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Control of the two-electron exchange interaction in a nanowire double quantum dot
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The two-electron exchange coupling in a nanowire double quantum dot (DQD) is shown to possess Moriya’s
anisotropic superexchange interaction under the influence of both the Rashba and Dresselhaus spin-orbit
couplings (SOCs) and a Zeeman field. We reveal the controllability of the anisotropic exchange interaction
via tuning the SOC and the direction of the external magnetic field. The exchange interaction can be transformed
into an isotropic Heisenberg interaction, but the uniform magnetic field becomes an effective inhomogeneous
field whose measurable inhomogeneity reflects the SOC strength. Moreover, the presence of the effective
inhomogeneous field gives rise to an energy-level anticrossing in the low-energy spectrum of the DQD. By
fitting the analytical expression for the energy gap to the experimental spectroscopic detections [S. Nadj-Perge
et al., Phys. Rev. Lett. 108, 166801 (2012)], we obtain the complete features of the SOC in an InSb nanowire
DQD.
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I. INTRODUCTION

Achieving an effective manipulation of the electron spins
is of essential importance in the spin-based quantum informa-
tion processing (see, e.g., Refs. [1,2]). It has been shown that
the double quantum dot (DQD) is experimentally convenient
for implementing logical gate operations [3–6]. In this case,
the two-spin manipulation can be based on the exchange
interaction in a DQD [7,8]. Generally, the intrinsic exchange
interaction in a system results in a specific alignment of the
spins. For example, the ferromagnetic exchange interaction
leads to spin polarization [9], and the Dzyaloshinskii-Moriya
(DM) exchange interaction induces the spin texture [10–12],
which may give rise to skyrmion excitations in magnetic
crystals [13,14]. Therefore, it is of great importance to realize
the tunability of the exchange interaction between electrons.

Owing to the spin-orbit coupling (SOC), the spin degree of
freedom is correlated with the orbital degree of freedom for
electrons [15–20]. In the absence of the SOC, the combined
effects of the Coulomb interaction and the Pauli exclusion
principle in the DQD give rise to the isotropic Heisenberg
exchange interaction between electrons [7,8]. The presence
of the SOC in semiconductor nanostructures mediates an
anisotropic exchange interaction between electrons [21–24].
However, the anisotropic exchange interaction can be mapped
via an unitary transformation onto an isotropic Heisenberg
interaction in the absence of an external magnetic field
[21,25–28]. Thus, the SOC seems only to have trivial influ-
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ences on the exchange interaction. As shown here, this is not
the case when an external magnetic field is present.

In the recent decade, the quasi-one-dimensional nanostruc-
ture with SOC has aroused much attention. Specifically, it
can implement fast spin manipulations via an electric field
[29–32]. Also, it can act as an effective spin splitter between
two spin reservoirs [33,34] and offer a possible platform
for searching the Majorana fermions in the superconductor-
semiconductor hybrid systems [35–38]. Moreover, the SOC in
a carbon nanotube plays an important role in determining spin
transport properties [39,40] and facilitates unconventional
superconductivity [41]. In this paper, we investigate the two-
electron exchange interaction in a symmetric nanowire DQD
in the presence of a strong SOC and an external Zeeman field.
In the strong intradot Coulomb repulsion regime [42], the
effective Hamiltonian describing the two electrons consists
of a Zeeman term and a Moriya’s anisotropic superexchange
interaction [25,43]. This anisotropic exchange interaction de-
pends on the SOC strength in the material and can be ma-
nipulated by regulating the direction of the external magnetic
field. Furthermore, we show that when the anisotropic ex-
change interaction is transformed to an isotropic Heisenberg
interaction, the uniform magnetic field becomes an effective
inhomogeneous field, with the inhomogeneity depending on
the SOC strength.

