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We consider the stability of nodal surfaces in fermionic band systems with respect to the Coulomb repulsion. It
is shown that nodal surfaces at the Fermi level are gapped out at low temperatures due to emergent particle-hole
orders. Energy dispersion of the nodal surface suppresses the instability through an inhomogeneous phase. We
argue that around criticality the order parameter fluctuations can induce superconductivity. We show that by
tuning doping and disorder one could access various phases, establishing fermionic nodal surface systems as a
versatile platform to study emergent quantum orders.
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Introduction. The last decade saw a surge of research
activity aimed at a better understanding of the physics of nodal
objects in three-dimensional (3D) fermionic band structures
[1–3]. Most studied is the case of Weyl semimetals with nodal
points, recently discovered experimentally [4,5]. They gener-
ically appear in any band structure provided time-reversal or
inversion symmetry is broken. Remarkably, nodal points do
not exhaust all possible nodal objects in a three-dimensional
band structure. In 2011, Weyl nodal loops, where two bands
intersect each other on closed two-dimensional (2D) curves,
were predicted [6–8]. A generic nodal loop has to be protected
by symmetries. It is distinguished by a π Berry phase on a
contour that links with it and exhibits nearly flat drumhead
states in the boundary spectrum [8,9].

More recently, another type of nodal object was
proposed—a nodal surface [10,11]. The nodal surface is a
two-dimensional degeneracy of energy bands that forms a
closed surface in the Brillouin zone. While less generic then
the nodal points, they can nevertheless appear in systems
that possess certain additional symmetries, such as sublattice
or mirror symmetries. Nodal surfaces protected by different
symmetries were theoretically predicted [12–17] and their
topological stability against small perturbations of the nonin-
teracting Bloch Hamiltonian was investigated [14–16]. Mate-
rial realizations of nodal surfaces were also proposed [17,18].

However, to understand the robustness of nodal objects
in real solids it is imperative to study their stability with
respect to interactions. In Weyl point [19–21] and loop [22]
semimetals it has been shown that short-range interactions
need to be stronger than a certain threshold to destroy the
nodal structures. The long-range part of the Coulomb inter-
action is marginally irrelevant [23,24] in the case of Weyl
points. In nodal line systems the Coulomb interaction is
partially screened, but turns out to be irrelevant as well [25].
On the other hand, introducing a finite density of states by
breaking inversion symmetry [26] or doping [27,28] results in
instabilities already at weak coupling.

In this Rapid Communication, we study the fate of nodal
surfaces in the presence of the Coulomb interaction. First,

we show that the long-range part of the Coulomb interac-
tion renders nodal surfaces at the Fermi level unstable to
the formation of an “excitonic insulator,” first proposed by
Keldysh and Kopaev in the seminal paper [29]. Subsequently,
we demonstrate that the energy dispersion of the nodal surface
suppresses the instability. We specify our discussion to the
case where the band structure has twofold degeneracy in the
Brillouin zone supplemented by spin rotational invariance,
giving rise to the so-called Dirac nodal surface. We analyze
the emerging orders in the mean-field approximation for dif-
ferent combinations of short- and long-range repulsion and in
the presence of sublattice symmetry. Additionally, we show
that doping and disorder can serve as experimental “knobs”
that grant access to various phases including the particle-hole
counterpart of the elusive Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [30,31] of superconductors. Finally, we argue
that fluctuations of the particle-hole order parameter might
lead to unconventional superconductivity in the vicinity of the
doping-induced quantum critical point (QCP).

