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Degenerate four-wave mixing in nonlinear resonators comprising two-dimensional materials:
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Two-dimensional (2D) or sheet materials have been recently recognized as fascinating materials for nonlinear
photonics. Here, we develop a rigorous mathematical framework based on perturbation theory and temporal
coupled-mode theory capable of analyzing third-order, χ (3), multichannel nonlinear processes in resonant
systems comprising 2D materials. The framework is applied to model degenerate four-wave mixing in a
guided-wave graphene plasmon-polariton resonant structure, consisting of a standing-wave resonator directly
coupled to access waveguides. The results obtained with the proposed framework are compared with full-wave
finite-element simulations revealing excellent agreement. Aside from being accurate and efficient, our framework
allows for selectively incorporating different nonlinear phenomena, identifying their unique impact on the
nonlinear response and providing valuable physical insight. We are, thus, able to specify the optimal operating
point leading to maximum conversion efficiency for the generated wave in a multiparameter space. In addition,
we identify unstable operating regimes exhibiting optical bistability or limit cycles, thoroughly characterizing
the component performance. Our framework enables the study of diverse multichannel phenomena (frequency
generation, frequency mixing, and parametric amplification) in the thriving field of 2D material photonics, thus
allowing for assessing the potential of these exciting materials for practical nonlinear applications.
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I. INTRODUCTION

Four-wave mixing (FWM) and its more popular variant,
degenerate four-wave mixing (DFWM), which entails the in-
teraction of two input waves, are invaluable third-order, χ (3),
nonlinear processes for obtaining efficient frequency mixing,
achieving parametric amplification of an existing wave, or
generating optical frequency combs. First observed theoreti-
cally and experimentally in nonlinear optical fibers [1], FWM
has also witnessed a surge of activity in nanophotonic waveg-
uide structures [2–4] and resonant systems [5,6]. Especially in
the latter, FWM has gathered considerable attention due to the
intensity buildup allowing for high conversion efficiency with
moderate input power, their small footprint (especially ring
resonators), and the fact that the phase-matching condition can
be inherently satisfied by the resonator spectrum. Realizations
in a variety of photonic platforms have been successfully
demonstrated with standard manufacturing techniques and
monolithic integration [7–11].

Thus far, mainly bulk nonlinear materials have been in-
corporated in resonator structures to introduce nonlinearity.
In resonant systems with bulk nonlinearity, multichannel
processes, such as second- and third-harmonic generation,
and degenerate four-wave mixing, can be efficiently studied
with a coupled-mode theory (CMT) framework, as shown
with photonic crystal structures [11–15]. However, atomically
thin 2D materials (most notably graphene [16], transition
metal dichalcogenides [17], hexagonal boron nitride [18],
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black phosphorus [19], etc.) have been recently recognized as
fascinating materials for photonics and nonlinear applications
[20]. In fact, the most popular 2D material, graphene, has
been examined for harmonic frequency generation and wave
mixing in free-space photonics [21–24], revealing its highly
nonlinear electromagnetic response in combination with its
unique linear properties [25–28]. Capitalizing on the capa-
bility of integrating and dynamically controlling graphene in
photonic chips [29], theoretical and experimental works have
recently appeared in the literature demonstrating guided-wave
components, spanning from graphene-covered waveguides
[30,31] to graphene-covered photonic crystal resonators [32]
and silicon rings [33], all focusing on the manifestation of
efficient four-wave mixing enabled by the extreme nonlin-
earity of graphene. Still, an efficient and flexible numerical
tool that can model multichannel nonlinear processes in res-
onant structures comprising 2D materials is missing from the
literature.

In this work, we construct a strict mathematical frame-
work that can accurately and efficiently analyze frequency
generation and wave-mixing phenomena in such structures,
allowing to obtain useful design rules and physical insight.
Our framework is based on perturbation theory and coupled-
mode theory, in direct analogy with our previous works on
single-channel phenomena like self-phase modulation (SPM),
two-photon absorption, optical bistability, and saturable ab-
sorption [34–36]. It allows for treating 2D materials as in-
finitesimally thin, avoiding erroneous results associated with
effective bulk material representations. Importantly, we also
take into account material dispersion in the linear properties
since graphene, for example, is highly dispersive, which has
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been proven to significantly affect the linear and nonlinear
response of resonant devices [34].

Using a simple, yet representative, example of a graphene-
based standing-wave resonator in the THz frequency band, we
highlight the accuracy of the developed framework by com-
paring with full-wave simulations. Furthermore, we elegantly
use CMT to identify the optimal operating point leading to
maximum conversion efficiency in a multiparametric space,
paving the way for the design of more advanced photonic
resonant devices. Finally, the capability of the framework
to treat system instabilities, such as optical bistability and
limit cycles, is demonstrated as part of the thorough device
performance analysis.