Under the effects of the SOC, there is an energy-level
anticrossing, corresponding to the singlet-triplet splitting, in
the low-energy part of the two-electron spectrum of the
DQD [44–46], which is induced by the inhomogeneity of an
effective magnetic field in a symmetric nanowire DQD. More
interestingly, based on the effective magnetic field we obtain
an analytical expression for the singlet-triplet splitting. By
fitting the analytical formula to the experimental curve in
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FIG. 1. (a) Schematic diagram of the nanowire double quantum
dot (DQD) with a strong spin-orbit coupling (SOC). The gates LB,
CB, and RB define the barriers that form the DQD, and the plunger
gates LP and RP control the electron occupancy of the individual
QDs. The SOC vector â = (cos θ, sin θ, 0) and the magnetic-field
direction n̂ = (cos ϕ, sin ϕ, 0) are shown in the x-y plane. (b) The
confinement potential along the wire direction (the x axis). Each dot
contains only a single electron, and because of the SOC the localized
eigenstates of the QDs are quasispin states.

Ref. [46], we extract the strength and direction of the SOC
in an InSb nanowire DQD. The consistency between our
theoretical results and the experimental analyses verifies our
theory. Moreover, our new results reveal that the spectroscopy
measurements in the presence of an external Zeeman field can
identify separately the Rashba and Dresselhaus parts of the
SOC. For the existing experiments, the latter is very small for
symmetry reasons. However, one can use other crystals, with
other symmetry directions, and then both terms may appear
[47,48]. To implement quantum computing with large-SOC
semiconductors, Bonesteel et al. demonstrated the elimination
of the first-order SOC by tailoring the exchange coupling
between two coupled spins [49], and then they exploited the
passive switching of the exchange coupling to construct quan-
tum logic gates [50,51]. Instead, combined with the proposals
for realizing universal quantum logic gates in Ref. [52], the
controllability of the anisotropic exchange interaction which
we find offers an active way to implement quantum computing
with a strong-SOC system.

II. THE EFFECTIVE HAMILTONIAN
OF THE NANOWIRE DQD

As shown in Fig. 1(a), we consider a semiconductor
nanowire DQD with a strong SOC. For simplicity, the two
QDs defined by the local gate electrodes are identical. The
electron occupancy of each QD can be adjusted by changing
the voltages on the electrodes [53,54]. Let the x axis be the
direction along the nanowire. The axial confinement of the
DQD can then be modeled as a double-well potential. As we

show below, the details of this double-well potential are not
important, since the coefficients of the effective Hamiltonian
can actually be determined by fitting the experiments (see
Sec. III). To obtain the explicit analytical form of the effec-
tive exchange interaction, we approximate the potential as a
quartic function V (x) = V0[(x/d )2 − 1]2, with 2d being the
interdot distance [see Fig. 1(b)].

In the presence of an external magnetic field applied in the
x-y plane, B = B(cos ϕ, sin ϕ, 0) ≡ Bn̂, the Hamiltonian of
an electron confined in the DQD reads [55,56]

H0(x) = p2

2me

+ V (x) + αRσyp + αDσxp + gμBB

2
σn,

(1)

where me is the effective electron mass, p = −ih̄∂/∂x, αR

(αD) is the Rashba (Dresselhaus) SOC strength, g is the effec-
tive Landé factor, μB is the Bohr magneton, and σn ≡ σ̂ · n̂,
with the Pauli matrices σ̂ = (σx, σy, σz). Conveniently, by
defining a new Pauli matrix σ a ≡ σ̂ · â, where the SOC vector
is â = (cos θ, sin θ, 0) with the angle θ = arccot(αD/αR), the
SOC terms can be rewritten in a compact form, i.e., αRσyp +
αDσxp = ασ ap, where α =

√
α2

D + α2
R .

Usually, the electronic eigenstates of a single QD in the
coexistence of the Zeeman and SOC terms are analytically
obtained by perturbative approaches [17,18]. In the context
of strong SOC, it is optimal to perform an exact analysis of
the SOC terms and treat the Zeeman term as a perturbation as
long as the Zeeman splitting is much smaller than the orbital
splitting, i.e., gμBB � h̄ω, where ω =

√
8V0/(d2me ).