Particle-hole instability of the nodal surface. We start by
showing that long-range Coulomb repulsion can render nodal
surfaces unstable. First, we consider the case of a particle-hole
symmetric Weyl nodal surface at the Fermi energy described
by the two-band Hamiltonian

Ĥ0 =
∑

p

ĉ†pε(p)σzĉp, (1)

where the energy ε(p) is measured with respect to the
Fermi level. In what follows, we will use the linearized
form of the dispersion near the Fermi level ε(p) ≈ vF (θ, ϕ) ·
[p − pF (θ, ϕ)], where θ and ϕ are the angles in spherical
coordinates, assuming |vF (θ, ϕ)| �= 0. Without an interaction,
the system described by (1) contains an electron- and a
holelike Fermi surface that coincide in the momentum space
[see Fig. 1(a)]. For the following discussion we will consider
the generalization of (1) to the case with N0 identical nodal
surfaces, which results in N0 pairs of coinciding electron- and
holelike Fermi surfaces.
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FIG. 1. Two-dimensional projection of the electron (dashed red)
and hole (solid blue) Fermi surfaces for a system with a nodal surface
(1) (a) at zero energy; arrows show the direction of Fermi velocities
(b) with energy dispersion (see text); crossings of the two surfaces
are projections of a single zero-energy nodal line.

Importantly, the system has a finite density of itinerant
charge carriers and the Coulomb potential is screened. In
the random phase approximation (that can be justified in
the regime N0 � 1 [32,33]) one has 4πe2/q2 → [q2/4πe2 −
�(iωn, q)]−1. To study the low-energy effects we approx-
imate the interaction by its static (ωn = 0) value at low
momenta [34] such that �(iωn, q) reduces to −ν (ν being
the total density of states) resulting in

ĤCoul ≈ U0

2V
∑

p,p′,q

ĉ
†
p+q,σ ĉ

†
p′−q,σ ′ ĉp′,σ ′ ĉp,σ , (2)

where V is the volume of the system and U0 = ν−1. Note that
ν = 2N0ν0, where ν0 is the density of states of a single Fermi
surface (electron- or holelike).

Let us now consider the possible instabilities of (1) with in-
teraction (2). Decoupling the repulsive interaction (2) with the
Hubbard-Stratonovich procedure, one immediately finds that
the particle-hole channels with order parameters Wi (Q) =
U0

∑
p〈ĉ†pσi ĉp+Q〉 are all attractive with the same coupling

constant. Moreover, the Wx and Wy orders for Q = 0 can
be shown to develop a weak-coupling instability. The self-
consistency equation for these orders has the form

1

U0
= ν0

2

∫
dε

tanh
√

ε2+W 2

2T√
ε2 + W 2

, (3)

where the density of states is approximated by a constant
ν(ε) ≈ ν0 and W =

√
W 2

x + W 2
y . Due to the logarithmic di-

vergence of the right-hand side at low temperatures we see
that a transition occurs for an arbitrary weak coupling with
the critical temperature being

Tc = 2eγ

π
�e−2N0 , (4)

and the value of the order parameter at zero temperature W0 =
2�e−2N0 , where � is the upper cutoff for the energy integral
in Eq. (3). Physically, � is determined by the structure of the
dispersion in (1) away from the Fermi surface. In particular, it
is fixed by the bandwidth and the Fermi energy with respect
to the band bottom. The eigenenergies in the presence of the
order parameter are E(p) = ±

√
ε(p)2 + W 2, clearly showing

that a gap has opened and the nodal surface is destroyed.
For a single Weyl nodal surface (N0 = 1), the transition

corresponds to breaking of a global U (1)z symmetry gen-
erated by

∑
p ĉ

†
pσzĉp. We note that the degeneracy between

Wx and Wy orders is due to the highly symmetric form

of the interaction (2); additional interactions can break this
degeneracy such that only a particular linear combination of
them will develop a nonzero expectation value. However, if
these additional interactions are much smaller than U0, the
equations for Tc and W0 will approximately hold. We discuss
in detail the influence of additional interactions below for the
case of a Dirac nodal surface.

Nodal surfaces with energy dispersion. While the presence
of nodal surfaces in the band structure can be guaranteed by
symmetry and the ensuing topological invariants [14], they
do not have to be pinned to the Fermi energy. Indeed, a term
of the form f (p)σ0 can be always added to the Hamiltonian
(1) without breaking any symmetries generated by σi . This
term shifts the nodal surface ε(p) = 0 to an energy f (p) and
breaks the particle-hole symmetry. As a result, a generic nodal
surface coincides with Fermi surfaces on a set of loops in
momentum space.

