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Strong correlations and d + id superconductivity in twisted bilayer graphene
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We compute the phase diagram of twisted bilayer graphene near the magic angle where the occurrence of flat
bands enhances the effects of electron-electron interactions and thus unleashes strongly correlated phenomena.
Most importantly, we find a crossover between d + id superconductivity and antiferromagnetic insulating
behavior near half filling of the lowest electron band when the temperature is increased. This is consistent
with recent experiments. Our results are obtained using unbiased many-body renormalization group techniques
combined with a mean-field analysis of the effective couplings. We provide a qualitative understanding by
considering the competition between Fermi-surface nesting and van Hove singularities.
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Introduction. The discovery of correlated-insulator behav-
ior [1] and unconventional superconductivity (SC) in twisted
bilayer graphene (TBG) by Cao et al. [2] has triggered an
intense research effort to understand the phase diagram as well
as other physical properties [3,4] of this system. TBG is a van
der Waals material consisting of two graphene layers which
are rotated with respect to each other. At certain magic values
of the rotation or twist angle, the Fermi velocity at the Dirac
points of TBG vanishes, resulting in flat bands in the vicinity
of the Fermi energy [5,6]. For such a system, it is expected that
electron-electron interactions play an important role and could
potentially lead to the emergence of exotic correlated phases.
The unveiling of this type of unconventional superconductiv-
ity and Mott physics in TBG is particularly exciting due to
its resemblance to the physics of high-Tc superconductors.
In fact, the reported ratio [2] of the superconducting critical
temperature to the Fermi temperature—a hallmark to decide
whether superconductors are in the strong- or weak-coupling
limit—puts experimentally realized TBG near the magic angle
in the ballpark of those ratios obtained for high-Tc cuprates
LSCO (lanthanum strontium copper oxide), YBCO (yttrium
barium copper oxide), BSCCO (bismuth strontium calcium
copper oxide), iron pnictides, or monolayer iron selenide on
a strontium titanate surface. These reside among the strongest
coupling superconductors known today. Thus, TBG provides
an intriguing route to study the largely unknown physics of
such a superconductor in the extremely controllable frame-
work offered by graphene where the ratio of the interaction
to the kinetic energy can be tuned by approaching the magic
twist angle and the filling can be modified by a bottom gate.

It is important to note that TBG is fundamentally differ-
ent from monolayer graphene: (i) TBG exhibits two doubly
degenerate Dirac cones at K and K ′, while the Dirac cones
in monolayer graphene are not degenerate (except for spin
degeneracy), (ii) the size of the Brillouin zone and therefore
of the Fermi surface is several orders of magnitude smaller in
TBG compared to monolayer graphene, and (iii) the kinetic
energy is significantly smaller in TBG, and therefore the
interaction is significantly larger.

To gain insight into the experimental results of Cao et al.
[1,2], a wide range of models has been proposed in recent
weeks [7]. Without assuming a specific microscoping pairing
mechanism, Peltonen and co-workers [8] used mean-field the-
ory to study SC in TBG and found a strongly inhomogeneous
superconducting order parameter. Ray and Das [9] solve the
Eliashberg equation for TBG and predict an extended s wave
as the leading pairing symmetry. In contrast, Xu and Balents
[10], Zhang [11], Liu et al. [12], and (for electron doping)
Rademaker and Mellado [13] propose a (d + id )-wave pair-
ing symmetry. Using quantum Monte Carlo, Huang et al.
[14] and Guo et al. [15] find a Mott phase for the undoped
system and a transition to (d + id ) SC at light doping. Similar
results are obtained by Fidrysiak et al. [16] using a Gutzwiller
approximation. Roy and Juricic [17] suggest (p + ip) pairing
in the superconducting state. Dodaro and co-workers [18]
propose a phase diagram for TBG that contains a nematic
phase as well as different superconducting phases. Po and
co-workers [19] as well as Xu et al. [20] analyze different
insulating states such as intervalley coherent Mott insulator
Kekule ordered states, antiferromagnetic (AFM) insulators,
featureless Mott insulators, or quantum spin liquids, and
outline experiments that can distinguish between these states.
Padhi et al. [21] suggest that the observed insulating behavior
arises from a Wigner crystal phase. Baskaran [22] explains SC
of TBG in terms of an emergent Josephson moiré lattice due
to resonating valence-bond correlations.

