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We present an order-N methodology to evaluate mobilities of charge carriers coupled with molecular
vibrations using quantum dynamics based on first-principles calculations that can be applied to micron-scale
soft materials. As a demonstration, we apply it to several organic semiconductors and show that the calculated
intrinsic hole mobilities and their temperature dependences are quantitatively in good agreement with those
obtained in experiments. We also clarified which vibrational modes dominate the transport properties. The
methodology paves the way for quantitative prediction of the transport properties of various soft materials.
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I. INTRODUCTION

The performance of materials used in electronic devices
is characterized by the charge-carrier mobility and its tem-
perature dependence. In particular, for soft materials such
as organic semiconductors [1,2], conductive polymers [3,4],
and biomolecular wires [5], the coupling between electrons
and molecular vibrations, i.e., dynamical disorder, has been
widely recognized as a key factor dominating the charge
transport property. For a wide range of applications of or-
ganic electronics, such as radio-frequency identifier tags
and sensors, the development of new organic semiconduc-
tors with a charge-carrier mobility in excess of 10 cm2/Vs
has been desired [6]. Although some promising organic
semiconductors have been reported, which include pen-
tacene [7], [1]benzothieno[3,2-b][1]benzothiophene (BTBT)
[8], dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT)
[9], and their derivatives, an outstanding issue is to systemati-
cally understand the relationship between the crystal structure
and the intrinsic charge transport properties for each material.
However, the intrinsic mobility is difficult to uniquely de-
termine in experiments. This is because measured mobilities
depend on the employed device architecture and its quality.
Therefore, quantitatively accurate theoretical approaches to
treating and predicting the intrinsic mobility of soft materials
are strongly desired.

When theoretically considering the mechanisms of charge
transport, two conventional models have been widely used: in-
coherent hopping model and coherent band-transport model.
The former is applicable in the case of strong electron-
vibration coupling compared with the intermolecular elec-
tronic coupling, and is described by Marcus theory. The
latter describes the transport of charges weakly coupled with
molecular vibrations. It is difficult to understand the transport
properties using the above conventional models since sev-
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eral experimental studies involving Hall effect measurements
[10–13], electron-spin resonance [14,15], photoelectron spec-
troscopy [16,17], and charge-modulation spectroscopy [18]
indicate the intermediate properties between the hopping and
the band limit. Toward overcoming this problem, some model
studies have recently been reported. A coherent polaron model
assumes that charge carriers dressed by phonon clouds create
the quasiparticle band states and that coherent polarons are
scattered by static disorder [19,20]. A quantum dynamical
approach coupled with molecular dynamics showed that the
localization of charge carriers by the large dynamical disorder
of transfer integrals induced by intermolecular vibrations
plays an important role at room temperature [2,21–25]. A
model Hamiltonian describing both polaron formation and
the dynamical disorder [26] and a flexible surface-hopping
model [27], where decoherent events are introduced into
the quantum dynamics, have also been proposed. These ap-
proaches treat electron-vibration coupling nonperturbatively
beyond the conventional models but have been applied to
one-dimensional models, which is too simple to represent
the electronic and vibronic states of two-dimensional organic
semiconductors. Therefore, evaluation of the intrinsic mobil-
ity with an accuracy comparable to that of experiments is still
a difficult task.

In this paper, on the basis of our previous order-N simu-
lation technique called the time-dependent wave-packet diffu-
sion (TD-WPD) method [28], we propose a numerical method
to obtain accurate mobility of charge coupled with molecular
vibrations for two-dimensional organic semiconductors. The
accuracy can be seen in Table I, listing mobilities of several
organic semiconductors. Essentially, we calculate the hole
mobility of realistic two-dimensional organic semiconductors
from the velocity-velocity correlation function, instead of
the mean-square displacement conventionally used [2,22,23].
Due to this approach, previously known computational diffi-
culties, not only quantitative but also qualitative, have been
overcome.
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TABLE I. Hole mobilities μTDWPD (cm2/Vs) of listed organic
semiconductors at 300 K obtained by the present method. For
comparison, we give the hopping mobilities μhop, band mobilities
μband, and experimentally measured mobilities μexp of the organic
single crystals at room temperature.

Calculations Experiments

μTDWPD μhop [Ref.] μband [Ref.] μexp [Ref.]

