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Strong in- and out-of-plane excitons in two-dimensional InN nanosheets
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Using density-functional and many-body perturbation theory, we study the electronic, optical, and excitonic
properties of indium nitride as single monolayer and bilayer in comparison with the bulk phase. We investigate
the stable geometry for the monolayer, the graphenelike unbuckled honeycomb structure, and for the bilayer
the AA’ stacking geometry. We demonstrate that the quasiparticle and optical gaps, going from bulk to
two-dimensional systems, open dramatically due to strong quantum confinement and reduced screening. Large
excitonic effects, which survive at room temperature, are predicted. Our results suggest that low-dimensional
InN is a promising material for optoelectronic devices in the visible to near-infrared spectral ranges varying with
the number of atomic layers and light propagation.
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I. INTRODUCTION

A great deal of attention and research efforts have been
devoted in the last years toward the study of quantum con-
finement of electrons in two-dimensional (2D) sheets [1–3],
such as graphene, MoS2, 2D BN, topological insulators, and
2D superconductors [4]. Reduced dimensionality enhances
quasiparticle (QP) and excitonic effects, and dramatically
shapes the electronic and optical properties of these materials.

Bulk group-III mononitrides AlN, GaN, and InN are the
most important materials for solid-state lighting [5] and so-
lar cells [6]. Consequently, increasing interest arises in 2D
nitrides, although the strong bulk sp3 bonding makes their
preparation extremely difficult. Only 2D BN is easily obtained
by exfoliation of hexagonal BN and has been proven to
be an attractive substrate for graphene [7]. Experimentally,
successful attempts to obtain 2D AlN [8] and 2D GaN [9]
pave the way to photovoltaic and optical nanodevices based
on 2D nitrides. Theoretical studies on the tunable electronic
gap of group-III nitrides and alloys have appeared [10–12],
suggesting these materials as building blocks for light har-
vesting devices. Ab initio calculations of optical properties of
freestanding 2D GaN predict an optical gap of about 5 eV for
1 ML, and 3.3 eV for 2 ML, hence in both cases an emission
in the UV spectral range [13]. 2D GaN embedded in AlN has
also been studied [14]. Measurements of GaN sheets encap-
sulated by graphene seem to confirm a fundamental gap of
about 5 eV [15]. Heterocombinations of AlN and GaN sheets
with MoS2 monolayers have been suggested to be efficient
water-splitting devices [16]. In the bulk case, a central tool for
band-gap engineering is the alloying of GaN with InN. The
use of InN in alloys with GaN and/or AlN makes it possible
to extend the emission of nitride-based LEDs from ultraviolet
to visible and near-infrared regions [17,18].

In contrast to 2D AlN and GaN, much less is known about
2D InN. In its bulk form, it crystallizes in wurtzite (WZ) and

zinc-blende (ZB) structures, the first one being the most stable
phase, with a direct band gap of about 0.7 eV [19]. Moreover,
bulk InN possesses the smallest effective mass for electrons
in all the III-nitride semiconductors [20], which leads to high
electron mobility and high saturation velocity, thus enabling
InN to be a promising material not only for light emission
but also for high-speed and high-frequency electronic devices
[21]. Consequently, various InN nanostructures have been
tried to synthesize [22,23]. Theoretically, the InN monolayer
has been verified to possess thermal stability, high-carrier mo-
bility, large drift velocity, strong light absorption, and sizable
band gap [11,24–26]. Unlike graphenelike group-IV materi-
als, monolayer InN is a semiconductor with a considerable
band gap [11,26,27] that can be tuned by alloying [11,28] or
heterostructuring [25]. Other modifications of the electronic
properties are possible by adsorption of gas molecules [29].

Bulk InN crystals grown in WZ or ZB structures possess
a small but finite direct band gap of the order of 0.7 eV [20].
Its theoretical treatment is, however, difficult [30]. The In 4d
electrons have to be taken into account to obtain the correct
lattice constants minimizing the total energy obtained in the
framework of the density-functional theory (DFT) [31]. The
treatment of exchange and correlation (XC) within the local
density approximation (LDA) or the generalized gradient
approximation (GGA) [32] gives, however, rise to negative
Kohn-Sham energy gaps. This tendency is enforced by the
p-d repulsion shifting the valence band maximum (VBM) to-
ward higher energies [30]. Only self-interaction-corrected or
relaxation-corrected pseudopotentials allow us to open a small
gap [33]. The description of the self-interaction and the local
XC for electrons with spatially localized wave functions by
an additional Hubbard U term may indeed open the bulk InN
gap [34,35]. However, the application of DFT+U methods on
2D crystals such as atomic layers of InN has not been studied
until now.
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Here, we investigate the electronic and optical properties
of single layer (g-InN) and bilayer (b-InN) indium nitride.
We predict that, with reduced dimensionality, the fundamental
electronic gaps are direct, the electron mass is extremely
small, and that quantum confinement opens the electronic gap
up to 1.7 eV for g-InN, and 0.86 eV for b-InN. Strong exci-
tonic effects appear, with binding energies much larger than
the thermal energy kBT at room temperature, thus suggesting
the possibility to use 2D InN in optical nanodevices in the
near-infrared or visible spectral range.