Physically, a constant f (p) = f0 is equivalent to a shift
of the chemical potential. Consequently, a constant f0 can
be experimentally realized by doping electrons/holes into the
system. The momentum dependence of f (p), on the other
hand, is determined by the specific material. For the particular
case of a Dirac nodal surface protected by sublattice symmetry
(see below), f (p) corresponds to intrasublattice hopping.

We can now expand the function f (p) near the Fermi
surface f (p) ≈ γ (θ, ϕ) + δ(θ, ϕ)ε(p) + O(ε2). The result-
ing eigenenergies of the free Hamiltonian are then E± =
[δ(θ, ϕ) ± 1]ε(p) + γ (θ, ϕ). γ (θ, ϕ) leads to the electron and
hole Fermi surfaces no longer being coincident [see Fig. 1(b)],
while δ(θ, ϕ) gives rise to a difference between the Fermi
velocities of the electron and hole bands. The latter can be
shown [35] not to destroy the weak-coupling instability.

Let us now analyze the physical consequences of a constant
γ (θ, ϕ) = γ0. We assume γ0 
 EF such that the density of
states remains unchanged. In this case the mean-field Hamil-
tonian can be written as

HMF =
[
ĉp,1

ĉp,2

]†[
ε(p) + γ0 Wx − iWy

Wx + iWy −ε(p) + γ0

][
ĉp,1

ĉp,2

]
.

One can note the similarity to the Hamiltonian of a super-
conductor in a Zeeman field. As is well known [31], at low
temperature the order parameter vanishes via a first-order
transition at the Clogston-Chandrasekar limit γ cr

0 = W0/
√

2,
where W0 is the order parameter in the absence of the Zeeman
field. This implies that γ0 stabilizes the nodal surface against
weak enough interactions.

Importantly, the first-order phase transition is preempted
by an instability to the formation of a periodically modulated
state [30,31,36]. In our case this corresponds to a particle-
hole order parameter of the form ĉ

†
α,p+Qĉα′,p, i.e., a charge,

spin, or bond current density wave. A formal analogy ex-
tends also to itinerant antiferromagnets [37–39]. A qualitative
phase diagram is presented in Fig. 2. As the details of the
modulated (incommensurate) phase such as the direction and
magnitude of the modulation wave vector are quite sensitive
to the Fermi-surface details, we do not consider them here.
Generally, one would expect Q to connect the points with
opposite Fermi velocities with the lowest curvature. Hence,
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FIG. 2. Tentative temperature-doping phase diagram for a nodal
surface system with repulsive interaction. The doping scale is given
by the value of γ0 (see text) normalized to γ cr

0 = W0/
√

2. “C” is
the commensurate (homogeneous) particle-hole order, while “I” is
the modulated phase. A superconducting (SC) phase around the
particle-hole QCP (shaded gray area) could emerge for the Dirac
nodal surfaces.

low dimensionality and the presence of flat portions of the
Fermi surface promote such phases [36].

Let us move on to the effect of a nonconstant γ (θ, ϕ).
For the homogenous order, given the critical tempera-
ture Tc for γ = 0 (4), one can extract the new crit-
ical temperature T ′

c from the equation [35] log T ′
c

Tc
=

− 1
2 〈ψ ( 1

2 + i|γ |
2πT ′

c
) + ψ ( 1

2 − i|γ |
2πT ′

c
) − 2ψ ( 1

2 )〉
FS

, where ψ (z) is

the digamma function and 〈· · · 〉FS = ∫ · · · ν0(ε=0,θ,ϕ)d�

4πν0
. We

observe that the physical effect of Tc suppression is present
even if 〈γ 〉FS = 0. At low temperatures, unlike for γ = const,
the order parameter may change its value before disappearing,
since electron/hole pockets can start to appear in regions
where |γ (θ, ϕ)| > W0. We note that for the incommensurate
phases the results will depend on the particular realization of
γ (p) and thus we shall not consider them here.