C8-BTBT 8.2 0.77 [49] 50a [50] 10 [51]
36 [49] 0–9.1 [52]

3.5–6 [53]
3.5–5 [54]

Ph-BTBT-C10 29.7 – [–] – [–] 13–18 [55]
Pentacene 3.0 2.07 [56] 13 [50] 5.6 [59]

13.8 [57] 4.9 [49]c 5.0 [60]
0.32 [49] 0.6–2.3 [61]
5.37 [46] 2.2 [62]

2.0 [63]
1.9 [64]

0.6–1.4 [65]
0.1–0.5 [66]

0.3 [67]
DNTT 10.4 1.8 [68] 96b [50] 4–9.4 [69]

4–8.3 [70]
2.5–4 [71]

Naphthalene 3.0 1.32 [46] – [–] 1.0 [72]
C10-DNBDT
(stand) 25.0 – [–] – [–] 10–16 [73]
(sleep) 1.5 – [–] – [–] – [–]

aResult for C12-BTBT.
bResult for C10-DNTT.
cReference [58].

II. CALCULATION METHOD

A. Diffusion constants

The mobility of carrier with charge q is obtained from the
following Einstein relation:

μx = qD(v)
x

kBT
, (1)

where T is the temperature. We first calculate the diffusion
constant D(v)

x of a charge carrier along the x direction by
D(v)

x ≡ limt→+∞ D(v)
x (t ) using Kubo’s linear response theory

[29,30]. The D(v)
x (t ) is called time-dependent diffusion coeffi-

cient and was originally defined using the velocity correlation
function as

D(v)
x (t ) ≡ 1

β

∫ t

0
ds

∫ β

0
dλ T r{ρ̂v̂x (−ih̄λ)v̂x (s)}. (2)

Here, the density operator is defined as ρ̂ ≡
exp(−βĤ )/Tr{exp(−βĤ )} using the Hamiltonian for charge
carriers Ĥ and the inverse temperature β ≡ 1/(kBT ). The
velocity operator at time s in the Heisenberg representation
is given by v̂x (s) ≡ Û †(s)v̂xÛ (s), where ih̄v̂x ≡ [Ĥ , x̂] and
Û (s) is the time-evolution operator from the initial time 0
to s. Equation (2) is computed by our previously reported
order-N method [28].

FIG. 1. Time-dependent diffusion coefficients D(v)(t ) (red bold
line) and D(x )(t ) (blue bold line) at 300 K for a simple one-
dimensional model Hamiltonian [22,33]. The vertical line represents
the characteristic time of vibrations 1/ω0. To compare the effects
of dynamical disorder and static disorder (ω0 = 0), the diffusion
coefficients in the presence of static disorder are shown by the broken
lines. Inset: Time-dependent diffusion coefficients D(v)(t ) (red) and
D(x )(t ) (blue) at 300 K for two-dimensional square lattice.

The above D(v)(t ) is often identified with a coun-
terpart, D(x)(t ) defined as the mean-square displacement
[2,22,23,31,32],

D(x)
x (t ) = 1

2

d

dt
(Tr[ρ̂{x̂(t ) − x̂(0)}2]), (3)

where x̂(t ) ≡ Û †(t )x̂Û (t ). It is the case only when a steady-
state condition is fulfilled, otherwise not. Equation (2) can
be rewritten as D(v)

x (t ) = ∫ t

0 ds 〈vx (0)vx (s)〉 using the cor-
relation between the velocities at two different real times
if we regard {v̂x (−ih̄λ)v̂x (s)} to be {v̂x (0)v̂x (s)} [29,30].
In fact, we numerically confirmed that the time-dependent
diffusion coefficient calculated by {v̂x (0)v̂x (s)} agrees with
that by {v̂x (−ih̄λ)v̂x (s)} in a long-time limit. The equality
〈vx (0)vx (s)〉 = 〈vx (t − s)vx (t )〉 is satisfied if the system is
in a steady state. Then, after performing the time integral of∫ t

0 ds 〈vx (t − s)vx (t )〉, we obtain Eq. (3), and thus D(v)(t ) =
D(x)(t ) at longer times under the steady-state condition.