II. MULTICHANNEL THEORETICAL FRAMEWORK FOR
NONLINEAR RESONATORS COMPRISING

2D MATERIALS

We first construct a theoretical framework capable of han-
dling multichannel nonlinear processes in resonant structures

comprising bulk and sheet nonlinear materials. The frame-
work is based on two pillars: perturbation theory [37] and
temporal coupled-mode theory [38,39]. It combines a number
of advantageous characteristics: it is highly accurate, it is
computationally efficient, it allows for incorporating diverse
nonlinear phenomena as well as studying a multitude of
nonlinear processes, and it captures in depth the underlying
physics providing valuable physical insight.

A. Perturbation theory for resonators with
nonlinear 2D materials

In resonant structures with relatively weak nonlinearities,
perturbation theory can be used to estimate the effect of
nonlinearity on the resonance characteristics (resonance fre-
quency, quality factor) of the cavity [37]. In the case of
a single cavity comprising bulk and sheet (2D) nonlinear
materials, the nonlinear frequency shift of a d-dimensional
system is given by [34]

�ω

ω0
= −

∫
PNL · E∗

0d
dr − j

1

ω0

∫
JNL · E∗

0d
d−1r∫

ε0
∂{ωεr (ω)}

∂ω
E0 · E∗

0d
dr +

∫
μ0H0 · H∗

0d
dr +

∫
∂σ

(1)
Im (ω)

∂ω
E0 · E∗

0d
d−1r

, (1)

where �ω is, in general, complex, incorporating the effect
of nonlinear losses. In Eq. (1), PNL stands for the nonlinear
polarization, corresponding to dielectric bulk nonlinearities,
and JNL for the nonlinear surface current density. Both terms
can be exploited to model single-channel effects (self-phase
modulation, optical bistability, self-pulsation) as well as mul-
tichannel processes such as cross-phase modulation (XPM),
third-harmonic generation (THG), and four-wave mixing. The
JNL term allows for naturally treating conductive nonlinear
2D materials, such as graphene. In addition, the denominator
in Eq. (1) is proportional to the stored energy in the cavity.
It comprises dispersive electric energy and magnetic energy
terms as well as an extra term representing the energy stored
in the surface current density due to the dispersive imaginary
part of the electrical conductivity [34]. This term is important
when highly dispersive conductive materials are considered
such as graphene in the THz.

To specifically introduce SPM, XPM, and DFWM in the
framework, we assume three waves with frequencies ω1, ω2,
and ω3 = 2ω1 − ω2 (frequency-matching condition) and seek
the third-order nonlinear polarization and surface current den-
sity terms in the time domain

PNL = ε0χ
(3) | EEE, (2a)

J NL = σ (3) | EEE . (2b)

The tensorial nature of the linear relative permittivity and
linear electrical conductivity is hereafter omitted by replacing
the superscripts in the notation with the respective subscripts.
As a result, the presented analysis stands for isotropic bulk and

isotropic 2D materials that solely interact with the tangential
electric field components: Jk = (σ1,Re + jσ1,Im )Ek,‖.

To proceed, we substitute E = Re{E1 exp(jω1t ) +
E2 exp(jω2t ) + E3 exp(jω3t )} in Eqs. (2). In the frequency
domain, the nonlinear surface current density, in the general
case, can be expressed as

JNL,μ(ωk + ω� + ωm) = 1

4

∑
αβγ

σ
(3)
μαβγ Ek,αE�,βEm,γ , (3)

where k, �,m = {1, 2, 3} and μ, α, β, γ = {x, y, z}. In case
of negative frequencies in Eq. (3), the respective electric field
component should be replaced by its complex conjugate, i.e.,
−ωk ↔ E∗

k,α . A similar equation stands for the nonlinear
polarization term, not presented for brevity.

In the most common approach which is also the one
examined here, polarization nonlinearities are assumed
isotropic [χ (3)

μαβγ = χ3(δμαδβγ + δμβδαγ + δμγ δαβ )/3], while
the equivalent isotropic condition is applied for the non-
linear surface current density of the nonlinear 2D material
[σ (3)

μαβγ = σ3(δμαδβγ + δμβδαγ + δμγ δαβ )/3, with μ, α, β, γ

restricted to the tangential directions and δμα standing for
the Kronecker delta] [28,40,41]. Then, the nonlinear current
density terms are expressed as

JNL(ωk ) = JSPM(ωk ) + JXPM(ωk ) + JDFWM(ωk ). (4)

The nonlinear currents due to SPM (ωk = ωk − ωk + ωk) and
XPM (ωk = ωk − ω� + ω� = ωk − ωm + ωm) are calculated
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equal to

JSPM(ωk ) = 1
4σ3[2(Ek,‖ · E∗

k,‖)Ek,‖ + (Ek,‖ · Ek,‖)E∗
k,‖], (5a)

