefficients a,, and b,, from fitting with the restriction ny,x +
Mmax = 8. The most natural way to achieve this is to choose
Nmax = Mmax = 4. Note that we also have to adopt a Padé
resummation similar to Eq. (5) for the SC series of the mean
energy B(t) to describe the reentrance behavior of the Mott
lobe, which is typical for a phase transition of the Berezinsky-
Kosterlitz-Thouless type. In this way, we determine the whole
quantum phase diagram for different fillings 7.

A(t) = Aexp (— “4)

&)
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FIG. 2. Quantum phase diagrams of Bose-Hubbard chain for
filling n = 1 (black solid line), n = 2 (blue dashed line), and n = 3
(orange dot-dashed line). The red dots are DMRG results for filling
n=1andn =2 [34].

As shown in Fig. 2, a quantitative comparison with density
matrix renormalization group (DMRG) calculations [34] at
low filling n demonstrates that the quantum phase boundaries
determined from HSSCE together with a Padé resummation
reveal a high accuracy except from tiny deviations at the lobe
tip. In particular, the critical hopping amplitude ¢, coincides
in our method with a real, positive simple pole of Eq. (5),
which turns out to be unique. Table I lists the critical hop-
ping amplitude 7. for the first three fillings n. Our results
combined with various DMRG calculations have established
the consensus that #./U ~ 0.3 for n = 1. But note that the
results of DMRG calculations for the critical point 7, also have
relatively large uncertainties and slightly deviate depending
on the chosen observables since the gap becomes so small
and requires extremely large system sizes. For filling n = 1,
initial estimates were given to be t./U = 0.277 £ 0.01 [32]

TABLE I. Critical hopping amplitude and chemical potential at
the lobe tip for different dimensions d and filling numbers n. The
HSSCE results are determined in combination with an eighth order
Padé resummation. The 1d numerical result stems from DMRG
calculations [34-36], while those for 2d and 3d are obtained from
QMC simulations [37,38].

HSSCE numerical
/U ue/U /U

d=1
n=1 0.296 0.0956 0.30(1)
n=2 0.173 1.2659 0.175(2)
n=23 0.123 2.3339

d=2
n=1 0.05989 0.3705 0.05974(3)
n=2 0.03530 1.4238
n=>3 0.02509 2.4459

d=3
n=1 0.03415 0.3929 0.03408(2)
n=2 0.02013 1.4369
n=3 0.01431 2.4552

0.05 0.06

0.03 0.04

t/U

000 001 0.02

FIG. 3. Quantum phase diagram of 2D bosonic lattice system for
n = 1 (black solid line), n = 2 (blue dashed line), and n = 3 (orange
dot-dashed line). For n = 1 we also show QMC simulation results
(red dot) [37].

and have now been improved to 7./ U = 0.3050 £ 0.001 from
density-density correlations [34] (the red dot shown in Fig. 2),
t./U = 0.2980 £ 0.005 from the von Neumann entropy [35],
and #./U = 0.3030 £ 0.009 from the energy gap [36]. In ad-
dition, for increasing fillings n, we observe that the reentrance
behavior weakens and tends to disappear. This result is an
immediate consequence of the particle-hole symmetry, which
is recovered in the limit of infinite filling n — oo irrespective
of the spatial dimension. Indeed, the Hamiltonian Eq. (1) does
not change with the transformation 5" — &', b — b't, which
implies for the filling n — n’ + 1 ~ n’. This is reflected in
the SC results for the quantum phase boundaries listed in
Appendix B by the property that the coefficients of the highest
filling in the upper and the lower branch have the same
absolute value but a different sign.

B. XY universality class

For higher dimensional systems d > 2, the energy gap fol-
lows slightly below the critical point #, the scaling law A(¢) =
A(t)(t. — t)* [2,31]. Here A(¢) represents a regular function,
whereas z and v denote critical exponents, which characterize
the dynamics and the correlation function of the respective
universality class [39,40]. Thus, also d(log A(z))/d¢ has a
simple pole at f,, which can be determined via the Padé
resummation method. The resulting quantum phase diagram
for different fillings n for the dimensions d =2 and d =3
are shown in Figs. 3 and 4, respectively. We conclude that
the analytically obtained quantum phase boundaries match
quite well with the QMC simulation result at filling n = 1
in both two and three dimensions. The real, positive simple
pole of the Padé resummation, which turns out again to be
unique, provides the critical points 7. for different filling
numbers n, where the lowest three values are listed in Table 1.
Moreover, the corresponding residue yields a value for the
critical exponent zv listed in Table II. Our results reveal that
zv slightly depends on the filling number #, but still deviates
from the critical exponent of XY models [41]. Thus, higher
order terms may need to be considered in a future work, to
diminish that deviation.
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FIG. 4. Quantum phase diagram of 3D bosonic lattice system for
n = 1 (black solid line), n = 2 (blue dashed line), and n = 3 (orange
dot-dashed line). For n = 1 we also show QMC simulation results
(red dots) [38].

