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The recent observation of superconductivity in proximity to an insulating phase in twisted bilayer graphene
(TBG) at small “magic” twist angles has been linked to the existence of nearly flat bands, which make TBG
a fresh playground to investigate the interplay between correlations and superconductivity. The low-energy
narrow bands were shown to be well described by an effective tight-binding model on the honeycomb lattice
(the dual of the triangular Moiré superlattice) with a local orbital degree of freedom. In this paper, we perform
a strong-coupling analysis of the proposed (px, py ) two-orbital extended Hubbard model on the honeycomb
lattice. By decomposing the interacting terms in the particle-particle and particle-hole channels, we classify
the different possible superconducting, magnetic, and charge instabilities of the system. In the pairing case, we
pay particular attention to the two-component (d-wave) pairing channels, which admit vestigial phases with
nematic or chiral orders, and study their phenomenology. Furthermore, we explore the strong-coupling regime
by obtaining a simplified spin-orbital exchange model which may describe a putative Mott-type insulating
state at quarter-filling. Our mean-field solution reveals a rich intertwinement between ferromagnetic and
antiferromagnetic orders with different types of nematic and magnetic orbital orders. Overall, our work provides
a solid framework for further investigations of the phase diagram of the two-orbital extended Hubbard model in
both strong- and weak-coupling regimes.
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I. INTRODUCTION

The experimental discovery of superconductivity in
twisted bilayer graphene (TBG) [1–3] has attracted much
attention and has triggered a considerable theoretical effort
to address this unexpected observation [4–48]. In particular,
a renewed interest in the low-energy electronic properties of
TBG structures has surfaced, geared towards incorporating
correlations on the electronic structure via controlled ap-
proaches. From a more general perspective, the discovery of
superconductivity on TBG has brought back into focus long-
standing and much-debated questions concerning the inter-
play of electronic correlations and superconductivity [49–52].

Twisted bilayer graphene belongs to the class multilayer
graphene systems generated by stacking sheets of monolayers.
Given the large set of distinct stacking prescriptions, multi-
layer graphene systems offer a high degree of tunability of
the resulting electronic structure [53,54]. By stacking two
graphene sheets to form a bilayer and rotating (“twisting”)
one layer with respect to the other by an angle θ , one obtains
a triangular Moiré superlattice structure (shown in Fig. 2)
[55,56].

Based on an experimental study of TBG with small twist
angles θ ∼ 1◦, Cao et al. reported a metal-to-insulator tran-
sition at T ≈ 4 K for carrier densities corresponding to ±2e

per Moiré supercell (with respect to charge neutrality) [1]. The
conductance in the insulating state displays activated behavior
with an activation energy � ≈ 0.3 meV, comparable to the
metal-to-insulator transition temperature. Remarkably, upon

doping slightly away from ±2e per supercell, either by adding
holes or electrons, a superconducting state with a maximum
transition temperature of Tc ≈ 1.7 K was observed [2]. In
fact, even the half-filled system was found to superconduct
at low temperatures in the absence of a magnetic field for
certain values of θ . The existence of superconductivity near an
insulating state was also reported in Ref. [57], where pressure
was used to tune the ground state of TBG with larger twist
angles.

These observations raise important questions about the na-
ture of the insulating and superconducting states, as well as the
interplay between them. The fact that the insulating state ap-
pears at densities where single-particle considerations would
predict metallic behavior hints at the importance of electronic
correlations. Indeed, for twist angles θ ∼ 1◦ numerical cal-
culations had previously predicted the existence of Moiré
minibands with almost flat dispersion near the Fermi level
[58–61]. Some works reported a set of four narrow-bandwidth
minibands (eight including spin degeneracy) separated from
the other bands above and below [62,63], which appears to
agree with the experimental findings. The small bandwidth
W ∼ 10 meV of this set of low-energy bands suggests that
correlations are likely to provide the dominant energy scale
and drive the system into a Mott-type state at quarter-filling.

On the other hand, the fact that the insulating transport
behavior only onsets at relatively low temperatures compa-
rable to Tc, combined with the small magnetic fields needed
to kill the insulating state (of the order of 4 T), can be
viewed as a challenge to the Mott-type scenario [10,12,23].
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As a result, alternative explanations for the insulating state
have been put forward [12,16,17,20,28,31,39]. Regardless of
the microscopic origin of the insulating state, the onset of a
relatively high-Tc state at its vicinity and at such low densities
hint at the possibility of unconventional electronically driven
pairing.

To answer these questions, appropriate models to describe
the electronic structure are needed. Studies of TBG structures
predating the recent experimental reports have addressed the
electronic properties of TBG primarily within the framework
of a low-energy continuum model, which starts from the Dirac
electrons of the individual graphene layers [64–69]. This has
proven to provide an excellent description for the low-energy
electronic structure, in particular the appearance of nearly flat
bands at charge neutrality, manifested by a vanishing of the
Fermi velocity at special (“magic”) twist angles. Since the
manifold of nearly flat low-energy bands at charge neutral-
ity is well separated from other bands, a description which
accurately captures these bands may be sufficient.

Therefore, more recent works
[5,6,14,18,19,21,34,40,43,44,48] have set out to formulate
an effective tight-binding lattice model akin to (multiorbital)
Hubbard models. The construction of an effective
tight-binding model for the nearly flat bands, which relies
on extracting localized Wannier states from the miniband
structure, was shown to be contingent on the (exact and
approximate) symmetries that are imposed on the model.1

What is perhaps most important, however, is that any
consistent formulation of a tight-binding model in terms of
Wannier states was shown to require a honeycomb lattice
structure [5,6]. Whereas the triangular Moiré lattice can be
defined by regions of AA stacking, the dual honeycomb
lattice is defined by regions of AB and BA stacking (see
Fig. 2).

In this paper, we start from the extended two-orbital Hub-
bard model proposed in Refs. [5,18,21] and explore the effect
of correlations on the low-energy flat bands. In this model, the
orbitals have (px, py ) symmetry and one of our main goals is
to assess the role of the (px, py ) orbital degrees of freedom
on the superconducting, charge, and magnetic instabilities of
the model. Here, we first decompose the interacting part of the
Hubbard model, which involves both onsite and longer-range
interactions, in the particle-particle and particle-hole chan-
nels. In this way, we obtain a general symmetry classification
of pairing and particle-hole instabilities, which allows us to
determine the effective interaction in each irreducible channel.
The latter reveals which channels are most attractive (or least
repulsive). In the case of pairing, we pay particular attention
to the two-component (d-wave) superconductivity, which sup-
ports vestigial nonsuperconducting states with either chiral or
nematic order. We argue that TBG is an ideal candidate to
realize such vestigial states, given the reduced dimensionality
of the system.

Having decomposed the interactions into irreducible chan-
nels, one can include the contributions from the kinetic term

1A brief discussion of the intricacies involved in the Wannier
state construction is given in Sec. II, with directions to the relevant
references.
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FIG. 1. Orbital and spin ordering. Schematic picture of the inter-
twined spin and orbital orderings appearing in the Mott insulating
state at quarter-filling, as discussed in Sec. V. Solid and dashed
orbitals refer to the different py and px orbitals. (a) Antiferro-
magnetic ferro-orbital order; (b) ferromagnetic antiferro-orbital or-
der; (c) antiferromagnetic ferro-orbital-magnetic order with complex
orbitals.

by either treating the kinetic part perturbatively (strong cou-
pling) or the interaction terms perturbatively (weak coupling).
In this paper, motivated by the small bandwidth of the low-
energy flat bands, we explore the former regime, but we
emphasize that the same formalism can also be used for
weak-coupling analyses. Here, we focus on the putative Mott
state at quarter-filling and consider an (anisotropic) spin-
orbital exchange model, analogous to the Kugel-Khomskii–
type Hamiltonians [70,71] commonly employed to describe
strongly correlated multiorbital systems [72–75]. As a first
step towards understanding the implications of such spin-
orbital Hamiltonian, we perform a mean-field analysis in the
case where only onsite interaction terms are kept. Depending
of the ratio between the Hund’s coupling J and the Hubbard
U , we find antiferromagnetic order coupled either to a ferro-
orbital nematic order or to a ferro-orbital magnetic order,
or ferromagnetic order coupled to an SU(2) antiferro-orbital
order. A schematic representation of these results is shown in
Fig. 1.

As mentioned before, the Mott scenario should and will
be subject to critical discourse. Insofar as the derivation and
analysis of a spin-orbital exchange Hamiltonian is concerned,
two important qualifying remarks are worth making. First,
we note that in the derivation of such Hamiltonian only
onsite repulsion is considered. In the context of TBG this
is a rather restrictive assumption since the structure of the
orbital Wannier states suggests that further-neighbor repulsion
is non-negligible [21,23,28]. Second, the assumption of a
small bandwidth W as compared to the (onsite) interaction
energy scale U , i.e., W/U � 1, seems questionable given the
small value of the activation transport gap � and the low
temperature at which the metal-to-insulator transition takes
place. Nevertheless, a careful examination of strong-coupling
approaches to TBG are expected to offer interesting and
important insight into the correlated physics of TBG.

The paper is organized as follows: Section II introduces
and discusses the extended two-orbital Hubbard model with
an emphasis on its symmetries. This section is largely a
review of the studies which have proposed and constructed
the two-orbital honeycomb lattice model, but we believe
a thorough discussion may benefit the reader. In Secs. III
and IV, the pairing instabilities and particle-hole instabilities
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FIG. 2. Twisted bilayer graphene. Figure of two twisted
graphene sheets, shown as black and red honeycomb nets, with
commensurate Moiré superlattice periodicity. In this commensurate
realization of twisted bilayer graphene, the twist angle is θ = 6.01◦

and the twist center is a pair of registered carbon atoms which
defines the origin. The triangular superlattice vectors connecting
regions of AA stacking are shown by dashed arrows. The black and
red dots indicate the sites of the dual honeycomb (super)lattice and
correspond to regions of AB and BA stacking, respectively.

are considered, respectively, by decomposing the interacting
part of the Hamiltonian into irreducible superconducting and
particle-hole channels. In Sec. V, the kinetic part is included
perturbatively, and the resulting spin-orbital exchange model
is derived and analyzed within a mean-field approach. Sec-
tion VI is devoted to concluding remarks. A number of
Appendices, Appendices A–F, collect additional details of the
calculations presented in the main text.

II. LOW-ENERGY TWO-ORBITAL HUBBARD MODEL
FOR TWISTED BILAYER GRAPHENE

A. General considerations

Our starting point is the effective extended Hubbard model
for the low-energy flat bands of TBG developed in a series
of recent works [5,6,18,21,34]. The effective tight-binding
model for the flat-band manifold takes the form of a honey-
comb lattice model with two Wannier orbitals per honeycomb
lattice site, which was demonstrated based on a symmetry
analysis [5] and an explicit calculation of maximally localized
Wannier orbital wave functions [18,21]. The Bravais lattice
vectors of the honeycomb lattice correspond to the lattice
vectors of the triangular Moiré superlattice generated by the
twist. The sites of the triangular Moiré superlattice can be
identified with regions of local AA stacking, whereas the
sublattices of the honeycomb lattice, which is the dual of
the triangular lattice, mark the centers of local AB and BA

stacking, respectively. This is shown in Fig. 2. Note that

C2x

C2y

θ/2

C2y

θ/2

FIG. 3. Symmetry of TBG. (Left panel) Example of TBG struc-
ture with D3 point-group symmetry. The twist rotation axis is co-
incident with a pair of registered carbon atoms. The structure has a
twofold rotational symmetry C2y about the y axis, and C3z threefold
rotational symmetry about the z axis. (Right) For comparison, we
show a TBG structure where the twist rotation axis is coincident with
the center of a hexagon, resulting in D6 point-group symmetry. This
implies an additional twofold rotational symmetry C2x , and a C6z

sixfold rotational symmetry about the z axis. Both structures, left
and right, have the same twist angle (and Moiré period), which was
chosen large for illustrative purposes. Importantly, the twist center
is also the center for the C3z rotations, both for the D3 and D6

structures.

the structure of the honeycomb lattice implies four orbitals
in the superlattice unit cell, i.e., two Wannier states per
sublattice, which is consistent with the number of nearly flat
bands forming the low-energy manifold. Importantly, in such
a superlattice model the two Wannier orbitals transform in
a specific way under spatial symmetries of TBG and these
symmetry properties dictate the form of the hopping and
interaction terms of the effective tight-binding model. For
instance, in some cases the Wannier states were shown to
transform as p-wave partners under rotations [5,18,21].