To demonstrate the effectiveness of the present methodol-
ogy, we evaluate the time evolution of the diffusion coeffi-
cients for a simple model [22,33] representing typical organic
semiconductors with Ĥ as a function of γ 0 and ω0, where
the intermolecular transfer integrals γ 0 are modulated by
molecular vibrations with a finite frequency of ω0. Effects of
the dynamical modulations are taken to dynamics of wave
packets through the time-evolution operator Û (t ) in both
approaches by Eqs. (2) and (3). The main (inset) panel in
Fig. 1 shows the result for a one- (two-) dimensional system.
The red and blue bold lines in each show D(v)(t ) and D(x)(t ),
respectively. Obviously, these two behave differently: D(x)(t )
diverges as t → ∞. Note that two quantities in the absence of
dynamical disorder (ω0 = 0), as shown by broken lines, are
decreasing with time passing, and are expected to become a
same value in long-time limit [34]. The negative slope implies
that carriers are scattered backward by the static disorder,
then the diffusion coefficients steadily decrease, showing the
typical behavior of Anderson localization.
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In the presence of dynamical disorder (ω0 > 0), the re-
sults follow Anderson localization behavior at much shorter
timescale t ∼ 1/ω0 since the disorder can be regarded as
static. After that, the dynamical disorder should destroy the
localized states. Ciuchi et al. introduced the transient local-
ization scenario to describe it and characterized the charge
transport of organic semiconductors [22]. In their study, the
diffusion coefficient was evaluated using D(x)(t ), therefore
they suffered from the divergence at the long-time limit, as
shown by the blue line in Fig. 1. They ascribed this divergence
to the progressive heating of the electronic system, owing to
the excess energy being constantly injected by the molecular
vibrations. To evade the divergence and define a diffusion
constant at large t , they introduced an artificial damping
factor in Eq. (3) and obtained a constant value. Note that
an exact treatment of electron-vibration coupling [33] may
eliminate the heating problem but requires an impractically
large computational cost.

On the other hand, D(v)(t ), the original definition of the dif-
fusion coefficient based on the Kubo formalism converges to a
constant value as shown in Fig. 1, without any artificial treat-
ment. The point of qualitatively different behavior between
D(x)(t ) and D(v)(t ) lies in whether the steady-state condition,
〈vx (0)vx (s)〉 = 〈vx (t − s)vx (t )〉, holds or not. This condition
breaks down when the electronic system is constantly heated
by molecular vibrations, and D(x)(t ) ceases from a diffusion
constant [35,36]. As such, the choice of employing D(v)(t ) is
natural and practically useful to avoid the heating problem.

B. Coupling between electrons and molecular vibrations

We apply the present methodology using Eqs. (1) and (2) to
organic semiconductors. The electron propagation in a molec-
ular crystal is determined by its interaction with the inter-
and intramolecular vibrations. To construct a Hamiltonian Ĥ

that properly accounts for these interactions, we must separate
slow from fast interactions with respect to the characteristic
time of electron dynamics [26]. The time for Bloch wave
formation has been estimated to be longer than h/γ 0 � 40 fs
since the bare transfer integrals γ 0 of typical organic semicon-
ductors are smaller than 0.1 eV. The intramolecular vibrations
strongly coupled with the π electron states of a molecule have
frequencies ωintra from 1000 to 1600 cm−1 (0.12 to 0.20 eV)
[37], which correspond to intramolecular carbon stretching
modes. Since these fast interactions arise prior to the forma-
tion of the Bloch wave, they have the effect of dressing the
charge with an intramolecular distortion cloud, consequently
leading to renormalization of the bare transfer integrals, called
the band-narrowing effect, by polaron formation [19,26]. On
the other hand, the intermolecular vibrations, such as the
translational mode of rigid molecules, have a characteristic
time much longer than h/γ 0 because these frequencies ωinter

range from 0 to 100 cm−1 (0 to 0.012 eV). The slow and large
intermolecular vibrations scatter the Bloch waves and induce
transient localization as shown in Fig. 1 [22].

The time-dependent Hamiltonian of a hole coupled with
inter- and intramolecular vibrations is written as

Ĥ (t ) =
∑
N,M

γNM (t )(â†
N âM + â

†
MâN ) +

∑
N

εN â
†
N âN , (4)

where εN represents the energy level of the N th molecular
orbital. The operators âN and â

†
N are the annihilation and

creation operators of a hole at N th orbital. The effective
transfer integrals between the N th and Mth orbitals are given
by

γNM (t ) = αintra{γ 0
NM + αinter

NM (t )
}
, (5)

αinter
NM (t ) =

∑
l,q

�γ inter
NMlq sin

(
ωinter

lq t + q · Rξ + φlq
)
, (6)

where γ 0 represents the bare transfer integral. Here we em-
ploy the all-atom normal-mode analysis beyond the rigid-
molecule approximation. The effects of intermolecular vi-
brations on the transfer integrals are introduced in αinter