IV. RESCALING PROPERTIES OF DIFFERENT FILLING

In this section, we investigate systematically the filling-
dependent rescaling properties of the Bose-Hubbard quantum
phase diagram and restrict ourselves to the case of 2D and
3D. At first, we consider for different fillings n the rescaling
properties of the critical point 7.(n), which represents the tip
of the Mott lobe. To this end, we follow Ref. [28] and use its
second-order SC result to re-express the hopping amplitude of
the lobe tip for large filling n according to

tC.(d,n)_Zd—«/—10d+12d21 1+0 1\]1
u (10 — 8d)d 2n n2)n’

(6)

Thus, in the limit of large filling, the effects of dimension
d and filling n turn out to decouple. Assuming that such
a decoupling property also holds for higher SC orders, we
perform for the critical hopping amplitude the generic ansatz

te(d, n)
U

where the filling-dependent factor represents a Taylor series
in 1/n:

g(n)
n 9

= fi(d)

(N

g =1+) = ®)
i=1

In the limit of infinite filling, we then conclude

te(d, n)
T

fi(d) = lim n ©)

TABLE II. Critical exponents zv of Mott-superfluid phase tran-
sitions in two and three dimensions.

d=2 0.6965 0.6951 0.6948 0.6945 0.6715 [41]
d=3 0.5625 0.5647 0.5656 0.5663 0.5

00 02 04 06 08 10

1/n

FIG. 5. Critical hopping amplitudes z, for filling numbers n from
1 to 100 (red dots) compared with the value of f;(d) times the
rescaling function g,(n) (black line) in two and three dimensions.

This means that f;(d) can be calculated both for d = 2 and
d = 3 from the term with highest filling number n in each
SC order for both the upper and the lower quantum phase
boundary presented in Appendix B. Note that, due to the
particle-hole symmetry mentioned above, the coefficients of
the highest filling in the upper and the lower branch have the
same absolute value but a different sign.

After having obtained f;(d) for d =2 and d = 3, we
directly read off from Eq. (7) in each SC order the function
g:(n) =nt.(d,n)/[f;(d)U] as a Taylor series in 1/n. To
approach the infinite-order case, we perform a Padé resum-
mation and rewrite the filling-dependent function as

] 1+ =
gi(n) ~ §i(n) = —=37- (10)
1"‘2]':1 ni

Here M is an integer, which characterizes the order of the
Padé resummation. The resulting function g,(n) represents the
rescaling function of the critical hopping amplitude. In Fig. 5,
we have chosen M = 4 and have used the critical hopping
amplitude at the tip of the first 100 Mott lobes to fit the scaling
function. In addition, it turns out that the rescaling functions
in two and three dimensions nearly coincide, which supports
a posteriori the above assumption from Eq. (7) that dimension
d and filling n decouple.

Furthermore, one can also use a similar strategy to in-
vestigate the rescaling properties of the critical chemical
potential u.(d,n)/U at the lobe tip. But then the above-
mentioned particle-hole symmetry for infinite filling im-
plies for the chemical lim, oo tt,/U =1 —=lim, o s/ U,
so the critical chemical potential reads lim, o t./U =
1 —1lim, o /U = 1/2. Thus, the dimension dependent
function is then given by f,(d)=1im, o u./U =1/2,
so the rescaling function g,(d,n)=2u.(d,n)/U with
no(d,n)/U = puc(d,n)/U —n + 1 results as a Taylor series
in 1/n, for which we perform a Padé resummation:

1+37 @
guld,n)~ g,(d,n)= A. (11)

M B
T+ e
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0.00 0.02 0.04 0.06 0.08

(tn)oo/U

FIG. 6. Scaled Mott lobe obtained from different fillings n (red
dots) compared with infinite filling quantum phase diagram (black
line). For both dimensions d = 2 and d = 3, the scaled Mott lobes
deduced from filling number n = 1, 2, 3, 4, 10, 100, 10000 are al-
most on top of each other.

Note that, in contrast to the critical hopping, the rescaling
function g,,(d, n) for the chemical potential turns out to have
a residual dependence on the dimension d.

By assuming that the entire critical lines have the same
rescaling functions at the tips of the Mott lobes, we can
map all Mott lobes for different filling numbers to the
infinite filling lobe as follows. For each critical point
{n'(d,n)/U,nt(d,n)/U} in the lower branch of the Mott
lobe, we define the rescaled value as {u. /U, (tn)o/U} =
{w'd,n)/[g.(m)U], t(d,n)n/[g(n)U]} and, correspond-
ingly, for each critical point in the upper branch we rescale
according to {ul,, (tn)e/U} = {1 —[1 — p/(d, n)/U1/[2 —
g.(m)],t(d,n)n/[g;(n)U]}. In Fig. 6, we observe that all
scaled Mott lobes, obtained from different filling numbers
n, deviate only slightly from the quantum phase boundary at
infinite filling.