II. METHODS

First-principles calculations are performed to investigate
the properties of bulk InN, single-layer InN, and bilayer
InN. We use DFT with an XC LDA functional and norm-
conserving pseudopotentials to describe structural and elec-
tronic properties as implemented in the PWSCF package of
Quantum ESPRESSO code [36]. The kinetic energy cutoff of
the plane-wave basis set is taken as 100 Ry. Shifted 4 ×
4 × 4, 5 × 5 × 5 k-point meshes were employed for the self-
consistent calculations for ZB and WZ geometries, respec-
tively. For g-InN and b-InN, we used a shifted 12 × 12 ×1 k-
point mesh. To avoid spurious interactions between the peri-
odic images, supercells with at least 21 Å vacuum space are
adopted for the 2D InN (the vacuum was decreased to 15 Å
in the subsequent QP calculations). The In 4d electrons are
treated as valence electrons for a correct description of the
geometry and electronic structure of the material [37]. To take
into account van der Waals (vdW) interaction in the bilayer
structure, we also perform calculations using XC based on the
Perdew-Burke-Ernzerhof (PBE) [38] functional but including
vdW corrections [39].

Since DFT is a ground-state theory, the excitation aspect
is missing. Therefore, in the electronic band-structure cal-
culations, many-body QP effects have to be included within
the GW method, with G single particle Green’s function and
W screened Coulomb potential [40]. Since, however, bulk
InN possesses a negative gap in LDA and PBE calculations
for both polytypes, WZ and ZB [41], the one-shot G0W0

approach cannot be applied in bulk InN. One possibility is
to open a small gap by self-interaction corrections described
by Hubbard U parameters (see below) to generate a gapped
starting electronic structure for the G0W0 treatment [41].
Here, we determine the U parameter for bulk InN, and apply
the very same U values also for 2D InN, as an approximated
way to take into account QP effects. Then, we compare our
results with those obtained with the more appropriate G0W0

approach.
Our G0W0 calculations on 2D InN are performed with

the CHISIG code [42] using, for the exchange part of the
self-energy, 102 × 102 × 1 k-point mesh centered on � in the
Brillouin Zone (BZ), and 16 000 and 45 000 plane waves for
g-InN and b-InN, respectively. For the correlation self-energy
and for the screened Coulomb interaction W we have used
51 × 51 × 1 k-point meshes and 4000 plane waves for g-InN
and 39 × 39 × 1 k-point meshes and 7000 plane waves for
b-InN. The total number of bands used is 300 for both config-
urations. We have used the plasmon-pole approximation for
W and the spurious interactions between adjacent supercells

have been treated by cutting the Coulomb potential along z (z
being the normal to the sheet material) [43].

The optical properties of a bulk semiconductor, and es-
pecially its nanostructures, ask for the inclusion of excitonic
effects by solving the Bethe-Salpeter equation (BSE) for the
polarization function [40,44]. Whereas bulk bound exciton
states possess only very small exciton binding energies (about
5 meV [34]), the binding energies are much larger in 2D
crystals (see, e.g., Ref. [45]). For 2D InN, we made the
extremely accurate BSE calculations as implemented in the
DP4EXC code [46], using 595 plane waves (795 for b-InN)
to describe the wave functions and 205 (291 for b-InN)
reciprocal lattice vectors for the screening matrix in W. Since
we are interested in the absorption spectra until 10 eV, it
is sufficient to include the three highest valence bands and
five lowest conduction bands for InN and the six highest
valence bands and six lowest conduction bands for b-InN.
BSE is solved using the Tamm-Dancoff approximation. For
a better understanding of the mechanism and the screening
of the electron-hole interaction, we also investigate excitonic
effects through a variational scheme applied to a simple model
Hamiltonian that describes the interaction of electrons and
holes in a homogeneous 2D sheet [47–49].

