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Topological insulators are promising for spintronics and related technologies due to their spin-momentum-
locked edge states, which are protected by time-reversal symmetry. In addition to the unique fundamental physics
that arises in these systems, the potential technological applications of these protected states have also been
driving TI research over the past decade. However, most known topological insulator materials naturally contain
spinful nuclei, and their hyperfine coupling to helical edge states intrinsically breaks time-reversal symmetry,
removing the topological protection and enabling the buildup of dynamic nuclear spin polarization through
hyperfine-assisted backscattering. Here, we calculate the scattering probabilities and nuclear polarization for
edge channels containing up to 34 nuclear spins using a numerically exact analysis that exploits the symmetries of
the problem to drastically reduce the computational complexity. We then show the emergence of universal scaling
properties that allow us to extrapolate our findings to vastly larger and experimentally relevant system sizes. We
find that significant nuclear polarization can result from relatively weak helical edge currents, suggesting that it
may be an important factor affecting spin transport in topological insulator devices.
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I. INTRODUCTION

Topological insulators (TIs) have a bulk band gap and
gapless surface states due to the topologically nontrivial char-
acter of the occupied bulk bands [1–4]. In the context of,
e.g., HgTe [5,6] and Bi2Se3 [3,7–9], the strong spin-orbit
coupling leads to spin-momentum locking that makes the
helical edge or surface states robust to disorder provided
time-reversal symmetry is preserved [1,10]. However, most
topological insulators have significant fractions of isotopes
with spinful nuclei, and their hyperfine coupling to the edge
or surface states violates time-reversal symmetry, in principle,
destroying the topological protection [11–14]. For example,
Hg isotopes have 30% spinful nuclei, while those of Te are
8% spinful [15]. While this effect could be mitigated by
isotopic purification in some cases, this is not an option in
others. For example, there is only one isotope of Bi, and it has
nuclear spin 9/2. Indeed, a recent experiment on Bi2Te2Se
demonstrated a long-lived (on the order of days) spin memory
attributed to dynamic nuclear polarization (DNP) [16]. A
full understanding of the microscopic mechanism behind this
striking effect is currently lacking.

It is difficult to microscopically describe the process of
DNP because of its many-body nature—the dimension of the
Hilbert space scales exponentially with the number of nuclear
spins. This has made the study of electron-nuclear spin dy-
namics challenging in a variety of contexts, including semi-
conductor quantum dots [15,17–26], quantum wires [27–29],
and more recently in transition metal dichalcogenides [30],
generally necessitating the use of approximate methods
[31,32] or very small systems.

In this paper, we consider two-dimensional topologi-
cal insulators with spinful isotopes such as HgTe and ob-
tain microscopic scattering results for one-dimensional spin-
momentum-locked states interacting with nuclear spins (or
other magnetic impurities) by exploiting the symmetries
associated with helical edge states and the hyperfine inter-

action, dramatically reducing the computational resources
needed. We obtain exact scattering state solutions for up
to N = 34 nuclear spins. In addition, we uncover universal
scaling behavior that allows us to extrapolate our findings to
much larger numbers of nuclear spins, enabling predictions
for the buildup of dynamic nuclear polarization as a function
of the edge current for realistic systems.

This paper is organized as follows. In Sec. II we introduce
the model and discuss its symmetries. In Sec. III we focus
on solving the single-nuclear-spin case and show how the
symmetries constrain scattering parameters. In Sec. IV we
present a scattering formula for arbitrarily many nuclear spins
and solve it numerically for up to 34 spins. In Sec. V we
find a scaling relation that allows us to extrapolate our results
to arbitrarily many nuclei, and we use this to compute the
DNP for a mesoscopic system. In Sec. VI we present our
conclusions. Detailed calculations and symmetry analyses are
presented in the Appendices.

