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Analytic continuation via domain knowledge free machine learning
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We present a machine-learning approach to a long-standing issue in quantum many-body physics, namely,
analytic continuation. This notorious ill-conditioned problem of obtaining spectral function from an imaginary
time Green’s function has been a focus of new method developments for past decades. Here we demonstrate the
usefulness of modern machine-learning techniques including convolutional neural networks and the variants of a
stochastic gradient descent optimizer. The machine-learning continuation kernel is successfully realized without
any “domain knowledge,” which means that any physical “prior” is not utilized in the kernel construction and
the neural networks “learn” the knowledge solely from “training.” The outstanding performance is achieved for
both insulating and metallic band structure. Our machine-learning-based approach not only provides the more
accurate spectrum than the conventional methods in terms of peak positions and heights, but is also more robust
against the noise which is the required key feature for any continuation technique to be successful. Furthermore,
its computation speed is 104–105 times faster than the maximum entropy method.
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I. INTRODUCTION

Matsubara Green’s function method is a useful theoretical
tool for quantum many-body problems. While the calculation
often becomes much more tractable in the imaginary time
(or equivalently, frequency) domain, working with Matsubara
function inevitably introduces other theoretical difficulties.
One of the most typical cases happens when one tries to
obtain a spectral function (or any other measurable quantity),
which is defined in real frequency space, from imaginary
Green’s function. This procedure is known as “analytic con-
tinuation” and poses a notorious ill-conditioned inverse prob-
lem. The severe noise sensitivity significantly undermines the
predictability and the usefulness of theoretical methods such
as quantum Monte Carlo (QMC). Many different approaches
have been suggested to solve this problem including Padé
approximation [1,2], maximum entropy (MEM) [3–6], and
stochastic method [7]. All these methods are based on the
physical knowledge or utilize the preunderstanding of the
problem which are expressed in their own assumptions and
fitting parameters. In other words, all these methods heavily
rely on “domain knowledge.”

The machine-learning (ML) approach is based on a differ-
ent philosophy. The ML procedure is to develop a machinery
which can self-learn the governing rule or the proper represen-
tation of a given problem through the massive data set “train-
ing” [8–11]. Due to the remarkable progress in both hardware
and software engineering, the ML technique overwhelms the
state-of-the-art human-designed algorithms in many different
areas [11,12]. Recently, it has become more and more popular
in physics research. ML proves its capability in many different
fields ranging from materials science [13–18] and statistical
physics [19–21] to quantum many-body problems [22–28]
and quantum information [29–33].
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In this paper, we apply modern ML techniques [34,35] to
the long-standing physics problem of analytic continuation.
By using convolutional neural network (CNN) [11,36] and
stochastic gradient descent based optimizer (i.e., stochastic
gradient descent, Adadelta, Adagrad) [37–39], we success-
fully construct the ML kernel which can generate the real
frequency space spectral function from an imaginary Green’s
function. We emphasize that our method does not require
any “domain knowledge,” which is a distinctive feature from
early-stage ML methods such as statistical learning [40]. In
comparison to the conventional techniques, the ML-based al-
gorithm demonstrates its superiority in terms of accuracy and
computation speed. The spectral weights and peak positions
are in better agreement, and the computation speed is 104–105

faster. Further, the ML-based method is more robust against
the noise which is inevitably introduced in Monte Carlo
calculation, for example. Our results show that the domain-
knowledge free ML approach can be a promising way to
solve the long-standing physics problem that has not been well
understood based on the currently available techniques.

II. METHOD

A. Description of the problem

Matsubara frequency Green’s function G(iωn) is analyti-
cally
continued to the real frequency G(ω). For a given G(iωn),
the spectral function is A(ω) = − 1

π
ImG(ω + i0+). Note that

calculating the Green’s function for a given spectral function
is straightforward, not ill conditioned. On the other hand, the
spectral function is obtained by inverting the integral equation

G(iωn) =
∫

dω
A(ω)

iωn − ω
(1)

=
∫

dω K(iωn, ω)A(ω), (2)
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where the kernel K(iωn, ω) has different forms for different
problems. This continuation process is an ill-posed problem,
and the direct minimizing χ2 = ∑Nfreq

iωn
||G − KA||2 is hardly

feasible due to the high condition number. The key question
is how to deal with intrinsic noises.

