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Topological quadrupolar semimetals
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In this Rapid Communication we predict several types of topological semimetals that exhibit a bulk quadrupole
moment. These semimetals are modeled with a three-dimensional extension of the two-dimensional quadrupole
topological insulator. One type of semimetal has bulk nodes and gapped, topological surfaces. A second type,
which we may call a higher-order topological semimetal, has a gapped bulk, but harbors a Dirac semimetal with
an even number of nodes on one or more surfaces. The final type has a gapped bulk, but harbors half of a Dirac
semimetal on multiple surfaces. Each of these semimetals gives rise to midgap hinge states and hinge charge, as
well as surface polarization, which are all consequences of a bulk quadrupole moment. We show how the bulk
quadrupole moments of these systems can be calculated from the momentum locations of bulk or surface nodes
in the energy spectrum. Finally, we illustrate that in some cases it is useful to examine nodes in the Wannier
bands, instead of the energy bands, to extract the bulk quadrupole moment.
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Introduction. The recent theoretical prediction of a new
class of (higher-order) topological insulators with quantized
quadrupole moments [1] has opened a new direction in the
field of topological phases [2–9]. The simplest quadrupole
topological insulator is a two-dimensional (2D) system with
an energy gap in the bulk and on the boundaries. This is
unusual for topological insulators as they conventionally have
characteristic gapless surface states [10,11]. However, the
boundaries in the quadrupole insulator are not inert, and ac-
tually form lower-dimensional topological phases themselves.
One manifestation of the surface topology is the existence of
protected, midgap modes on the corners of the system where
two edges intersect [1].

In this Rapid Communication we turn our attention to the
prediction of classes of topological semimetals (TSMs) based
on an extension of the quadrupole insulator to a layered three-
dimensional (3D) system. These classes of TSMs include a
bulk quadrupolar TSM with gapless bulk nodes, but without
gapless surface modes, and several types of higher-order
TSMs (defined below) that are gapped in the bulk, but harbor
surface TSMs. Each of these 3D TSMs has a quadrupole
moment that can be determined by the geometry of the bulk
or surface point-node band crossings in the system; this is
analogous to the electromagnetic response properties of 3D
Weyl semimetals [12–17] and 2D/3D Dirac semimetals [17]
which can be determined by the location of the Weyl/Dirac
nodes in energy/momentum space. While we are primarily
discussing these systems in the context of electronic solid state
materials, we expect that they can also be straightforwardly
engineered in metamaterial contexts. Topological semimet-
als have been designed and confirmed via spectroscopy in
metamaterial systems, such as optical lattices [18,19], pho-
tonic crystals [20–24], and acoustic systems [25,26]. Given
that a 2D quadrupole insulator has been realized experimen-
tally in three independent metamaterial contexts [7–9], our
proposed 3D quadrupolar semimetals are not far separated
from experimental realization, and some of the predicted

phenomena, especially the spectroscopic features, should be
observable.

Review of quadrupole model. Let us begin by reviewing
the model of a 2D topological quadrupole insulator [1]. A
tight-binding representation of the Hamiltonian is illustrated
in Fig. 1(a) with four spinless orbitals per unit cell, and
includes inter- and intracell nearest-neighbor hopping. The
Bloch Hamiltonian is

H (k) = (γx + λx cos kx )�4 + λx sin kx�3

+ (γy + λy cos ky )�2 + λy sin ky�1, (1)

where �0 = τ3 ⊗ I, �k = −τ2 ⊗ σk , �4 = τ1 ⊗ I, I is the
2 × 2 identity matrix, and τa, σa are Pauli matrices with a
basis specified in Fig. 1(a). γi and λi are intra- and intercell
tunneling strengths. There is π flux per plaquette, and we have
made a gauge choice for the relative phases of the hopping
terms as shown in Fig. 1(a). For all values of γi and λi the
model has x and y mirror symmetries with representation
matrices m̂x = τ1 ⊗ σ3, and m̂y = τ1 ⊗ σ1. Due to the π flux,
these mirror operators anticommute. If |γx | = |γy |, and |λx | =
|λy |, then the model has C4 rotation symmetry with the matrix
representation

r̂4 =
(

0 I
−iσ2 0

)
, (2)

where we note that r̂4
4 = −1 due to the π flux.