Dirac nodal surface. Up to now, we have not discussed
the physical meaning of the emergent orders Wi . To do so,
we need to know how the fermionic operators ĉp change
under symmetry operations, which, in general, depends on
the system. Here, we analyze the particular case of a single
Dirac nodal surface (N0 = 2) protected by inversion-enriched
time-reversal symmetry (TRS+I) and sublattice symmetry on
a bipartite lattice (BDI class in Ref. [14]). In this case the
system has full spin rotational invariance and the Hamiltonian
retains the form (1), being trivial (unity matrix) in spin space.
On the other hand, in the sublattice basis the Hamiltonian has
to be off-diagonal due to the sublattice symmetry. Moreover,
the inversion-enriched TRS acts as a complex conjugation
(but does not flip the momentum) leading to H (p) = H ∗(p).
Consequently, the tight-binding Hamiltonian respecting the
symmetry can contain only the real intersublattice hopping
∼σx . Thus the unitary transformation U = (σx + σz)/

√
2,

which acts as U−1σzU = σx , transforms the operators from
the “band basis” of (1) to the sublattice basis.

The instability analysis performed above can be directly
applied to the Dirac nodal surface problem. However, apart
from Wx and Wy , spinful orders Wi,j = U0

∑
p〈ĉ†pσisj ĉp〉,

where i = x, y and sj denotes the set of spin Pauli matrices,
also develop weak-coupling instabilities.

FIG. 3. An illustration of the emergent states possible for a single
Dirac nodal surface. Above the illustrations the necessary conditions
for their realization are given.

Now let us identify the physical meaning of the respec-

tive orders. Since σx
U→ σz, the Wx order parameter has the

meaning of an energy offset between the two sublattices. This
leads in turn to a charge offset resulting in a charge density
wave (CDW). Note that the CDW in this case breaks only

the sublattice, but not translational symmetry. σy
U→ −σy and

thus in the sublattice basis the Wy order introduces a nonzero
average i〈ĉ†AĉB − ĉ

†
BĉA〉 that implies a current flowing be-

tween different sublattice sites A and B. Since in the ground
state the total current between the sublattices should be zero,
compensating interunit cell currents should be also present
with their structure being determined by the form of ε(p). The
CDW/bond current orders, discussed above, preserve/break
TRS, respectively. Turning now to spin orders, one observes
that Wx,i break both sublattice and time-reversal symmetry
and essentially represent intraunit cell antiferromagnetism
(AFM). On the other hand, the orders Wy,i do not break TRS
and correspond to spin current order.

The interaction (2) results in the orders Wx,i and Wy,i form-
ing a degenerate manifold. However, as the represented orders
break different symmetries, one would expect this degeneracy
to be accidental. Indeed, we show now that the inclusion of the
simplest on-site interactions allowed by symmetry lifts this
degeneracy. Namely, let us add the on-site Hubbard repulsion
U [n̂A

↑ n̂A
↓ + n̂B

↑ n̂B
↓ ] and the repulsion between the two sub-

lattices V n̂An̂B , where we introduced the densities n̂A(B ) =
ĉ†(1 ± σx )ĉ/2. Decoupling these interactions [35] with re-
spect to the same channels as before, we get corrections to the
transition temperatures (4) resulting from 2N0 → [1/(2N0) −
V0ν0λi,j ]−1, where V0 is the unit cell volume. The coupling
constants for the orders Wi,j are λx,0 = U − 2V , λx,{x,y,z} =
−U , and λy,{0,x,y,z} = −V . Consequently, for U > V , the
intraunit cell antiferromagnetic order is the leading one, while
for U < V the CDW order wins (see Fig. 3). Note that the
influence of the short-range interactions can be controlled by
the density of states ν0, i.e., for dilute systems the screened
Coulomb interaction (2) is still the dominant one. On the
other hand, we consider λi,j to be not too small, such that
the fluctuations of competing orders could be neglected.