Finally, we comment upon why the rescaling property turns
out to be more complicated for the 1D system. Although we
could also find a rescaling function for the critical point, this
rescaling function could not be used to map all the lobes to
the infinite filling lobe. Whereas a Mott lobe with finite filling
reveals a reentrance phenomenon due to the BKT quantum
phase transition, this reentrance phenomenon disappears in
the limit of an infinite filling due to the particle-hole symmetry
between the upper and the lower phase boundary. Thus, in one
dimension there does not exist a universal rescaling function
for all points of the quantum phase diagram.

V. RELATION WITH HIGH-ORDER EFFECTIVE
POTENTIAL LANDAU THEORY

As has already been explained in the introduction, both
SCE [14] and EPLT [22,23] represent two analytical perturba-
tive methods for determining the quantum phase boundary of
lattice systems. Usually the accuracy of their results are only
compared in lower orders. Thus, to allow for a comparison in
higher orders, we have also investigated the 2D Bose-Hubbard
model with the HEPLT method from Ref. [20] up to the tenth
order. Whereas the HSSCE method allows us to determine the
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FIG. 7. Comparison of quantum phase diagrams for d =2 via
HSSCE (black line) and HEPLT (red dots) [20] in tenth order with
QMC results (green dots) [37] atn = 1.

upper or the lower quantum phase boundary with one single
calculation, HEPLT is more involved and needs independent
calculations to obtain the critical hopping for each chemical
potential. Note that, up to the same order, HSSCE turns out to
be faster than HEPLT because it has not to deal with additional
source terms.

Comparing the accuracy of both methods for d =2 in
tenth order, we find that the effective potential result has an
error of about 2.4%, while the SC result turns out to have
an error of about 5.0%. Thus we conclude that HEPLT is
more accurate than HSSCE up to the same order. From Fig. 7
we also read off that the HEPLT result always gives smaller
hopping values than the QMC result, while the HSSCE result
gives larger values. Thus, we could use both methods to
determine the region in the quantum phase diagram, where the
phase boundary must exist. Extrapolating the results for both
methods to infinite order yields quantum phase boundaries,
which are basically indistinguishable from QMC [37] in the
2D system. However in 3D, a comparison with results from
QMC [38] reveals that extrapolating the tenth order of HSSCE
has the same accuracy as extrapolating the eighth order of
HEPLT [20]. Thus, up to the same order, the HEPLT method
turns out to be more accurate in higher dimensional systems.

In a previous paper [42], we pointed out the intriguing
observation that, up to the second order, the SC coefficients
coincide with those of a hopping expansion of the EPLT
quantum phase boundary. Thus, for the Mott lobe n, one
obtains the SC upper (lower) critical line by performing a hop-
ping expansion of the EPLT quantum phase boundary around
w/U =n—1(u/U = n). In view of proving such relations
also for higher orders, we perform a symbolic calculation for
the HEPLT method up to the eighth order. By a corresponding
hopping expansion of the HEPLT quantum phase boundary
we obtain, indeed, the same coefficients of both the upper and
the lower HSSCE critical lines. As shown in Fig. 7, the QMC
results are located between the HSSCE and the HEPLT critical
lines, so both methods can be considered as an overestimation
and an underestimation, respectively. We think the reason
is that, HSSCE neglects high order corrections but HEPLT
includes more.
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VI. CONCLUSION

In this paper, we developed a symbolic implementation the
process-chain approach [19,20] for applying the SCE method
[14] to very high orders. The resulting analytic symbolic
expressions allow a detailed analysis of how the critical lines
depend on the filling numbers and the dimensions. As a
concrete example, we have calculated for the Bose-Hubbard
model the quantum phase diagram between the superfluid and
the Mott insulator in different dimensions. Applying the Padé
resummation method, we have obtained the critical lines in the
thermodynamic limit for arbitrary fillings. A comparison with
DMRG and QMC calculations, the phase transition at filling
n = 1, demonstrates that the HSSCE method is quite accurate,
so it can be also used reliably determine the transition lobes at
higher fillings which are hard to obtain from recent numerical
and analytic methods.

In addition, the analytic expression of the phase boundaries
can help to investigate systematically the rescaling properties
of the quantum phase diagram. At the lobe tips, we have
found that the rescaling functions of the critical hopping
almost coincide for both two and three dimensions, while
the corresponding rescaling functions of the critical chemical
potential turn out to be different. With this rescaling at the
lobe tip, it has then been possible to approximately map all
the Mott lobes of different fillings to the infinite filling Mott
lobe.

Finally, we have compared the HEPLT with the HSSCE
method developed here and have concluded that the latter
is easier to implement. However, it has also turned out that
HSSCE is less accurate than HEPLT up to the same or-
der. Furthermore, we have verified an intimate relation been
both methods. Namely, the quantum phase boundaries from
HEPLT and HSSCE have turned out to agree up to the eighth
order in a power series with respect to the hopping.

In addition, we present our algorithm in greater detail in
Appendix A, so that the respective steps should be repro-
ducible for the reader. Further information is accessible in
a Matlab code in the Supplemental Material, which can be
downloaded from our homepage [29].