JXPM(ωk ) = 1
4σ3[2(E�,‖ · E∗

�,‖)Ek,‖ + 2(Ek,‖ · E�,‖)E∗
�,‖ + 2(Ek,‖ · E∗

�,‖)E�,‖]

+ 1
4σ3[2(Em,‖ · E∗

m,‖)Ek,‖ + 2(Ek,‖ · Em,‖)E∗
m,‖ + 2(Ek,‖ · E∗

m,‖)Em,‖]. (5b)

Furthermore, new waves are generated in all three frequencies ω1 = −ω1 + ω2 + ω3, ω2 = 2ω1 − ω3, and ω3 = 2ω1 − ω2

due to paired nonlinear interactions, expressed in the here examined conventional DFWM as

JDFWM(ω1) = 1
4σ3[2(E2,‖ · E3,‖)E∗

1,‖ + 2(E∗
1,‖ · E3,‖)E2,‖ + 2(E∗

1,‖ · E2,‖)E3,‖], (6a)

JDFWM(ω2) = 1
4σ3[2(E1,‖ · E∗

3,‖)E1,‖ + (E1,‖ · E1,‖)E∗
3,‖], (6b)

JDFWM(ω3) = 1
4σ3[2(E1,‖ · E∗

2,‖)E1,‖ + (E1,‖ · E1,‖)E∗
2,‖]. (6c)

The respective polarization terms have entirely similar expressions, not presented here for brevity, with the tangential electric
field being replaced by the full field vector.

By substituting Eqs. (5), (6), and the respective polarization terms in Eq. (1), we can calculate the full nonlinear frequency
shift �ωk , experienced by the three resonance modes ω1, ω2, and ω3, that SPM, XPM, and DFWM effects introduce

�ω1a1 = −γ11|a1|2a1 − 2γ12|a2|2a1 − 2γ13|a3|2a1 − 2β1a
∗
1a2a3, (7a)

�ω2a2 = −γ22|a2|2a2 − 2γ21|a1|2a2 − 2γ23|a3|2a2 − β2a
2
1a

∗
3 , (7b)

�ω3a3 = −γ33|a3|2a3 − 2γ31|a1|2a3 − 2γ32|a2|2a3 − β3a
2
1a

∗
2 , (7c)

where ak is the resonance amplitude, normalized so that |ak|2 ≡ Wres,k represents the energy stored in the cavity. To obtain
Eqs. (7), the normalizations Ek → Ekak (t )/

√
Wres,k and Hk → Hkak (t )/

√
Wres,k are introduced [12]. The nonlinear coefficients

γk� and βk (including both bulk and sheet contributions), describing SPM/XPM and FWM effects, respectively, are given by

γk� = 4

(
ωk

c0

)d

ωkc0κk�,bn
max
2 +

(
ωk

c0

)d+1

κk�,s

σ max
3,Im

ε2
0

, (8a)

βk = 4

(
ωk

c0

)d

ωkc0κ
DFWM
k,b nmax

2 +
(

ωk

c0

)d+1

κDFWM
k,s

σ max
3,Im

ε2
0

, (8b)

with the dimensionless nonlinear feedback parameters for bulk materials [14,34,39,42] calculated through

κkk,b =
(

c0

ωk

)d

1

3

∫
n2n2(2|Ek|4 + |Ek · Ek|2)ddr

16

ε2
0

W 2
res,kn

max
2

, (9a)

κk�,b =
(

c0

ωk

)d

1

3

∫
n2n2(|Ek|2|E�|2 + |Ek · E�|2 + |Ek · E∗

� |2)ddr

16

ε2
0

Wres,kWres,�n
max
2

, (9b)

κDFWM
1,b =

(
c0

ω1

)d

1

3

∫
n2n2[2(E∗

1 · E3)(E∗
1 · E2) + (E∗

1 · E∗
1 )(E2 · E3)]ddr

16

ε2
0

Wres,1W
1/2
res,2W

1/2
res,3n

max
2

, (9c)

and for sheet materials through

κkk,s =
(

c0

ωk

)d+1

∫
σ3,Im(2|Ek,‖|4 + |Ek,‖ · Ek,‖|2)dd−1r

16

ε2
0

W 2
res,kσ

max
3,Im

, (10a)

κk�,s =
(

c0

ωk

)d+1

∫
σ3,Im(|Ek,‖|2|E�,‖|2 + |Ek,‖ · E�,‖|2 + |Ek,‖ · E∗

�,‖|2)dd−1r

16

ε2
0

Wres,kWres,�σ
max
3,Im

, (10b)
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κDFWM
1,s =

(
c0

ω1

)d+1

∫
σ3,Im[2(E∗

1,‖ · E3,‖)(E∗
1,‖ · E2,‖) + (E∗

1,‖ · E∗
1,‖)(E2,‖ · E3,‖)]dd−1r

16

ε2
0

Wres,1W
1/2
res,2W

1/2
res,3σ

max
3,Im

. (10c)