B. Description of the machine learning

Here we note that many techniques to handle these kinds
of ill-posed problems have been actively developed in the ML
field of research for more than the past two decades [41–43].
The early stage ML was basically rule based, and many details
of the problem representation were implemented through
handcrafted algorithms. On the other hand, the modern ML
algorithms automatically capture the representations via train-
ing, which is often called “self-learning” [8,11]. Since any hu-
man knowledge is not directly implemented in the kernel con-
struction, this type of approach is called domain-knowledge-
free ML. In this modern approach, crucially required are the
efficient data representation in high-dimensional space and
the practical algorithm to optimize massive variables in deep
neural networks. In spite of the challenging features of the
problems, modern ML has dramatically surpassed the other
state-of-the-art technologies in many areas such as image
recognition [36,44–47], speech recognition [48–50], language
processing [51], and translation [52–54].

In the current study, we adopted “fully connected layer
(FCL)” and CNN [11,25,36,44], and try to perform analytic
continuation within high-dimensional space. The CNN is
one of the main players in the high-dimensional data pro-
cessing for images [11,44,46,55–57] and sound/video data
[11,58–60]. We investigated both FCL only and FCL+CNN
ML for the analytic continuation problem without using do-
main knowledge. As a modern domain-knowledge-free ML
technique, our approach is well distinguished from the con-
ventional rule-based regression methods [40]. It is noted that
our neural networks self-learn the “rule” or “knowledge” from
the massive training with well prepared extensive data sets.

C. Training

In order to systematically check the input noise depen-
dence, we considered several different sets of random noise
inputs and examined the output spectra. The Gaussian random
noise N (iwn) is used for our main presentation with the noise
strength σ (width of Gaussian distribution) varied from 0
to 0.01. The noised input is then defined as G(iωn)in

noise =
G(iωn) + N (iωn). We also considered the other types of
noise character. In particular, the frequency-dependent λ(iωn)
has been carefully investigated since it is often the case
of QMC-DMFT (dynamical mean-field theory) calculations.
We also considered the uniformly distributed random noise.
We found that the results of the uniform noise (N (iwn) ∈
[−0.05, 0.05]) are comparable with Gaussian noise σ = 0.01.
While we mainly present the Gaussian random noise, any part
of our conclusion is not changed by this choice of noise type.

We constructed the ML-based analytic continuation ker-
nel by using a widely adopted open-source deep-learning
framework, namely, “keras” [61] with “tensorflow” [62]
backend. For the continuation problem, the training process is

straightforward since the calculation of G(iωn) from a given
A(ω) is not ill conditioned. Our training sets consist of
∼106 000 different combinations of peak numbers, heights,
and positions. We generated 18 000 different training data sets
for single-peak spectra, 18 000 for double-peak, 20 000 for
triple, and 10 000 for each of 4–8 peak spectra. For each set
of peak numbers the position, height, and width of the peak
are randomly generated in the range of [−10, 10], [0.2, 1.0],
and [0.3, 1.2], respectively. It is straightforward to extend the
number of training sets to an arbitrary number. The validation
set consists of 10 000 different types of peaks with different
random sequences. For all cases, the normalization condition
of

∫
A(w)dw = 1 was imposed. It should be noted that,

while this particular physical knowledge of normalization is
implemented in the training sets, our neural networks are
constructed as “domain knowledge free” and the kernel should
learn the knowledge from the training.

For training, we used “Adadelta” [37] optimizer. We found
that “stochastic gradient descent (SGD)” and even “RM-
Sprop” [63] optimizer quite often suffer from the “gradient
vanishing problem”; i.e., all variables of a neural net are
quickly set to zero. On the other hand, the recently developed
adaptive stochastic variant optimizers (such as “Adadelta,”
“Adagrad” [39], “Adam” [38], and “Adamax” [38]) pro-
duce the reliable results. We eventually chose “Adadelta”
as it clearly exhibits the best performance. For the activa-
tion function, we chose a combination of rectified linear
unit (ReLU) [11,64,65] and scaled exponential linear unit
(SeLU) [66]. It is found that ∼8000 epochs are mostly enough
for neural network training which corresponds to 16 h (∼7
s/epoch) at the single desktop PC level (we used one Nvidia
1080 GTX card).

