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The spin- 1
2 J1-J2 Heisenberg model on square lattices is investigated via the finite projected entangled pair

states (PEPS) method. Using the recently developed gradient optimization method combined with Monte Carlo
sampling techniques, we are able to obtain the ground state energies that are competitive with the best results. The
calculations show that there is no Néel order, dimer order, or plaquette order in the region of 0.42 � J2/J1 � 0.6,
suggesting a single spin liquid phase in the intermediate region. Furthermore, the calculated staggered spin,
dimer, and plaquette correlation functions all have power law decay behaviors, which provide strong evidence
that the intermediate nonmagnetic phase is a single gapless spin liquid state.

DOI: 10.1103/PhysRevB.98.241109

During the past decades, frustrated magnets have attracted
enormous attention [1]. Frustrated interactions result in a large
degeneracy of the ground state, and quantum fluctuations may
lead to a massive coherent superposition of the degenerated
states, implying a novel highly entangled (correlated) quan-
tum state, known as a quantum spin liquid (QSL) [2–4],
which lacks any long-range magnetic order even down to
zero temperature. Because of the anomalously high degree
of entanglement, QSLs have nontrivial topological properties
which may host exotic excitations with fractional statistics,
such as spinons, visions, etc., which have important applica-
tions in quantum computing [5,6].

The spin- 1
2 J1-J2 Heisenberg model on square lattices

is one of the primary candidate models to study the QSL,
which was first introduced to describe the breakdown of Néel
antiferromangetic (NAF) long-range order (LRO) in cuprate
superconductors [7–9]. It is widely accepted that this model
exhibits an NAF LRO at a small J2/J1 region and a collinear
antiferromangetic LRO at large J2/J1, separated by a non-
magnetic phase in the region of 0.4 � J2/J1 � 0.6.

Despite extensive investigations in the past three decades
by various methods [8–33], the nature of the nonmagnetic
region is still highly controversial. An early density matrix
renormalization group (DMRG) study [24] suggested that
the nonmagnetic region is a gapped Z2 spin liquid phase.
However, a more recent DMRG study with SU(2) symmetry
[26] suggested a plaquette valence-bond (PVB) phase for
0.5 � J2/J1 � 0.61 with a near critical region for 0.45 �
J2/J1 � 0.5. On the other hand, variational quantum Monte
Carlo (vQMC) simulations [25] suggested the nonmagnetic
region is a gapless QSL. Therefore, the understanding of
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the true nature of the nonmagnetic region is still far from
complete.

The recently developed projected entangled pair states
(PEPS) method [34] provides a powerful tool to simulate
two-dimensional (2D) quantum many-body systems. Unlike
the DMRG method, the PEPS satisfies area law in two dimen-
sions, and therefore is a more natural way to study strongly
correlated systems in two dimensions. However, PEPS meth-
ods suffer from an extremely high computational scaling to
the virtual bond dimensions, and are very difficult to optimize.

Recently, we developed a finite PEPS optimization algo-
rithm which combines the stochastic gradient optimization
and Monte Carlo (MC) sampling techniques [35,36]. It can
give a much higher precision than the simple update [37] and
even full update methods [38], making it a reliable method
to investigate the properties of the intermediate nonmagnetic
phase.

In this Rapid Communication, we investigate the ground
state of the nonmagnetic phases of the J1-J2 model using
our recently developed finite PEPS methods. We find that
for 0.42 � J2/J1 � 0.6, the spin order, as well as the dimer
order, all vanish in the thermodynamic limit, which rules out
the possibility of valence-bond solid (VBS) states including
PVB and a columnar valence bond (CVB) [33,39–41], and no
additional phase transitions are found in this region. Further-
more, both the calculated spin-spin and dimer-dimer correla-
tions show power law decays, suggesting that the region is a
gapless QSL. These results are consistent with recent vQMC
simulations [25].

The spin- 1
2 J1-J2 Heisenberg model is given by

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where 〈i, j 〉 and 〈〈i, j 〉〉 denote the nearest-neighbor (NN) and
the next-nearest-neighbor (NNN) spin pairs, respectively. We
assume the exchange couplings J1, J2 > 0. Without loss of
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generality, we set J1 = 1 throughout this Rapid Communica-
tion.