NM (t ),
which is given by the harmonic oscillation form containing the
frequency ωinter

lq of lth mode with wave number q, and initial
random phase φlq in Eq. (6). The amplitude of dynamical
fluctuation in transfer integrals is given by

�γ inter
NMlq = g(ωlq)

∂γ 0
NM

∂ulq
�rlq, (7)

where the component of ulq with respect to the nth atom
is defined by elq

n /
√

mn using the eigenvectors elq of the
dynamical matrix and the mass mn of the nth atom. The quan-
tity (∂γ 0

NM/∂ulq) corresponds to the magnitude of electron-
vibration coupling. The amplitude of the displacement is
given by �rlq = √

h̄nlq/2ωlqulq, where nlq is the phonon
number excited at temperature T [38,39]. To take only molec-
ular vibrations slower than the Bloch wave formation into
account, we introduce a filtering function g(ω) [40]. The fast
intramolecular vibrations renormalize the bare transfer inte-
gral by small-polaron formation. The renormalization factor
is obtained as αintra = exp {−(λ/2h̄ωintra ) coth (βh̄ωintra/2)},
where λ and ωintra represent the reorganization energy and
the frequency of the normal mode with the most significant
contribution, respectively [41].

C. Procedure of mobility evaluation

First, we evaluate the bare transfer integrals γ 0 in Eq. (5)
from the experimentally observed crystal structure. The bare
transfer integrals γ 0 can be computed using Wannier [42]
or dimer [37,43,44] methods based on density functional
theory (DFT). Although the Wannier method requiring high
computational cost gives the exact transfer integrals in com-
parison with the low-cost dimer method, we have confirmed
that the difference in transfer integrals is less than 10 meV
[32]. Therefore, to reduce the computational cost, we employ
a dimer method in this paper. We take the highest occu-
pied molecular orbitals (HOMOs) and the second HOMOs
(SHOMOs) as the basis set of Ĥ because we found that the
dispersion at the HOMO band top of some materials is af-
fected by the transfer integrals between HOMO and SHOMO.
We set the orbital energy of isolated single molecule as the
on-site energy ε.

The normal vibrational modes of crystal, ωlq and ulq,
are obtained from the dynamical matrix constructed by the
force field MMFF94s using CONFLEX [45]. The magnitude
of dynamic disorder in transfer integrals induced by the
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molecular vibrations is given by �γ inter in Eq. (7), which
is characterized by the electron-molecular vibration coupling
∂γ 0/∂ulq and the amplitude of molecular vibration �rlq at
temperature T given above. When increasing temperature, the
amplitude �rlq becomes larger, resulting in enhancement of
dynamic disorder in transfer integrals. Here, the quantity of
∂γ 0/∂ulq for each normal vibrational mode can be computed
by numerical differentiation. The λ in αintra is calculated by
the adiabatic potential energy surface method [46] using the
B3LYP/6-31G(d) level derived by GAMESS [47]. We employ
0.15 eV as the typical value of h̄ωintra in this paper [37]. As
a result, we obtain the time-dependent Hamiltonian Ĥ (t ) of
Eq. (4) for charge carrier coupled with molecular vibrations.

Then we evaluate the diffusion constant D(v)
x defined by

Eq. (2) using our order-N simulation technique, called the
TD-WPD method. Finally, the mobility at temperature T is
evaluated using Eq. (1). We employ a monolayer consisting of
200 × 200 unit cells, which corresponds to single crystal with
the area of 120 × 160 nm2 containing 1.6 × 105 molecular or-
bitals in case of C8-BTBT. The carrier dynamics is computed
up to 2 ps with a time step of 0.5 fs.

III. APPLICATION TO ORGANIC SEMICONDUCTORS

First, we evaluate the intrinsic hole mobilities along the
column direction at 300 K using the present TD-WPD method
for single crystals of C8-BTBT [8], Ph-BTBT-C10 [48], pen-
tacene, DNTT [9], and naphthalene, as listed in Table I. Note
that the mobilities reported in the experiments had distribu-
tions to some extent even for single-crystal devices. This is
because the measured mobilities depend on the employed
device architecture and measurement conditions. The calcu-
lated mobilities are in good agreement with those obtained in
experiments and consistent with recently reported theoretical
works [25]. Remarkably, the distinguished character of hole
mobilities of C8-BTBT from Ph-BTBT-C10 is successfully
reproduced in our calculations, as seen in Table I. It is because
the phenyl groups of Ph-BTBT-C10 enhance intermolecular
transfer integrals [74], resulting in higher mobility.