II. MODEL

Spin-momentum locked systems support both bulk and
edge modes. Remarkably, the edge modes can exhibit a Dirac-
like dispersion [3,6], in e.g., HgTe, and such systems are
therefore governed by the Dirac Hamiltonian,

H (x) = −ih̄v0∂xσz +
N−1∑
n=0

H HF
n (x), (1)

where v0 is the effective electron velocity, and σi are electron
Pauli spin matrices. This low-energy description assumes that
the edge modes involved do not significantly hybridize with
the bulk modes. The first term captures the spin-momentum
locking: a spin-up electron carries positive x momentum.
The microscopic interactions H HF

n couple the electron and
nuclear spins. Reference [6] used a k · p model, which
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FIG. 1. (a) Topological insulator without TR-breaking impuri-
ties, and concomitant protected edge currents. (b) A nuclear spin
allows a propagating electron to backscatter. The rectangular box
represents the region over which the electron interacts with the nth
nuclear spin. This region is assumed to be finite, but the interaction
strength can vary arbitrarily over this region.

includes contributions from electronic states with S and P

symmetries to model, e.g., HgTe quantum wells. Here, we
follow a derivation by Lunde and Platero [32], who estimated
the hyperfine interaction for that model by averaging over
nuclear spin locations within the edge state. Transforming
their expression into real space, we have

H HF
n = F

(
x − xn−1 + xn

2

)
[Azσzτz + A⊥(σ−τ+ + σ+τ−)],

(2)
where Az and A⊥ control the anisotropic coupling, τi are
nuclear spin Pauli matrices, and F is a spatial form factor.
We will later see that our results are mostly independent
of the form factor. Each H HF

n violates the usual electronic
time-reversal symmetry, but preserves the generalized time-
reversal invariance (GTRI) that flips the electronic momentum
as well as both the electronic and nuclear spins. The nuclear
spins are assumed to have S = 1/2, and be sparse enough that
at most one H HF

n (x) interaction is nonzero at any x, vanishing
outside some interval [xn−1, xn]. We have previously [33]
considered this interaction on a ring, for small numbers of
nuclear spins N .

III. SINGLE NUCLEAR SPIN

For the moment, consider only the nth nuclear spin, where
the wave function with electron at x and electronic and nuclear
z spin projections me and mI is ψme,mI

(x). Because Eq. (1)
is first order, its eigenstates are completely determined by
fixing the value of the wave function at any single point. The
eigenstates must be continuous across the boundaries of the
interaction region. If we consider an eigenstate corresponding
to an electron incoming from the left, then there are two
possibilities: either the electron and nuclear spins are parallel,
in which case no backscattering can occur, or they are an-
tiparallel, in which case the electron has a nonzero probability
to be reflected, as shown in Fig. 1. In the former case, the
parallel-spin wave function components at xn−1 and xn (the
left and right sides of the interaction region) must be equal up
to a phase, which we denote as p:

ψ↑↑(xn)

ψ↑↑(xn−1)
= ψ↓↓(xn)

ψ↓↓(xn−1)
= p. (3)

In the case of antiparallel spins, the corresponding wave func-
tion components are related by reflection and transmission
amplitudes:

ψ↑↓(xn)

ψ↑↓(xn−1)
= ψ↓↑(xn−1)

ψ↓↑(xn)
= t, (4)

ψ↓↑(xn−1)

ψ↑↓(xn−1)
= r←↩, and

ψ↑↓(xn)

ψ↓↑(xn)
= r↪→. (5)

Here, we have allowed for the possibility that the scattering
amplitudes can differ depending on whether the electron is
incoming from the left or from the right. In particular, r←↩

(r↪→) is the reflection amplitude for an electron incoming from
the left (right). Notice that we have taken the transmission
amplitude t and the “passing” amplitude p to be the same
regardless of where the incoming wave comes from. As we
show in Appendix B, GTRI imposes a left-right symmetry
on these amplitudes. In addition to this symmetry, GTRI also
imposes two more constraints on the scattering amplitudes:

|r←↩|2 = |r↪→|2 = 1 − |t |2 =: |r|2, (6)

r←↩r↪→ = − t2

|t |2 |r|2. (7)

The second equation [see Eq. (B15)] “forgets” the phases
accumulated at a site after being flipped twice—this key
observation ultimately allows for the simplification of the
problem. It is important to note that these constraints hold
regardless of the shape of the interaction profile F , even
if it is spatially asymmetric. Explicit expressions for r←↩,
r↪→, t , and p for a chosen F can of course be obtained by
solving Eq. (1) inside and outside the interaction region and
by imposing wave function continuity across the boundaries
of this region. This is done for the case of a square profile in
Appendix A. Remarkably, as we will show, it is possible to
obtain an expression for the total reflection amplitude in the
case of many nuclear spins solely in terms of the scattering
amplitudes rn,←↩, rn,↪→, tn, pn for the individual nuclei.