The construction of the honeycomb superlattice tight-
binding model, and in particular the derivation of the localized
Wannier functions, is predicated on two important assump-
tions, which are useful to state explicitly. The first assumption
is the existence of exact lattice translation and point-group
symmetries of TBG. The presence of exact translational sym-
metry of the twisted structure implies a commensurability
condition on the Moiré supercell, which in turn implies a
constraint on the twist angle θ . Note that for small but com-
mensurate twist angles, the unit cell of the Moiré superlattice
unit cell can become very large.

In addition to translational symmetry, the construction of
the tight-binding model also assumes the existence of an exact
point-group symmetry. Indeed, the aforementioned statement
that the Wannier orbitals (in some cases) have p-wave sym-
metry can only have meaning when rotational symmetry is
present. Commensurate TBG structures can belong to one of
two possible dihedral point groups: D3 or D6. The difference
in rotational symmetry depends on the center of twist rotation,
as illustrated in Fig. 3. To understand this difference, consider
starting from two AA stacked graphene sheets and rotating
the top (bottom) layer by an angle θ/2 (−θ/2) about an axis
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coincident with two registered carbon atoms, with θ defined
with respect to the y axis. This results in a structure with
threefold rotation symmetry C3z along the z axis and twofold
rotation symmetry C2y along the y axis, as shown in the left
panel of Fig. 3. Together these two symmetries generate D3.
The TBG structure shown in Fig. 2 is an example of the
latter. Alternatively, if the twist rotation axis is coincident with
the center of graphene hexagons, shown in the right panel
of Fig. 3, the resulting TBG structure retains the sixfold C6z

rotation symmetry; in combination with C2y this generates D6

(which includes the twofold rotation C2x).
A second important assumption of the Wannier orbital

construction is the existence of an energy gap between the
four flat bands and the other bands. The existence of such an
energy gap has been predicted by theory [62,63] and appears
to be consistent with experiment [1].

Following these considerations, we now introduce the hon-
eycomb (super)lattice tight-binding model on which our study
is based. The honeycomb lattice model we focus on in this
work is meant to describe commensurate TBG structures with
D3 symmetry, shown in Fig. 3 on the left. It was shown that
for this case the two Wannier orbitals at each superlattice
site transform as two p-wave states [5,18,21]. This is a
particularity of the D3-symmetric structures, for which the
center of the C3z rotation is defined by registered carbon
atoms [6,34]. In the case of commensurate structures with D6

symmetry, the symmetry quantum numbers of the Wannier
states were found to be different [6], resulting in a different
tight-binding description of the low-energy flat bands. More
generally, the construction of Wannier states depends on the
exact and approximate symmetries of TBG which are imposed
on the construction. Unless some (approximate) symmetries
are ignored, the construction of localized symmetric Wannier
states is obstructed [6,34]. Here, we do not give a full account
of the subtleties and caveats related to construction of Wannier
orbitals, in particular to the (exact or emergent) symmetries
which are imposed, but instead refer the reader to the relevant
Refs. [5,6,18,21,34,40], in particular Ref. [6].

B. Two-orbital extended Hubbard model

Given the symmetry of the Wannier states, we denote the
orbitals at each site i as px,y and define the corresponding
electron annihilation (creation) operators as ciασ (c†iασ ) with
α = x, y and σ =↑,↓ for spin. The kinetic part of the Hamil-
tonian describes the hopping processes and can be expressed
as

HK =
∑
ij

c
†
i T̂ (rij )cj + H.c., (1)

where T̂ (rij ) are hopping matrices and rij = ri − rj is the
distance between sites i and j . Spin-orbit coupling is ne-
glected, giving rise to full SU(2) spin rotational invariance.

For each set of bonds with fixed rij (i.e., nearest neighbors,
next-nearest neighbors, etc.) the form of the hopping matrices
is constrained by the transformation properties of the px,y

orbitals states under the D3 point-group symmetry. Time-
reversal symmetry imposes an additional constraint on the
hopping matrices. A derivation of the symmetry constraints
on the hopping matrices was presented in Ref. [18]; here, we

AA

AA

AA

AA

AA

AA

AA a1

a2 a3

ê1

ê2

ê3

FIG. 4. Honeycomb superlattice model. (Left) Sketch of the
effective honeycomb lattice extracted from twisted bilayer graphene
with commensurate twist angle (see Fig. 2). The triangular Moiré
superlattice, defined by the regions of AA stacking, is shown by
solid lines. Red and black solid dots represent the sites of the
honeycomb lattice (indicated by dashed lines), with different colors
corresponding to the triangular sublattices of the honeycomb lattice.
The sublattice sites coincide with regions of AB and BA stacking.
(Right) Definition of lattice vectors. Here, a1,2,3 are lattice vectors
of the (triangular) Moiré superlattice and ê1,2,3 are unit vectors
corresponding to the directions of nearest-neighbor bonds.

review this briefly using a different formalism, with details
given in Appendix B. To exploit rotational symmetry, we
introduce a set of unit vectors corresponding to the bond
directions; first, we define a general rotated frame

êϕ = cos ϕêx + sin ϕêy, ê⊥
ϕ = − sin ϕêx + cos ϕêy, (2)

where ϕ is an arbitrary angle and êϕ × ê⊥
ϕ = êz. The three

nearest-neighbor unit vectors are then specified by ϕn =
2π (n − 1)/3. We define the nearest-neighbor unit vectors as
ên=1,2,3 (see Fig. 4) and denote the corresponding hopping
matrices as T̂

(1)
n=1,2,3. Since the three hopping matrices are

related by threefold rotations, only one needs to be specified.
Focusing on T̂

(1)
1 , we find

T̂
(1)

1 = t1 + t ′1τ
z. (3)

Here, the Pauli matrices τ x,y,z act on the orbital degrees of
freedom, i.e., τ z = ±1 corresponds to px,y . Note that the
hopping matrix along the nearest-neighbor bond direction
ên=1 is diagonal in orbital space. By analogy with atomic p

orbitals, we may introduce σ and π hopping processes as
tσ,π = t1 ± t ′1. The computation of T̂

(1)
n=2,3 follows from (3) by

appropriate rotations, as outlined in Appendices A and B.
Importantly, to reproduce details of the band structure

of TBG, longer-ranged hopping processes must be included
[5,18,21], in particular intrasublattice hopping matrices, i.e.,
hopping matrices connecting two sites on the same triangular
sublattice. The most important hopping processes of this
kind are second-nearest- and fifth-nearest-neighbor hopping.
Viewed as bonds on the triangular sublattice, these are first-
nearest and second-nearest-neighbor hoppings. We introduce
the hopping matrices T̂

(2)
n=1,2,3 and T̂

(5)
n=1,2,3, with T̂

(2)
1 in the

direction of êy and T̂
(5)

1 in the direction of êx . (Note that the
three second-nearest-neighbor bonds correspond to a1,2,3, as
shown in Fig. 4.) Examining the constraints from symmetry,
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we arrive at (see Appendix B)

T̂
(2)

1 = t2 + t2zτ
z ± t2xτ

x ± it2yτ
y, (4)

T̂
(5)

1 = t5 + t5zτ
z ± t5xτ

x + it5yτ
y, (5)

where + (−) applies to the honeycomb sublattice A (B). As
before, all other hopping matrices are obtained from rotation.

In principle, a symmetry analysis of this kind can be
applied to any hopping process of arbitrary range, resulting
in the most general form of Eq. (1) consistent with symmetry.

The relation of this two-orbital honeycomb lattice model to
the underlying degrees of freedom of the individual graphene
sheets (e.g., layer, sublattice, valley) deserves further discus-
sion. We mentioned that the two sublattices of the Moiré
honeycomb lattice, distinguished by black and red sites in
Fig. 4, may be identified with regions of AB and BA stacking
of the graphene layers, where A and B refer to the sublattice
degree of freedom of each graphene sheet. There are thus
two distinct notions of a sublattice degree of freedom, which
should not be confused. Unless otherwise specified, in what
follows the sublattice degree of freedom will be understood to
refer to the emergent honeycomb superlattice.

More importantly, even though the two Wannier states
have p-wave symmetry, which warrants the notation px,y ,
they should be clearly distinguished from physical atomic
px,y orbitals. This is evidenced by the fact that the hopping
parameters of Eqs. (3)–(5), in particular the overlap integrals
tσ,π = t1 ± t ′1 of Eq. (3), are not determined by the Slater-
Koster rules [76]. Indeed, application of the Slater-Koster
rules would imply Hermitian hopping matrices. The hopping
parameters can be directly calculated from the Wannier states,
which were shown to have maxima at located at the AA

stacking regions that form the triangular Moiré superlattice
[18,21]. In particular, Ref. [21] demonstrated the following:
(i) the Wannier states have spectral weight on both layers and
both sublattices of each graphene layer; and (ii) the Wannier
states can be associated with the valley degree of freedom
of the constituent graphene layers [77]. This correspondence
can be stated more precisely by forming the complex Wannier
orbitals p± = px ± ipy and noting that, within the approach
followed by Ref. [21], p+ and p− derive from valleys K

and K ′ = −K , respectively. Furthermore, since the complex
orbitals are eigenstates of τ y , it is straightforward to see that
if the hopping matrices of Eq. (1) [and in particular those
of Eqs. (3)–(5)] only have nonzero terms proportional to the
identity and τ y , a larger internal U(1) symmetry in orbital
space emerges, generated by τ y .

By calculating the overlap between Wannier orbitals, both
Refs. [18,21] found that this larger U(1) symmetry is a good
approximate symmetry of the tight-binding model, although
not exact. For Eq. (3), for instance, this implies tσ ≈ tπ
(i.e., t ′1 � t1). In addition, the importance of further-neighbor
hopping terms was established, which can be traced back
to the real-space extension of the Wannier states. We thus
conclude that TBG with exact D3 symmetry is well described
by a kinetic tight-binding Hamiltonian (1) with longer-ranged
hoppings and an approximate U(1) symmetry, which can
be associated with the valley quantum number. We note in
passing that for a rather different set of parameters, i.e.,

only nearest-neighbor σ hopping (t ′1 = t1), the physics of the
honeycomb lattice p-orbital model was shown to give rise
to interesting physics, albeit most likely not relevant to TBG
[78,79].