Meanwhile, in the case of small Zeeman splitting, only the
lowest approximate Zeeman sublevels in each dot are kept to
facilitate the study of the low-energy dynamics of the electron,
i.e., the Hund-Mulliken approximation. Let |�+

j 〉 and |�−
j 〉

(j = 1, 2) denote the two lowest Zeeman sublevels of each
QD. In general, the localized eigenstates of the different
dots are not orthogonal due to the nonzero overlaps among
them. Nevertheless, based on these four localized eigenstates,
orthonormal basis states |�j⇑〉 and |�j⇓〉 (j = 1, 2) can
be constructed via the Schmidt orthogonalization [57].
Expanding the electron field operator in terms of the
orthonormal basis states, �e(x) = ∑

j=1, 2;σ=⇑, ⇓ cjσ |�jσ 〉,
we can write the second-quantization form of the Hamiltonian
H0(x) in Eq. (1) as H0 = ∫

dx�
†
e (x)H0(x)�e(x) =∑

j=1,2

∑
σ εjσ c

†
jσ cjσ +∑

σ (tσ c
†
1σ c2σ + t ′σ c

†
1σ c2σ̄ + H.c.),

where c† (c) is the electron creation (annihilation) operator,
εjσ represents the single-electron energy in each QD,
while tσ and t ′σ represent, respectively, the spin-conserved
and spin-flipped tunnelings between the two QDs (see
Supplemental Material in Ref. [57] for their explicit
expressions).

When there are two electrons confined in the nanowire
DQD, keeping only the leading Coulomb-interaction terms,
we can reduce the second-quantized Coulomb Hamiltonian
Hc to Hc = U ′

2

∑
j 	=j ′

∑
σσ ′ njσ nj ′σ ′ + U

2

∑
j

∑
σ njσ njσ̄ ,

where njσ = c
†
jσ cjσ is the particle number operator, and U

(U ′) denotes the intradot (interdot) Coulomb repulsion. The
total Hamiltonian of the system is H = H0 + Hc.
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Here we focus on the strong intradot Coulomb repulsion
regime, i.e., U − U ′ 
 |tσ |, |t ′σ |, which means that each QD
can only be occupied by one electron. The effective Hamilto-
nian describing the two electrons can be simplified to [57]

Heff = �z
(
Sz

1 + Sz
2

) + JS1 · S2 + D · S1 × S2 + S1
←→
� S2,

(2)

where Sj = (1/2)
∑

σ,σ ′=⇑,⇓ c
†
jσ σ̂ σσ ′cjσ ′ , j = 1, 2, are the

pseudospin operators defined by the orthonormal basis, and
�z = gμBBf is the SOC-modified Zeeman splitting [18],
with

f ≡
√

cos2(ϕ − θ ) + e−2x2
0 /x2

so sin2(ϕ − θ ), (3)

where x0 ≡ √
h̄/(meω) is the “Bohr” radius of the QDs,

and xso ≡ h̄/(meα) the spin-orbit length. The SOC-dependent
exchange coupling strengths in Eq. (2) are

J = J0 cos2 (2d/xso), D = J0 sin (4d/xso)v̂,

←→
� = J0 sin2 (2d/xso)(2v̂v̂ − 1), (4)

with the bare exchange coupling strength J0 = 4(|t⇑|2 +
|t ′⇑|2)/(U − U ′). The corresponding DM unit vector is

v̂ = ez cos γ − ex sin γ, (5)

where eξ , ξ = x, y, z, represent the unit vectors in the three-
dimensional space of pseudospins and γ is given by

γ = arccos [cos(ϕ − θ )/f ], (6)

with ϕ − θ being the angle between the SOC direction a
and the applied magnetic field, and with f given in Eq. (3).
Interestingly, the two-electron exchange coupling in Eq. (2) is
shown to possess Moriya’s anisotropic superexchange interac-
tion [25,26]. Also, it should be noted that the specific form of
the confinement potential between the two QDs does not alter
the exchange-interaction structure in Eq. (2), but it affects the
magnitude of J0. In practice, for a realistic nanowire DQD,
the value of J0 can be detected experimentally (see below).