III. BULK

In bulk InN, the DFT-LDA approach significantly under-
estimates the electronic band gap and fails in predicting the
symmetry of the states close to the top of the valence bands.
The band structures in Figs. 1(a) and 1(b) show inverted bands
and, hence, a zero or “negative” gap for both ZB and WZ
crystals. The s-like �1c states are below the predominantly
p-like �15v (�6v and �1v) bands for ZB (WZ) neglecting
spin-orbit interaction. The main reason is the overestimation
of the p − d repulsion with the localized In 4d electrons,
which, however, are much too high in energy in DFT-LDA
[41]. As a result, the VBM is pushed toward higher energies,
thus closing the gap.

A computational efficient way to solve the band-ordering
problem is based on the Hubbard LDA+U method, where the
U parameter takes better care of correlation effects. Usually,
only a Hubbard interaction is taken into account for localized
d electrons, which, however, opens gap that is too small
(see Ref. [41]). Therefore, as suggested in the literature [50],
besides the interaction Ud on the In 4d states, we also allow
an interaction Up among the N 2p states. We systematically
varied both Up and Ud by considering the correlation effects
on the In 4d bands and on the fundamental gap at �. Using
Up = 3.5 eV and Ud = 6.5 eV, we obtain a gap of 0.61 eV for
ZB and of 0.8 eV for WZ [Figs. 1(c) and 1(d)] in agreement
with experimental data [19] (see also collection in Ref. [20]).
Moreover, the position of 4d states of indium are now about 16
eV below the VBM, in agreement with the experiments [35].
The N 2s states lay 12 eV in the WZ structure and at 13.5 eV
in the cubic phase below the VBM. Applying the Up and Ud

corrections, the right symmetry of the band states close to the
fundamental gap is also recovered. The resulting fundamental
gaps in Figs. 1(c) and 1(d) are close to those derived within
GW calculations [20]. Therefore, the LDA+U band structures
can be interpreted as approximate QP band structures. The
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described LDA+U approach is also used in the following for
the 2D InN systems, and compared with the results obtained
within the G0W0 approach.

IV. MONOLAYER (g-InN)

A flat, unbuckled honeycomb structure is the most stable
geometry for one atomic layer of InN [25,26]. For this pristine
structure, our LDA calculations give a lattice constant a =
3.52 Å and an In-N bond length d = 2.03 Å, in agreement
with other DFT studies [11,25,26]. In PBE, our lattice con-
stant results to be 3.61 Å, indicating the reduced bonding
strength after inclusion of gradient corrections [40]. We find
that the cohesive energy for g-InN is 1.12 eV/pair lower than
the WZ InN bulk one. Hence, although the graphenelike ge-
ometry represents a local minimum on the energy landscape,
the higher cohesive energy shows that freestanding g-InN is a
metastable configuration.

The electronic band structure in Fig. 2(a), calculated within
DFT-LDA, shows a 0.80 eV � − � direct gap and an almost
degenerate 0.81 eV K − � indirect gap. The presence of a gap
already at the DFT level is at odd with the findings in the bulk.
No inversion of the character of the bands occurs at �. The
top of the valence band results to have p (84% of N and 10%
of In) character, whereas the bottom of the conduction band
possesses mainly s (60% In and 23% N) character. The lack
of band inversion suggests that, despite the wrong position of
the d states as in bulk, it has a minor influence on the p states
because the quantum confinement effects are so strong that
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FIG. 1. Equilibrium structures of ZB InN and WZ InN. Lattice
parameters are indicated. Large (grey) and small (blue) balls denote
In and N atoms, respectively. Band structures of ZB InN (a), (c)
and WZ InN (b), (d) are, calculated within LDA (left) and LDA+U
(right) approximations. The fundamental gap region is shown in
yellow.
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FIG. 2. Top and side views of the optimized hexagonal atomic
structure of g-InN. The 2D primitive unit cell is indicated by dashed
lines. The lattice constant a and the In-N bond length d are indicated.
Large (grey) and small (blue) balls denote In and N atoms, respec-
tively. Electronic band structure of g-InN calculated within LDA
(a), LDA+U (b), and within G0W0 approach (c). The vacuum level,
identified with the energy zero, is shown as red dotted horizontal line.