For our discussion of TSM phases it is important to un-
derstand the phase diagram of this model, shown in Fig. 2(a),
as a function of the γi and λi . To simplify the discussion let
us fix λx = λy = λ from now on. The model exhibits a Z2 ×
Z2 set of topological classes specified by the polarizations
(Berry-Zak phases) (px, py ) of the hybrid Wannier bands
νy (kx ) and νx (ky ), respectively [27–31]. Throughout the phase
diagram, the (px, py ) Berry phases are quantized by the pair
of x, y mirror symmetries, and take values of either 0 or
1/2 in units of 2π . The interior (purple) square of the phase
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FIG. 1. (a) Tight-binding representation of the 2D topological
quadrupole insulator in Eq. (1). Each black dot represents a single
spinless electronic orbital. Each solid line represents a tunneling
term. Each dotted line corresponds to a hopping with the same
strength as a corresponding solid line, but with a relative phase of
−1 which is a gauge choice that inserts a π flux in each plaquette
(including within the unit cell). The ordered basis for the � matrices
is shown on the central plaquette. (b) Stacking the 2D quadrupole
insulator into a 3D system and coupling the layers to generate the
TSM model Eq. (3). Note that both of the vertical coupling terms
χx and χy are in every unit cell; we show them separately to avoid
clutter. The dotted lines for some of the χy coupling terms represent
a relative phase of −1 compared to the solid lines.

diagram represents the topological quadrupole phase having
(px, py ) = (1/2, 1/2), which is the only region of the phase
diagram with a nonvanishing quadrupole moment qxy .

In addition to the mirror symmetries, the system also has
C4 symmetry along the diagonal and antidiagonal of the phase
diagram. If C4 symmetry is enforced, then there is only one
type of phase transition: from the quadrupole (1/2, 1/2) phase
to the fully trivial phase (0,0). The transition occurs when
|γ | = |λ|, which is accompanied by a gap closing in the bulk
energy spectrum. When C4 symmetry is relaxed, two other
types of transitions are available. When one passes from the
(1/2, 1/2) phase to the (0, 1/2) [(1/2, 0)] phase, there will be
a gap closing in the edge energy spectrum parallel to x̂ (ŷ),
rather than the bulk energy band, which is accompanied by a
gap closing in the νy (kx ) [νx (ky )] Wannier bands at a value
of νy = 1/2 (νx = 1/2) [1,3]. In contrast, transitions from the
(0, 0) phase to the (1/2, 0) [(0, 1/2)] phase have a gap closing
in the hybrid-Wannier bands at a value of νy = 0 (νx = 0), but
there is not a generic gap-closing transition in the bulk or edge
energy spectrum.

Classification of topological quadrupolar semimetals. Now
let us stack the 2D quadrupole model and couple the layers to
generate a Bloch Hamiltonian [see Fig. 1(b)],

H (k) = [γx + χx (kz) + λ cos kx]�4 + λ sin kx�3

+ [γy + χy (kz) + λ cos ky]�2 + λ sin ky�1, (3)

where the χj (kz) are periodic functions on the kz Brillouin
zone (BZ) determined by the choice of interlayer tunneling
terms. To understand why this model can generate a TSM,
consider the quantities γi (kz) ≡ γi + χi (kz), which represent
maps from the kz BZ to closed paths in the 2D phase diagram
in Fig. 2(a) with a base point (γx/|λ|, γy/|λ|). In Fig. 2(a)
we have illustrated four different types of paths, each of

FIG. 2. (a) Phase diagram of the 2D quadrupole insulator model
Eq. (1) as a function of (γx/|λ|, γy/|λ|). The ordered pair in each
colored region represents the Z2 × Z2 topological class specified by
the quantized Berry phases (px, py ) of the Wannier bands. Each of
the four paths represents a different type of parametrization of the
TSM model in Eq. (3). (b) To each of the four paths there is an
associated set of (1) bulk (1) or (2)–(4) surface gapless nodes. Note
that the horizontal directions represent spatial dimensions, while the
vertical direction is kz momentum. The locations of hinge modes
corresponding to each TSM configuration are highlighted on one
hinge of the sample. The color of the node corresponds to the type
of phase transition from which it is generated: Black nodes are bulk
transitions while the blue and orange nodes correspond to transitions
in the Wannier bands when passing from the (1/2, 1/2) class to the
(1/2, 0) (orange) or (0, 1/2) (blue) classes. Note that the actual path
3 parametrization used in our numerics is a degenerate line similar to
path 1. We show a more open path here for illustration.

which has some portion of the path within the topological
quadrupole phase, and each having a discrete set of kz at
which the path is at a transition point between different
topological classes. This is precisely what is needed for a
TSM, and how we define a TSM, i.e., there are transition
points, as a function of momentum, between different topo-
logical classes. Furthermore, for each value of kz the system
has mirror symmetries, and thus the Bloch Hamiltonian at a
fixed kz has a quantized quadrupole moment, if it is not at a
transition point. Hence, the bulk quadrupole moment of each
path can be straightforwardly calculated by summing up all
of the values of kz that are mapped, via the γi (kz), into the
topological quadrupole region of the phase diagram. We will
see below how, for each path, this calculation can be recast
in terms of the momentum space locations of the transition
points, analogous to, say, the calculation of the anomalous
Hall coefficient in Weyl semimetals which is proportional to
the momentum separation of the Weyl nodes [12–17]. Let us
move on to describe the phenomenology of each path in turn.