We conclude that our paper works out in detail a general
symbolic high-order perturbation theory, whose applicability
is not limited to the Bose-Hubbard model. Instead it may also
be suitable to analyze other lattice systems, which describe,
for instance, the supersolid-solid transition [8], a mixture of
two bosonic species [16,17], three-body interactions [18],
and even frustrated systems like Kagome superlattices [43]
suffering from the sign problem. Furthermore, it should be
noted that our theoretical high-precision results could, in
principle, be checked with in situ density measurements [44]
and single atom detection [45] as they are possible these days,
for instance, with the quantum gas microscope [46] or the
scanning electron microscope [47].
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APPENDIX A: ALGORITHM OF HIGH-ORDER
STRONG-COUPLING EXPANSION

When an SC perturbation theory is used to determine the
ground-state energy of a Bose-Hubbard model, the respective
orders can be calculated recursively. To this end, one has
to consider different types of hopping processes which con-
tribute to the considered perturbative order of the ground-state
energy. However, such an algorithm has two disadvantages.
(a) High-order results are based on lower orders. (b) It is hard
to automatically generate the relevant hopping processes. To
overcome those problems, Eckardt suggested using the Kato
representation of perturbation theory [19]. This allows us to
produce the respective perturbative terms in each order via
a process chain approach which generates and evaluates the
respective diagrams systematically. In view of the high-order
SCE, we also use similar strategies. In the following, we
discuss the three parts—how to implement the algorithm in
detail and take the lower-order terms for the Bose-Hubbard
model in a square lattice as illustrative examples.

1. Kato representation

Kato worked out a particular representation for the pertur-
bative terms of perturbation theory [21]. Therein, the nth order
contribution to the ground-state energy for a perturbation of
the Hamiltonian H' is given by the trace

EM — T¢ Z SUH'SH | H §Yn (A1)
{ae}
Here each term is characterized by a Kato trace list
(@ro...0tp41) , (A2)
where the integers «, . . ., &, fulfill the condition
m+1
Yag=m—1, a>0. (A3)
=1
Furthermore, the operators S* are defined via
—lg)gl ifa, =0,
SY — le) el  ifay #0, (A4)
(Eo-E

where |g), |e), and Eg, ES denote wave functions and energies
of the ground state and the excited states, respectively. Thus,
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we read off from Eq. (A4) the relation

—SO Ol,'ZO[j:O,
se g% — 10 i =0,0; #0ora; #0,0; =0,
Sete @ #£0,0; #0,

(AS5)

which is useful for simplifying products of operators S%.
Additionally, we can conclude from Eq. (A3) that there are
at least two numbers in the Kato trace list (ojo)...041)
which are zero. The goal is to use Eq. (AS) and the cyclic
permutation of operators under the trace to move the S°-
operators to the outside of the trace, so the expression can be
rewritten in general as

(g|H'S“ H'...8%1H'|g). (A6)

If o1 = @41 =0, we immediately obtain the new indices
o =ajpr. I oy # @i =0 or oy # gy = 0, the expres-
sion vanishes according to Eq. (AS5), so this case does not
need to be considered. Finally, if o; # 0 and «,,4 # O cyclic
permutations are used until S = —S°S° appears first in the
product under the trace, which can then again be written in
the form of Eq. (A6) with a negative sign and one of the
new indices with value o] + o). We define the resulting
reduced list of indices as a Kato-list and use the abbreviated
representation

(cyah...al ). (A7)

Algorithm

So far, two ways have been used to calculate the Kato-lists.
One was suggested by Eckardt [19] and can be realized by
the following steps. At first we substitute the operator S° with
—|g){g| into the Kato-list and use the abbreviation |g) —)
and (g| — (. With this the Kato-list changes into an array of
elementary matrix element (EME) denoted by (.....), in which
the operator S° no longer exists. Note that the EME has the
reflection symmetry, so we have, for instance, («¢jor03) =
(azapap). For convenience reasons, we always change the
form of the EME such that we take the smaller one, e.g., we
use (121321) and not (123121). After that, to order the array
of EMEs, we define the relative value of the EME with the
following two rules: (i) The numbers o of the operators S in
the EME are first compared, thus we have (111) > (12). (ii)
When the numbers coincide, then we compare the integer «
of the first nonequal operator S%, so we have (123) < (132).
Along these lines, we can order the EMEs in the Kato-list.
Consider, for instance, (2021011001) as an example for a
Kato trace list, which can be transformed into the Kato-list
—(11003021) [19]. The resulting EMEs (11)()(3)(21) can
then be ordered to obtain ()(3)(11)(12), which is stored as a
Kato-list —(03011012). At the end, the final Kato-lists can be
ordered according to similar rules as the array of EMEs.

Let us take the fourth-order perturbative term as a concrete
example to show how to generate the Kato-lists step by step
and how to order them for later usage. It can be proved that
the resulting fourth-order Kato representation coincides with
the standard result of perturbation theory.