Before we show how the single-nucleus scattering data r ,
t , and p can be used to construct scattering amplitudes for
arbitrarily many nuclear spins, we first estimate the phys-
ical values of these parameters for the case of HgTe. For
simplicity, we consider a square interaction profile, F (δ) =
�(|δ| − w/2)/w, where � is the Heaviside function—i.e., a
square barrier of width w and unit total area centered in the
interaction region. Defining Ln = xn − xn−1, we obtain

pn = eiELn/h̄v0e−iAz/h̄v0 , (8)

as shown in Appendix A. The calculation of r and t amounts
to boundary matching on the two-dimensional subspace with
zero total angular momentum and (squared) linear momentum
(h̄k)2. The result is

t = eiE(Ln−wn )/h̄v0 exp[cot2(θ )/ sin2(|A⊥/h̄v0| cot θ )]−1/2

×
[
−i arctan

− sin(|A⊥/h̄v0| cot θ )

cos θ cos(|A⊥/h̄v0| cot θ )

]
, (9)

where csc θ = (Ew + Az)/|A⊥|. Reflection coefficients fol-
low from Eqs. (6) and (7), but the phases depend on an
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FIG. 2. A graphical representation of the boundary matching
procedure determining the eigenstate |� (E)

↑,↓;→〉. The compact notation
.

↑↓ describes a state with first nuclear spin up, and second nuclear
spin down, and the small arrow indicates the electron location (its
spin can be inferred by conservation of angular momentum). Edges
connect amplitudes which are related by passing, transmission, or
reflection. Although this graph is a tree (i.e., there is at most one path
between nodes), generically there will be multiple paths connecting
states. A simpler example of such boundary matching is worked out
in Appendix C.

arbitrary partitioning of the line (see Appendix A). The overall
factor eiELn/h̄v0 common to all of the parameters indicates that
the spacing of the nuclear moments changes only the phases of
the parameters, which does not materially affect the behavior
of the system (see Appendix D).

Lunde et al. [32] estimate A⊥ and Az for the spinful
isotopes of mercury and tellurium, finding that the hyperfine
coupling of tellurium is an order of magnitude stronger than
that of mercury. We therefore neglect mercury’s hyperfine
coupling, and focus only on tellurium’s contribution, for
which 1

|rn|2 = (A⊥/h̄v0)2 ∼ 10−15. (10)

In the following, our results remain exact even for |r|2 ∼ 1,
though our focus will be on the physically relevant regime of
small |r|2.

IV. MULTIPLE NUCLEI

In the multinuclear case (N > 1), the process of boundary
matching remains straightforward, but the computation time
scales exponentially with N (see Appendix C). Let |� (E)

m;→〉 be
the energy E eigenstate with electron incoming from the left,
and with an “initial” nuclear spin configuration m = {mn}. In
particular, its components

Zmm′,j = 〈
xj ; m′

e(m, m′); m′|� (E)
m;→

〉
(11)

completely characterize this eigenstate. |xj ; m′
e(m, m′); m′〉 is

the state with electron at xj , nuclear spin configuration {m′
n},

and (unique) electronic spin m′
e(m, m′) allowed by conser-

vation of angular momentum. Figure 2 shows a graphical
representation of a single scattering eigenstate constructed
from the standard boundary matching process for the case of
N = 2 nuclear spins. The nonzero amplitudes for this state
are vertices connected by edges representing passing, trans-
mission, and reflection. The graph shows how each amplitude