Effects of disorder. As nodal surface systems are 3D metals
with a finite density of states, weak disorder that preserves
all symmetries is not expected to disrupt the nodal surfaces
[40,41]. On the other hand, interaction-induced particle-hole
orders can be suppressed even for low-impurity concentra-
tions. We show below that this effect allows one to promote
the (otherwise subleading) staggered current phase discussed
above (see Fig. 3).
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We perform the calculation in the framework of Abrikosov-
Gor’kov theory [42]. Namely, let us consider the impurity
potential affecting atoms of one of the sublattices only,
corresponding to a single-site substitution or vacancy, with
the Hamiltonian Ĥimp = u/

√
2ĉ†(r0)(1 ± σx ) ⊗ s0ĉ(r0) (for

other types of impurities, see Ref. [35]). Assuming randomly
distributed impurity positions, one obtains the equation for the
critical temperature T d

c in the presence of disorder for the case
of weak dilute impurities (up3

F 
 EF , pF l � 1, where l is the
mean free path) for the orders Wx,i and Wy,i ,

log
Tc

T d
c

= ψ

(
1

2
+ �x,y

2πT d
c

)
− ψ

(
1

2

)
, (5)

where �x = 4�, �y = 2�, with � = πu2nν0, where n is the
impurity concentration. One can see the suppression rates are
smaller for the Wy,i orders that have been identified above
as subleading (T y

c < T x
c ). The transitions will be completely

suppressed for �x
cr = π

8eγ T x
c and �

y
cr = π

4eγ T
y
c , for the Wx,i and

Wy,i orders, respectively. Thus, if T
y
c /T x

c > 1/2, there exists
a range of impurity concentrations such that the (spin) current
order can overcome the competing CDW or AFM order.

Quantum critical point and unconventional superconduc-
tivity. Above we pointed out the possibility of suppressing
the particle-hole orders by doping (see also Fig. 1). With the
situation being similar to the high-Tc superconductors [43,44],
it is natural to ask whether the fluctuations of the suppressed
order around the critical doping can induce superconductivity.
The interfermion interaction due to the critical fluctuations of
a particle-hole order can be described by an effective action

SQCP = −gT

V
∑

p,p′,q

χ (q )c†p+qŴcpc
†
p′−qŴcp′ , (6)

where Ŵ is a matrix in the band and spin space correspond-
ing to the particle-hole order parameter and q ≡ (q, ωn).
χ (q ) has the Ornstein-Zernike form [ω2

n/c
2 + (q − Q)2 +

ξ−2]−1, with ξ being the correlation length of the fluctuations.

Assuming Q 
 pF and not too small ξ , we can restrict our
consideration to momentum-independent order parameters
�α,α′ = ∑

p ĉp,αĉ−p,α′ . The condition for the interaction to

be attractive is Tr[�†Ŵ�Ŵ T ] > 0. Moreover, only intraband
∼σ0,z pairing results in a logarithmic enhancement at low
temperatures. For CDW QCP Ŵ ∼ σx and conventional sin-
glet superconductivity � ∼ σ0 ⊗ isy is promoted. For AFM
QCP, on the other hand, Ŵ ∼ σx ⊗ �s and the singlet channel
� ∼ σz ⊗ isy is attractive. This type of pairing corresponds to
a full-gap superconductivity with a sign change between the
electron and hole Fermi surfaces similar to the s± state in the
iron-based superconductors [43].

Outlook and conclusion. Our results can be readily applied
to a number of proposed physical realizations of nodal sur-
faces [11,17,18]. For systems with few small nodal surfaces,
such as YH3 proposed in Ref. [17], one can expect that the
long-range part of the Coulomb repulsion is likely to be
the dominant interaction. On the other hand, in the case of
graphene networks [11] one has two Dirac nodal surfaces
(N0 = 4) and thus the instability is likely to be driven by
short-range repulsion or electron-phonon interactions not con-
sidered here. Finally, we note that the layered material ZrSiS
is a promising candidate for hosting weakly dispersive nodal
surfaces, with dispersion provided by the interlayer hopping.
Recently, it has been studied in Ref. [45] using a 2D square
lattice model with a nodal line.

Overall, our results show that systems with nodal surfaces
could serve as a potential platform for realizing a multitude
of quantum orders (Figs. 2 and 3) with many experimentally
accessible “knobs,” such as doping or disorder, to probe the
phase diagram.
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