III. THE ROLE OF THE ZEEMAN TERM

In the absence of the external magnetic field, the Hamil-
tonian describing an electron in the DQD reads H ′

0(x)=
p2/(2me )+V (x)+αRσyp + αDσxp. This Hamiltonian pos-
sesses time-reversal symmetry, i.e., (iσ yK )H ′

0(iσ yK )−1 =
H ′

0, where K is the complex conjugate operator, so that
there are degenerate states in this case (Kramers pairs).
In the presence of nonzero magnetic field, we can also obtain
the effective Hamiltonian of the two electrons in the DQD.
However, because of the Kramers degeneracy in the present
case, the direction of the anisotropic exchange interaction
is not determined, and can be chosen arbitrarily. Here we
assume that the DM vector v̂ takes the same form as Eq. (5) to
facilitate the study, and the effective Hamiltonian of the two
electrons is H ′

eff = JS1 · S2 + D · S1 × S2 + S1
←→
� S2, with

the parameters given in Eq. (4).
Via a unitary transformation, the above anisotropic ex-

change Hamiltonian H ′
eff can be mapped onto an isotropic

Heisenberg Hamiltonian [21,25], H̃ ′
eff = J0S̃1 · S̃2, where the

spin operators S̃1 and S̃2 are obtained by rotating S1 and S2

around the DM vector v̂ with angles −ϑ and ϑ , respectively,

S̃1 ≡ exp(iϑv̂ · Ŝ)S1 exp(−iϑv̂ · Ŝ),
(7)

S̃2 ≡ exp(−iϑv̂ · Ŝ)S2 exp(iϑv̂ · Ŝ),

where ϑ = 2d/xso and Ŝ = (1/2)σ̂ .
When an external Zeeman field is applied, time-reversal

symmetry is broken and the two-electron Hamiltonian takes
the form of Eq. (2). If we still perform the rotation for Eq. (2)
as done above, the rotated Hamiltonian becomes H̃eff = H̃0 +
�H̃ , with

H̃0 = J0S̃1 · S̃2 + �z
B1 + B2

2B
· (̃S1 + S̃2),

�H̃ = �z
B1 − B2

2B
· (̃S1 − S̃2). (8)

The uniform external magnetic field now becomes an
effective inhomogeneous magnetic field, with the local
effective magnetic fields in the two QDs given by
B1 = B(βx, βy, βz) and B2 = B(βx,−βy, βz), where
βx = (cos ϑ − 1) sin γ cos γ, βy = sin ϑ sin γ , and βz =
cos2 γ + sin2 γ cos ϑ . It is easy to find that the eigenstates
of H̃0 are the singlet and triplet states |S0〉 = (1/

√
2)(| ↑↓

〉 − | ↓↑〉), |T0〉 = (1/
√

2)(| ↑↓〉 + | ↓↑〉), |T−〉 = | ↓↓〉,
and |T+〉 = | ↑↑〉, with the spin direction determined
by the average field direction ŵ ≡ (B1 + B2)/(2B ):

ŵ · σ̂ |T±〉 = ±
√

1 − β2
y |T±〉. However, �H̃ can lead to

the mixing of the triplet and singlet states. Expanding
the Hamiltonian H̃eff in the subspace spanned by
|T+〉, |T0〉, |T−〉, and |S0〉, we obtain

H̃eff =

⎛
⎜⎜⎜⎝

J0
4 + �′

z 0 0 −i
√

2
2 βy�z

0 J0
4 0 0

0 0 J0
4 − �′

z −i
√

2
2 βy�z

i
√

2
2 βy�z 0 i

√
2

2 βy�z − 3J0
4

⎞
⎟⎟⎟⎠, (9)

with �′
z = √

1 − β2
y�z.