We study the system on an L × L square lattice with
open boundary conditions, for L up to 16. We represent the
ground state wave functions by PEPS with a virtual bond
dimension D. All parameters in the PEPS wave functions are
independent, and subject to optimization. When optimizing
the PEPS, we first perform an imaginary time evolution with
the simple update method [37]. We then further optimize the
PEPS using the stochastic gradient method until the results
are fully converged [35]. The energies and energy gradients
are calculated via the MC sampling technique. The method
greatly improves the ground state energies compared to the
simple update and even full update method [38]. More details
about the method can be found in Ref. [35]. With sufficiently
optimized ground state PEPS wave functions, the physical
quantities and correlation functions, including the staggered
magnetization, dimer and plaquette order parameters, spin-
spin correlations, dimer-dimer correlations, and plaquette-
plaquette correlations, are calculated via Monte Carlo sam-
pling techniques.

To guarantee the reliability of the calculations, the conver-
gence to the virtual dimension D and the truncation dimension
Dc during contractions is carefully checked. We find that D =
8, Dc = 24 are enough for systems up to 16 × 16 (see the
Supplemental Material [42]). All results are obtained under
these parameters, unless otherwise claimed.

The ground state energies at different J2, particularly in
the highly frustrated region, are important criteria for the
precision of a computational method. We calculate ground
state energies of different J2 for system size L = 4–16. We
then perform finite size scaling to obtain the ground state
energies in the thermodynamic limit. In our previous stud-
ies [35], it has been shown for the Heisenberg model, i.e.,
J2 = 0, the ground state energy per site obtained by D =
10 is E0 = −0.669 48(42), in excellent agreement with the
quantum Monte Carlo result E0 = −0.669 437(5) [43]. We
show the ground state energies for J2 = 0.5 and 0.55 with
different system sizes in Figs. 1(a) and 1(b), respectively.
The extrapolated energies at the thermodynamic limit are
E1 = −0.4966(1) for J2 = 0.5 and E2 = −0.4861(1) for
J2 = 0.55. Some previously calculated ground state ener-
gies in the literature are also shown for comparison. The
ground state energies obtained in this Rapid Communication
are significantly lower than previous infinite PEPS (iPEPS)
[31] results with D = 7 and the finite PEPS calculation with
D = 9 and a periodic boundary condition (PBC) [30]. In the
iPEPS calculations [31], a conjugated gradient optimization
method was used but the wave functions are restricted to a
single tensor with SU(2) symmetry. As for the finite PBC
PEPS calculations [30], 2 × 2 unit cells were used and the
ground states were obtained by the so-called cluster update.
In our calculations, all tensors are independent and the ground
states are obtained by the accurate gradient optimization
method [35]. However, because different boundary conditions
are used in these calculations, one cannot compare the en-
ergies directly, and therefore we only compare the energies
extrapolated to the thermodynamic limit, which are listed in
Table S3 of the Supplemental Material [42]. Our results with
D = 8 can be treated as the upper bounds of the ground
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FIG. 1. Ground state energies in the 2D limit for (a) J2 = 0.5 and
(b) J2 = 0.55 obtained by second-order polynomial extrapolations of
the energies at L = 4–16. The horizontal straight lines denote the
ground state energies from previous calculations in the literature,
where the green, red, blue, and magenta lines are the ground state
energies in the 2D limit obtained by iPEPS with D = 7 [31], finite
PEPS D = 9 based on periodic systems [30], DMRG with SU(2)
symmetry [26], and the variational quantum Monte Carlo plus Lanc-
zos extrapolation [25]. The values of the ground state energies in the
2D limit are listed in Supplemental Material Table S3.

state energies, which are almost the same as the best DMRG
results [26] E1 � −0.4968 and E2 � −0.4863, obtained by
a rough estimation based on cylindrical geometries; they are
also comparable to the energies from vQMC plus Lanczos
extrapolation [25].

With the fully optimized ground states, we investigate the
nature of the ground state. We first measure the Néel order
parameter m2

s = 1
N2

∑
ij 〈Si · Sj 〉eik·(ri−rj ) with k = (π, π ) to

distinguish the magnetic and the nonmagnetic phases at dif-
ferent J2. To minimize the boundary effects, the summations
are restricted in the central W × W lattice [35], and here W =
L − 4 are used. At J2 = 0, the calculated staggered magneti-
zation is ms,∞ = 0.305 [35], which is in excellent agreement
with the QMC result ms,∞ = 0.307 [43]. We present m2

s for
different system sizes with L = 8–16 in Fig. 2, and ms for
the 2D limit in the inset of Fig. 2. These results suggest that
the magnetic to nonmagnetic phase transition is located at
J2 � 0.42, falling in the range of previous studies 0.41–0.45
[24–29].