The SPM contribution is enclosed in the κkk nonlinear feedback parameters, while XPM is described by κk� and DFWM by
κDFWM

k . Two-photon absorption (TPA) is considered negligible at THz frequencies. It is important to note that κk� are by definition
real [resulting also in real γk� in the absence of nonlinear losses, which is the case of Eq. (8)]; however, κDFWM

k (βk) are in general
complex. Furthermore, it holds that

κDFWM
1,b =

(
ω2

ω1

)d(
κDFWM

2,b

)∗ =
(

ω3

ω1

)d(
κDFWM

3,b

)∗
, (11a)

κDFWM
1,s =

(
ω2

ω1

)d+1(
κDFWM

2,s

)∗ =
(

ω2

ω1

)d+1(
κDFWM

3,s

)∗
, (11b)

for bulk and sheet materials, respectively. The aforementioned equalities are reflected in the nonlinear DFWM parameters βk ,
i.e., it holds,

β1,b

ω1
= β∗

2,b

ω2
= β∗

3,b

ω3
, (12a)

β1,s = β∗
2,s = β∗

3,s . (12b)

Finally, the stored energy in the cavity at each frequency consists of three terms [34] and is given by

Wres,k = 1

4

∫
∂{ωε0εr}

∂ω

∣∣∣∣
ω=ωk

|Ek|2ddr + 1

4

∫
μ0|Hk|2ddr + 1

4

∫
∂σ1,Im

∂ω

∣∣∣∣
ω=ωk

|Ek,‖|2dd−1r. (13)

B. Multichannel temporal coupled-mode theory

The nonlinear resonance frequency shifts �ωk in Eqs. (7) can be readily incorporated in the CMT framework. Assuming that
the three examined frequencies lie in the vicinity of three separate resonances of a directly coupled standing-wave cavity, we can
write the amplitude rate equations as

da1

dt
= j (ω1 − γ11|a1|2 − 2γ12|a2|2 − 2γ13|a3|2)a1 − j2β1a

∗
1a2a3 −

(
1

τi,1
+ 1

τe,1

)
a1 +

√
1

τe,1
sin,1, (14a)

da2

dt
= j (ω2 − 2γ21|a1|2 − γ22|a2|2 − 2γ23|a3|2)a2 − jβ2a

2
1a

∗
3 −

(
1

τi,2
+ 1

τe,2

)
a2 +

√
1

τe,2
sin,2, (14b)

da3

dt
= j (ω3 − 2γ31|a1|2 − 2γ32|a3|2 − γ33|a3|2)a3 − jβ3a

2
1a

∗
2 −

(
1

τi,3
+ 1

τe,3

)
a3 +

√
1

τe,3
sin,3, (14c)

where τi, τe are the cavity photon lifetimes corresponding
to intrinsic (resistive and radiation) and external (coupling)
loss, with the respective quality factors given by Q = ωτ/2.
In addition, the output (transmitted) and reflected waves are
calculated through [43]

sout,k =
√

1

τe,k

ak, (15a)

sref,k = −sin,k +
√

1

τe,k

ak, (15b)

respectively, where s are normalized so that |s|2 expresses
the guided power. Other type of resonators and/or coupling
schemes may be easily incorporated by using the appropriate
driving term sin and the corresponding equation for the output
waves [38]. The temporal CMT framework of Eqs. (14)
describes the temporal evolution of the stored energy in a

resonant system. In straight analogy, there is a spatial CMT
framework, where space is the dynamic parameter instead of
time, which can describe the spatial evolution of the guided
power in guided-wave systems. Such a framework has been
proposed in Ref. [30] for graphene-comprising, silicon-based
waveguides.

Typically, no input wave is introduced in DFWM at the
generated frequency ω3, i.e., sin,3 = 0. Nevertheless, we in-
clude this parameter in the CMT equations to allow for the
general case, also referred to as parametric amplification. Fur-
thermore, we note that for an uncoupled and lossless system
after ignoring SPM and XPM, the conservation of energy in
Eqs. (14) yields

2β1 = β∗
2 + β∗

3 . (16)

Since losses, SPM, and XPM are independent of DFWM,
Eq. (16) still holds for the full nonlinear system. This is also
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confirmed by the definitions of the nonlinear parameters βk ,
Eqs. (8)–(10).