Below we show that the effect of the SOC can be reflected
by the inhomogeneity of the effective magnetic field,

�B ≡ |B1 − B2|
2B

= |βy |. (10)

When there is no difference between the two local ef-
fective fields, i.e., �B = 0, obviously the eigenstates of
the Hamiltonian H̃eff are the singlet and triplet states
|�1〉 = |T+〉, |�2〉 = |T0〉, |�3〉 = |T−〉, and |�4〉 = |S0〉.
Note, though, that there is an energy-level crossing between
the singlet and triplet states, i.e., |�3〉 and |�4〉, at a critical
magnetic field B0, where the Zeeman splitting is �z = J0

(see Fig. 2). However, in the case of two different local
effective fields, i.e., �B 	= 0, the energy-level crossing is
avoided around the critical magnetic field and there is an anti-
crossing between these two levels (see Fig. 2). For a nanowire
DQD with the spin-orbit length xso 
 d, x0, the singlet-triplet
splitting at the anticrossing point can be analytically written as
2�DD

SO = √
2J0�B.

To fit the model with the real system, the parameters of the
nanowire DQD used in the following calculations are taken
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FIG. 2. The energy spectrum of the nanowire DQD versus the
Zeeman-field splitting �z for different values of the inhomogeneity
�B. The dashed (red) curves represent the case when �B = 0. The
solid (blue) curves are for �B = 0.21, where 2�DD

SO denotes the
energy gap between the levels |�3〉 and |�4〉 at the anticrossing point
when �z � J0.

from Ref. [46], with 2d = 50 nm and x0 � 30 nm. Moreover,
it was found that g � 33 [61] and B0 � 13.3 mT for the InSb
nanowire DQD. From these experimentally detected values,
based on �z = J0, we can deduce the bare exchange coupling
strength J0 � 24.6 μeV. The specific value of the energy
splitting �DD

SO depends on the magnetic-field direction and the
SOC in the nanowire, as explained below.

IV. DEPENDENCE ON THE MAGNETIC-FIELD
DIRECTION

It is known that the magnetic-field direction plays an
important role in observing the SOC effects in QDs [62–
65]. Below we study the influence of the magnetic-field
direction on the two-electron exchange interaction in the
nanowire DQD.

From the analytical expressions for the DM vector v̂ in
Eq. (5) and the angle γ in Eq. (6), it is easy to find that the
exchange anisotropy direction in the DQD can be manipulated
by regulating the direction of the magnetic field. In Fig. 3(a),
the components of the DM vector v̂ versus the angle ϕ − θ

are plotted. For example, when the magnetic-field direction is
perpendicular to the SOC direction, i.e., ϕ − θ = 90◦ or 270◦,

0
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FIG. 3. (a) Components of the DM vector v̂ as a function of
the angle ϕ − θ , for x0 = 30 nm and xso = 200 nm. (b) Schematic
diagram of the DM vector v̂ in the ex − ez plane, with the azimuthal
angle γ = arccos [cos(ϕ − θ )/f ].

the DM interaction points along the −ex or ex direction. If
the two directions are parallel, i.e., ϕ − θ = 0◦ or 180◦, the
DM interaction is along the ez or −ez direction. However,
in this case, the SOC seems to have a trivial contribution
to the anisotropic exchange interaction because the effective
magnetic field is homogeneous (�B = 0). In short, we can
continuously rotate the DM vector in the ex − ez plane by just
varying the magnetic-field direction, as shown in Fig. 3(b).