Output

1. Generate all Kato trace lists for the considered order n = 4.
2. Neglect all terms which have a zero at one end and are
nonzero at the other end due to the second line of Eq. (AS).

3. Change Kato trace list to Kato-list.

4. Perform the substitutions |g) —) and (g| — ( and order
array of EMEs.

5. Collect same arrays and determine their weight.

6. Order and change them back to Kato-list.

30000, (21000}, (20100, ..., (10101}, ..., (00003)

03000), (02100), (02010}, (00210), (01110}, (00120),

01020), (01200), (00030}, (10011), (10101}, (11001),

(20001), (10002), (00300}
(300),(210),(201),(021),(111),(012),(102),(120), (003),—(012), —(102),
—(210), —(300), —(300), (030)

003),—0(12), =(1)(2), —0O(12), (111), =()(12), =(1)(2), —0(12),
0003),0(12),(1)(2),0(12),— 0 0(3), —003), OO3)

—(1)(2), =20(12), O0O3), (111)

(003),2(012),(102),(111)

( ),
( ),
( ),

The advantage of this algorithm is that one can get for
each order the smallest number of Kato-lists, so that the
computation time is drastically reduced. But the Kato-lists
following from the above algorithm are only suitable provided
that the ground state is nondegenerate. Let us illustrate this by
the process (g1 |H'S* H'|g2) (g2 H'S® H'|g3), which involves
the three degenerate ground states |g;), |g2), |g3) and can be
represented by the Kato-list (oj0c}). If we transform the
Kato-list into EMEs and change their order, the calculation
process may be changed to (g»| H'S* H'|g3)(g1|H'S% H'|g>).
But this cannot be mapped back to the Kato-list («}0c} ) as the
number 0 in the Kato-list corresponds to } _; |g;){g;|, but not
Zi,j 1gi) (gl

A second approach for calculating Kato-lists was proposed
in Ref. [26] to also treat degenerate ground states, which was
then applied to a 1D system. Here the Kato-lists Eq. (A7) have

to fulfill the conditions

ap=m—1, & >0 (A8)
=1
and
a, <s, fors=1,...m—2. (A9)
=1
Thus, more Kato-lists appear in each order, so the

computational effort increases. In particular, now each
Kato-list appears with the multiplicity one. For in-
stance, in fourth order we no longer have the Kato-lists
(003),2(012),(102),(111) for a nondegenerate ground state but
instead (003), (012), (021), (102), (111).
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SR R
R

FIG. 8. Arrow diagrams of fourth order in the square lattice,
which are topologically equivalent

It should be remarked that in the algorithm the generated
Kato-lists will be stored in binary form using a suitable
hashing technique, so that it is efficient to search for matching
Kato-lists, which will be useful for the calculation below.

In conclusion, the original Kato-lists in Ref. [19] are useful
for calculating nondegenerate ground-state energies as they
show up, for instance, for Mott states. In contrast to this,
the degenerate states of particle and hole excitations, as they
appear within the SC method, have to be determined from
Kato-lists of multiplicity one by taking into account the
restrictions in Eqs. (A8) and (A9) [26].

2. Arrow diagrams generalization

Whereas the determination of the underlying Kato-lists
is independent of the considered system, we now turn to
their diagrammatic representation, which does depend on the
underlying Hamiltonian or the topology of the lattice. To this
end, we follow Refs. [19,26] and remark that an expression
(e1|H'|ez) in the Kato-list corresponds to a hopping process
on the lattice, which can be represented by an arrow. Thus,
in a lattice system, each perturbative term can be graphi-
cally depicted as an arrow diagram. According to the linked
cluster theorem, only connected diagrams contribute to the
ground-state energy, thus we only need all nonequivalent
connected arrow diagrams. Whereas for the calculation of
the nondegenerate ground-state energy, only closed connected
diagrams appear, for degenerate ground-state energies open
connected diagrams also have to be considered. For instance,
for a particle (hole) excited degenerate ground state, each
perturbative term is equivalent to the hopping of a particle
(hole) to another site, so any open connected diagram has
exactly two ends. Thus, the respective arrow diagram can be
interpreted as the path of a moving particle.

To generate all nonequivalent arrow diagrams, we fix at
first the starting point at the center, and use different numbers
or characters to label the respective directions. For instance, in
case of a square lattice, we abbreviate up as u, down as d, left
as [, and right as r. After that, we get all possible connected
arrow diagrams by applying combinatorics and represent them
with the corresponding arrays of characters. Let us consider
the second-order arrow diagrams as a concrete example: in
case of a square lattice, we have in total 16 diagrams, but
only (ud), (du), (Ir), and (rl) represent closed diagrams,
whereas the others are open ones. Each diagram can have a
nonunique representation, such as the fourth-order diagram
in Fig. 8(a), which can be represented by (Irrl) or by (rlir).
But if we define the priority » < u < [ < d and only take the
smallest one according to this order, the array corresponding

O ® O &b b

OO0 a—te¢—4 c—-¢—8d—9-e—10-b

O @ O

FIG. 9. One sixth-order arrow diagram labeled with (rdurlu) is
shown in the left panel, its corresponding tree graph is shown in the
right panel. Red solid arrows in the right panel are paths, which
are passed due to the algorithm, and the dashed arrows represent
other possible paths. The arrows (2,3,6,7) indicate trace back process,
so the smallest path is (1,4,5,8,9,10). Thus, the smallest diagram
representation is provided by (rriduu).