Despite the theoretical progress achieved, (semi)quanti-
tative, unbiased methods to describe TBG are still sparse. In
this Rapid Communication, we remedy this by studying the
effects of strong correlations in TBG near the magic twist
angle using a combination of various many-body methods.
First, we employ the functional renormalization group (FRG)
to determine the effective two-particle interaction �2 and
from that the leading ordering tendency as a function of
the temperature and doping. Pictorially, one can think of
this approach as a random phase approximation resummation
which does not single out one form of two-particle scattering
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FIG. 1. Phase diagram of twisted bilayer graphene near the
magic angle as a function of the temperature and chemical poten-
tial. Interactions U/t = 2 drive the system into various competing,
strongly correlated phases: Near half filling of the lower band (μ ∼
−t), we observe a crossover between d + id superconductivity and
AFM insulating behavior as T is increased. Near charge neutrality
(μ = 0), the system is driven towards an AFM insulator, which,
however, features a much higher critical interaction and becomes
more pronounced only as U/t is increased (which can be achieved
experimentally by tuning the twist angle).

but treats all channels (such as the Cooper or the particle-hole
channel) on equal footing. The strength of the FRG is that
one can study complex systems (such as TBG) and that it
provides an unbiased way to detect competing types of order.
Its weakness is that the large-U limit cannot be accessed, and
one needs to assume that the results obtained at moderate
U are representative. The method was successfully applied
to study the phase diagram of the t − t ′ Hubbard model on
a square lattice (see Refs. [23–25] for early works) as well
as of more complex systems [26]. RG studies of monolayer
graphene can be found, e.g., in Refs. [27–29]. In a second
step, we will use a mean-field decoupling to extract pairing
symmetries of SC phases.

Our key result is the phase diagram as a function of the
temperature and chemical potential μ shown in Fig. 1. At
low doping, i.e., near half filling of the lowest electron bands
(μ ∼ −t , where t is the prefactor of the kinetic energy),
we observe a superconducting dome with a d ± id pairing
symmetry which crosses over into an AFM insulating phase
as the temperature increases. Determining whether or not this
insulator is of a Mott type is beyond the reach of the FRG.
Near charge neutrality (μ = 0), we find a tendency towards
forming an insulator; however, the critical interaction strength
associated with this phase is higher than at μ = −t . These
results are fully consistent with the recent experiments of
Cao et al. [1,2], where the Mott insulator at μ = 0 should
show up if U/t is increased by changing the twist angle).
The only key difference is that the d ± id superconducting
dome around μ ∼ −t is not split by the competing Mott phase
occurring at higher temperatures. This could be an artifact of
the simplicity of the underlying microscopic model or of our
methodology. Our approach, however, can easily be extended
to more complex systems, which we defer to an upcoming
publication.

The rest of this Rapid Communication is devoted to ex-
plaining how we obtain the phase diagram shown in Fig. 1.

Methods. In Ref. [30], Yuan and Fu used symmetry argu-
ments to construct a tight-binding Hamiltonian which gov-
erns the low-energy physics of twisted bilayer graphene in
the experimentally relevant parameter region. The simplest
SU(4)-symmetric part of their model takes the form of a
four-band Hubbard model on a honeycomb lattice,

H = −t
∑
〈i,j〉

∑
σ=↑,↓
p=x,y

(c†i,σ,pcj,σ,p + H.c.) + U
∑

i

nini, (1)

where σ is the electron spin, and {x, y} are two degenerate
orbitals (with px and py symmetry, respectively) located
on the triangular sublattices of the honeycomb structure.
ci,σ,p is the corresponding annihilation operator, and ni =∑

σ=↑,↓
∑

p=x,y c
†
i,σ,pci,σ,p. The hopping strength between

nearest neighbors and the local Hubbard interaction are de-
noted by t and U , respectively.

The value of t depends on the twist angle; near the magic
angle, t becomes small and thus U/t becomes large. Unless
mentioned otherwise, we always work with a fixed U/t = 2.
We will comment on the inclusion of other terms (e.g., next-
nearest-neighbor hoppings or Hund’s couplings) below.