they partially counterbalance the shrinking, hence preventing
the closing of the gap. Of course, XC effects calculated at the
LDA level still cause an energy-band-gap underestimation,
that has to be cured through the introduction of QP effects
within the G0W0 method. The results of our LDA+G0W0

are displayed in Fig. 2(c). The electronic gaps open about
0.9–1.2 eV. Interestingly, the almost complete degeneracy (at
the DFT-LDA level) of the � − � and K − � gaps is lifted.
The resulting fundamental gap of g-InN is direct, at � − �,
and measures 1.72 eV (see Table I), while the indirect gap
amounts to 2.05 eV.
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TABLE I. Ab initio electronic (GW) and optical (BSE) gaps for
monolayer and bilayer InN. Also the ab initio excitonic binding
energies are reported. All values are in eV.

geometry GW gap BSE gap Eexc
b

g-InN 1.72 eV (��) 1.17 eV 0.55 eV
b-InN (AA’) 0.86 eV (��) 0.42 eV 0.44 eV

Our results are in rough agreement with other LDA+G0W0

calculations [25]. However, they are in contrast to the results
in Ref. [26], where QP effects are significantly overestimated,
and to another ab initio study [27] that presents results within
the hybrid HSE06 functional [51] and a partly self-consistent
GW0 calculation based on Kohn-Sham computations using
the semilocal XC PBE potential [38]. In particular, a first
small effect on the gap discrepancies is due to the difference
in the computed lattice constants, ours being 1.4% shorter
in the LDA case [26] and 0.6% in the GGA limit [27].
Regarding results in Ref. [27], already at DFT level the
results are not in agreement. In fact, a much smaller indirect
DFT-PBE gap EK� = 0.31 eV compared to our DFT-LDA
values of EK� = 0.81 eV and E�� = 0.80 eV is used in the
starting electronic structure. The main reason for the different
DFT results is the different lattice constant. The equilibrium
structure in Ref. [27] is characterized by a = 3.63 Å (PBE),
while we obtained a = 3.52 Å (LDA). We repeated the DFT-
LDA band-structure calculations at the larger PBE lattice
constant, i.e., for a tensile biaxial strain of 3.1%, and found
an indirect gap of Eind = 0.33 eV in agreement with the
DFT-PBE result. The huge lattice-constant influence is an
indication for a supersensitivity of the electronic structure of
an InN monolayer to (biaxial) strain. Comparing biaxially
strained and unstrained gap data, we computed biaxial gap
deformation potentials of Ddir = −15.2 eV and Dind = −15.5
eV within DFT-LDA. These deformation potentials are larger
than the volume deformation potentials of direct gaps in bulk
semiconductors [52].

However, more important for the gaps are the various
approximate descriptions of the QP gap openings. Apart from
the deviating numerical details and the partly self-consistent
GW0 QP calculations in Ref. [27], the most important dif-
ference lies in the fact that from their calculations for g-InN,
it turns out that the VBM occurs at the K point, whereas the
conduction band minimum (CBM) appears at the � point. The
corresponding indirect K − � gaps are EHSE06

K� = 1.48 eV
and E

GW0
K� = 2.02 eV, respectively. Discussing the optical

absorption, the authors in Ref. [27] speak about a QP direct
� − � gap of 2.02 eV. Obviously, they found an indirect QP
gap of the same size, in contrast to our finding of a direct
semiconductor with a � − � QP gap of E�� = 1.72 eV.

In addition, we also applied the approximate QP LDA+U
method to the g-InN system, using the same U parameters as
for the 3D bulk InN structures to compare it with our result
obtained with the suitable G0W0 calculation. The resulting
band structure is shown in Fig. 2(b). The direct gap increases
to 1.64 eV, while the indirect gap is about 1.91 eV. Hence, also
in LDA+U we find a direct gap for g-InN.

We notice that the LDA+U gap values are close to G0W0

results in Fig. 2(c). The only 0.1 eV underestimate of the
gaps suggests that almost the same U employed for 3D
structures can be used to predict the electronic properties of
low-dimensional InN geometries. In other words, thanks to the
quantum confinement, correlation effects related to localized
N 2p and In 4d electrons are already well described at the
DFT-LDA level (in the sense that the inversion of the bands
and the closure of the gap do not occur), and the role of U is
mainly to correct that part of correlation that is independent
of the dimensionality of the system.