Next, we consider the interacting part of the Hamilto-
nian HI . The interacting Hamiltonian may be viewed as a
sum of two types of terms: density-density interaction terms
and exchange terms. In its most general form, HI is given
by

HI = 1

2

∑
ij

V
αβ

ij niαnjβ + 1

2

∑
ij,αβ

J
αβ

1,ij c
†
iασ c

†
jβσ ′ciβσ ′cjασ

+ 1

2

∑
ij,α 
=β

J
αβ

2,ij c
†
iασ c

†
jβσ ′ciασ ′cjβσ

+ 1

2

∑
ij,α 
=β

J
αβ

3,ij c
†
iασ c

†
jασ ′ciβσ ′cjβσ , (6)

where the first term describes density-density interactions and
the remaining three terms describe exchange interactions. The
four sets of interaction parameters are not fully independent,
but must satisfy the constraint of invariance under rotations
in orbital space (for a formulation of this constraint, see
Appendix C). For each set of the interaction parameters we
furthermore assume V

xy

ij = V
yx

ij and V xx
ij = V

yy

ij , and simi-
larly for J1,2,3. Finally, we note that the interaction parame-
ters are invariant under translations V

αβ

ij ≡ V αβ (ri − rj ), and
similarly for the exchange terms.

An extended Hubbard model of the form of Eq. (6) was
proposed in Ref. [21], where the interaction parameters were
estimated using the Coulomb interaction and the explicit
wave functions of the Wannier states. Such estimates showed
that further-neighbor interactions, while smaller than onsite
interactions, are non-negligible. In addition, in the context of
the model used in Ref. [21] the exchange interactions J2,3

were found to be considerably smaller than J1. In Secs. III and
IV, where we study the pairing and particle-hole instabilities,
we consider HI in its general form of Eq. (6). The main
physical motivation to do so is that, because (6) is meant to
describe the effective interactions within the manifold of the
low-energy flat bands, they are expected to get renormalized
by integrating out higher-energy degrees of freedom (see, for
instance, Ref. [80]).

In Sec. V, where we focus on the strong-coupling regime,
we study a particular limiting case of HI and only consider
the onsite interactions. Despite the fact that further-neighbor
interactions may not be too much smaller than the onsite
terms, this approximation is useful as it allows for the deriva-
tion of a spin-orbital exchange Hamiltonian. Keeping onsite
interactions only (i = j ) in Eq. (6), the parameters J

αβ

1,ii are

equivalent to V
αβ

ii , and the former may thus be set to zero.
The remaining interaction parameters can be specified in
terms of two interaction energy scales: a Hubbard interaction
U and a Hund’s rule coupling J [5]. In terms of these
two parameters, the nonzero onsite interaction coefficients
of Eq. (6) are V xx = V yy = U , V xy = V yx = U − 2J , and
J

xy

2,3 = J
yx

2,3 = J . As a result, the Hamiltonian HI acquires the
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standard Hubbard-Kanamori form [81]

H
(onsite)
I = U

∑
i,α

niα↑niα↓ + (U − 2J )
∑

i

nixniy

+ J
∑
i,σ,σ ′

c
†
ixσ c

†
iyσ ′cixσ ′ciyσ

+ J
∑
i,α 
=β

c
†
iα↑c

†
iα↓ciβ↓ciβ↑. (7)

Having derived the full interacting model, in the next
sections we discuss and classify the different instabilities
of the model. By directly decomposing the interacting term
HI into different irreducible channels, we obtain the effec-
tive interactions corresponding to the possible instabilities in
the particle-particle (i.e., superconducting) and particle-hole
channels in Secs. III and IV, respectively. In Sec. V, we go one
step beyond and, in the spirit of the strong-coupling approach,
include perturbatively the kinetic Hamiltonian HK , deriving
the low-energy spin-orbital exchange model.

III. SUPERCONDUCTING INSTABILITIES AND THEIR
VESTIGIAL ORDERS

In this section we focus attention on the interacting Hamil-
tonian HI of Eq. (6) and address the question of supercon-
ductivity. In particular, we analyze the pairing instabilities of
HI by decomposing the interaction into irreducible pairing
channels. The symmetry group of the normal state allows
for a two-component d-wave pairing channel, which gives
rise to the interesting possibility of chiral or nematic d-wave
superconductivity. This possibility is studied in more detail in
Sec. III B.

A. Decomposition of the interaction

To decompose the interaction into irreducible pairing ver-
tices, we first identify the symmetry of the Cooper pairs.
The full symmetry group of the normal state, including spin
rotational symmetry, is G = D3 ⊗ SO(3) (note that here we
restrict to the exact point-group symmetries of TBG). This im-
plies that the pairing channels are labeled by the spin angular
momentum S of the Cooper pair, which can take the values
S = 0, 1, and the representations � of D3, which can take the
values E ⊗ E = A1 ⊕ A2 ⊕ E associated with the product of
two orbitals. The decomposition of the representation product
describes the possible orbital structure of the Cooper pair.

To proceed, we define the pair creation operator �
†
iασ,jβσ ′ :

�
†
iασ,jβσ ′ = c

†
iασ c

†
jβσ ′ , (8)

A general pairing operator of this form can be decomposed
into irreducible pairing operators defined by the symmetry
quantum numbers (�, S,M ). Here, � denotes the point-group
representation and S = 0, 1 distinguishes spin-singlet and
spin-triplet pairing: M = −S, . . . , S. This decomposition is
given by

�
†
iασ,jβσ ′ =

∑
�

∑
S,M

X�
αβCSM

σσ ′ �
†
ij,�,SM, (9)

where CSM
σσ ′ are the appropriate Clebsch-Gordan coefficients

and X�
αβ are the analogs of Clebsch-Gordan coefficients for

the orbital sector. The expressions for the latter are provided
in Appendix C. Note that here the sum over � includes
a sum over the individual components of multidimensional
representations, which we leave implicit for the benefit of a
more compact notation (the latter is important and the reader
is cautioned to keep this is mind).

To see how this leads to a decomposition into irreducible
pairing terms, consider the first term of HI [Eq. (6)], with
interaction parameters V

αβ

ij . Substituting Eq. (9) and taking
sums we arrive at

HI = 1

2

∑
ij

∑
SM

∑
�

V �
ij �

†
ij,�,SM�ij,�,SM, (10)

with interaction parameters V �
ij given by

V �
ij =

∑
αβ

X�
αβV

αβ

ij X�
αβ. (11)

The Hamiltonian of Eq. (10) is diagonal in the space defined
by the spin and orbital quantum numbers (S,M ) and �. It
should be noted, however, that the interaction parameters V �

ij

need not be the same for different components of the same
(multidimensional) representation (recall that the sum over �

implies a sum over its components). This is not inconsistent
with the notion of irreducible coupling constants since these
can only be defined for the full Hamiltonian HI . The latter
includes the interaction terms J1,2,3; substituting the decom-
position of Eq. (9) into these remaining terms of HI leads to
similar expressions as Eq. (10), which can be combined to
yield (details are presented in Appendix C)

HI = 1

2

∑
ij

∑
SM

∑
�

U�
ij �

†
ij,�,SM�ij,�,SM. (12)

The matrix elements U�
ij are given by the appropriate sums

of V and J1,2,3, and define the irreducible coupling constants
associated with the representation �.

Fermi statistics put restrictions on the allowed combina-
tions of � and S. This is apparent when i = j , in which
case spin-singlet pairing (S = 0) can only occur for the even
representations A1 and E, whereas spin-triplet pairing (S = 1)
can only have A2 symmetry. In general, the combination of �

and S determines whether �
†
ij,�,SM is even or odd under the

exchange i ↔ j .
To illustrate the application of Eq. (12), consider the case

in which the interaction terms of Eq. (6) are only onsite,
giving rise to Eq. (7). We can express the resulting onsite pair
creation operators in the following more familiar form:

�
†
� = c

†
iασ [�̂� (isy )]σσ ′

αβ c
†
iβσ ′ , �̂� = (�� )abτ

asb, (13)

where �̂� is a matrix in orbital and spin space, which is
expanded in two sets of Pauli matrices τ a and sb (a, b =
0, x, y, z). Here, τ 0 and s0 are defined as the identity. As
before, τ z = ±1 labels the orbital degree of freedom and sz =
±1 corresponds to spin ↑,↓. Note that we included explicitly
the antisymmetric tensor in spin space (isy )αβ = εαβ . As
mentioned, due to Fermi statistics, which can be expressed as
sy�̂T

�sy = �̂� , there are three distinct onsite pairing channels,
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TABLE I. Effective interactions for the three different types of
onsite particle-particle (superconducting) orders.

U� � = A1 � = A2 � = E2

Singlet U + J U − J

Triplet U − 3J

which are uniquely labeled by the three representations A1,
A2, and E.

The onsite pair operators with A1 and E2 symmetry
are spin-singlet orbital-triplet states and represented by the
matrices

�̂A1 = 1, (14)

�̂E = (τ z, τ x ). (15)

Here, the second equality expresses the fact that E2 is two-
component representation. The pair operators with A2 sym-
metry form a (orbital-singlet) spin-triplet state transforming
as SO(3) under rotations in spin space and are expressed as

�̂A2 = τ y (sx, sy, sz). (16)

Written in this form, the pairing operators are not normalized.
To normalize them we multiply all matrices �̂� as written in
Eqs. (14) and (16) by a factor 1/2

√
2 [82].

The coupling constants U� = U�
ii of the onsite pairing

vertices, defined in Eq. (12), can then be obtained in a straight-
forward way. For onsite interactions [Eq. (7)], one finds the
effective interactions U� of the three onsite pairings described
above as (see also Table I):

UA1 = U + J, UA2 = U − 3J, UE = U − J. (17)

Note that the factor 1
2 in (12) was absorbed in the normal-

ization of the onsite pairing operators (see [82]). Although
a full analysis of the leading superconducting instabilities is
beyond the scope of this work, it is interesting to note that the
“Hund’s rule” coupling J favors the A2 and E states.

To proceed with the general analysis of Eq. (12), it is
convenient to go to momentum space by Fourier transforming
the pair creation operators. Specifically, we define

�
†
ij = 1

N

∑
k

�
†
kνiνj

eik·(ri−rj ), (18)

where �
†
kνiνj

= c
†
kνi

c
†
−kνj

and νi,j = A,B refers to the sub-
lattice degree of freedom of the honeycomb superlattice, and
N is the system size. In Eq. (18), spin and orbital indices
have been suppressed for simplicity. Substituting the Fourier
transform into (12), one finds (suppressing the spin label S)

HI = 1

N

∑
kk′

∑
�

∑
νν ′

U�
νν ′ (k′ − k)�†

kνν ′,��k′νν ′,�, (19)

where the momentum-dependent effective interaction U�
νν ′ (k)

is given by

U�
νν ′ (k) =

∑
rij

U�
ij e

−ik·rij . (20)

This effective interaction may be compared to those of more
familiar single-band models, or of an isotropic continuum
model for a Fermi surface. Such effective interactions typi-
cally originate from (some form of) density-density interac-
tion. Here, apart from an additional label � associated with
the orbital degree of freedom, the effective interaction has a
similar structure. In particular, as is clear from Eq. (20), it is
the Fourier transform of (short-ranged) interactions between
first-, second-, and further-nearest-neighbor pairs, each with
their own interaction parameter.