III. RESULT AND DISCUSSION

A. Fully connected layers

As the first step toward ML-based analytic continuation,
we consider the neural network composed of FCLs which
may be regarded as an early-stage ML approach [67–69].
Roughly, the use of single FCL can be regarded as one
multiplication process of an inversion matrix to the input
Green’s function [70]. Having more FCLs thus corresponds
to the increased number of matrix multiplications to represent
the inversion. Practically it is not expected to achieve a
notable improvement just by increasing the number of hidden
layers [41,57,71,72]. After testing many different numbers of
hidden layer sets, we indeed found that the performance is not
much enhanced. Thus, in the below, we focus on the results of
three layers (Fig. 1).

Figure 2 presents the result of analytic continuation by
using FCLs neural network. The black line in Fig. 2(c) is
the spectrum from which imaginary Green’s functions of
Figs. 2(a) and 2(b) (blue lines) are generated. Therefore, if
the continuation procedure is perfect, the continued spectrum
should be identical with the black line in Fig. 2(c). Note
that the process of obtaining G(iωn) from A(ω) is not ill
conditioned. Once G(iωn) is calculated, one can perform the
continuation and compare the result of A(ω) with the original
one, namely the ideal spectrum.
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FIG. 1. FCL neural network. An illustration of our neural net-
work architecture which consists only of FCLs. The input G(iωn)
is an array of complex numbers. Re[G(iωn)] and Im[G(iωn)] are
arranged as a 1D array to be inserted into the neural-net input. The
dropout layers are located in between all the FCLs to reduce the
overfitting of neural networks (not shown). The green box represents
the output layer of A(ω). The blue neural network lines are the
schematic representation of activated connections.

The FCL continuation results are shown in Fig. 2(c). The
blue-solid and purple-dashed line corresponds to σ = 0 and
σ = 0.005, respectively. It is clearly noted that the continued
spectra are not smooth and significantly deformed in com-
parison to the ideal black line. This result demonstrates the
challenging nature of the problem. At the same time, however,
we also note that the overall shape of spectrum is captured by
our FCL neural network although the unexpected wriggles are
found, and they become worse as the noise level increases. We
emphasize that this level of performance is hardly achievable
through the direct matrix inversion of Eq. (2). This promising
aspect is largely attributed to the “dropout” and the regulariza-
tion procedure which prevent overfittings [73]. In this regard,
while not satisfactory at all, our FCL result shows a possibility
of neural network approach for the analytic continuation.

B. Convolutional neural network

Many techniques have been suggested to overcome the
deficiency of FCL. One key idea is to identify the es-
sential features of a problem and to reconstruct them in
a higher dimensional space [35,43]. Principal component
analysis (PCA) [74,75] is an example which proved to be
powerful for data compression and dimensionality reduction.
Unfortunately, however, PCA can only be used in rank 1
(vector) and rank 2 (matrix) for most of the cases. While some

FIG. 2. Analytic continuation result of FCL. The input Green’s
functions and the output spectra calculated by the FCL neural
network kernel (without CNN layer). (a), (b) Re[G(iωn)] and
Im[G(iωn)] are presented in (a) and (b), respectively. The blue
curves are generated from the ideal spectrum shown by the black
line in (c). The purple lines show the noised input G(iωn)in

noise with
σ = 0.005 (see the main text for more details). (c) The calculated
spectral functions are presented by blue-solid (σ = 0; noise-free)
and purple-dashed curve (σ = 0.005) in comparison to the ideal
spectrum (black-solid line).

techniques for tensor PCA have been proposed, they seem
to need further developments [76–79]. A typical fundamental
limitation of PCA is that each principal component is given
by a linear combination of original variables, whereas nonlin-
earity is essential for ill-posed problems [80]. In this regard,
CNN is a useful advanced technique leading the modern
machine-learning era [11,44,46,55–57]. The performance of
CNN image processing surpasses the human-designed algo-
rithms based on “domain knowledge” [44,55]. Due to its
outstanding feature selection in tensor space, CNN is widely
adopted by high-dimensional noise filters for autoencoder and
sound/video data [58–60].