In the band structures in Fig. 2, the vacuum level is set
as zero energy. It has been derived from the electrostatic part
of the single-particle Kohn-Sham potential. The differences
to the VBM and CBM define the ionization energy I and
the electron affinity A, respectively. They are I = 5.42 eV
(5.71 eV, 5.16 eV) and A = 3.70 eV (4.06 eV, 4.36 eV)
eV within the LDA+G0W0 (LDA+U, LDA) approximation.
The curvatures of the uppermost valence band and the lowest
conduction band at the band extrema at � characterize the
effective electron and hole masses m∗

e and m∗
h, respectively.

As listed in Table III, the masses indicate very light electrons
and light holes with m∗

e = 0.083 m and m∗
h = 0.43 m.

Optical properties of g-InN have been studied at three
different levels of the theory: within the independent-particle
approach (IPA), within the independent-QP approach at the
G0W0 level, and also with the inclusion of excitonic effects by
solving the BSE to account for the electron-hole coupling. In
Fig. 3, we present the polarization-dependent optical conduc-
tivity calculated within G0W0 and within BSE, together with
the G0W0 interband structure, �εcv (k) = εc(k) − εv (k) with
the corresponding conduction (valence) band energy εc(k)
(εv (k)).

The effect of QP corrections at the GW level is to blueshift
the LDA spectrum. The spectra are dominated by van Hove
singularities. The onset of (the real part of) the in-plane G0W0

conductivity σxx,yy (ω) near 1.7 eV is in correspondence with
the transitions at the fundamental gap near �. The line shape
is due to a M0 critical point of the joint density of states
(JDOS) at � formed by the two lowest band pairs, to the
1/ω factor present in the relation between conductivity and
dielectric function, and to the strong oscillator strength of the
corresponding transitions. The second peak at higher energies
near 5.5 eV is mainly due to transitions near the M k-point
into the two lowest band combinations. Their flatness [see
Fig. 3(e)] gives rise to a strong JDOS and then to a strong
optical signature. The next strong spectral feature in the range
of 7 eV is related to the next interband combinations near the
M and K points. The inclusion of excitonic effects partially
moves back (toward lower energy) the optical absorption edge
and the absorption peaks. A strong bound band-edge exciton
with binding energy as high as 0.55 eV appears at a photon
energy of h̄ω = 1.17 eV for in-plane light polarization. A
second bound exciton peak is visible at h̄ω = 3.9 eV. It mainly
belongs to interband transitions in the QP band structures
between the M and K points of the BZ where the bands are par-
allel. It is resonant with the continuum of optical transitions
at lower energies around the � point (see independent-QP
spectrum). The binding energy of the corresponding excitons
is about 2 eV. The imaginary parts of the in-plane conductivity
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FIG. 3. Real (a), (c) and imaginary part (b), (d) of optical conductivity for g-InN calculated with (BSE-black dotted lines) and without
(GW-red solid lines) exciton effects for light polarization in-plane (a), (b) and out-of-plane (c), (d). The spectra are normalized to the dc
quantum conductivity σ0 = e2

4h̄
of (the real part of) the in-plane conductivity. Panel (e) displays the G0W0 interband structure. The red vertical

arrows indicate pronounced interband transitions. The two horizontal blue-dashed lines indicate the position of the first two strong peaks
in the JDOS.

look similar as the first derivative of the line shape of the real
parts, indicating a pronounced oscillator character of the un-
derlying electron-hole pair excitations. At least for low photon
energies, this fact is underlined by the strong and isolated
excitonic peaks at 1.2 and 3.9 eV, discussed above, which
indeed behave like 1/(Eex-h̄ω-i�ex) in both the imaginary and
real parts of the in-plane optical conductivity.

The 1.17 eV excitation energy of the band-edge exciton
in Fig. 3(a) is much lower than the 1.90 eV of the electron-
hole pairs with binding energy of 0.12 eV in Ref. [27]. This
discrepancy is probably due to the self-consistent treatment
of the Green’s function G in the GW0 approximation in
Ref. [27], because self-consistency tends toward larger gap
energies. In addition, the inclusion of the artificial Coulomb
interaction between the monolayers in the supercell approach
in the VASP code tends to nonconverged results for the QP gap
and for the exciton binding energy [53]. A further but smaller
effect on the different binding energies may be due to the use
of a slightly different lattice constant in the DFT calculations.
This also influences the gap to which we are referring the
exciton peak, and hence the exciton binding energy.