The standard next step is to decompose U�
νν ′ (k′ − k) into

a sum over harmonics, in this case (honeycomb) lattice har-
monics, which are labeled by the symmetry quantum numbers
of the lattice, i.e., the point-group representations. Such de-
composition is based on the fact that a general function g(k)
which has the symmetry of the lattice can be expanded as
g(k′ − k) = ∑

�′ f �′∗(k′)f �′
(k), where f �′

(k) are the lattice
harmonics which transform irreducibly.2 Lattice harmonics
are the lattice equivalents of spherical harmonics in isotropic
systems; the latter are labeled by angular momentum quantum
numbers. An important difference with respect to isotropic
systems is the finite set of lattice symmetry quantum numbers,
which implies that distinct harmonics fall into the same chan-
nel. Once the effective interaction (20) is decomposed into
lattice harmonics, the harmonics labeled by �′ are combined
with the corresponding pairing operators labeled by � (refer-
ring to the orbitals) to form the products �′ ⊗ �, which are
reducible. Decomposition of the product representation then
yields pairing operators fully symmetrized with respect to the
symmetry group of the system. Here, we do not work this
out in detail, but refer the reader to Appendix D for a more
detailed discussion of decomposing (20), as well as Ref. [83].
Instead, we briefly showcase the trivial case of onsite pairing
in the context of Eqs. (19) and (20).

The onsite component of U�
νν ′ (k) is simply given by

U�
AA,0 = U�

BB,0 ≡ U�
0 . What remains to be done is to sym-

metrize the pairing operators with respect to the honeycomb
sublattice degree of freedom. To this end, we define the even
and odd linear combinations

�
†
kAA,� + �

†
kBB,� =

∑
νν ′

δνν ′�
†
kνν ′,�, (21)

�
†
kAA,� − �

†
kBB,� =

∑
νν ′

σ z
νν ′�

†
kνν ′,�, (22)

where σ z = ±1 is an A,B sublattice label. The former is fully
symmetric, whereas the latter is odd under C2y .

At this stage it is useful to briefly connect to the recent
theoretical work on superconductivity in TBG. A number
of works have addressed the question of pairing in TBG
[4,7,8,13,15,16,20,22,24–26,29,30,35–38,47], using different
methods (numerical and analytical) as well as different mod-
els. For the sake of simplicity, some authors have considered
a (two-orbital) triangular lattice model or have considered
the SU(4) symmetric limit of the honeycomb lattice model.
Approaches have also differed in the type of interactions

2As before, the sum over representations �′ includes an implicit
sum over components of multidimensional representations.
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included. Furthermore, while most works focused on super-
conductivity from repulsive interactions, others have explored
phonon-mediated scenarios in more detail [22,37].

Here, we have presented a full symmetry-based decom-
position of the extended Hubbard interaction (6) into pairing
channels and have obtained the corresponding coupling con-
stants. Our starting point is the two-orbital honeycomb lattice
model, for which we do not assume artificial higher symmetry.
Notably, we make no a priori assumptions on the range of
the included interaction; the interacting Hamiltonian (19) is
fully general. As a result, (19) provides the basis for studying
the pairing instabilities using various schemes. For instance,
the renormalization of the interactions by particle-hole fluc-
tuations, treated within random phase approximations (RPA),
can be straightforwardly included [16]. To this end, we derive
the corresponding decomposition in particle-hole channels in
Sec. IV.

B. Two-component pairing and vestigial ordering

The existence of a two-component pairing channel, which
is guaranteed when the normal state has D3 symmetry, mer-
its a more detailed discussion of the consequences of two-
component superconductivity in TBG. Since superconduc-
tors described by a two-component order parameter break
additional symmetries of the system, such as time-reversal
or rotational symmetry, they exhibit distinct signatures in
experimental probes which may be used to establish the
pairing symmetry. With this in mind we focus attention on
the two-component superconducting channel with symmetry
label E (hereafter denoted E pairing) and consider its phe-
nomenology in the context of TBG. It is natural to refer to
this two-component pairing channel as d-wave pairing; su-
perconductivity with this pairing symmetry has been the focus
of a number of recent studies addressing superconductivity in
TBG [4,8,13,16,20,29,30,36,47].

To describe an E-pairing state, it is necessary to introduce
a two-component complex order parameter (η1, η2) which
transforms as the E representation of the D3 group. The
possible superconducting ground states can be obtained by
analyzing the Ginzburg-Landau expansion of the free energy
in terms of the superconducting order parameter [84]:

F = r (|η1|2 + |η2|2) + u(|η1|2 + |η2|2)2

+ v|η∗
1η2 − η∗

2η1|2. (23)

Here, r ∝ T − Tc, where Tc is the transition temperature,
and u, v are fourth-order expansion coefficients. The state
realized below Tc (r < 0) is determined by the fourth-order
interaction v. When v < 0, the superconducting ground state
is chiral, i.e., time-reversal symmetry breaking (TRSB), and
given by (η1, η2) = η0(1,±i). Here, η0 is a complex number.
A number of recent theoretical studies have argued that this
chiral d-wave state is favored in TBG [8,13,16,20,29,30,47].
On the other hand, when v > 0, the superconducting ground
state is given by (η1, η2) = η0(cos φ, sin φ). Since it preserves
time-reversal symmetry but lowers the point-group symmetry,
in particular threefold rotations, it is a nematic superconductor
[85,86]. Importantly, the values of φ are restricted due to
the crystal symmetries. This can be seen by considering the

following sixth-order term in the free-energy expansion:

F (6) = λ

2
[(η1 − iη2)3(η∗

1 − iη∗
2 )3 + c.c.]. (24)

For the TRSB superconducting state, this term vanishes. For
the nematic superconducting state, however, this term be-
comes λ|η0|6 cos 6φ, which is minimized either by φ = nπ/3
(for λ < 0) or φ = (n + 1

2 )π/3 (for λ > 0), with integer n.
The existence of a multicomponent superconducting or-

der parameter opens the possibility of vestigial order, i.e.,
the condensation of bilinear combinations of ηi that break
certain symmetries of the lattice while preserving the U(1)
superconducting gauge symmetry (for a review, see [87,88]).
Importantly, these bilinear combinations may condense even
in the nonsuperconducting state, giving rise to an ordered
state that precedes the onset of superconducting order. In the
case of TBG, since it is a two-dimensional system, super-
conducting phase fluctuations are very strong and melt long-
range superconducting order completely. However, the phase
with composite bilinear order is not affected by these strong
fluctuations since it is associated with a discrete symmetry,
and thus remains as a vestige of the superconducting state.

Following Ref. [87] and the analysis of the nematic p-wave
superconductor of Ref. [89], we identify two possible vestigial
orders, associated with the TRSB and nematic supercon-
ducting states. In the case of a TRSB superconductor, the
composite order parameter with chiral symmetry is given by

ψ = i(η1η
∗
2 − η2η

∗
1 ) ≡ η†σyη, (25)

where η = (η1, η2)T and σy is a Pauli matrix. It is clear that
ψ is a Z2 Ising-type order parameter, whose condensation
implies TRSB (chiral order). Therefore, the vestigial state
with 〈ψ〉 
= 0 but 〈η〉 = 0, which is expected to take place at
finite temperatures in two dimensions, is a nonsuperconduct-
ing state that breaks time-reversal symmetry.

In the case of the nematic superconductor, the composite
order parameter describing nematic order has two compo-
nents, which transform as partners of the two-dimensional
irreducible representation E:

(�1,�2) = (|η1|2 − |η2|2, η∗
1η2 + η∗

2η1),

� ≡ (η†σ zη, η†σxη). (26)

Since � is a composite order parameter and � ∝
(cos 2φ, sin 2φ) for (η1, η2) = η0(cos φ, sin φ), it is natural
to think of it as a q = 0 particle-hole order parameter with
d-wave symmetry, whose two components transform as dx2−y2

and dxy , It should be kept in mind, however, that the symme-
tries of D3 do not distinguish p and d waves. Importantly,
the condensation of � implies that the system is no longer
invariant under an in-plane C3z rotation and in this sense the
ordered state can be called nematic. As a result, the vestigial
phase with 〈�〉 
= 0 but 〈η〉 = 0 defines a nematic phase.

At first sight, one might be tempted to identify � with
an XY nematic order parameter, which would not order at
finite temperatures in two dimensions due to Mermin-Wagner
theorem. However, due to crystal anisotropy � is actually a Z3

order parameter and falls in the same universality class as the
three-state Potts model [89,90]. Note that this distinguishes it
from a Z2 Ising nematic order parameter. Indeed, writing the
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Landau free-energy expansion for � reveals the existence of
a cubic term:

F� = r ′(�2
1 + �2

2

) + λ′(�3
+ + �3

−) + u′(�2
1 + �2

2

)2
, (27)

where �± = �1 ± i�2. Note that the existence of a cubic
term is implied by the presence of the sixth-order term (24); in
particular, substituting (26) into the cubic term of (27) gives
(24).

Writing �+ = |�|eiθ and expressing the cubic term in
terms of the phase θ gives 2λ′|�|3 cos 3θ . For λ′ < 0 the set
of degenerate minima is given by θ = 2nπ/3 with n integer;
for λ′ > 0, it is given by θ = (2n + 1)π/3. Thus, because θ

can assume three different values, � is a discrete Z3 order
parameter, which can condense at finite temperatures in two
dimensions. As a result, a vestigial nematic order is possible
to be realized in TBG. Note that the presence of the cubic
order term makes the nematic transition first order within
mean-field theory [89]. However, in two dimensions, which is
the case relevant for TBG, fluctuations drive the Z3 transition
second order, with a small critical exponent β for the order
parameter β = 1

9 [90]. The small value of β indicates a steep
onset of the nematic order parameter, which may in some
experiments be similar to a jump. Furthermore, the allowed
θ values correspond to the ±dx2−y2 nematic state (θ = 0 and
π , respectively), or to the symmetry-equivalent states related
to ±dx2−y2 by threefold rotations. As a result, the dxy nematic
state (θ = ±π/2) is never realized, as it is never a minimum
of the free energy.

IV. PARTICLE-HOLE INSTABILITIES

In Sec. III A, for the purpose of studying superconductiv-
ity, we decomposed the interactions into irreducible pairing
(particle-particle) channels. A similar approach can be taken
to study instabilities towards particle-hole order, such as mag-
netic, charge, or orbital order. Therefore, in this section we
present a decomposition of Eq. (6) into irreducible particle-
hole channels. We begin by defining the general particle-hole
operators �iασ,jβσ ′ as

�iασ,jβσ ′ = c
†
iασ cjβσ ′ , (28)

which are the analogs of Eq. (8). In a manner similar to Eq. (9)
we decompose these operators into irreducible particle-hole
operators �ij,�a as

�iασ,jβσ ′ =
∑

�

∑
a

Y �
αβC̃a

σσ ′�ij,�a, (29)

where a = 0, x, y, z is an index for spin-singlet (a = 0)
and spin-triplet (a = x, y, z) particle-hole condensates. Here,
the singlet and triplet operators are defined as �ij,a =∑

σσ ′ c
†
iσ sa

σσ ′cjσ ′ , where sx,y,z are the spin Pauli matrices and
s0 is the identity. The irreducible orbital operators �ij,� are
defined similarly; the expansion coefficients Y �

αβ and C̃a
σσ ′ ,

which can be related to Clebsch-Gordan coefficients, are pro-
vided in Appendix E. Note that the relation �

†
ij,�a = �ji,�a

holds.
Equation (29) is the equivalent of (9). As a first step

towards decomposing the interaction into particle-hole chan-
nels, we thus proceed similarly by substituting (29) into HI .

TABLE II. Effective interactions for onsite particle-hole order,
defined by Eq. (32), in terms of the interaction parameters U and J

defined in Eq. (7). Six different channels can be distinguished based
on the spin (i.e., singlet or triplet) and orbital structure of the particle-
hole channel.