In order to generate path (1) we need a C4 invariant
parametrization such as γi (kz) = −1 + 1/2 cos(kz), for i =
x, y, and λ = 1. This path passes through the C4 invariant
phase transition point when γi (kz) = −1, i.e., when kz =
±π/2. The two bulk nodes are represented by the black
cones in Fig. 2(b). The nodes represent a transition, as a
function of kz, between regions of the kz BZ in a topological
quadrupole phase, and regions in the trivial phase. We can
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expand around one of the nodal points, say, k = (0, 0, π/2),
to find the continuum Hamiltonian Hnode = δkx�3 + δky�1 +
(1/2)δkz(�2 + �4). This is a gapless Dirac Hamiltonian with
a fourfold degenerate Dirac point when all δki = 0, Adding
terms proportional to �0 or (�2 − �4) will open a gap, but
these terms are forbidden by a combination of mirror and
C4 symmetries. Hence, this TSM phase is protected by both
mirror and C4. Interestingly, preserving mirror but not C4,
e.g., adding im13�1�3, allows for a coexisting quadrupole
TSM and Weyl TSM with an anomalous Hall coefficient.

While path 1 has a similar bulk-node structure to con-
ventional TSMs, paths 2–4 represent a completely different
type of TSM, though all paths generate gapless hinge states
and hence are higher-order TSMs. Paths 2–4 are formed in
regions of the phase diagram where only the mirror sym-
metries are generically preserved. Let us treat paths 2 and
3 first. We can parametrize path 2 via γx = 1 + 1/2 cos kz,
γy = 1/4 + 1/2 sin kz, and path 3 via γx = 3/4 + 1/2 cos kz,
γy = −3/4 + 1/2 cos kz. Neither path hits a transition point
where the bulk band gap closes, however, there are two and
four points, for paths 2 and 3, respectively, where the Wannier
bands have a gap closing when leaving the (1/2, 1/2) class
[see Figs. 4(a) and 4(b) for path 2]. Consequently, for path
2, when the system has open boundaries there will be two
values of kz at which the surface energy spectrum has a gap
closing for surfaces normal to ŷ. Alternatively, we could have
oriented path 2 so it hit one of the orange phase boundaries in
Fig. 2(a), and subsequently we would find gapless nodes on
surfaces normal to x̂. Path 3 is similar to two copies of path 2,
one copy with each orientation, and it will have gapless points
on surfaces normal to x̂ and ŷ since it intersects both types
of Wannier transition points as kz traverses the BZ. Hence,
these systems are gapped in the bulk, but have TSMs on their
surfaces. Indeed, these systems have surface Dirac semimetals
with an even number of nodes (possibly zero) on each surface
normal to x̂ and/or ŷ. The gapless nodes are protected by
mirror symmetries and lie on mirror-invariant lines in the
surface BZ. As an example, we take path 2 and extract
the low-energy surface Hamiltonian on the surface normal
to x̂ [32]. The resulting continuum Hamiltonian, when ex-
panded around a surface Dirac node, reads Hsurf-node(ky, kz) =
vkzσ1 − λkyσ2, where v depends on the particular γi and λ. If
we project the mirror symmetries onto the surface we find the
effective representation m̂y,eff = σ1, which forbids any mass
terms.

Finally, let us examine path 4. This path is topologically
distinct from paths 2 and 3 because it encloses a bulk critical
point; hence paths 2 and 3 cannot be smoothly deformed to
path 4 without closing the bulk gap. We can parametrize this
path using γx = −1 + 1/2 cos kz, γy = 1 + 1/2 sin kz. The
TSM generated on this path is perhaps the most unusual
because each surface normal to x̂ or ŷ harbors half of a Dirac
semimetal. This occurs because the path intersects the phase
boundaries between the (1/2, 1/2) class and the (1/2, 0) and
(0, 1/2) classes just a single time each. Hence, on each surface
there will only be a single node in the energy spectrum,
protected by mirror symmetry, and with a similar continuum
Hamiltonian to Hsurf-node(k). However, because the path in-
tersects the phase boundaries between (1/2, 0) and (0, 0),
and (0, 1/2) and (0,0), there will be additional crossings in

FIG. 3. Surface polarization vs kz for paths (a) 1, (b) 2, (c) 3,
and (d) 4 for a system size of 200 in the (real-space) x direction.
Red and blue lines indicate polarization on opposite edges. The inset
in (a) shows polarization resolved vs kz and the spatial direction
with an open boundary. (e) Comparison of nodal separation, surface
polarizations [system size 100 in the (real-space) x direction], hinge
charge per unit length, and quadrupole moment for path 1 as the base
point is varied with γx = γy. Setting the electric charge e = 1, all
quantities have units of inverse length. The inset shows scaling of
the surface polarization at the upper end of the range of γx as system
size is increased. The results converge systematically to the analytic
result. (f)–(h) show comparison of nodal separation and quadrupole
moment for paths 2–4, respectively, as the base points are varied with
(f) γy = 1/4, (g) γx = −γy , and (h) γx = −γy .

the Wannier bands not expressed in the energy spectrum.
The structure of the Wannier band crossings is shown in
Figs. 4(d) and 4(e), and interestingly this case shows spectral
flow through the Wannier band values.