However, the exact nature of the intermediate nonmagnetic
phase is still hotly debated. We need to further clarify the
nature of the nonmagnetic region, especially, to answer the
following questions: Is the phase a QSL phase or a VBS
phase? Is there a phase transition from QSL to VBS? We
calculate the dimer structure factors which can be used to
detect the possible VBS order,

Mα
d (k) = 1

N

∑

ijkl

(〈
Bα

i,jB
α
k,l

〉 − 〈
Bα

i,j

〉〈
Bα

k,l

〉)
eik·(ri−rj ), (2)
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FIG. 2. The Néel order parameter m2
s calculated by PEPS

with D = 8, on the L = 8, 10, 12, 14, and 16 square lat-
tices where the central bulk size is W = L − 4. Extrapolations
to the 2D limit are performed with a third-order polynomial fit-
ting. The inset depicts the ms in the thermodynamic limit at
different J2.

where α = x, y, and Bx
i,j = Si,j · Si+1,j and B

y

i,j = Si,j ·
Si,j+1 are horizontal and vertical bond operators along the
x and y axis, respectively. The summation is restricted in
the central bulk W = L − 4 to reduce the boundary effects.
The VBS order is indicated by peaks appearing at k = (π, 0)
for Mx

d (k) or at k = (0, π ) for M
y

d (k). Therefore, one may
define the horizontal and vertical dimer order parameters as
m2

dx = 1
N

Mx
d (k) with k = (π, 0) and m2

dy = 1
N

M
y

d (k) with
k = (0, π ), respectively.

Figure 3 depicts the dimer order parameters m2
dx and m2

dy ,
calculated at two typical nonmagnetic points, J2 = 0.5 and
0.55 with different system sizes. According to the deconfined
quantum critical point (DQCP) theory [44], the complex order
parameter mdx + imdy is sufficient to detect and distinguish
both columnar and plaquette VBS phases. We find that m2
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FIG. 3. The horizontal and vertical dimer order parameters (a)
m2

dx and (b) m2
dy for J2 = 0.5 and 0.55 with system sizes L = 8–16.

Extrapolations are performed using second-order polynomial fittings.
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FIG. 4. Log-log plots of spin-spin correlation functions vs dis-
tance on a 14 × 14 lattice for different J2.

and m2
dy are almost the same within numerical precision at

each lattice size, reflecting the isotropy of horizontal and
vertical directions, which is expected for the true ground states
and excludes the CVB phases. As a result, the disappearance
of dimer orders in both the x and y directions does not support
a VBS order at J2 = 0.5 and 0.55 at the thermodynamic limit,
which indicates that the whole intermediate nonmagnetic
region is actually a QSL phase and there is no phase transition
to the VBS phase, which is different from the results of Gong
et al. [26]. Different choices of W such as W = L − 4, L − 6,
and L − 8 lead to the same conclusions (see Supplemental
Material [42]).

To further explore the properties of the QSL, more explic-
itly, whether it is gapped or gapless, we calculate the staggered
spin-spin, dimer-dimer, and plaquette-plaquette correlation
functions along straight lines.

The spin-spin correlation functions are calculated on a
14 × 14 lattice, and the results are averaged over the central
M = 6 rows,

Cs (i, r ) = 1

M

∑

j

〈Si,j · Si+r,j 〉, (3)