The optical spectra for the out-of-plane light polarization
in Figs. 3(c) and 3(d) are very interesting for the description
of light-matter interaction in the case of nonnormal incidence.
These spectra show a blueshift of the absorption spectra
compared to the excitations in Figs. 3(a) and 3(b) calculated
for in-plane polarization. This is a general tendency found
for optical spectra of low-dimensional systems [54,55] and
is due to strong local-field effects deriving from the strong
inhomogeneity of the system along the normal direction. The
out-of-plane spectra possess onsets about 2 eV higher in ener-
gies due to local-field effects and, especially, allowed optical
transitions in the third interband combination near �. Bound

excitons appear near 3 eV, while pronounced resonant exci-
tations appear somewhat above 4 eV. Therefore, we expect a
significant modification of optical spectra of layered systems,
including InN sheets for grazing incidence and p-polarized
light.

We compare these accurate ab initio results for the
electron-hole pair excitations with what we derived using a
simple analytical model for band edge excitons in 2D systems
as described in Ref. [49]. Using a variational approach for the
model Hamiltonian of excitons in 2D systems, a prediction
for the binding energy Eexc

b and excitonic radius rexc of the
first bound exciton can be found. This model requires only
the 2D sheet polarizability α2D = 4.14 Å and the value of the
reduced exciton effective mass μ = 0.07 m, both achievable
from ab initio DFT calculations. The sheet polarizability
α2D = (ε1(0) − 1)L/4π is computed from the IPA dielectric
function of the superlattice for in-plane polarization in the
limit of vanishing frequencies and vanishing wave vectors
[49]. L is the distance, along the z direction, between two
adjacent supercells. Interestingly, this simple model predicts
an exciton binding energy of Eexc

b = 0.5 eV (Table III), in
very good agreement with the result found from the BSE
calculations of 0.55 eV. The large binding energy of excitons
suggests the applicability of InN nanosheets embedded in 2D
systems with larger gaps (for example GaN) as promising
materials for polariton lasers.

V. BILAYER (b-InN)

We explore the geometric properties of InN bilayer within
the LDA approach. A similar analysis is also performed within
the PBE XC functional, taking into account vdW interaction
(PBE+vdW) between the two layers. We investigate the most
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TABLE II. Interlayer spacings D and binding energies (with
respect to two isolated monolayers) of bilayer stackings. Also elec-
tronic gaps calculated at the LDA and LDA+U level are reported.

Stacking D (Å) Ebind Egap (LDA) Egap (LDA+U)
(meV/Å2) (eV) (eV)

AA’ 2.40 78.83 0.47 1.34
AA 4.02 4.58 0.45 1.27
AB In on In 3.53 10.55 0.43 1.25
AB In on N 2.71 35.05 0.22 0.99

stable stacking sequence comparing the total energy of the
bilayer configurations: (1) AA’ stacking sequence, in which
we have hexagons on top of each other, with the In atom
being above N, (2) AA stacking with In on In, (3) AB Bernal
type configuration with In above N, and (4) AB’ Bernal type
configuration with In on In. The difference in total energy
between two isolated g-InN and the b-InN characterizes the
binding energy between the two monolayers. This is listed
in Table II and demonstrate that the AA’ sequence is ener-
getically most favorable. This can be understood by noticing
that b-InN in the AA’ stacking represents a building block
toward the WZ InN bulk structure. The largest energy gain
is not only due to the vdW attraction of the two layers but
also to the overlap of the pz valence orbitals of In and N,
leading to a weak vertical chemical bond. The energy gain for
AA’ in Table II suggests that experimentally it will be easier
to grow bilayers than monolayers because of the additional
stabilization due to the layer binding energy Ebind of the order

of 80 meV/Å
2
. The others stackings AA, AB (In on In), and

AB (In on N) gain less energy. As a consequence, we find the
smallest layer distance of the two InN monolayers for AA’
among the stackings considered.

Using the LDA (PBE+vdW) framework, we have calcu-
lated the lateral lattice constant a = 3.63 Å (3.73 Å), the
interlayer spacing D = 2.40 Å (2.54 Å), and the in-plane bond
length d = 2.09 Å (2.16 Å) for the equilibrium AA’ sequence.
The in-plane bonding in each InN layer is weakened compared
to the monolayer case (d = 2.03 Å). The weaker intralayer
spacing originates from the additional mixed ionic-covalent
In-N bonds in the stacking direction. Comparing the geomet-
ric characteristics obtained for two different XC functionals,

TABLE III. Isotropic effective masses m∗
e and m∗

h of electrons
and holes from Kohn-Sham bands around the � point. Results within
the 2D excitonic model [49] are also listed: excitonic binding energy
Eexc

b and excitonic radius rexc. The model optical gaps (calculated
as Egap(LDA+U)- Eexc

b ) for the different stacking sequences of InN
bilayer and for monolayer g-InN are also shown.