‘d—--»e\---»b

Ceome-mb

to Fig. 8(a) is identified with (r/lr). Proceeding in this way,
we avoid an overcounting of diagrams.

However, judging whether the diagram representation is
the smallest one is not trivial, since there are several ways to
follow a given set of arrows that point in and out from a central
site as shown in Fig. 9. All possible paths can be drawn in the
form of a tree graph as shown in the right panel of Fig. 9.
The smallest path, which passes through all the arrows, is the
one to be determined. To this end, one can go through the
whole diagram by moving in each step through the smallest
arrow, but it is not allowed to move through one and the same
arrow again. If one cannot finish with passing all the arrows,
one has to trace back to the latest site, which has at least two
arrows pointing out, and has now to choose the next smallest
arrow to move through. After several tracing back processes,
one gets the smallest diagram representation, when all arrows
are passed.

After having produced all the smallest diagrams of the con-
sidered perturbative order, we reduce the number of diagrams
due to symmetries and take the number of equivalent diagrams
as its corresponding weight. For the lattice system, we can
take into account both point group symmetry and translational
symmetry. Taking again the square lattice as a concrete exam-
ple, its point symmetry D4 has eight operations. For instance,
diagram Fig. 8(b) can be obtained by rotating Fig. 8(a) by 90
degrees to the right. After implementing all eight operations in
Fig. 8, we obtain only two different diagrams, Figs. 8(a) and
8(b), so their weight is 2. Furthermore, for the Mott insulating
state we can also consider the translational symmetry. The
diagram Fig. 8(c) can be obtained by moving the diagram
Fig. 8(a) one lattice site to the right. As the diagram Fig. 8(a)
covers three sites, the total number of group operations is
8 x 3 = 24. After having performed all these operations on
diagram Fig. 8(a), we find that there are in total six diagrams
with the same contribution, so its weight is finally six. For the
particle (hole) excited state, the starting point should always
be at site k, so there is no translational symmetry and only
the point group symmetry has to be considered. Based on
group theory, we find a more generic method to determine
the weight of the smallest arrow diagram. To this end, we
denote the symmetry group by G and the number of its
elements by ng. If an arrow diagram is not changed under
ng group operations, this means that these operations belong
to a subgroup g of G and that there are ng/n, different
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TABLE III. Number of different connected arrow diagrams in
square lattice for Mott energy correction and strong-coupling energy
after reduction due to symmetries (n,) and topologies (n,).

Energy correction SC energy
i ng n ng n
1 0 0 1 1
2 1 1 3 2
3 0 0 10 4
4 4 3 36 10
5 0 0 129 22
6 12 7 477 58
7 0 0 1784 140
8 75 29 6668 390
9 0 0 24909 988
10 510 121 92748 2815
11 0 0 344907 7412
12 4284 698 1278092 21516

arrow diagrams. These arrow diagrams can be obtained by
performing group operations on each other and they are not
changed under operations, which belong to the subgroup g.
The smallest arrow diagram can be stored and its weight
turns out to be ng/n,. Note that, in contrast to calculating
the ground-state energy of the Mott insulator, for particle
(or hole) energy corrections, the weight does not need to be
divided by the number of covered sites, since no overcounting
exists. In Table III, we show the number n; of diagrams in the
square lattice after having applied the reduction by symmetry
up to 12th perturbative order. For energy corrections, we
consider only closed diagrams with both point group and
translational symmetries. But for the SC energy, both closed
and open diagrams appear, but a simplification occurs only
due to point-group symmetries. Consequently, although both
energies contain closed diagrams, they have different weights
due to the different symmetry considerations.

Despite this symmetry simplification, we can further re-
duce the diagram number by considering their topology. As
there is no long-range diagonal interaction and the on-site
Hamiltonian Hj is uniform, the diagrams of Figs. 8(a) and
8(d) have the same value. By marking the respective positions
between different sites in the diagram and relabeling the
involved site indices, we can find all topological equivalent
arrow diagrams and store the smallest one at the end. Then,
the sum of their weights is considered to be the new weight of
the diagram. For the diagrams shown in Fig. 8, only Fig. 8(c)
needs to be stored. From Table III, we find that the reduction
due to topology dramatically decreases the number of dia-
grams n,, especially for the open diagrams, which represent
the dominant part of the particle (or hole) energy. Moreover,
note that for a bipartite lattice no closed diagram exists in any
odd perturbative order.