Phenomenology for topological quadrupolar semimetals.
To calculate the quadrupole moment of topological quadrupo-
lar semimetals we consider the portion of the paths that lies
within the topological quadrupole phase. Path 1 is similar
to the usual Dirac and Weyl TSMs in that there are point
nodes in the bulk spectrum. Unlike the Dirac/Weyl system,
however, this TSM does not have gapless Fermi-arc surface
states. Instead, the surfaces are generically gapped unless they
intersect another surface at a hinge. This is a consequence of
the gapped, but topological, nature of the quadrupole insulator
edge states which have been stacked to form the surface
states of the TSM. From our discussion above, we expect
this system to have a bulk quadrupole moment qxy = e

2π
bz,

where 2bz is the momentum space separation between the
bulk nodes. This momentum difference precisely accounts for
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FIG. 4. Wannier bands in x and y directions calculated for (a),
(b) path 2 and (d), (e) path 4 plotted vs the momenta in the transverse
BZ. Note that we have used a repeated zone scheme in the Wannier
value direction for clarity. Path 2 has Wannier nodes at νy = 1/2, but
no nodes in νx . Path 4 has nodes at νx = 0, 1/2 and at νy = 0, 1/2.
Nodes at a Wannier value of 1/2 have corresponding nodes in the
surface energy spectrum [3]. In (c), (f) we confirm that the difference
in kz momenta of the nodes at a Wannier value of 1/2 correctly
reproduce the bulk quadrupole moment for (c) path 2 and (f) path
4 as the base points of these paths are varied identically to Figs. 3(f)
and 3(h).

the portion of path 1 in the topological quadrupole region
of the phase diagram. As a result, this system will exhibit a
surface polarization tangent to surfaces that are normal to the
x or y directions, and hinge charges/midgap bound states on
hinges where the polarized surfaces intersect.

For the TSMs generated by paths 2–4, despite the bulk
being completely gapped, one expects the bulk quadrupole
moment to be qxy = e

2π
Bz, where 2Bz is the momentum space

separation between the two surface Dirac nodes, on the same
surface (path 2) or neighboring surfaces (paths 3 and 4).
In Fig. 2(b) we have illustrated the hinge nodes for these
configurations, and how they are cutoff by the nodal positions.

We confirm all the above results in numerical calculations
in Fig. 3. In Figs. 3(a)–3(d), we show the surface polarization

resolved over the kz BZ, which is quantized to 1/2 in the
region between the bulk nodes (path 1) or surface nodes
(paths 2–4). In Fig. 3(e), we shift path 1 by tuning γx ∈
[−1.5,−0.5], while constraining γy = γx and calculate the
surface polarizations [3,28], hinge charge, and quadrupole
moment qxy [1]. We similarly calculate the quadrupole mo-
ment qxy for paths 2–4 in Figs. 3(f)–3(h). We find that they all
agree with the nodal separation formula above.

Wannier band calculation. So far we have evaluated the
physical properties of these systems based on the locations of
nodal points in the energy spectra to make contact with the ex-
tensive previous literature. However, from the argument above
it is clear that one could tune the surface properties of paths
2 and 3 such that all of the surfaces are gapped, and yet there
could still be a nonvanishing bulk quadrupole moment with
the same magnitude (see Supplemental Material [33]). Hence,
in nonideal cases where there have been modifications to the
surface, and even for an ideal scenario with path 4, it may not
be not obvious how to evaluate the bulk quadrupole moment
using the conventional technique based on the momentum
separation of energy nodes. In these cases it may be more
natural to calculate the Wannier bands and use the Wannier
nodal points to calculate the quadrupole moment. As a proof
of concept, we performed this type of calculation for paths 2
and 4 in Fig. 4, and the results match the calculations based
on the nodes in the energy spectra from Fig. 3. Specifically,
we locate band crossings in the Wannier bands that occur at
a value of ν = 1/2, as it is precisely these crossings that are
associated with band crossings in the surface energy spectra
for ideal surfaces. We shifted these paths by tuning the γi

exactly as in Fig. 3, and we find that the quadrupole moment
and the momentum differences between Wannier nodal points
match.
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