For comparison, the mobilities calculated from two lim-
iting conventional models are listed as μhop and μband in
Table I. The μhop is derived from the incoherent hopping
model based on Marcus theory, [46,75] which assumes that
a carrier creates a small-polaron state on a single molecule
and hops to neighboring molecules without phase coherence.
Marcus theory is applicable for λ/4 
 γ 0, and γ 0 is com-
parable to λ for the organic semiconductors studied here,
which implies that charge carriers are delocalized over a few
molecules. Therefore, we see that the μhop is less than μexp.
On the other hand, μband is derived from the band-transport
model [50], which assumes that coherent Bloch waves are
scattered by intermolecular vibrations. However, Anderson-
localization effect is not included, thus μband is much larger
than μexp.

Then, we take the recently reported molecule,
decyl-substituted dinaphtho[2,3-d:2’,3’-d’]benzo[1,2-b:4,5-
b’]dithiophene (C10-DNBDT) [73], which has two different
crystal phases called the sleep and stand phases. We note
that the mobility of the stand phase has been experimentally
observed but not that of the sleep phase. To account for this,

we calculate the hole mobility of the sleep phase using the
experimentally obtained single-crystal structure and find that
the sleep phase has a much lower mobility of 1.5 cm2/Vs
than that of 25.0 cm2/Vs for the stand phase as shown in
Table I. A sizable difference between the two phases would
draw attention. An experimental result for the sleep phase
should be awaited.

To investigate origins of the difference in magnitude of
mobility among these materials, we show the HOMO band
structures for C10-DNBDT (stand), C8-BTBT, pentacene, and
C10-DNBDT (sleep) in Figs. 2(a)–2(d), respectively. Here
the band structures are calculated in case of no electron-
molecular-vibration couplings (αinter = 0 and αintra = 1). The
mobilities are computed along the column direction shown by
the blue arrow in the inset of Fig. 2(e), which corresponds to
the �–X and S–Y direction in reciprocal lattice space. The
results show that electronic states of C10-DNBDT (sleep) can
be regarded as a one-dimensional system along the column
direction, while C10-DNBDT (stand) is a nearly isotropic
two-dimensional electronic system. In general, localization
effects induced by disorder are enhanced in a one-dimensional
system rather than a two-dimensional system, which is consis-
tent with time-dependent behavior of D(v)(t ) as discussed be-
low. Therefore, the mobility of C10-DNBDT (sleep) becomes
much lower than that of C10-DNBDT (stand). An origin
of large difference in magnitude of mobility between C10-
DNBDT (stand) and C10-DNBDT (sleep) can be explained by
the difference in dimensionality.

C10-DNBDT (stand) and C8-BTBT have similar isotropic
two-dimensional systems with respect to the electrons and
the molecular vibrations, resulting in high mobilities with
bandlike transport property. It is hard to show an origin of
the relatively small difference in magnitude of mobilities
between both materials, because the transfer integrals γ 0, the
molecular vibrations hω, and the dynamic disorder �γ inter

are of similar energetic order of a few 10 to 100 meV. Such
relatively small difference in mobility ascribes to a delicate
balance among these quantities.

Next, we move to discussion of temperature dependence
of the hole mobilities. In Fig. 2(e), we present both the
experimental and computational results, which show power-
law behavior for C10-DNBDT (stand) and C8-BTBT while
thermally activated behavior for C10-DNBDT (sleep) [76].
The power-law exponents of C10-DNBDT (stand) and C8-
BTBT are −0.88 and −1.44, in very good agreement with
the experimental values of −0.85 and −1.1, shown in open
symbols, respectively [52,77]. In contrast to those above,
single-crystal pentacene is known to exhibit an intermediate
character between hopping and band transport, resulting in
temperature-independent mobility [66]. The present simula-
tions also successfully reproduce this behavior, as shown in
Fig. 2(f) in the temperature range from 200 to 300 K.