Onsite Ũ�a � = A1 � = A2 � = E

Singlet (3U − 5J )/8 (J − U )/8 (5J − U )/8
Triplet −(U + J )/8 (J − U )/8 (J − U )/8

As in the case of the pairing channels [Eq. (10)], we initially
illustrate this procedure by using the density-density terms
with interaction parameters V . In the present case, contrary
to the pairing decomposition, we expect to obtain two terms,
as there are two ways to form particle-hole bilinears. We find
for the interaction HV ,

HV = 1

2

∑
ij

∑
�

Ṽ �
1,ij�i,�0�j,�0

+ 1

2

∑
ij

∑
�,a

Ṽ �
2,ij�ij,�a�ji,�a, (30)

where the new interaction parameters Ṽ �
1,ij and Ṽ �

2,ij are
given by

Ṽ �
1,ij =

∑
αβ

Y �
ααV

αβ

ij Y �
ββ, Ṽ �

2,ij = −1

2

∑
αβ

Y �
αβV

αβ

ij Y �
βα, (31)

and �i,�a ≡ �ii,�a = �
†
i,�a . The first term is an interaction

of pure spin-singlet onsite bilinears, whereas the second term
corresponds to the interaction of particle-hole bilinear on
bonds or sites.

The same approach applies to the exchange interaction
terms J1,2,3, as we describe in detail in Appendix E. This leads
to a form of HI given by

HI = 1

2

∑
ij

∑
�,a

Ũ�a
1,ij�i,�a�j,�a

+ 1

2

∑
ij

∑
�,a

Ũ�a
2,ij�ij,�a�ji,�a, (32)

with effective particle-hole interactions Ũ�a
1,ij and Ũ�a

2,ij .
Before proceeding to a more general analysis of (32),

we examine its structure in the limit where only onsite
interactions are considered, such that the interactions are
parametrized by the coefficients U and J [see Eq. (7)]. As
is clear from (32), in this case the interaction parameters
can be grouped into Ũ�a = Ũ�a

1,ii + Ũ�a
2,ii , which then define

the irreducible bare particle-hole coupling constants. The
expressions for Ũ�a in terms of U and J are given in Table II.
The particle-hole channels corresponding to these couplings
describe distinct types of particle-hole order, in the same
way that different pairing channels describe distinct types of
pairing. Spin-singlet channels may also be viewed as charge
channels since spin-rotation invariance is preserved. For in-
stance, spin-singlet order with A2 symmetry corresponds to
an ordered state with orbital magnetism, whereas singlet order
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TABLE III. Effective interactions for bond particle-hole order
involving a pair of sites (ij ). Six different channels can be dis-
tinguished based on the spin (i.e., singlet or triplet) and orbital
structure of the particle-hole channel. Here, we have assumed V

αβ

ij =
Vij , J

αβ

1,ij = J1,ij , and J2 = J3 = 0, which corresponds to parameter
values considered in Ref. [21].

Neighbors Ũ�a
1,2,ij � = A1 � = A2 � = E

Ũ�a
1,ij Singlet (4Vij − J1,ij )/8 −J1,ij /8 −J1,ij /8

Triplet −J1,ij /8 −J1,ij /8 −J1,ij /8
Ũ�a

2,ij Singlet (4J1,ij − Vij )/8 −Vij /8 −Vij /8
Triplet −Vij /8 −Vij /8 −Vij /8

with E symmetry corresponds to nematic orbital order, which
breaks (threefold) rotational symmetry.

In a similar manner, we can explicitly express the effective
interactions Ũ�a

1,ij and Ũ�a
2,ij for a bond connecting a pair of

distinct sites i and j in terms of V and J1,2,3 defined in Eq. (6).
For the special case V

αβ

ij = Vij , J αβ

1,ij = J1,ij , and J2 = J3 = 0
the result is presented in Table III. This particular choice of
interaction parameters corresponds to the extended Hubbard
model considered in Ref. [21].

We then return to a more general analysis of (32). As in the
case of pairing, it is convenient to make use of translational
invariance and transform to momentum space. The Fourier
transform of the particle-hole operators �ij,�a is given by

�ij,�a = 1

N

∑
q,k

�kνiνj ,�a (q)eiq·Rij +ik·rij , (33)

where rij = ri − rj as before, and Rij = (ri + rj )/2 is the
center-of-mass position. As in Eq. (18) the Fourier trans-
form introduces sublattice indices νi, νj = A,B. The Fourier
transform of the onsite operators �i,�a further simplifies and
is defined as �ν,�a (q) = ∑

k �kνν,�a (q). Substituting (33)
into Eq. (32) and performing the sums over site indices, the
interaction Hamiltonian takes the form

HI = 1

2N

∑
q

∑
�,a

Ũ�a
1 (q)�†

�a (q)��a (q)

+ 1

2N

∑
q,kk′

∑
�,a

Ũ�a
2 (k − k′)�†

k′,�a (q)�k,�a (q), (34)

where we have suppressed sublattice indices ν, ν ′ to avoid
cumbersome expressions. The Fourier transform of the in-
teraction parameters Ũ�a

1,ij is given by (reinstating sublattice
indices)

Ũ�a
1,νν ′ (q) =

∑
rij

Ũ�a
1,ij e

−iq·rij , (35)

and similarly for Ũ�a
1,ij . As may be seen from (34), the first

term is now diagonal. As far as the second term is concerned,
we can follow a similar approach as in the pairing case
[see Eq. (19)], and write Ũ�a

2,νν ′ (k − k′) as a sum over lattice
harmonics. The lattice harmonics are then associated with the
particle-hole operators �kνν ′,�a (q) and �

†
k′νν ′,�a (q) to form

fully symmetrized particle-hole operators.

The Hamiltonian of Eq. (34) describes the effective in-
teractions of the particle-hole instabilities and provides a
natural framework for further analyze them. To determine
which instability is strongest within RPA, for instance, the
next step is to calculate the particle-hole bubbles in each of
the irreducible channels. This is greatly simplified by the fully
symmetrized form of the interaction.

We conclude this section by noting that an analysis of
the particle-hole instabilities in “higher angular momentum”
channels, that is to say, instabilities in channels corresponding
to lattice harmonics and governed by Ũ�a

2 (k − k′), is partic-
ularly relevant in TBG. As pointed out in Ref. [31], a natural
candidate for the ordered insulating state at quarter-filling is
a magnetic state for which the magnetic moments reside on
the honeycomb bonds. As a result, this is a bond-spin ordered
state which occurs in a particle-hole channel corresponding to
nontrivial lattice harmonics.

V. SPIN-ORBITAL EXCHANGE MODEL
AT QUARTER-FILLING

The analysis of the previous sections focused entirely on
the interacting part of the Hamiltonian HI , classifying the irre-
ducible particle-particle and particle-hole channels. To obtain
a phase diagram, it is necessary to include also the kinetic
term HK . This can be done in a controlled way in two different
regimes: weak coupling, where HI is treated perturbatively, or
strong coupling, where HK is treated perturbatively. The small
bandwidth (W ∼ 10 meV) of the nearly flat bands in TBG
does not immediately suggest the weak-coupling approach as
a natural starting point to address electronic correlations in
TBG. Indeed, estimates for the onsite Coulomb repulsion U

indicate that U � W [1], placing the system in a moderately
correlated regime. To assess this regime, in this section we
opt to start from the strong-coupling limit in which the onsite
interaction U is much larger than the bandwidth.

In this case, the extended Hubbard model discussed in
Sec. II can be studied by considering the interactions first and
then treating the kinetic part as a perturbation in ∼ t/U . This
amounts to integrating out the charge degree of freedom and
results in an effective model for the spin and orbital variables.
Spin-orbital exchange models of this Kugel-Khomskii type
[70,71] have proven rather successful in describing a large
class of strongly correlated multiorbital systems [72–75]. The
key difference between the latter and TBG is the microscopic
nature of the orbital degree of freedom, which does not
correspond to an atomic orbital in TBG. Instead, the localized
Wannier states of the flat bands are associated with the Moiré
superlattice. As a result, the aim of this section is to explore to
what extent standard approaches from correlated multiorbital
systems can be applied to TBG.

A. Derivation of the effective Hamiltonian

To proceed, we consider the interacting Hamiltonian given
by (7), which only includes the onsite interactions. Restricting
the interaction to onsite terms only is an oversimplification for
TBG, but necessary for the purpose of deriving a spin-orbital
model. The onsite Coulomb repulsion of (7) reorganizes the
Hilbert space based on the number of electrons per site,
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assigning an energy cost to multiple occupancy. Since the
insulating behavior of TBG was observed for one electron per
site (or two electrons per Moiré supercell), we focus on this
case and define the low-energy subspace by all configurations
for which each site is singly occupied.

To obtain the effective Hamiltonian H we follow the stan-
dard approach and consider virtual superexchange processes
via excited states with two electrons per site. This amounts
to diagonalizing the interacting Hamiltonian HI and treating
the kinetic Hamiltonian HK as a perturbation. In Sec. III we
diagonalized (7) in the two-particle sector and obtained the
energies of the intermediate excited states given in Table I.
The effective Hamiltonian can then be viewed as an expansion
in ∼t/U . Considering all hopping processes into the higher-
energy sector and back, H can be expressed in the general
form

H = PH
†
K

1

ε0 − HI

HKP, (36)

where P are projectors onto the low-energy subspace. As is
usual, the effective Hamiltonian is governed by the superex-
change energy scale ∼t2/U . Since the virtual superexchange
processes occur on one particular bond (ij ), it suffices to
derive the Hamiltonian Hij for one such bond; the full Hamil-
tonian H is given by a sum over all bonds. In principle, a
superexchange coupling of spin and orbital variables can be
obtained for any pair of sites (ij ) connected by HK . In what
follows, we focus attention on the simplest case, which only
includes nearest-neighbor hopping. Further-neighbor terms
can be derived and analyzed analogously. In this situation,
the hopping along each bond can be parametrized by tσ =
t1 + t ′1 and tπ = t1 − t ′1 in an appropriate basis [see Eq. (3)
and Appendices A and B].

Since the microscopic Hamiltonian H = HK + HI is
SU(2) spin rotationally invariant, the effective low-energy
Hamiltonian must also be SU(2) invariant, which implies that
the effective Hamiltonian Hij for a bond (ij ) is constructed
from the projectors PS=0

ij and PS=1
ij onto total spin states

S = 0 and 1 of the electrons connected by the bond. The
projectors onto the singlet and triplet states are given by

PS=0
ij = 1

4 − Si · Sj , PS=1
ij = 3

4 + Si · Sj , (37)

where Si describes the spin of site i.
In addition to the spin variables, the superexchange Hamil-

tonian acts on the orbital variables. This action can be de-
scribed by the orbital Pauli matrices τ i = (τ z

i , τ x
i , τ

y

i ), where
τ z
i = ±1 corresponds to occupancy of the px, py orbital on

site i. Note the particular ordering of the Pauli matrices in the
definition of τ i . To capture the action of the superexchange
Hamiltonian on the orbital variables, it convenient to intro-
duce orbital projection operators, by analogy with (37). We
introduce the projection operators Pαβ

ij given by

Pxx
ij = (1 + êij · τ i )(1 + êij · τ j )/4, (38)

Pxy

ij = (1 + êij · τ i )(1 − êij · τ j )/4, (39)

where êij is a unit vector in the direction of the bond (ij ).
Therefore, êij can take the values ên=1,2,3, which are shown
in Fig. 4. The projection operator Pxx

ij , for instance, projects

on states for which the p′
x = (px êx + py êy ) · êij orbital is

occupied on both sites i and j . Note that this is the px

orbital in a basis defined by the bond directions (êij , ê⊥
ij )

rather than (êx, êy ) [79] (see Appendix F for details). In
the case êij = ê1 = (1, 0)T the projector Pxx

ij takes the form
(1 + τ z

i )(1 + τ z
j )/4. The projector Pxy

ij projects on states for
which the p′

x = (px êx + py êy ) · êij orbital is occupied on site
i and the p′

y = (px êx + py êy ) · ê⊥
ij orbital is occupied on site

j (both in a bond-dependent basis). The projection operators
Pyy

ij and Pyx

ij are obtained from (38) and (39) by inverting the
signs.