Thus, the algorithm concerning the diagrammatic repre-
sentation of Kato-lists is summarized as follows. At first, all
connected arrow diagrams are produced by combinatorics,
discarding the overcounted ones. Afterward, both symmetry
and topology considerations reduce the number of different
arrow diagrams.

o,

T S ook

N L I AT I
9l H Gy H —lo)9l B (mlper H l9)

FIG. 10. One process chain of energy correction Kato-list with
arrow order 1 4 2 3 matching the Kato-list (o] 0ct}).

3. Calculation

At last, we turn to the explicit calculation of the energy
corrections for the nondegenerate Mott state [19]. To this end,
one has to take into account that there are several ways for
each arrow diagram to specify the arrow order and each order
list is called a process chain. To illustrate this by a concrete
example, we consider again the fourth-order diagram in the
square lattice. Based on the arguments above, we only store in
Fig. 8 the arrow diagram Fig. 8(c), which is characterized by
(rrll). If we label each arrow with a number, we have in total
four processes. Taking into account all permutations, we have
4! = 24 types of process orders or process chains. In Fig. 10,
we show one possible process chain with arrow order 1 4 2
3. All Kato-lists, which satisfy the form (o}0cj) with of #
0, o5 # 0, contribute to the corresponding energy correction
of this process. From Appendix A.l, we know that only the
Kato-list (102) appears, which can be calculated. For the Mott
insulator with filling n, the energy correction of this process

c e (—t/ny/nF1)* . RT
chain is given by T which has to be multiplied
with the weight of the Kato-list (102), i.e., with one. After
having obtained all the values of the process chains of this
arrow diagram, we need to sum them and multiply the result
with the weight of this diagram, which is 4.

For calculating the SC energy, we need to consider the
degenerate ground state and the algorithm has to be adjusted
accordingly [26]. The main idea for calculating the degenerate
ground state energy is to construct the effective Hamiltonian
matrix perturbatively in the Hilbert space of the degenerate
ground states. The diagrams, which have the same end points,
belong to the same matrix elements and define an effective
hopping process [8]. Thus to get the SC energy, we only
need to add all effective hopping matrix elements. Similar to
the Mott energy correction, we first need to find out all the
process chains and their suitable Kato-lists. As shown in the
process chain of Fig. 11, any state l;j [0) represents a zeroth-
order ground state, so the process chain matches the Kato-list
(00c}), and the only Kato-list of this form, which appears, is
(003). In case of a particle excitation of a Mott insulator with
filling n, the energy correction of this process chain turns out

_ 2 iR . .
tobe L t("(“:ll))](_[l )’(_';;';;” DL After having obtained all the values

0B o, .
M s e e e e e s e e
“Fm K By k kg

. . . . e
gl o\ =lalal B —lodgl H' e H 9)

—~

FIG. 11. One process chain of SC energy Kato-list with arrow
order 14 2 3 matches Kato-list (00« ).
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of the process chains of this arrow diagram, we need to sum
them and multiply the result with the weight of this diagram,
which is 6.

4. Summary

In conclusion, we have to proceed along the following lines
to calculate the SC energy: At first, we have to generate all
process chains of the arrow diagram. Then we have to find
the suitable Kato-lists, which we have to calculate. We sum

J

all energy values of the different Kato-lists, to get the energy
of one process chain. Subsequently, we sum the energies of
all process chains and multiply with the weights of the arrow
diagrams to determine the energy of the arrow diagrams.
At last, we sum the energies of all open and closed arrow
diagrams for the SC energy. Finally, by subtracting the energy
correction of the particle (or hole) excitation and the Mott
state, we obtain the resulting critical line in the respective
perturbative order.

APPENDIX B: STRONG-COUPLING QUANTUM PHASE BOUNDARY FOR ARBITRARY MOTT LOBE

Here we present our SC results for the critical lines in Egs. (2) and (3) of the Bose-Hubbard quantum phase diagram for a
general Mott lobe n, which were obtained with symbolic calculations up to the eighth order. To simplify our notation, we give
in this Appendix both the chemical potential and the hopping matrix element in terms of the energy unit scale of U. At first, we
consider the Bose-Hubbard chain, i.e., the case d = 1, where the upper boundary reads

t 1 1
wp=n—"2(n+ 1)5 + 022+ (P 4+ 30+ 20) + m(221n4 — 7013 — 559n% — 270n)t* + w(11063n5

+ 56453n* + 127443n° + 114703n% + 32650n)° + (4201738n° — 1590477061 — 1019369927n*

9072000

— 16847105761 — 1075545275n% — 246900750n)1° + (651549499551 + 852816554717n°

11430720000
+ 4617015079493n° 4 10042635987533n* 4+ 10398278064548n> + 5217933284246n° + 1032937732500n )1’
1
~35012981203200000
+ 134818712387825712764n° + 207253111515652899680n* 4 168130666829189484230n°

+ 69538136222775683026n° + 11689091525838787500n )% , (B1)

(200810348470291303n% + 5778066670166672114n" + 43424519219943077927n°

whereas the lower boundary is given by
2 2 3 3 1 4 3 2 4
up=n—142nt —m“+2n+ Dt 4+ (—n’ +n)t’ + m(—ZZln —954n° — 977n" — 246n — 2)t