In analytic continuation, input/output data are represented
by a certain set of numbers. Thus it can be regarded as an
inverse problem that has to be performed within a dimen-
sion corresponding to those numbers. With this observation,
we applied CNN technique to the long-standing ill-posed
problem of analytic continuation. Figure 3 shows our neural
network structure. We aim to create a minimal model with the
smallest possible number of layers. Thus our neural network
is designed to contain CNN layers in between two FCLs since
we learned in the above that three FCLs could capture the
basic features of spectra. While it is conventional to have CNN
layers just next to the input layer in the image processing (e.g.,
AlexNet [44], VGG [56], GoogleNet [46], and ResNet [57]),
we take a different strategy of inserting the CNN layer after
the matrix operation through FCL. It is because the full
information of input Green’s function needs to be utilized in
our problem. The total number of parameters in our neural net-
work is ∼600 000 and ∼500 000 for including and excluding
CNN, respectively. It is noted that the network size is not
much increased by having CNN layers. We have adopted a
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FIG. 3. CNN neural network. An illustration of the neural net-
work architecture which consists of both FCLs and CNN. Two con-
volution layers (blue and red squares) and one pooling layer (green
squares) are placed in between the FCLs. Colored neural network
lines are the schematic representations of activated connections.

modern optimization algorithm, namely “Adadelta” [37], to
optimize this large number of neural network parameters.

Figure 4 shows the continuation result of using CNN. The
model spectrum [black line in Fig. 4(c)] is designed to mimic
a Mott-Hubbard insulator consisting of two distinct Hubbard
bands with different peak heights. The outstanding perfor-
mance of CNN can clearly be seen from the fact that the con-
tinuation results are significantly improved in comparison to
the FCL-only data in Fig. 2. The overall shape, peak positions,
and relative peak heights are well reproduced without any

FIG. 4. Analytic continuation result of CNN. (a), (b) Re[G(iωn)]
and Im[G(iωn)] are presented in (a) and (b), respectively. The light-
blue curves are generated from the ideal spectrum shown by the black
line in (c). Five different noise levels are presented in light-blue
(σ = 0), magenta (σ = 0.003), purple (σ = 0.005), and red lines
(σ = 0.01). (c) Analytic continuation result of CNN-ML kernel for
σ = 0 (noise-free; light-blue-solid), σ = 0.003 (magenta-dashed),
σ = 0.005 (purple-dashed), and σ = 0.01 (red-dashed) along with
the ideal spectrum (black-solid line).

FIG. 5. Analytic continuation result of MEM. (a), (b) Input
Green’s function of Re[G(iωn)] and Im[G(iωn)] are presented in
(a) and (b), respectively. The light blue curves are generated from
the ideal spectrum shown by the black line in (c). Four different
noise levels are presented in light-blue (σ = 0), light-pink (σ =
0.001), magenta (σ = 0.003), and purple lines (σ = 0.005). (c)
Analytic continuation result of conventional MEM for σ = 0 (noise-
free; light-blue-solid), σ = 0.001 (light-pink-dashed), σ = 0.003
(magenta-dashed), and σ = 0.005 (purple-dashed) along with the
ideal spectrum (black-solid line).

undesirable wriggle. Importantly, the reproducibility remains
quite robust against the noise even if the deviation from the
ideal spectrum (black) becomes noticeable as the noise level
increases (from light-blue-solid lines to red-dashed lines). We
also checked that the reconstructed G̃(iωn) = (KA)(iωn) is
consistent with G(iωn) within the noise level (not shown).
For example, the calculated χ̃ = 0.0044 for the case of σ =
0.003, where χ̃ ≡ (χ2/Nfreq )−1/2.

The robustness against the input noise is a crucially re-
quired feature for the reliable analytic continuation since the
noise is unavoidably present in stochastic approaches. As
shown in Fig. 4(c), the overall features and the detailed shapes
of the spectrum are well maintained even for the case of
significant noise levels. This result shows the powerfulness of
the ML-based analytic continuation kernel.