To describe all superexchange processes, one must also
account for the possibility that orbital flavors are flipped or
exchanged. For this purpose we introduce operators that flip
the orbital occupation of the sites i and j ; these operators are
given by

Qij = (τ+
i τ+

j + τ−
i τ−

j )/2, (40)

Q̄ij = (τ+
i τ−

j + τ−
i τ+

j )/2, (41)

where τ±
i and τ±

i flip the orbital occupation on site i and j

in a basis defined by the bond directions (êij , ê⊥
ij ), as before.

For a bond along êij = ê1 the operator τ±
i takes the form

τ±
i = τ x

i ± iτ
y

i (see Appendix F). Clearly, the Qij matrix el-
ements are nonzero only in the subspace of equal occupation,
whereas Q̄ij only acts within the subspace of opposite orbital
occupation.

Making use of these operators and carefully examining
all superexchange processes to obtain the correct coefficients,
we find that the nearest-neighbor spin-orbital superexchange
Hamiltonian H is given by

H =
∑
〈ij〉

{
1

U − 3J
PS=1

ij

[
tσ tπQ̄ij − (

t2
σ + t2

π

)(
Pxy

ij + Pyx

ij

)]

− 1

U + J
PS=0

ij

(
tσ tπQij + 2t2

σPxx
ij + 2t2

πP
yy

ij

)
+ 1

U − J
PS=0

ij

[
tσ tπ (Qij − Q̄ij ) − 2t2

σPxx
ij − 2t2

πP
yy

ij

− (
t2
σ + t2

π

)(
Pxy

ij + Pyx

ij

)]}
. (42)

Here, the sum is over honeycomb nearest-neighbor sites 〈ij 〉.
In its most general form given by (42) the Hamiltonian de-
scribes a rather complicated coupling between spin and orbital
variables, parametrized by the two hopping integrals tσ,π and
the interaction terms U, J . This Hamiltonian can be compared
to similar spin-orbital Hamiltonians obtained in the context
of correlated multiorbital models for transition-metal oxides
[91,92].

In the present case, while (42) includes nearest-neighbor
couplings only, the superexchange Hamiltonian can be sys-
tematically extended to include further-neighbor spin-orbital
superexchange couplings. This will generate superexchange
terms of a similar type as in Eq. (42), but for bonds (ij )
corresponding to second- and further-nearest-neighbor sites.
Using the machinery developed in our work, it is in principle
straightforward to obtain these additional terms by including
hopping processes such as Eqs. (4) and (5) in HK of (36), but
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is expected to introduce frustration. A detailed study of the
resulting phase diagram is beyond the scope of this work.

A natural first step to study (42) is to consider a mean-field
theory and replace the spin and orbital operators by classical
variables. This is the approach we take there.

B. Mean-field solution in the isotropic limit

While a full phase diagram for arbitrary values of tσ and
tπ can in principle be obtained by, for instance, Monte Carlo
simulations, this is beyond the scope of our work. Rather,
we develop a mean-field theory based on an assumption
which directly derives from the reported properties of TBG.
Both first-principles as well as tight-binding calculations show
that the low-energy bands of TBG are well described by
the approximation tσ ≈ tπ [21]. Therefore, here we focus
on the isotropic case tσ = tπ ≡ t , for which the spin-orbital
Hamiltonian (42) simplifies and reads as

H =
∑
〈ij〉

{
t2

(U − 3J )

(
3

4
+ Si · Sj

)
(τ i · τ j − 1)

− t2

U + J

(
1

4
− Si · Sj

)(
1 + τ i · τ j − 2τ

y

i τ
y

j

)
− 2t2

U − J

(
1

4
− Si · Sj

)(
τ

y

i τ
y

j + 1
)}

. (43)

This Hamiltonian clearly reflects the higher U(1) orbital sym-
metry that results from the neglecting the hopping anisotropy.
In this form, the Hamiltonian bears resemblance to an SU(4)
symmetric spin-orbital model on the hyperhoneycomb lattice
[93].

Before proceeding, let us briefly review the meaning of the
different degrees of freedom appearing in this Hamiltonian.
A finite expectation value 〈Si〉 simply implies long-range
magnetic order since Si is simply the spin at site i, whose
magnitude is here set to 1

2 . A finite expectation value 〈τ i〉
implies some form of orbital order, which depends on the
direction of τ i (its magnitude here is set to 1). A finite 〈τ z

i 〉
implies that the occupation of the px and py orbitals are not
the same in site i. This breaks rotational symmetry and is
therefore an orbital-nematic order. The same is true for 〈τ x

i 〉,
but with the difference that px + py and px − py orbitals are
split in energy. Therefore, it is convenient to construct the
two-dimensional vector 〈τ ‖

i 〉 = 〈τ x
i 〉x̂ + 〈τ z

i 〉ẑ, which behaves
as an XY nematic order parameter. In contrast to 〈τ ‖

i 〉, a finite
〈τ y

i 〉 does not break rotational symmetry but instead breaks
time-reversal symmetry by selecting one of the two orbital
angular momentum eigenstates px ± ipy . Consequently, a
finite 〈τ y

i 〉 implies long-range orbital-magnetic order.
Because the honeycomb superlattice is bipartite, we can

find the mean-field classical ground state by computing the
classical energy of a single bond Ebond. Since the Hamiltonian
(43) is SU(2) invariant in spin-space, there are only two
possible classical spin ground states, ferromagnetic (FM) or
antiferromagnetic (AFM). We can thus find the orbital ground
states in these two cases and compare their energies to find the
minimum.

Let us start with the AFM case. Defining � = t2/U , the
bond energy is given by

E
(AFM)
bond

�
= E

(AFM)
0 + K‖τ

‖
i · τ

‖
j + Kyτ

y

i τ
y

j , (44)

where we defined

E
(AFM)
0 = 2U (J 2 + 2JU − U 2)

(U 2 − J 2)(U − 3J )
,

K‖ = 2JU (U − J )

(U 2 − J 2)(U − 3J )
,

Ky = 4J 2U

(U 2 − J 2)(U − 3J )
. (45)

Before we proceed, we first need to discuss the range of
J/U values that is reasonable. Since U ′ = U − 2J , in order
to have U ′ > 0, we must have J/U < 1

2 . Here, we allow J to
be negative as well, which would imply violation of Hund’s
first rule. This was also proposed in the context of TBG in
Ref. [12]. Consequently, in what follows, we consider the
range − 1

2 < J/U < 1
2 .

The orbital ground state can be obtained by analyzing the
orbital exchange constants K‖ and Ky as function of J . It
follows that |K‖| � |Ky | for − 1

2 < J/U < 1
3 . Thus, in this

range, the energy is minimized by an orbital-nematic config-
uration. Since K‖ < 0 for J < 0, this gives ferro-orbital (FO)
nematic order. On the other hand, because K‖ > 0 for J > 0,
we obtain antiferro-orbital (AFO) nematic order. Similarly,
because |K‖| < |Ky | for 1

3 < J/U < 1
2 , the configuration that

minimizes the bond energy is orbital-magnetic order. As Ky <

0 in this range, we obtain a ferro-orbital magnetic order.
Now, let us consider the FM case. The bond energy is

E
(FM)
bond

�
= E

(FM)
0 + Kτ i · τ j (46)

with

E
(FM)
0 = − U

U − 3J
, K = U

U − 3J
. (47)

Note that the FM bond energy is invariant under SU(2)
rotations in orbital space. This “accidental” symmetry stems
from the approximations we employed to derive the effective
Hamiltonian, and will likely be removed if further-neighbor
hoppings are included. In any case, there is a degeneracy in
this situation between orbital-nematic and orbital-magnetic
orders. For this reason, hereafter we will refer to this configu-
ration as SU(2) orbital order.

Minimization of the bond energy (46) is straightforward:
for J/U < 1

3 , the orbital-exchange coefficient K > 0 and we
obtain antiferro SU(2) orbital order. On the other hand, for
J/U > 1

3 , we find SU(2) ferro-orbital order since K < 0.
Having minimized the bond energies of the AFM and

FM spin configurations, we compare them to find the global
bond-energy minimum. The result is shown in Fig. 5, and
comprises three regimes: for − 1

2 < J/U < 0, the configura-
tion that minimizes Ebond is an antiferromagnetic (AFM) and
ferro-orbital (FO) nematic order. For 0 < J/U < 1

3 , the bond
energy is minimized by a ferromagnetic (FM) and antiferro-
orbital (AFO) SU(2) order. Finally, for 1

3 < J/U < 1
2 , the

system’s configuration corresponds to AFM and ferro-orbital
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Ebond

J
U

FO nematic
AFM

FO magnetic
AFM

FM
AFO SU(2)

FIG. 5. Phase diagram of the classical mean-field solution of the
spin-orbital exchange model in the isotropic case (tσ = tπ ), obtained
by minimizing the bond energy Ebond (here plotted in units of � =
t2/U ) as function of the ratio J/U . AFM refers to antiferromagnetic
order, FM to ferromagnetic order, FO to ferro-orbital order, and AFO
to antiferro-orbital order. For J < 0, the orbital order lowers the
point-group symmetry of the honeycomb lattice, and is thus nematic
[Fig. 1(a)]. For 0 < J < U/3, there is an enlarged SU(2) symmetry
in the orbital degrees of freedom, and the orbital order can be either
nematic or magnetic [Fig. 1(b) illustrates the nematic case]. For
J > U/3, the system has orbital-magnetic order [Fig. 1(c)].

(FO) magnetic order. Note that in all cases translational sym-
metry is broken.

We note that our strong-coupling expansion is formally not
valid in the vicinity of J/U = 1

3 , since in this case one of the
denominators of the effective Hamiltonian (42) diverges. Note
also that, for J = 0, the system has additional symmetries,
signaled here by the fact that different configurations mini-
mize the bond energy.

VI. CONCLUDING REMARKS

In this paper, we analyzed the possible electronic orders
arising from the two-orbital extended Hubbard model on
the honeycomb lattice, which has been proposed to describe
the nearly flat bands of TBG. First, we presented a general
framework to decompose the several interaction terms into
different irreducible particle-particle and particle-hole chan-
nels. Although such a framework is suitable for both weak-
coupling and strong-coupling calculations, here we focused
on the latter. As a result, we derived a spin-orbital exchange
model for the quarter-filling Mott insulating state. Its mean-
field solution in the isotropic limit unveils a rich intertwine-
ment between orbital and spin degrees of freedom, analogous
to the physics of certain correlated multiorbital transition-
metal oxides. We also discussed the possibility of vestigial
superconducting phases, which are likely to be realized in
TBG if the ground state is d wave or p wave, given the two-
dimensional character of TBG. While further experiments are
needed to shed light on the types of electronic order realized
in TBG, the general framework established here provides a
solid starting point to assess the impact of correlations on the
spin, charge, and orbital degrees of freedom of this system.
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APPENDIX A: ROTATIONS IN WANNIER ORBITAL SPACE

The Wannier orbital states of the TBG honeycomb su-
perlattice model proposed in Refs. [5,18,21] have p-wave
symmetry and transform as partners of the E representation
of D3. The operators c

†
x,y create electrons in the px,y Wannier

states, which are defined with respect to the x and y axes, i.e.,
a basis defined by êx, êy . We are free to choose a different
basis corresponding to the rotated vectors êϕ, ê⊥

ϕ defined
in (2). The rotated orbitals p′

x,y can be expressed as p′
x =

(px êx + py êy ) · êϕ and p′
y = (px êx + py êy ) · ê⊥

ϕ . This defines
a rotation matrix Uϕ ≡ e−iϕτ y

, corresponding to a rotation by
an angle ϕ about the z axis:(

p′
x

p′
y

)
= U †

ϕ

(
px

py

)
. (A1)

The operators creating (annihilating) electrons in the rotated
orbitals p′

x,y are then given by c†Uϕ (U †
ϕc). The matrix Uϕ is

a representation of rotations Cϕz about the z axis generated by
τ y . Recall that Uϕ is not a symmetry for general ϕ, but only
for ϕn = 2πn/3 in the case of the D3 point group.