Equations (14) and (15) are usually normalized with re-
spect to the phenomenon under study. Here, we choose to
normalize with respect to the β3a

2
1a

∗
2 term [44], i.e., the result

of the DFWM process. Thus, we define

ũk = √
τe,3|β3|ãk, (17a)

ψ̃k =
√

τ 2
e,3|β3|s̃k, (17b)

and t ′ = t/τe,3, while we let ak (t ) = ãk (t ) exp{jω
op
k t} and

sk (t ) = s̃k (t ) exp{jω
op
k t}, marking with ω

op
k the operating fre-

quency of the kth wave that is in general different from
the respective resonance frequency of the cavity; obviously,
ω

op
3 = 2ω

op
1 − ω

op
2 , as dictated by the mixing process. The

above normalization implies that the input/output wave power
is normalized with respect to the characteristic power

P3 = 1

τ 2
e,3|β3|

(18)

of the system. The normalization eventually leads to

τe,k

τe,3

dũk

dt ′
= j (−δk − rSPM,k|ũk|2 − rXPM,k�|ũ�|2 − rXPM,km|ũm|2)ũk − jrDFWM,k�k (ũ1, ũ2, ũ3) − (1 + rQ,k )ũk +

√
τe,k

τe,3
ψ̃in,k,

(19a)

ψ̃out,k =
√

τe,3

τe,k

ũk, (19b)

ψ̃ref,k = −ψ̃in,k +
√

τe,3

τe,k

ũk. (19c)

The normalization parameters appearing in Eqs. (19) are as
follows:

(i) the resonance frequency detuning δk = (ωop
k − ωk )τe,k ,

(ii) the quality factor ratio rQ,k = τe,k/τi,k ,
(iii) the SPM intensity ratio rSPM,k = γkkτe,k/(|β3|τe,3),
(iv) the XPM intensity ratio rXPM,k� = 2γk�τe,k/(|β3|τe,3),
(v) the DFWM intensity ratio rDFWM,k = βkτe,k/(|β3|τe,3).

Note that rDFWM,3 �= 1, in contrast to what one might expect,
since this parameter quantifies the contribution of both the real
and imaginary parts of β3. Nevertheless, it turns out that only
the absolute value of rDFWM,3 (which always equals unity)
affects the intensity of the produced wave. Finally, we have
introduced for brevity the function �k (ũ1, ũ2, ũ3), defined as

�k (ũ1, ũ2, ũ3) =

⎧⎪⎨
⎪⎩

2ũ∗
1ũ2ũ3, k = 1

ũ2
1ũ

∗
3, k = 2

ũ2
1ũ

∗
2, k = 3.

(20)

III. DEGENERATE FOUR-WAVE MIXING IN A
GRAPHENE PLASMON-POLARITON RESONATOR

Next, we utilize the developed framework to study degen-
erate four-wave mixing in a graphene-based standing-wave
resonator in the THz band. The resonator is formed by an
infinitely wide graphene strip of length L, coupled with two
graphene sheets, serving as the feeding waveguides, through
coupling gaps of length g (Fig. 1). Due to the uniformity along
the z axis, the structure is studied using 2D electromagnetic
simulations. The linear properties of graphene are modeled
using the Kubo formula [28], applied for a Fermi level of μc =
0.3 eV, rendering the intraband transitions the sole absorption
process due to the low photon energy at THz frequencies. Tak-
ing into account the strong Drude-type dispersion of the linear
conductivity is essential for correctly estimating the quality
factor and the free-spectral range (FSR) of the resonator as
well as the extra stored energy due to the surface current [34]

[Eq. (13)]. Note that the nonlinear conductivity of graphene
also exhibits dispersion (∝ ω−3) [25,34].

Before utilizing the CMT framework [Eqs. (19)] for study-
ing the nonlinear response, we should specify the coefficients
entering in the rate equations, i.e., the linear resonance char-
acteristics of the cavity as well as the nonlinear feedback
parameters [Eqs. (10)]. This is performed by conducting linear
eigenvalue simulations with the finite element method (FEM)
using COMSOL MULTIPHYSICS®. For the proposed structure, we
choose to work with high-order modes to limit radiation loss
and more specifically the 11th (ω3, idler), 12th (ω1, pump),
and 13th (ω2, signal) order modes of an L = 72 μm resonator.
In Fig. 2, the Ex components of the resonance modes along
with the resonance frequencies (lying around 5 THz) and

FIG. 1. Graphene plasmon-polariton standing-wave resonator of
length L, directly coupled with two semi-infinite graphene sheets,
serving as the input/output waveguides through coupling gaps of
length g. The nonlinear mixing of signal and pump waves generates
a third wave (idler) through the DFWM process. Pale-colored waves
carry comparable power with bright-colored waves but they are not
presented in any illustration of the paper. In addition, the pale-colored
backward propagating idler wave at ω3 is not accounted for when
calculating the conversion efficiency [Eq. (21)].
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FIG. 2. Field plot (Ex component) of the resonance mode pro-
files supported by the graphene plasmon-polariton resonator. (a) m =
12 (pump wave), (b) m = 13 (signal wave), and (c) m = 11 (idler
wave). It is noted that the three resonance frequencies are not exactly
frequency matched (ω3 �= 2ω1 − ω2) due to material dispersion.