m∗
e (m) m∗

h (m) α2D (Å) Eopt
gap (eV) Eexc

b (eV) rexc (Å)

AA’ 0.048 0.98 8.87 1.08 0.26 30.0
AA 0.049 0.75 9.79 1.03 0.24 31.5
AB In on In 0.051 0.86 10.17 1.0 0.25 31.2
AB In on N 0.040 0.85 15.57 0.82 0.17 39.4
g-InN 0.083 0.43 4.14 1.14 0.50 17.2
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FIG. 4. The optimized hexagonal atomic structure of b-InN in
the more stable AA’ stacking sequence. The lattice constant a and
the interlayer distance D are indicated. Large (grey) and small (blue)
balls denote In and N atoms, respectively. Band structure of b-InN
within LDA (a), LDA+U (b), and GW approximation (c). The
vacuum level, identified with the energy zero, is displayed as a red
dotted horizontal line.

we can say that the LDA gives reasonable results, in particular
for the interlayer distance.

The electronic band structures of the most stable AA’
stacking of b-InN, calculated along the high-symmetry lines
� → M →K → �, are presented in Fig. 4. On first glance,
the band structures are very similar to those for the monolayer.
The vertical doubling of the unit cell and, hence, the number
of atoms, give rise to a doubling of the number of bands. They
are, however, not degenerate due to the electronic interactions
across the interface between the two monolayers, e.g., the
mutual increase of the screening by image potential effects.
We obtain a LDA direct gap at � of 0.46 eV quasidegenerate
with the indirect gap of 0.47 eV. For the indirect gap, the
VBM occurs at k∗ = (0.4, 0)2π/a at the K� line, while the
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FIG. 5. Real (a) and imaginary part (b) of optical conductivity for b-InN calculated with (BSE-black dashed lines) and without (GW-red
solid lines) exciton effects for light polarization in-plane (a), (b) and out-of-plane (c), (d). The spectra are normalized to the dc quantum
conductivity σ0 = e2

4h̄
. Panel (e) displays the G0W0 interband structure. The red vertical arrows indicate pronounced interband transitions. The

two horizontal blue-dashed lines indicate the position of the first two strong peaks in the JDOS.

lowest unoccupied level appears at �. As for g-InN, no band
inversion occurs.

Since the LDA+U approach has been shown to be a
reasonable approximation both for bulk and for g-InN, we
have performed a LDA+U calculation also for the AA’ b-InN.
The resulting gap in Fig. 4(b) is direct, at �, and amounts to
1.34 eV. The indirect gap k∗� turns out to be 1.44 eV.

Using the G0W0 approximation to calculate the accurate
electronic structure, shown in Fig. 4(c), we obtain a direct �-�
gap of 0.86 eV (see Table I) and an indirect k∗� gap of 1.1
eV. As for g-InN, by applying the G0W0 corrections to the
electronic structure, the almost degeneracy of the two gaps
disappears completely.

Comparing the GW gaps with those obtained within
LDA+U we can affirm that, in contrast to g-InN, for b-InN the
agreement is only qualitative. In both cases, a direct gap semi-
conductor is obtained but, from a quantitative point of view,
the LDA+U approximation overestimates the gaps, probably,
by overestimating the confinement effects in the bilayer case.
As expected, the fundamental band gap decreases going from
monolayer to bilayer due to the minor confinement and larger
screening effects in the direction perpendicular to the layer.
There is a tendency to approach the bulk gap value with an
increasing number of monolayers. However, this tendency is
not monotonous.

In Table II, the gaps for the other stacking sequences stud-
ied within the LDA and LDA+U approaches are listed. For
the AB Bernal type stacking sequence with the indium atoms
on top of nitrogen, we registered a LDA energy gap smaller
than 50% compared to other configurations. Consequently, the
LDA+U gap also has a lower value. The stacking influences
the actual gap value. The bilayer AA’ system is characterized
by an ionization energy I = 5.03 eV (5.67 eV, 5.12 eV) and
an electron affinity A = 4.17 eV (4.33 eV, 4.65 eV) within the

LDA+G0W0 (LDA+U, LDA) approximation. These values
are not too different from electron affinity and ionization
energy of g-InN. While in LDA and LDA+U A and I are
practically independent of the number of layers, within the
GW QP approximation such dependence is restored, due
to the dimensionality-dependent reduced confinement and
screening.