The rotations of the orbitals given in Eq. (A1) imply a
rotation of the Pauli matrices τ . Consider first the pair of Pauli
matrices (τ z, τ x ). Under rotations in orbital space the Pauli
matrices transform as

UϕτzU †
ϕ = cos 2ϕ τz + sin 2ϕ τx, (A2)

UϕτxU †
ϕ = − sin 2ϕ τz + cos 2ϕ τx. (A3)

This shows that the two Pauli matrices transform as partners
under rotations and that they have d-wave symmetry:

Cϕz :

(
τ z

τ x

)
→ U

†
2ϕ

(
τ z

τ x

)
. (A4)

We can also define the matrices Ux = τz and Uy = −τz that
represent the twofold rotations about the x axis (C2x) and
y axis (C2y), respectively. Under either of these transforma-
tions, (τ z, τ x ) → (τ z,−τ x ). Meanwhile, the Pauli matrix τ y

is invariant under Cϕz rotations but odd under C2y and C2x

rotations. This implies that (τ z, τ x ) have E symmetry under
D3 and τ y has A2 symmetry.

The form of the rotation matrix Uϕ ≡ e−iϕτ y

implies that
it is diagonal in a basis in which τ y is diagonal. This basis
is defined by the orbitals complex orbitals p± = px ± ipy ,
which are eigenvectors of the angular momentum projections
Lz = ±1. If we define c± as the operators corresponding to
p±, then one has Cϕz : c± → e±iϕc±. This implies that if the
terms in the kinetic Hamiltonian (1) do not couple c+ and c−,
which is only true for a specific set of (fine-tuned) hopping
parameters, the kinetic Hamiltonian HK has a larger U(1)
symmetry given by Cϕz. Since the orbitals p± can be related
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to the valley degrees of freedom of the constituent graphene
layers [21], this larger symmetry can be associated with a U(1)
valley symmetry.

APPENDIX B: HOPPING MATRIX SYMMETRY
CONSTRAINTS FOR D3 MODEL

In this appendix, we review the symmetry constraints on
the hopping matrices discussed in Ref. [18] using a different
formalism.

The kinetic Hamiltonian of Eq. (1) defines the hopping
matrices T̂ (rij ), where rij is the distance between sites form-
ing the bond (ij ). It is natural to group the set of hopping
matrices into subsets defined by fixed distance rij , which
is a grouping based on nearest neighbors, and we introduce
the index γ to denote the γ th nearest-neighbor bonds. That
is, γ = 1, 2, 3 denotes the first-, second-, and third-nearest
neighbors. We then rewrite the set of hopping matrices as
T̂

(γ )
n , where n = 1, . . . , Nγ is an index for all the γ th nearest

neighbors, of which there are Nγ .
For given γ one may then obtain symmetry constraints

for T̂
(γ )
n , from which the number of independent hopping

parameters can be determined. As an example, consider the
first-nearest neighbor (γ = 1) hopping matrix for n = 1. Due
to time-reversal symmetry there exists a gauge in which all
matrix elements of T̂

(1)
1 are real and the hopping matrix can

be expanded in orbital Pauli matrices as

T̂
(1)

1 = t10 + t1zτ
z + t1xτ

x + it1yτ
y, (B1)

where (t10, t1x, t1y, t1z) are four real parameters. The twofold
rotation C2y gives rise to constraints on these parameters.
Abbreviating T̂

(1)
n=1 as T̂ for simplicity, the constraints can be

stated as

C2y → τ zT̂ τ z = T̂ †. (B2)

The appearance of T̂ † on the right-hand side of the constraint
(B2) is due to the fact that C2y exchanges the sites connected
by the bond. The constraint (B2) forces t1x = 0, which would
lead to three independent hopping parameters. As noted in
Ref. [18], however, with a redefinition of the basis of the two
Wannier states one of these can be absorbed. It is natural to
choose t1y and this leads to Eq. (3) with (t10, t1z) ≡ (t1, t ′1).
Since we have now fixed the basis of the Wannier states,
no further symmetry-allowed hopping parameters (of further-
neighbor bonds) can be absorbed by redefinition.

The two remaining first-nearest-neighbor hopping matrices
T

(1)
2,3 follow directly from T

(1)
1 by performing threefold rota-

tions:

T̂
(1)

2 = Uϕ2 T̂
(1)

1 U †
ϕ2

, T̂
(1)

3 = Uϕ3 T̂
(1)

1 U †
ϕ3

, (B3)

where ϕn = 2π (n − 1)/3 are the angles of the nearest-
neighbor unit vectors (see Sec. II).

The same analysis can be applied to any of the other inter-
sublattice hopping matrices, i.e., those matrices corresponding
to bonds connecting sites on different sublattices. We take the
third-nearest-neighbor hopping (i.e., across a hexagon) as an
example and expand

T̂
(3)

1 = t30 + t3zτ
z + t3xτ

x + it3yτ
y, (B4)

where (t30, t3x, t3y, t3z) are again four real parameters. Now,
abbreviating T̂

(3)
n=1 as T̂ we find the constraint from C2y as

C2y → τ zT̂ τ z = T̂ †. (B5)

This is the same constraint as (B2) and we conclude that
t3x = 0. As a result, T̂

(3)
1 has three real parameters and

is given by T̂
(3)

1 = t3 + t ′3τ
z + it ′′3 τ y . The remaining third-

nearest-neighbor hopping matrices are found by rotation as
in Eq. (B3).

Next, consider intrasublattice hoppings associated with
bonds connecting sites on the same sublattice. The simplest
example is second-nearest-neighbor (γ = 2) hopping. (This
is first-nearest-neighbor hopping on the triangular sublattice.)
Again, we start from n = 1, i.e., T̂

(2)
1 , which corresponds to

the second-nearest-neighbor bond along the direction of a1 in
Fig. 4. As before, we expand

T̂
(2)

1 = t20 + t2zτ
z + t2xτ

x + it2yτ
y, (B6)

with real coefficients. To determine the symmetry constraints
on the coefficients, we must account for the two sublattices A

and B. We abbreviate T̂
(2)

1 on the A (B) sublattice as T̂A (T̂B)
and find that the constraints from the twofold rotation C2y are
given by

C2y → τ zT̂Aτ z = T̂B . (B7)

This equation does not give rise to constraints on the hopping
parameters on one sublattice, but instead relates the hopping
parameters on the two sublattices. In particular, (t20, t2z) are
identical on the two sublattices, whereas (t2x, t2y ) have oppo-
site sign.

As a second example of intrasublattice hopping, con-
sider fifth-nearest-neighbor hopping. Fifth-nearest-neighbor
hopping, which is second-nearest neighbor on the triangular
sublattices, has played an important role in previous work
[5,21]. In particular, it was identified as being responsible
for the splitting of bands along � − M in models with an
additional U(1) symmetry. Consider the bond defined by the
lattice vector a3 − a2; we define the corresponding hopping
matrix T̂

(5)
1 and expand it as before as

T̂
(5)

1 = t50 + t5zτ
z + t5xτ

x + it5yτ
y. (B8)

For simplicity, we once more abbreviate T̂
(5)

1 on the A (B)
sublattice as T̂A (T̂B). The constraints from the twofold rota-
tion C2y now read as

C2y → τ zT̂Aτ z = T̂
†
B. (B9)

Comparison with Eq. (B7) shows that (B9) leads to a different
relation between t5y on the two sublattices. Specifically, one
finds that (t50, t5z, t5y ) are identical on the two sublattices,
whereas only t5x has opposite sign. It is precisely this property
of t5y which is responsible for the splitting of bands along
� − M .

APPENDIX C: DECOMPOSITION INTO IRREDUCIBLE
PAIRING CHANNELS

The pair creation operator �
†
iασ,jβσ ′ is defined as

�
†
iασ,jβσ ′ = c

†
iασ c

†
jβσ ′ , (C1)
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such that a two-particle state |iασ ; jβσ ′〉 is given by
|iασ ; jβσ ′〉 = �

†
iασ,jβσ ′ |0〉. Note that this definition implies

�iασ,jβσ ′ = cjβσ ′ciασ . A general pairing operator can be de-
composed into irreducible pairing operators with symmetry
quantum numbers (�, S,M ) as

�
†
iασ,jβσ ′ =

∑
�

∑
S,M

X�
αβCSM

σσ ′ �
†
ij,�,SM, (C2)

where CSM
σσ ′ = CSM

1
2 σ 1

2 σ ′ = 〈 1
2

1
2 ; SM| 1

2σ ; 1
2σ ′〉 are Clebsch-

Gordan coefficients. Here, S = 0 corresponds to spin-singlet
pairing and S = 1 corresponds to spin-triplet pairing, in which
case M takes values M = −1, 0, 1.

Similar to singlet and triplet pairing operators, the opera-
tors �

†
ij,� (suppressing spin for simplicity) are symmetrized

in orbital space and are thus labeled by point-group repre-
sentations � ∈ {A1, A2, E}. Note that E is a two-dimensional
d-wave channel. The irreducible pairing operators �

†
ij,� are

given by

�
†
ij,A1

=
∑
αβ

δαβ√
2
c
†
iαc

†
jβ, �

†
ij,A2

=
∑
αβ

εαβ√
2
c
†
iαc

†
jβ, (C3)

(
�

†
ij,E1

,�
†
ij,E2

) = 1√
2

∑
αβ

(
τ z
αβ, τ x

αβ

)
c
†
iαc

†
jβ . (C4)

The coefficients X�
αβ in Eq. (C2) are the analogs of Clebsch-

Gordan coefficients for the orbital sector; they are given by

X
A1
αβ = 1√

2
δαβ, X

A2
αβ = 1√

2
εαβ, (C5)

(
X

E1
αβ ,X

E2
αβ

) = 1√
2

(
τ z
αβ, τ x

αβ

)
. (C6)

Fermi statistics imposes constraints on the decomposition
of Eq. (C2), in particular on the set of quantum numbers
(�, S,M ). Spin-singlet and spin-triplet states are antisymmet-
ric and symmetric with respect to particle exchange, respec-
tively; similarly, states with A2 symmetry are antisymmetric
and states with A1 or E symmetry are symmetric. As a
result, when i = j spin-singlet states can only have A1 or E

symmetry, whereas spin-triplet states must have A2 symmetry.
In general, one has the relation

�
†
ij,�,SM = (−1)p�+pS+1�

†
ji,�,SM, (C7)

where pS is the parity of the spin state (i.e., p0 = 1 and p1 =
0) and p� is the parity of the orbital state (i.e., pA2 = 1 and
zero otherwise).