The performance of the ML kernel is further demonstrated
by the comparison to the conventional continuation technique,
namely MEM. The details of our MEM algorithms can be
found in Refs. [4,81]. Figure 5 shows the result of MEM
which is one of the most widely used methods for analytic
continuation [3–6]. It is clearly noted that, even at a signifi-
cantly lower noise level, the MEM result is markedly deviated
from the ideal spectrum in terms of peak position and height.
It is in a sharp contrast to the ML-based result of Fig. 4 in
which the spectrum is well preserved even at σ = 0.01.

Figure 6 shows the result of the ML kernel for metallic
spectrum having coherent as well as incoherent peaks. Once
again, our machine-learning kernel well reproduces the orig-
inal spectrum. The robustness against noise is also excellent
as in the insulating case. In particular, the coherent peak is
considerably well reproduced, while the incoherent states are
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FIG. 6. Analytic continuation result of CNN for metallic spec-
trum. (a), (b) Input Green’s function of Re[G(iωn)] and Im[G(iωn)]
are presented in (a) and (b), respectively. The light-blue curves are
generated from the ideal spectrum shown by the black line in (c). Five
different noise levels are presented in light-blue (σ = 0), magenta
(σ = 0.003), purple (σ = 0.005), and red lines (σ = 0.01). (c) An-
alytic continuation result of CNN-ML kernel for σ = 0 (noise-free;
light-blue-solid), σ = 0.003 (magenta-dashed), σ = 0.005 (purple-
dashed), and σ = 0.01 (red-dashed) along with the ideal spectrum
(black-solid line).

moderately affected by the noises. It is a good indication for
predicting the phase from a given Green’s function.

As the last example, we present the results of a real
material, namely SrVO3 monolayer. While the bulk SrVO3

is a correlated metal, it becomes an insulator in the mono-
layer limit [82,83]. The Green’s function is obtained from
DFT+DMFT calculation [84,85] combined with the hy-
bridization expansion continuous-time quantum Monte Carlo
algorithm [86–89]. The spectra obtained by our ML kernel
is reasonably well compared with those of MEM; see Fig. 7.
While the peak widths are slightly narrower in MEM, it should
be noted that the direct use of MEM for the Green’s function
tends to broaden the spectra [90].

Of particular interest is the performance of our ML con-
tinuation kernel for the cases that were not included in the
training sets. Although the systematic investigation of the
training-set dependence is not the main interest of the current
study, we obtained some meaningful results. In terms of peak
numbers, the quality of continuation gets gradually worse as
the number of peaks goes out of the training range. However,
its performance is still quite decent (we tried up to the 25-
peak case) and at least comparable with that of MEM. A
similar feature is found for the peak width. For the peak of
width=0.1 and 0.2, the ML kernel produces the spectrum
whose width is 0.22 and 0.24, respectively. Considering that
the conventional continuation techniques suffer from the same

FIG. 7. Calculated DFT+DMFT spectral function of monolayer
SrVO3 by (a) CNN and (b) MEM. The magenta and blue colors
refer to the dxy and dyz,xz orbital character, respectively. Comparison
between ML and MEM results for DFT+DMFT spectral function of
the SrVO3 monolayer. The input Green’s function is obtained from
DFT+DMFT with CT-QMC solver. Analytic continuation for the
spectral function was performed using (a) ML-CNN and (b) MEM.

problems in describing sharp peaks, we concluded that the ML
exhibits reasonably good performance. Finally, we emphasize
the efficiency of ML-based analytic continuation. Once the
ML kernel is well trained, the continuation process can be
performed at a speed of ∼10 000 Green’s functions/s, which
is at least 104–105 faster than the conventional MEM.

IV. CONCLUSION

Modern ML technique proves its usefulness for a long-
standing physics problem of analytic continuation. Its su-
periority over the conventional technique is demonstrated
in terms of the accuracy, speed, and the robustness against
noise. For both insulating and metallic spectrum, our CNN-
based ML kernel gives the better agreement with the ideal
spectrum in terms of peak position and height. Up to the
high level of random noises, at which MEM fails to produce
reliable results, the ML technique retains its accuracy. In terms
of computation speed, the trained kernel is 104–105 times
faster than the conventional method. Our result suggests that
“domain-knowledge” free ML can be used as an alternative
tool for the physics problems where the conventional methods
have been struggling. We also note the possibility of certain
types of hybrid methods in which a part of physics intuitions
would be combined with the ML approach.
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