We employ a two-step protocol to determine the phase
diagram of the Yuan-Fu model. First, we use the functional
renormalization group to study the effects of strong correla-
tions induced by U . The FRG reformulates this many-body
problem in terms of an infinite hierarchy of flow equations
for coupling constants with an infrared cutoff � serving as
the flow parameter (see Ref. [26] for an introduction). In the
context of two-dimensional (2D) fermionic systems, one trun-
cates this hierarchy by neglecting the three-particle scattering
and focuses solely on the renormalization of the effective two-
particle interaction ��

2 (�k1, �k2, �k′
1,

�k′
2) with �

�initial
2 ∼ U . The

flow is stopped at a scale �final where this coupling diverges,
and the leading ordering tendency can be identified from the
momentum structure of �

�final
2 . In order to solve the flow equa-

tion for ��
2 in practice, one needs to discretize the Brillouin

zone [26]; such technical details about our calculation will be
presented elsewhere.

In a second step, we will analyze �
�final
2 using a mean-field

decoupling. This allows us to extract the pairing symmetry of
the superconducting phase.

Results. It is instructive to first discuss the noninteracting
band structure of the Yuan-Fu model. At U = 0, Eq. (1)
features particle-hole symmetric upper and lower bands, each
with a fourfold (spin and orbital) degeneracy. Figure 2 shows
the dispersion relation of the lower (electron) bands; the first
Brillouin zone is marked by green dots. The experimentally
most interesting regime is near half filling of the electron
bands (μ = −t). In this case, the Fermi surface (red squares)
is both highly nested and contains the van Hove singularities
of the density of states at the M points. At lower values of the
doping, there are two Fermi surfaces centered on the K and
K ′ points of the Brillouin zone, and scattering between these
valleys can play an important role. When electron-electron
interactions are included, these features of the noninteracting
band structure can give rise to different electronic phases such
as Mott insulators, superconductivity, or Wigner crystals. This
way of understanding the origin of ordering tendencies is well
established for the Hubbard model on a square lattice, for
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FIG. 2. Noninteracting dispersion relation of the lower band of
twisted bilayer graphene as predicted by the Yuan-Fu model (1) [30].
The first Brillouin zone is marked by green dots. Near half filling
of the lower band (μ ∼ −t), the Fermi surface (red squares) is both
highly nested and contains a van Hove singularity in the density of
states ρ (shown as the inset).

which the FRG succeeds in correctly detecting phases [26].
It is thus reasonable to expect that the same holds true for
twisted bilayer graphene.

We now use the FRG to study the effects of the electron-
electron interactions in the Yuan-Fu model. We first integrate
the flow of the two-particle scattering ��

2 from �initial = ∞
down to a fixed �final = 10−4t . The maximal absolute value
of ��

2 at the end of the flow is shown in Fig. 3 as a function of
the chemical potential for fixed U/t = 2. One can see a strong
enhancement around half filling of the electron band (μ ∼ −t)
as well as a mild enhancement near charge neutrality (μ = 0)
which becomes more pronounced if U/t is increased (data not
shown).

In order to identify the leading ordering tendency around
μ = 0 and μ = −t , we investigate the momentum-space
structure of ��

2 (�k1, �k2, �k′
1,

�k′
2) at �final. To this end, we set

FIG. 3. Main panel: Maximum value of the effective coupling
constant ��

2 at the end of the RG flow (fixed �final = 10−4t) as a
function of the chemical potential for a bare interaction U/t = 2. We
observe a strong enhancement around μ ∼ −t , and the correspond-
ing momentum structure of �2 along the Fermi surface (left inset)
suggests d-wave SC in this region (see the main text for details). Near
μ = 0, we find a momentum structure that indicates AFM insulating
behavior (right inset). The enhancement of �2 is much smaller than
for the SC but becomes more pronounced when U/t is increased.

�k′
1, �k1, and �k2 to points on the Fermi surface (�k′

2 is fixed
by momentum conservation), which we parametrize using a
angular variable φ. The insets to Fig. 3 show �2 for a fixed
φ′

1 as a function of the angle of the outgoing momenta φ1

and φ2. Near μ = −t (left inset), we observe diagonal lines
�k1 + �k2 = 0 with changing signs, indicating a superconduct-
ing phase with a d-wave order parameter. This is similar
to the physics of the two-dimensional Hubbard model on
a square lattice [26]. The dominant pairing occurs between
(↑, x, lower band) and (↓, y, lower band) (and all symmetry-
related pairs), which is a superconducting pairing between
particles with opposing quantum numbers in the electron
band. In the vicinity of μ = 0 (right inset), the momentum
structure of vertex looks profoundly different: It features ver-
tical lines, which is again reminiscent of the AFM insulating
state in the two-dimensional Hubbard model on a square lat-
tice [26]. The dominant pairing in this regime occurs between
(↑, x, upper band) and (↓, y, lower band), which minimizes
the kinetic energy.