the respective intrinsic quality factors are depicted. Note that
the correct estimation of the intrinsic quality factor is per-
formed by using its definition Qi,k=ωkWres,k/(Pres,k+Prad,k )
in a coupled eigenvalue problem, after appropriately limit-
ing the integration domain of the numerator to exclude the
energy stored in the bus waveguides and also limiting the
integration domain of the denominator to exclude radiation
outflow from the waveguides’ ports. This calculation is more
accurate than using an uncoupled eigenvalue problem to es-
timate Qi since a significant part of the radiation couples
with the bus waveguide being, after all, part of the coupling
(external) loss. Moreover, the energy in the numerator is
calculated using Eq. (13) to correctly take into account the
dispersion in graphene, which if neglected, would have led to
Q factors equal to approximately half of the correct value.
Quality factors calculated using this approach result in ex-
cellent reconstruction of the Lorentzian-shaped transmission
curves obtained by linear time-harmonic simulations. This
validates as well that the incident power couples efficiently
(without significant radiation leakage from the waveguide)
to the resonant mode, i.e., the coupling process between
input waveguide and resonator is almost free from scattering
losses, something that is attributed to the small coupling
gaps and the geometric similarity between their cross sec-
tions. Accordingly, the coupling losses are calculated from
the same eigenvalue problem using the respective definition
Qe,k = ωkWres,k/Pext,k and, as expected, depend on the cou-
pling gap g. Pext represents the guided power on both waveg-
uides and is calculated by appropriately integrating the power
density of the supported surface-plasmon modes. For g =
1 μm, the external quality factors are found equal to Qe,1 =
326, Qe,2 = 386, and Qe,3 = 267, resulting in quality fac-
tor ratios rQ,1 = 0.36, rQ,2 = 0.41, and rQ,3 = 0.33, respec-

FIG. 3. Conversion efficiency of the DFWM process for the
depleted (black dashed curve) and the undepleted pump cases (CMT:
blue solid curve, FEM: red markers). Depleted and undepleted
pump calculations agree well for input powers as high as pin,1 = 1.
CMT and full-wave calculations for the undepleted pump case are
in excellent agreement, validating the developed framework. Self-
and cross-nonlinear resonance frequency shifts have been neglected
(γk� = 0 in the CMT context).

tively. Since the characteristic power is inversely proportional
to the external quality factor, higher-Qe values (larger gaps)
would lead to lower power requirements. Nevertheless, they
also lead to higher-rQ values, suppressing the maximum out-
put on resonance (being optimal for rQ = 0), thus limiting the
overall performance. Finally, κDFWM

3,s = 0.3044 + j0.0098,
resulting in a characteristic power of P3 = 0.606 mW/μm.

In order to validate the results obtained with the CMT
framework, a second simulation strategy is introduced. Two
linear harmonic propagation problems are solved at the res-
onant frequencies ω

op
1 = ω1 and ω

op
2 = ω2 and the resulting

field distributions are used to specify a surface current source
term on graphene through Eq. (6c). In turn, this nonlin-
ear source term drives a third time-harmonic propagation
simulation at ω

op
3 = 2ω

op
1 − ω

op
2 [23]. In general, ω

op
3 �= ω3,

reflecting a nonideal frequency-matching condition. This can
be due to material dispersion, as in our case, waveguide
dispersion (when a waveguide cross section with at least one
finite dimension is involved) or both, constituting a common
problem in FWM resonant photonic circuits [7–9]. Note that
this strategy, which we term “full wave” and consists of three
independent linear full-wave simulations, cannot take into
account either the power lost from both pump and signal
waves due to frequency conversion or the power generated
through the nonlinear interactions between pump-idler and
signal-idler waves. Thus, it provides an approximation of the
actual system performance, remaining, nevertheless, highly
accurate for moderate conversion efficiencies. In the CMT
framework, these conditions can be replicated by setting
β1 = β2 = 0, which consequently violates the energy con-
servation condition of Eq. (16). We refer to this approxi-
mation as the undepleted pump case in contrast to the de-
pleted pump case where all energy exchange processes are
allowed.
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In Fig. 3, we plot the conversion efficiency (CE) of the
DFWM process defined as