1 5 4 3 2 5
+ ——(—11063n> 4 1138n™ — 12261n” — 39538n~ — 15076n)t> +

—4201738n° — 184258134n°
2600 (—4201738n 84258134n

9072000

+ 161105327n* + 7182573121 + 484129979n% + 1070888221 + 54432)t° + (—65154949955n7

1
11430720000
+ 396731905032n° — 8683697002461 — 2530614337602n* — 1621977063431n> — 467241407430n>

— 45622126368n)t" + (2008103484702913031n% — 4171583882404341690n"

35012981203200000
+ 8600742285944529613n° + 15634382372668953372n° — 36482711872426280151* — 9801914187470665632n°
— 3871241066318288229n% — 378804028118746050n 4 39893821295328)1% . (B2)

Correspondingly, the 2D lattice system turns out to have the upper boundary
1
Wy =n—4m+ Dt —23n* +4n)* — 4(11n’ + 150% + dn)t® — @(10597;14 + 24490n° + 17857n> + 4050n)t*

1
— ——(941863n° + 2188403n"* + 1638443n> + 387253n> — 4650n)1° — ————
250" ot nt At " I = 1512000

+ 567928150901° + 7029209677 1n* + 41746636380n° + 122458861370 + 1586224250n)°

(17584506524n°

1
- —952560000(143’621438541217n7 + 482685930471859n° + 614916508856545n° + 357580517960125n*

1
17506490601600000

+ 81552627354718n° — 3273334379504n> — 3097460700000n)¢” —
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x (15828728653296464701673n® 4 66223539683880680581462n" + 114520168944419866201057n°
+ 106687922443046182561852n° 4+ 59150401403670755097004n* + 20678487502333510720450n°
+ 4647036608792957074250n 4 556471872345686887500n )% , (B3)

and the lower boundary is determined by

1
wn =n — 1 +4nt + (6n> +4n —2)t> +4n(n + D(11n + 1> + @(10597;14 + 17898n° + 7969n> + 582n

1
— 86)* + R(941863n5 +2520912n* + 2303461n° + 816288n> + 91876n)r° + (17584506524n°

1
1512000
+ 48714224054n° + 50095619181n* + 23183730284n> + 4598004583n> + 3769896621 — 3186288)r°

1
+ 953560000 00(143621438541217n7 + 5226641393166601n° + 7348511353909487° + 503463418187310n*

+ 173427383585083n° + 27374449536030n% + 1602049522752n)t" +

17506490601600000
x (15828728653296464701673n® + 60406289542491037031922n" 4 94159793449556113777667n°

+ 76147562446580745727476n° + 33700440149666544069539n* + 8032188219063211012704n°
+ 947361190459842328401n% + 50197343417953427898n — 85891426017677280)1 . (B4)

Finally, the upper boundary of a 3D Mott lobe reads

1
Wy =n+ (—6n — 6)t —3(Tn* + 8n)t* + (=231n* — 333n* — 102n)1> + g(—20683n4 — 42646n° — 269191

+

+

1
4990n)r* + m(—9450991n5 —23212861n* — 193675311 — 6129431n* — 523770n)t°

3074000 O(—1612512639802n6 — 49031505294901° — 5568888652747n* — 2895859756680n° — 6736918268351

1
56132922750n)t° + —————(—1158518018899308 11" — 40169594556544231n° — 54166855276590991n°
1270080000

35546615871621511n* — 11500224469294300n° — 1582089821730130n> — 46040315017500n)t’

1
(—159170403048663194800494 11 — 6411307825175115072269186n"

11670993734400000
104772195846279015964664991° — 89036317556056282110050961° — 4192954829256834761500718n*
1081820439715328380764170n° — 143411169994732620393730n> — 8530598518867251187500n)% , (BS)

where the low boundary is characterized by

1
wn =n — 1+ 6nt 4+ 3(7n* 4+ 6n — 1)t> + (231n° + 360n% + 1290)1> + §(20683n4 + 40086n° + 230791

1 1
3642n — 34)t* + ——(9450991n° + 24042094n* + 21025997n> 4+ 7205906n° + 771012n)° + ————
+ n ) +240( n’ + n" + n’ + n” + n) +3024000

x (1612512639802n° + 4771925309322n° + 5240825602327n* + 2598442355448 + 555628775407n>

1
+ 385492632301 — 50089536)1° + ————(11585180188993081n" + 40926666766407336n°
1270080000

+ 56438071906180306n° + 38225048777927814n* + 13071729232591381n* + 2052306743024850n°

|
109040959595232n )¢ 159170403048663 194800494 1°
+ M+ 11670993734400000 "

+ 6322324418717940511770342n 4 10165777662027790634720545n° 4 8457647130735753938417688n°
+ 3856598073582426484397083n* + 9377248399361220433729081° + 107903564700275910537495n>
+ 4285936758470495239062n — 1004648837988860064)1° . (B6)
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