In order to establish the phase diagram shown in Fig. 1,
we monitor the FRG flow as a function of �, which we
define as an effective temperature T ∗. If the maximal value
of ��

2 stays below a predefined threshold Uc, we interpret
this as a metallic phase; if it exceeds Uc, we determine the
corresponding type of order by looking at the momentum
structure of ��

2 . Since for U/t = 2 the enhancement of �2

around μ = 0 is only mild (see Fig. 3), we choose a rather
small Uc/t = 2.8 (alternatively, one could work with a larger
bare U/t). With this definition, we obtain the phase diagram
shown in Fig. 1. It is important to stress that, while our results
are based on a quantitative many-body calculation, Fig. 1 is
only correct on a qualitative level due to the arbitrariness
of our choice of Uc, the simplicity of our model, and the
approximations underlying our approach (most importantly,
its inability at access the large-U limit [26]).

We finally analyze the superconducting phase that occurs
near μ = −t in more detail in order to determine the precise
form of the pairing symmetry. We parametrize the effective
interaction at �final in a way that reflects the pronounced
diagonal structure along �k1 + �k2 = 0,

��
2 (�k1, �k2, �k′

1,
�k′

2) = �2(�k1, �k′
1)δ�k1,−�k2

δ�k′
1,−�k′

2
, (2)

where �2(�k, �k′) = adx2−y2 (�k)dx2−y2 (�k′) + bdxy (�k)dxy (�k′), and
dxy as well as dx2−y2 denote the form factors of the supercon-
ducting order parameter [31]. The coefficients a and b are then
determined by fitting (see Fig. 4; we find that they coincide as
required by rotational symmetry). If we now insert this vertex
into the BCS mean-field equation for the superconducting
order parameter ��q , one can immediately see that ��q must
have the same functional form,

��q = − 1

N

∑
�k

�2(�k, �q )
��k

2E(�k)
tanh

(
E(�k)

2T

)

= c1dx2−y2 (�q ) + c2e
iφdxy (�q ). (3)

The phase φ is not determined by our FRG calculation but
can be extracted by minimizing the grand canonical potential
�. Instead of resorting to numerics, we employ a simple
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FIG. 4. Main panel: Fit of the effective coupling constant �2 near
μ = −t along the dominant diagonal �k1 + �k2 = 0 to the form factors
dx2−y2 and dxy . Inset: Absolute value of the gap function (modulo an
overall factor) for the mean-field solution that minimizes the minimal
grand canonical potential. The gap is large at the van Hove points
(which minimizes the grand free energy).

argument valid at μ = −t . If we assume that � is dominated
by momenta on the Fermi surface in general and by the van
Hove singularities �kvH in particular (which lie on the Fermi
surface for μ = −t), we obtain [27]

� ∼ −
∑
�q=�kvH

|��q (φ)|. (4)

This expression is minimized by φ = ±π/2 for arbitrary
c1,2, and the superconducting phase near half filling of the

electron band thus features a d ± id pairing symmetry. The
corresponding gap function ��q is shown in the inset to Fig. 4;
its absolute value is maximal at the van Hove points.

Conclusions. We have reported the phase diagram of
twisted bilayer graphene near the magic twist angle by study-
ing the effects of strong correlations within the effective low-
energy model devised by Yuan and Fu [30]. We used the
functional renomalization group—a method which can detect
ordering tendencies of interacting 2D systems such as the
Hubbard model on a square lattice [26]—combined with a
mean-field analysis of the effective two-particle interactions at
the end of the FRG flow. Near half filling of the electron band,
we found d ± id superconductivity crossing over to an AFM
insulator as the temperature increases. Near charge neutrality,
we detected a weaker tendency to form an insulator. Our
results provide an unbiased step towards explaining recent
experiments on twisted bilayer graphene [1,2] and establish
correlations as the origin of the phenomena they observe.

As a next step, one should leave the realm of the Yuan-Fu
model by working directly with ab initio band structures [32]
and by adding, e.g., Hund’s couplings or long-ranged screened
Coulomb interactions [33]. This is left for future work.
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