To clarify the origin of the different temperature depen-
dences of the mobility for these materials, we investigate the
time-dependent behavior of D(v)(t ). Figure 2(g) shows the
calculated results for pentacene, C8-BTBT, and the stand and
sleep phases of C10-DNBDT. The transient localization be-
havior for C10-DNBDT (sleep) is clearly observed, resulting
in the thermally activated behavior of low mobility. On the
other hand, we cannot observe the negative slope of D(v)(t )
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FIG. 2. (a)–(d) Calculated HOMO band structure with symmetry points of �(0, 0, 0), X(1/2, 0, 0), Y (0, 1/2, 0), S(1/2, 1/2, 0) for C10-
DNBDT (stand), C8-BTBT, pentacene, and C10-DNBDT (sleep), respectively. The origin of energy axis is set to the on-site energy (HOMO
energy level). (e) Thermally activated μTDWPD of C10-DNBDT (sleep) and power-law temperature dependence of μTDWPD of C10-DNBDT
(stand) and C8-BTBT, shown by solid circles. The different crystal structures of the C10-DNBDT polymorphs are shown in the insets. The
alkyl side chains are omitted for visibility. The mobilities are calculated along the column direction shown by the arrow. The activation energy
of the mobility for C10-DNBDT (sleep) is estimated to be 9.5 meV. The experimental data points for C10-DNBDT (stand) and C8-BTBT are
shown by circles [77] and squares [52], respectively. (f) Temperature-independent μTDPWD of pentacene shown by solid circles. The μband

[49,58] and μhop [49] are represented by gray curves. The experimental data are plotted by diamonds [61] and triangles [66]. (g) Calculated
time-dependent diffusion coefficients D(v)(t ) at 300 K for pentacene, C8-BTBT, and the stand and sleep phases of C10-DNBDT.

for C10-DNBDT (stand) and C8-BTBT. Their time-dependent
behaviors of D(v)(t ) resemble those of ideal band transport,
but we confirm that the HOMO band-edge states are spatially
localized by the large dynamical disorder, owing to the in-
termolecular vibrations. Therefore, the calculated μTDWPD of
C8-BTBT is lower than the μband.

As discussed above, evaluations of the dynamical disorder
is important to understand the intrinsic transport properties
of organic semiconductors. Here, we employ C10-DNBDT
(stand) as an example of a promising material with high
mobility, and investigate which intermolecular vibrational
modes induce the large dynamic disorder. The magnitude of
the modulation by lth mode with the momentum q is evaluated
using �γ inter

NMlq given by Eq. (7). Figure 3 shows �γ inter
NMlq=0

for the C10-DNBDT (stand) dimer surrounded by the broken
ellipse in the inset of Fig. 2(e). Two translational vibrations
of the core part of the molecule, namely the out-of-plane
mode (2.0 meV) and in-plane mode (0.4 meV), significantly
modulate the transfer integrals, �γ inter

ω=2.0meV ≈ 14 meV, and
�γ inter

ω=0.4meV ≈ 10.5 meV, respectively. These dynamical dis-
orders �γ reach the same energetic order of the bare transfer

FIG. 3. Amplitudes of vibrating transfer integrals of C10-
DNBDT (stand) induced by the molecular vibrations with the fre-
quencty hωinter

lq=0 at 300 K. Red arrows in the schematic molecular
structures represent the normal-mode coordinates with its frequen-
cies hωinter

lq=0.
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integral γ 0 of 46 meV, which is enough to induce transient
localization even in high-mobility materials with bandlike
transport property. Therefore, it is considered that pure band-
transport theory, where the dynamical disorder is treated as
perturbatively, overestimates the intrinsic hole mobility. Fur-
thermore, we found that the out-of-plane mode and in-plane
mode are commonly significant for the other organic semicon-
ductors studied here. We confirm that the result for pentacene
is consistent with previous theoretical work [37]. Note that
the rotational modes (0.2 meV), bending modes (1.9 meV),
and the other modes also have a nonnegligible impact on
the transfer integrals. This implies that when quantitatively
evaluating the mobility, the all-atom normal mode analysis,
instead of the rigid-body molecular dynamics well used in
previous studies [2,21–23,31,32], should be required.

IV. SUMMARY

In summary, we presented an order-N methodology for
the quantitative evaluation of mobility using a wave-packet
dynamical approach based on DFT that can be applied to
soft materials. As a demonstration, we investigated the in-
trinsic hole mobilities of several organic semiconductors. We
confirmed that the calculated mobilities and their temperature

dependences are quantitatively in good agreement with those
obtained in experiments. The essence of the requirements
to quantitatively evaluate mobility is employing the proper
computation method of diffusion coefficient defined using
the velocity correlation function. Moreover, quantitatively
accurate evaluations of both two-dimensional transfer-integral
networks based on DFT and effects of dynamic disorder
induced by all phonon modes on the electronic states are
also required. Since our methodology enables quantitative
prediction of the transport properties of various soft materials
using first-principles calculations, we believe that it becomes
a powerful tool when developing new materials.
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