1Platero finds both P and S contributions to the hyperfine coupling,
but our scattering results depend on the barrier area, with units
energy-length (and our Az and A⊥ consequently include a length
factor). The contact interaction is therefore neglected, and only the
P portion (approximately 10%) contributes. We assume the length
scale of approximately an angstrom.

is successively calculated by multiplying single-nucleus scat-
tering amplitudes r , p, and t together along paths connecting
each possible final spin configuration to the initial spin con-
figuration. More complex examples for N = 3 nuclear spins
are worked out in detail in Appendix C. With this approach, it
is straightforward to show that each amplitude is obtained by
summing over all such paths:

Zmm′,j ′ =
∑
P

∏
n

r
Nr↪→,n [P ]
↪→,n r

Nr←↩,n [P ]
←↩,n p

Npn [P ]
n t

Ntn [P ]
n , (12)

where Nr↪→,n
[P ] is the number of reflections from the right

at site n along path P , and Nr←↩,n
[P ], Npn

[P ], and Ntn [P ]
are defined similarly (see Appendix C). Surprisingly, this
expression can be drastically simplified to the form,

Zmm′,j ′ = Z0;m,m′
∏
n

1

2

[
(1 + zn)N

0
n + (−1)|δJn|(1 − zn)N

0
n

]
,

(13)

as shown in Appendix D. Here, zn = i|rn/tn|, and δJn =
(m′

n − mn)/2 is the change in the nth nuclear spin. The
quantity N0

n = Nt,n + Nr↪→,n
+ Nr←↩,n

[see Eq. (D8)] is found
to be path independent, as is the overall prefactor Zmm′,j ′ [see
Eq. (D9)]. All of these are easily calculated, so that the time
needed to evaluate Eq. (13) grows linearly with the number of
nuclear spins N . Other approaches (including direct Hermi-
tian diagonalization) require exponential computation time.
This dramatic speedup allows us to study the dynamics for
realistic system sizes.

Before discussing how to compute Eq. (13), there are
some observations that can be made immediately from this
analytical expression. The magnitude of each outgoing am-
plitude Zmm′;j ′ is independent of the phases of t (and r).
Moreover, notice that moving any of the impurity interactions
only serves to change the phases of each outgoing amplitude.
Remarkably, this means that the spacing between impurities
does not affect the behavior when a single electron is passed
through the system (in fact, this generalizes to multiple passes
of electrons). Furthermore, Zmm′;j ′ is a product of smooth
functions, each depending on only one zn. Notice that phase
changes with N → ∞ are still possible, but only when the net
effect of a large number of zn contribute coherently. Compare
this with Anderson localization, where disorder in individual
terms (each of which contribute incoherently) can lead to a
phase transition. Here, of course, there are several differences
from the original Anderson model that make it a priori unclear
whether localization should be expected to occur. The first
is that we are really considering a many-body system since
we retain the full quantum mechanical degrees of freedom of
the nuclear spin lattice. Secondly, though a linearly dispersing
system may fail to transmit an electron from one side to the
other, Klein tunneling will prevent any truly localized state.

To demonstrate the power of this approach, we consider the
case of uniformly distributed nuclear spins, without disorder
or initial polarization. The single-spin interactions are
completely characterized by the common magnitude |r|2 =
|rn|2 [seen from Eqs. (6) and (13)]. The overall probability of
reflection, Pref , i.e., the probability that an electron injected
at the left side of the TI will exit on the left, is obtained
by summing the squares of the amplitudes in Eq. (13) that

235412-3



ANTONIO RUSSO, EDWIN BARNES, AND SOPHIA E. ECONOMOU PHYSICAL REVIEW B 98, 235412 (2018)

0.0 0.2 0.4 0.6 0.8 1.0|r|2
0.0

0.3

0.6

0.9

P
re

f

4 10 16 22 28 34

N

FIG. 3. Plots of the probability of reflection Pref for various
numbers of nuclear spins, N . An average is performed over randomly
chosen initial spin configurations with no net initial polarization (i.e.,
equal number of up and down spins). For each value of N , we average
over either 1024 realizations, or a complete survey of the sample
space, whichever is smaller.

correspond to an electron departing the nuclear spin lattice
on the left, and is plotted in Fig. 3 for an ensemble of initial
spin configurations, each with equal numbers of up and down
spins.