Furthermore, based on the rotated H̃eff and for the SOC-
dependent factor f � 1, we obtain a specific relationship
between the anisotropic energy gap �DD

SO and the magnetic-
field direction angle ϕ at the anticrossing point,

�DD
SO =

√
2

2
J0 sin(2d/xso)| sin(ϕ − θ )|. (11)

Interestingly, the cosine dependence of the energy gap �DD
SO on

the magnetic-field direction angle ϕ has indeed been detected
experimentally, cf. Fig. 4(i) in Ref. [46], i.e.,

�DD
SO = �SO| cos(ϕ − ϕ0)|, (12)

with the fitting parameters �SO � 5.2 μeV and ϕ0 � 1◦,
where �SO is the maximal SOC-induced energy gap when the
magnetic-field direction is perpendicular to the SOC, and ϕ0 is
the offset angle resulting from the coexistence of the Rashba
and Dresselhaus SOCs in the nanowire (see below). By com-
paring the experimental fitting function with the analytical
expression of �DD

SO in Eq. (11), we can obtain the formulas
for the spin-orbit length xso and the spin-orbit angle θ ,

xso = 2d

arcsin(
√

2�SO/J0)
, θ = π

2
+ ϕ0. (13)

Using the specific values of the fitting parameters and the
bare exchange coupling strength, we find the magnitudes of
the spin-orbit parameters, xso = 165 nm, and θex = 91◦ [66].
The agreement between the experimental observations and the
theoretical results is shown in Fig. 4.

For the spin-orbit length in an InSb nanowire DQD, the
discrepancy between the theoretical result xso = 165 nm and
the experimental estimate in Ref. [46], lso = 230 nm, mainly
originates from the different quantitative methods. In the
experiment, the spin-orbit length was quantified using an

4.0
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0.0
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(
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)

6.0

90o 135o 180o 225o 270o

B
B

Angle 
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99
91
81

FIG. 4. The magnitude of the energy gap �DD
SO as a function of the

magnetic-field direction angle ϕ. The solid (red) line corresponds to
the experimental data in Ref. [46]. The other three lines represent the
theoretical results based on Eq. (11) under different values of θ , with
J0 � 24.6 μeV, 2d = 50 nm, and xso = 165 nm.
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approximation method [67], (2d/lso) ≈ (�SO/J0), and then
from Eq. (13) the ratio of lso to xso can be identified as
lso/xso � √

2. Using the definition of the spin-orbit angle
θ ≡ arccot(αD/αR), in the absence of the Dresselhaus SOC,
i.e., θ = 90◦ or 270◦, it follows from Eq. (11) that the mag-
nitude of �DD

SO reaches its maximal (minimal) value when the
magnetic field is parallel (perpendicular) to the nanowire axis.
Obviously, it is the presence of a small Dresselhaus SOC that
gives rise to θex = 91◦. The absolutely dominant role of the
Rashba SOC, which would imply θex = 90◦, was predicted
by the symmetry analysis of the nanowire DQD in Ref. [46].
Our fit, which does give a small Dresselhaus contribution,
must result from deviations of the finite sample from the ideal
crystal [68]. However, the consistency between our theoretical
results (Fig. 4) and the experimental detection [46] validates
the controllability of the exchange interaction in the nanowire
DQD by varying the direction of the external magnetic field.

V. CONCLUSIONS

We have studied the two-electron anisotropic exchange
interaction in a nanowire DQD under the influence of a
strong SOC and a Zeeman field. As in the case of zero
magnetic field, the exchange interaction can be mapped onto
an isotropic Heisenberg interaction, but the uniform external

magnetic field becomes then an effective inhomogeneous field
and the inhomogeneity of this effective magnetic field reflects
the SOC strength. Also, we reveal the controllability of the
anisotropic exchange interaction by tuning the direction of the
external magnetic field and obtain an analytical expression for
the dependence of the singlet-triplet splitting on the magnetic-
field direction, as detected in an InSb nanowire DQD [46].
Our theory provides a tool to explore the novel properties of
the exchange interaction in a nanowire DQD under the strong
SOC and also offers a complete method to experimentally
detect separately the Rashba and Dresselhaus SOCs in the
nanowire.
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