where j is restricted in the central M rows and i is fixed
to 2. As shown in Fig. 4, the spin-spin correlations have a
power law decay in a large parameter region, from J2 = 0
to J2 = 0.58. In the Néel phase, a long-range order will be
exhibited, and spin correlations are expected to eventually
decay to a saturation value theoretically. Due to our current
computational limit, we cannot access larger systems to ob-
serve such a saturation value, but it is notable that at J2 =
0 the absolute value of Cs (i, r = 9) � 0.102 on a 14 × 14
lattice is very close to the QMC value Cs (i, r → ∞) � 0.094
on an infinite system [43], indicating the calculated power
law decay behavior of spin-spin correlations obtained from
finite systems for the Néel phase (J2 � 0.42) is reliable to
some extent. The power law decay behaviors in the QSL phase
imply that there is no S = 1 gap in the 2D limit. The spin-spin
correlation behaviors are consistent with the lack of VBS
orders in the intermediate phase, in which the S = 1 gap is
expected. The power law decay exponents for different J2 are
listed in Table S4 of the Supplemental Material [42], which
increase with increasing J2. We note that the decay exponents
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FIG. 5. Log-log plots of (a) the horizontal dimer-dimer cor-
relation functions along the x axis, (b) the vertical dimer-dimer
correlation functions along the y axis, and (c) the plaquette-plaquette
correlation functions along the x axis on a 16 × 16 lattice at J2 = 0.5
and 0.55.

fitted from the finite systems here should not be compared
directly to those of the infinite systems.

We further calculate the dimer-dimer and plaquette-
plaquette correlation functions. The horizontal dimer-dimer
correlations are defined as

Ch
dx (i, r ) = 1

M

∑

j

(〈
Bx

i,jB
x
i+r,j

〉 − 〈
Bx

i,j

〉〈
Bx

i+r,j

〉)
. (4)

Similarly, we can define the vertical dimer-dimer correlations.
The plaquette-plaquette correlations are defined as

Cp(i, r ) = 1

M

∑

j

(〈Qi,jQi+r,j 〉 − 〈Qi,j 〉〈Qi+r,j 〉), (5)

where Qi,j = 1
2 (P�,i,j + P −1

�,i,j
) and P�,i,j denotes the cyclic

exchange operator of the four spins on a given plaquette. All
correlation functions are averaged in the central M = 4 odd
rows on 16 × 16 squares lattice and i = 3.

Figures 5(a)–5(c) depict the staggered horizontal, verti-
cal dimer-dimer correlations, and plaquette-plaquette correla-
tions, respectively, at two typical points J2 = 0.5 and 0.55.
We find that both the dimer-dimer and plaquette-plaquette
correlation functions have a power law decay, indicating that
there is no spin S = 0 gap. The fitted power law decay expo-
nents are about 2.8 for the dimer correlations. The plaquette
correlation functions show large oscillations for odd and even
r , which might have a close relation with the local plaquette
order existing in the finite system. The fitted power law decay
exponents are about 1.8–2.0 if only odd sites are used, and
about 3.0 if only even sites are used in the fit.

The above results give strong evidence that the intermedi-
ate nonmagnetic phase is a gapless QSL, because there are
no columnar orders or plaquette orders, and all correlation
functions including spin-spin, dimer-dimer, and plaquette-
plaquette correlations have power law decays. These results
are consistent with the conclusions of recent vQMC simu-
lations [25], which directly calculate the spin gaps. Recent
DMRG calculations also suggest that there is a gapless spin
liquid region [32] in 0.45 � J2 � 0.52. The major difference
is that DMRG calculations suggest that there is another VBS
state between 0.5 � J2 � 0.61 [26] with a spin S = 1 gap,
which is absent in our calculations. One of the possible
reasons for the difference between the two works is that in
the DMRG calculations, cylindrical boundary conditions are
used, and also because of the quasi-one-dimensional (1D)
nature of the DMRG method, the C4v symmetry of the system
is explicitly broken, which may favor some ordered states.
We note that a recent iPEPS study with U(1) symmetry
shows that the intermediate phase is a CVB [33], while our
results based on finite square lattices show the horizontal
and vertical directions are isotropic and there is no CVB
order.

To summarize, we investigate the phase diagram of a spin-
1
2 J1-J2 model on a square lattice using finite PEPS methods.
The recent developed stochastic gradient method allows us
to obtain highly accurate ground state energies and wave
functions. The absence of spin and dimer orders together with
a power law decay of the correlation functions present strong
evidence that the intermediate nonmagnetic phase is a gapless
spin liquid. Indeed, recently there has been some experimental
evidence supporting such a gapless QSL state on the square
lattice [45]. However, since the correlation functions have
large correlation lengths in the nonmagnetic region, we cannot
totally exclude the possibility of the existence of a very
weak VBS order in the nonmagnetic phase, which may need
significantly larger system sizes that go beyond our current
capability. We hope further developed tensor network meth-
ods can access larger systems to reexamine these different
scenarios.
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Research and Development Program of China (Grant No.
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