In Fig. 5, the ab initio polarization-dependent optical
conductivities with and without excitonic effects calculated
within the BSE approach are shown. As for g-InN, the inclu-
sion of the electron-hole interaction shifts all spectra toward
lower energy. The first absorption peak of b-InN and normal
incidence in Fig. 5(a) is at 0.42 eV and indicates a binding
energy for the first bound exciton of Eexc

b = 0.44 eV, slightly
less than the binding energy of g-InN but still much higher
than that of the bulk structure (around 5 meV [34]). It is due to
optical transitions into the two lowest interband combinations
near � [see Fig. 5(e)]. A second peak appears at 2.6 eV.
It belongs to transition also near � but into the fifth and
sixth band pairs and is resonant with the continuum of lowest
� − � transitions. The peak around 4.5 eV originates from
transitions between several interband combinations near the K
point. Interestingly, the out-of-plane polarization absorption
in Fig. 5(c) does not show band edge excitons, indicating,
on the first view, seemingly a saddle-point behavior of the
underlying van Hove singularity in the region 1–4 eV related
to higher valence bands and lower conduction bands at � [see
Fig. 5(e)]. However, in Fig. 5(e), the band pairs at � show
an M0 van Hove character. Thereby, the seventh and eighth
band pairs show a vanishing dispersion near �, giving rise to
a strong peak in the joint density of states (JDOS) but not
in the independent-QP spectrum. This observation may be
related to vanishing optical matrix elements for the in-plane
light polarization.
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Since the 2D excitonic model results for group-IV 2D
honeycomb sheets [49] and for g-InN agree very well with
those obtained by the ab initio BSE treatment, we use the
model calculations to evaluate the exciton binding energy and
radius for the different stacking sequences of b-InN. We note
that for the AB In on N stacking (see Table III) the exciton
binding energy is smaller than the AB In on In and AA, AA’
sequences. Consequently, the excitonic radius is larger. The
2D exciton model clearly explains why in bilayer InN the
exciton binding is reduced compared to the monolayer case.
As a consequence of the smaller gap, the very small effective
mass of the electrons is significantly reduced going from 1
ML to the bilayer (see Table III). Simultaneously, the value
α2D of the static polarizability is increased because increased
screening in the presence of a second atomic layer. Both
effects together explain the reduction of the exciton binding
and the increase of the in-plane exciton radius by a factor of 2
going from g-InN to b-InN.

Comparing the full ab initio result for the binding energy
(Table I) with that of the model (Table III), which means
0.44 eV versus 0.26 eV, we note a severe underestimation
of binding energy by the latter compared to the case of the
monolayer. This is due to the fact that this model is suitable for
the study of excitons in 2D systems with vanishing thickness.
In two-layer systems, the 2D limit is less fulfilled.

VI. SUMMARY AND CONCLUSIONS

We have presented a theoretical analysis of InN struc-
tures from bulk to bilayer and to graphenelike single layer.
We studied bulk WZ and ZB structures within the LDA+U
approximation to improve the description of the DFT band
structures of the 3D InN. We found that applying the Hubbard

U correction to both p states of nitrogen and d states of indium,
we recover the correct symmetry and ordering of the energy
levels at the � point of Brillouin zone. For nanoscale InN
we have calculated the band structures within LDA but also
applied LDA+U and GW corrections. In particular, for g-InN
the � − � direct LDA+U gap of 1.64 eV is close to the
many-body GW � − � direct gap of 1.72 eV. We found that
the AA’ bilayer structure is the most stable stacking sequence
in the bilayer case. We obtain a DFT-LDA direct gap at � of
0.47 eV that increases until 1.34 eV with the application of the
Hubbard U correction, while within the G0W0 approximation
we obtain a � − � direct gap of 0.86 eV. We found that going
from one monolayer to the bilayer, the electronic gap almost
halves and remains direct.

By solving the BSE, we obtained the optical spectra of
g-InN and b-InN. Their absorption edges for in-plane light po-
larization are characterized, respectively, by a peak at 1.17 eV
and 0.42 eV of the lowest-bound electron-hole pairs. There
is a tendency that the QP effects and exciton binding energy
compensate each other. For out-of-plane light polarization,
the absorption edges are blueshifted, indicating a significant
influence of light polarization and propagation in the blue
and UV spectral ranges. Finally, we predict extremely small
effective masses for the electrons in the bilayer, independently
of the stacking, thus suggesting that b-InN could be a pre-
cious building block for fast low-dimensional nanoelectronic
devices.
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