Substituting Eq. (C2) into HI of Eq. (6) we arrive at the
form

HI =
∑
ij

∑
SM

∑
�

U�
ij �

†
ij,�,SM�ij,�′,SM, (C8)

where matrix elements U�
ij are defined as

U�
ij = V �

ij + J �
1,ij + J �

2,ij + J �
3,ij . (C9)

The matrix elements V �
ij are given by Eq. (11); the expressions

for the remaining matrix elements are

J �
1,ij = (−1)p�+pS+1

∑
αβ

X�
αβ (J1)αβ

ij X�
αβ, (C10)

J �
2,ij = (−1)p�+pS+1

∑
αβ

X�
αβ (J2)αβ

ij X�
βα, (C11)

J �
3,ij = (−1)p�+pS+1

∑
αβ

X�
αα (J3)αβ

ij X�
ββ. (C12)

At this point, it is important to recall that the sum over � in
Eq. (C8) [and, obviously, in Eq. (12)] includes an implicit sum
over the components of multidimensional representations; in
the present case only E is multidimensional. The irreducible
coupling constants U�

ij given by Eq. (C9) are a property of
the pairing channel and therefore of the representation. As a
result, they must be the same for all components of a rep-
resentation and are appropriately labeled by �. Importantly,
however, each of the interaction parameters on the right-hand
side of (C9) need not be the same for all components of a
representation, only their sum. In particular, the expressions of
Eqs. (C10)–(C12) should be evaluated for each component of
a representation �. This fact is obscured by adopting a more
compact notation, but the reader is cautioned to keep this in
mind.

The requirement that U�
ij defines the coupling constant of

a representation � gives rise to a constraint on the interaction
parameters V and J1,2,3 since their sum must be proportional
to the identity within each representation. The consequences
of such constraint are exemplified by the onsite Hamiltonian
of Eq. (7), which is specified in terms of only two interaction
energy scales.

APPENDIX D: FURTHER DECOMPOSITION OF EQ. (20)

The decomposition of U�
νν ′ (k′ − k) follows the standard

scheme for identifying the irreducible pairing channels in a
system with symmetry group G. As explained in Sec. III,
the vertex function U�

νν ′ (k) is the Fourier transform of the
interactions between pairs, which in practice will be short
ranged and thus limited to the first few nearest neighbors.
Using the notation of Appendix B, the interaction parameters
can be denoted U�

γ , where γ = 1, 2, 3 corresponds to first-,
second-, and third-nearest neighbors; U�

0 defines the onsite
interactions. As an example, the term in U�

νν ′ (k) correspond-
ing to first-nearest-neighbor interactions takes the form

U�
AB,1(k) = U�∗

BA,1(k) = U�
1

∑
n

exp(ik · dn), (D1)

where dn=1,2,3 denote the nearest-neighbor vectors in the di-
rection ên (see Fig. 4). Similarly, the second-nearest-neighbor
interactions are given by

U�
AA,2(k) = U�

BB,2(k) = U�
2

∑
n

cos k · an, (D2)

where an=1,2,3 are the three primitive lattice vectors shown in
Fig. 4.
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For each γ , the next step is to decompose U�
νν ′ (k) into

lattice harmonics f �′
(k) as

U�
γ (k′ − k) = U�

γ

∑
�′

f �′∗(k′)f �′
(k), (D3)

where we have suppressed the sublattice νν ′ for simplicity.
The sum over �′ should be understood as a sum over all
distinct symmetry quantum numbers, which in particular in-
cludes a sum over the components of multidimensional rep-
resentations. To showcase (D3), consider the second-nearest-
neighbor interactions given by (D2). In this case U�

2 (k′ − k)
is decomposed into a sum over six lattice harmonics given by

f A1,+(k) =
∑

n

cos k · an, (D4)

f E1,+(k) = Re
∑

n

ei4π (n−1)/3 cos k · an, (D5)

f E2,+(k) = Im
∑

n

ei4π (n−1)/3 cos k · an, (D6)

as well as f A1,−(k) and f E,−(k) obtained from (D4)–(D6)
by replacing cos k · an with sin k · an. Note that the func-
tions f ±(k) have the property f ±(−k) = ±f ±(k). The
parity under k → −k is important since Fermi statistics
implies

�
†
k�,SM = (−1)p�+pS+1�

†
−k�,SM. (D7)

The final step is to form irreducible momentum space
pairing operators by coupling the lattice harmonics to the
orbital degree of freedom. This amounts to taking the product
�′ ⊗ �, where the first refers to the lattice and second to the
orbital degree of freedom, and decomposing it into irreducible
terms. This exactly analogous to forming total angular pair-
ing operators in spin-orbit-coupled systems, in which spin
is locked to the lattice. Here, instead, the orbital degree of
freedom is (intrinsically) locked to the lattice.

APPENDIX E: DECOMPOSITION INTO IRREDUCIBLE
PARTICLE-HOLE CHANNELS

The particle-hole pair operators �iασ,jβσ ′ are defined in
(28) and their decomposition in terms of orbital and spin
symmetrized pair operators is given by Eq. (29). The spin sin-
glet/triplet and the coefficients Ca

σσ ′ are given by (suppressing
orbital indices)

�ij,a =
∑
σσ ′

c
†
iσ sa

σσ ′cjσ ′ , C̃a
σσ ′ = 1

2
sa
σ ′σ . (E1)

Here, sx,y,z are a set of Pauli matrices acting on the electron
spin and s0 is the identity; recall that a = 0, x, y, z. The
symmetrized orbital operators are defined as (suppressing spin
indices)

�ij,A1 =
∑
αβ

δαβc
†
iαcjβ, �ij,A2 =

∑
αβ

c
†
iατ

y

αβcjβ, (E2)

(�ij,E1 ,�ij,E2 ) =
∑
αβ

(τ z
αβ, τ x

αβ )c†iαcjβ, (E3)

and the orbital expansion coefficients Y �
αβ are given by

Y
A1
αβ = 1

2δαβ, Y
A2
αβ = 1

2τ
y

βα, (E4)(
Y

E1
αβ , Y

E2
αβ

) = 1
2

(
τ z
αβ, τ x

αβ

)
. (E5)

With these definitions one has �ji,�a = �
†
ij,�a , which implies

that

�ji,�a�ij,�a = �
†
ij,�a�ij,�a = |�ij,�a|2. (E6)

Using the expansion coefficients and Eq. (29), the interac-
tion parameters Ũ�a

1,ij and Ũ�a
2,ij of Eq. (32) can be determined.

In contrast to the pairing case, here the interaction parameters
depend on the spin structure of the symmetrized particle-hole
operators. We must distinguish singlet interactions (a = 0)
and singlet interactions (a = x, y, z). For the case Ũ�a

1,ij we
find

Ũ
�,0
1,ij = Ṽ �

1,ij + J̃ �
11,ij + J̃ �

21,ij + J̃ �
31,ij , (E7)

Ũ
�x,y,z

1,ij = J̃ �
11,ij + J̃ �

21,ij + J̃ �
31,ij , (E8)

whereas for the parameters Ũ�a
2,ij we find

Ũ�0
2,ij = Ṽ �

2,ij + J̃ �
12,ij + J̃ �

22,ij + J̃ �
32,ij , (E9)

Ũ
�x,y,z

2,ij = Ṽ �
2,ij . (E10)

The parameters on the right-hand side are given by

J̃ �
11,ij = −1

2

∑
αβ

Y �
αβ (J1)αβ

ij Y �
βα, (E11)

J̃ �
12,ij =

∑
αβ

Y �
αα (J1)αβ

ij Y �
ββ (E12)

for the J1 exchange interaction,

J̃ �
21,ij = −1

2

∑
αβ

Y �
αα (J2)αβ

ij Y �
ββ, (E13)

J̃ �
22,ij =

∑
αβ

Y �
αβ (J2)αβ

ij Y �
βα (E14)

for the J2 exchange interaction, and

J̃ �
31,ij = −1

2

∑
αβ

Y �
αβ (J3)αβ

ij Y �
βα, (E15)

J̃ �
32,ij =

∑
αβ

Y �
αβ (J3)αβ

ij Y �
αβ (E16)

for the J3 exchange interaction.

APPENDIX F: ORBITAL τ VARIABLES IN THE
CHIRAL BASIS

It is convenient to rearrange the orbital Pauli matrices
τ i = (τ x

i , τ
y

i , τ z
i ) in a way which exploits their transformation

properties under rotations in orbital space (see also Appendix
A). To make this explicit we can relabel the Pauli matrices as

τ i → (
τ 1
i , τ 2

i , τ 3
i

) ≡ (
τ z
i , τ x

i , τ
y

i

)
. (F1)
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In this way, τ 3 generates rotations about the z axis and
(τ 1

i , τ 2
i ) transform as a nematic director under such rotations.

To see this clearly, recall Eqs. (A2) and (A3), which show
how τ i transforms under rotations of the orbitals. In terms of
the redefined τ i variables of (F1) the rotation of τ i can be
expressed in the simple form

Uϕτ 1
i U †

ϕ = ê2ϕ · τ i , Uϕτ 2U †
ϕ = ê⊥

2ϕ · τ i , (F2)

where the use of the dot product now has a natural interpreta-
tion. Since the orbitals pix,y are eigenstates of τ 1

i , the rotated
orbitals p′

ix,y of Eq. (A1) are eigenstates of ê2ϕ · τ i .
As mentioned, the redefinition of (F1) is designed so that

τ 3 generates rotations about the z axis. Rotations by π about
the x axis are represented by τ 1 and rotations by π about the
bisector of the x and y axes are represented by τ 2. This implies
that under rotations by π about the x axis, the τ variables
change as τ 1 → τ 1, τ 2,3 → −τ 2,3. Therefore, if we rotate the
orbitals by 180◦ about the x axis, which changes (px, py )
to (px,−py ), the Pauli matrices τ 1 and τ 2 transform under
rotations by ϕ as τ 1 → ê−2ϕ · τ and τ 2 → ê⊥

−2ϕ · τ [79]. This
is very useful since ϕ = −2ϕ for ϕ = 0, 2π/3, 4π/3, which
are precisely the angles corresponding to the three nearest-
neighbor bond directions ên=1,2,3 of the honeycomb lattice

(see Fig. 4). As a result, the eigenstates of ên · τ are precisely
the p′

x and −p′
y orbitals along bond ên.

With the relabeling of τ i matrices and the basis transfor-
mation of the orbitals it is then a simple matter to construct
the orbital projection operators of Eqs. (38) and (39). Note
first that

Px,y

i = 1
2 (1 ± êij · τ i ) (F3)

are projection operators which project onto the orbitals
p′

ix = (pix êx + piy êy ) · êij and p′
iy = (pix êx + piy êy ) · ê⊥

ij .
The same is true for site j : Px,y

j = 1
2 (1 ± êij · τ j ). From these

we define the four projection operators Pxx
ij , Pyy

ij , Pxy

ij , and
Pyx

ij given by

Px,y;x,y

ij = 1
4 (1 ± êij · τ i )(1 ± êij · τ j ). (F4)

The orbital flip operators of Eqs. (40) and (41) are defined
based on the same conventions. In particular, for two nearest-
neighbor sites i and j the orbital raising and lowering opera-
tors are defined as

τ±
i = e⊥

ij · τ i ± iτ 3
i , τ±

j = e⊥
ij · τ j ± iτ 3

j . (F5)

For the case eij = en=1, this reduces to τ±
i = τ 2

i ± iτ 3
i =

τ x
i ± iτ

y

i .
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