CE = 10 log

(
pout,3

pin,1 + pin,2

)
(21)

for the system under study (p = |ψ̃ |2) and pout,3 exclusively
refers to the forward-propagating idler. We include both the
depleted and undepleted pump scenarios; the depleted pump
case is studied with CMT (black dashed curve), while for
the undepleted pump case we compare CMT (blue solid line)
with the full-wave approach (red markers). Note that the
results between the depleted and the undepleted pump case
coincide for low conversion efficiencies but start deviating
for higher CEs (> −22 dB), as anticipated. A nonmono-
tonic behavior of the CE curve appears for the depleted
pump scenario because as the idler intensity increases, the
down-conversion process is boosted, thus setting an upper
bound on the achievable conversion efficiency. Importantly,
CMT and full-wave approaches are in excellent agreement for
the undepleted pump scenario, validating that the proposed
framework is capable of accurately modeling the nonlinear
response. Finally, let us note that throughout Sec. III the self-
and cross-nonlinear resonance frequency shifts arising from
the Kerr effect have been neglected (γk� = 0 in the CMT
context), allowing for comparing with the full-wave approach
to validate the developed framework. In the next section, we
thoroughly study their impact on the conversion efficiency of
the DFWM process.

Regarding the device design and performance, pout,3 might
also be considered as the sum of the power that outflows
from both access waveguides. In that case, the total output
power at ω3 is doubled because of the resonator symmetry,
equivalently resulting in a 3-dB increase of the conversion
efficiency. In an alternative approach, a different system with a
single feeding waveguide may be considered; input and output
ports will be represented by the same physical waveguide.
In that case, although Qi remains approximately constant (a
small reduction is expected because of the extra radiation
from the uncoupled edge of the resonator), Qe and, thus, rQ

are doubled, limiting the observed CE because of the poorer
coupling of ω1 and ω2 waves. Nevertheless, P3 ∝ 1/Q2

e is
reduced four times with respect to the original system’s char-
acteristic power. Changing appropriately the coupling gap g

to restore the original value of Qe leads to CEs comparable
to those of the double feed system when considering the idler
power flowing both forward and backwards.

IV. IMPACT OF NONLINEAR RESONANCE FREQUENCY
SHIFTS AND IDENTIFICATION OF OPERATION REGIMES

In this section, we analyze in depth the performance of
the graphene resonator by studying the effect of the nonlinear
resonance frequency shifts on the conversion efficiency of the
DFWM process. Moreover, we identify different operating
regimes, which manifest as the power or the detuning of the
input waves is varied. Initially, we seek the optimum power
levels for the input waves at ω

op
1 and ω

op
2 that lead to the

highest CE. For the undepleted pump case, conversion effi-
ciency monotonically increases with input power [Fig. 4(a)],
as already seen in Fig. 3. In addition, from Fig. 4(a) one sees

that favoring the ω
op
1 or ω

op
2 waves leads to similar CEs. How-

ever, the conditions for the undepleted pump approximation
do not hold as the CE increases. Opting for the more realistic
depleted pump case, there exists an optimal input power pair
that leads to maximum CE [Figs. 3 and 4(b)] because of
the energy exchange between pump, signal, and idler waves.
Using the simple (yet most favorable) conditions δ1 = δ2 = 0
for the operating frequencies of the two input waves (resulting
in δ3 = 1.08 for the produced wave due to graphene con-
ductivity dispersion; waveguide dispersion is absent), we find
a CE of −12.5 dB for Pin,1 = 7.0P3 = 4.242 mW/μm and
Pin,2 = 0.5P3 = 0.303 mW/μm [Fig. 4(b)]. The optimal CE
point is marked with a star in Fig. 4(b) and lies near the limit

FIG. 4. Conversion efficiency of the DFWM process in the
pin,1 − pin,2 space. (a) Undepleted pump case, (b) depleted pump
case, and (c) full model including the nonlinear resonance frequency
shifts due to SPM and XPM. In (b) maximum CE (star marker)
equals −12.5 dB for pin,1 = 7.0 and pin,2 = 0.5. In (c) maximum
CE (star marker) equals −31.5 dB for pin,1 = 1.0 and pin,2 = 0.6.
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TABLE I. Nonlinear parameters of the resonant system, as used
in Eqs. (19) to produce the results illustrated in Figs. 4(c) and 5.

SPM XPM DFWM

rSPM,1 = 3.47 rXPM,12 = 5.06 rDFWM,1 = 1.17 − j0.038
rXPM,13 = 4.24

rSPM,2 = 4.64 rXPM,21 = 5.71 rDFWM,2 = 1.32 + j0.042
rXPM,23 = 5.20

rSPM,3 = 2.47 rXPM,31 = 3.62 rDFWM,3 = 0.99 + j0.032
rXPM,32 = 3.94

of an unstable operating region (appearing due to a system
bifurcation), shown as the white area in Fig. 4(b). In that
region, a phenomenon commonly referred to as limit cycles
appears [14,15], resulting in a pulsed-pattern output of the
ω

op
3 wave, despite the continuous wave (CW) feed at ω

op
1 and

ω
op
2 [inset of Fig. 4(b)]. Limit cycles area is determined by

the inability to obtain a solution using the CW version of the
CMT equations. The pulsed-pattern output [seen in the inset
of Fig. 4(b)] is then identified by solving the dynamic version
of the CMT equations.

In an even more realistic treatment, the effect of the nonlin-
ear resonance frequency shifts due to SPM and XPM should
be taken into account (γk� �= 0 in the CMT framework). Based
on the linear eigenvalue simulations, the intensity factors
for the various nonlinear effects appearing in the resonant
system are calculated and listed in Table I. By substituting
these values in Eqs. (19), we can calculate the conversion
efficiency of the DFWM process under realistic conditions,
Fig. 4(c). Compared to Figs. 4(a) and 4(b), the maximum CE
is considerably lower. More specifically, for Pin,1 = 1.0P3 =
0.606 mW/μm and Pin,2 = 0.6P3 = 0.364 mW/μm (Pin,1 =
3.6 mW, Pin,2 = 2.2 mW for a reference 3D system that is
λSPP/2 wide), one finds the maximum CE being equal to
−31.5 dB. This CE drop is due to SPM and XPM shifting
the cavity resonances away from the respective operating fre-
quencies, leading to nonzero detuning and, as a consequence,
to suboptimal light-cavity coupling.

As a remedy to this problem, we can preshift the operating
frequencies of the input waves with respect to the unperturbed
resonance frequencies to accommodate for the red-shifting
induced by the Kerr effect [13,14]. Naturally, shifting δ1 and
δ2 inevitably affects δ3 as dictated by the DFWM frequency
condition ω

op
3 = 2ω

op
1 − ω

op
2 . Additionally, one should keep in

mind that the optimum preshifting is not the same for each pair
of pin,1 − pin,2 since the Kerr-induced nonlinear resonance
frequency shift is power dependent [42]. We set Pin,1 = 1.0P3

and Pin,2 = 0.6P3, which was the optimum pair for δ1 =
δ2 = 0, and seek the combination of δ1 and δ2 that further
maximizes CE. The results are shown in Fig. 5. Notably, for
δ1 = −3.10 and δ2 = −2.35 (the star-marked point), a CE of
−17.6 dB is obtained, constituting a significant improvement.
In fact, we have managed to almost completely compensate
for the impairment introduced by the nonlinear resonance
frequency shifts, confronting a problem commonly encoun-
tered in experimental works [5,7,8,10]. The compensation
is not complete since the input power combination leading
to maximum CE is different in the presence or absence of

FIG. 5. Conversion efficiency of the DFWM process in the δ1 −
δ2 space when all effects are taken into account. The power levels of
the input waves are pin,1 = 1.0 and pin,2 = 0.6. A maximum CE of
−17.6 dB is obtained for δ1 = −3.10 and δ2 = −2.35.

SPM/XPM. Thus, the input power pair should be further fine
tuned for achieving larger compensation. In addition, there
exists a region (marked with white) where optical bistability
manifests [initially appearing for [45] δk < −(1 + rQ,k )

√
3]

and higher CEs are anticipated. Nevertheless, we do not
opt for operating in the bistability region since, along with
the high-output state, there exists a low-output state where
the system may evolve into, negatively affecting the overall
performance.

V. CONCLUSION

To summarize, we have developed a rigorous mathematical
framework that can analyze single-channel and multichannel
nonlinear processes in resonant systems comprising sheet
(2D) and bulk materials. Using the proposed framework, we
have thoroughly studied degenerate four-wave mixing in a
graphene plasmon-polariton standing-wave resonant structure
operating in the THz frequency range. More specifically, we
have determined the optimum operating point leading to max-
imum conversion efficiency and numerically identified the
different operating regimes (giving rise to optical bistability
or limit cycles behavior) appearing when varying the power
level of the input waves or their operating frequency. The
field enhancement offered by the tightly confined graphene
plasmon-polaritons allows for obtaining high-conversion ef-
ficiency for the DFWM process, indicating the potential
of graphene for on-chip nonlinear photonic functionalities.
Specifically for our design, a CE of −17.6 dB (−14.6 dB
accounting for idler propagating both in the forward and
backward directions) is obtained for input powers of Pin,1 =
0.606 mW/μm and Pin,2 = 0.364 mW/μm, using feeding
frequencies with normalized detunings equal to δ1 = −3.10
and δ2 = −2.35. Our work paves the way for studying diverse
multichannel phenomena (frequency generation, frequency
mixing, and parametric amplification) in resonant systems
comprising novel 2D materials (graphene, transition metal
dichalcogenides, hexagonal boron nitride, black phosphorus,
etc.), thus bringing these exciting materials one step closer to
practical nonlinear applications.
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