Notice that, when |r|2 = 0, the material is in the perfect
backscatter-free conducting limit. At |r|2 = 1, however, the
system behaves pseudoclassically: each initial spin configura-
tion has exactly one outgoing spin configuration. In fact, if the
first nucleus and incoming electron are spin up, transmission
through the lattice is guaranteed. Every down spin met by
the electron will result in two immediate backscatters. Thus,
if the first nuclear spin is up, then the electron is ultimately
forced to move to the right, eventually transmitting through
the entire lattice. If the first nuclear spin is down, the electron
is backscattered by the lattice. In the zero net nuclear polariza-
tion case, this translates to an overall backscatter probability
of 1/2 in this “perfect scatterer” limit (see Fig. 3).

Given this comment, there must be a phase transition from
the perfect conductor at |r|2 = 0 to the “perfect scatterer”
at |r|2 = 1. Indeed, Fig. 3 shows many interesting features,
including several local maxima in overall reflection. These
features perhaps indicate additional phases beyond the two
identified above. Though interesting, these “large |r|2” fea-
tures are not studied in detail here since the physical system of
interest, topological insulators interacting with either nuclear
or atomic magnetic moments, will have |r|2 � 0.1, far below
these other features.

V. SCALING

Next, we show that the total reflection probability and other
scattering information exhibit universal scaling as the number
of nuclear spins N is increased. This result is both surprising
and crucial for making predictions for real physical systems
such as topological insulators, where N � 1. If N↓ (N↑) is
the number of spins initially down (up), the change in nuclear
polarization per injected electron can be bounded above by
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FIG. 4. Scaling of the overall reflection probability, and number
of passes for systems with 12 though 34 nuclear spins, and no overall
initial magnetization (1024 realizations). Data are restricted to |r|2 <

0.04, to focus on the effects of the zero-r phase transition.

noticing that each down spin acts as a scattering source:

∂N↑
∂j

� |r|2
N↓−1∑
n=0

(1 − |r|2)n = 1 − (1 − |r|2)N↓ . (14)

In the extreme |r|2 → 0 limit (i.e., semi-classical weak scat-
tering) the equality becomes exact (because subsequent reflec-
tions are higher order in |r|2), and we obtain

∂N↑
∂j

= |r|2N↓. (15)

Figure 4 shows the agreement with this limit, with a line of
slope 1/2 at |r|2 = 0 to guide the eye. While the behavior for
|r|2N↓ � 1 is easily found by this argument, when |r|2N↓ ∼
1, a reflection is expected to occur before the electron crosses
the lattice. In fact, many reflections are likely to occur in
this limit, and the quantum mechanical phases become very
important for the calculation. Notice that the universal scaling
in Fig. 4 persists far past the trivial linear limit, and moreover
up to at least |r|2N↓ ∼ 1, well inside this quantum regime.

Another measure of the system’s response to the incident
electron is Np,n, the number of passes at site n. It is path inde-
pendent, like N0

n , and corresponds precisely to the distance up
spins have migrated in the spin-momentum locked direction of
motion [see Eq. (E1) for a precise discussion of this quantity].
This is most easily seen for a totally up-spin polarized system
with N sites: the electron itself “passes” N times through
this system (i.e., there are N spin-parallel approaches). The
quantity Np;trans in Fig. 4 is the sum of Np,n over all sites,
conditioned on there being an overall transmission event. The
scaling seen is consistent with the N↑|r|2 � 1 limit.

Both of these measures suggest scaling behavior near
|r|2 = 0, which extends to another property: the dynamic
nuclear spin polarization that results when current is injected
into such a system. The calculation is also done numerically
exactly. Up to 12 electrons are injected into N � 16 nuclear
spins, keeping all quantum mechanical phases, for systems
without disorder or initial polarization, and assuming the edge
current is small enough that each electron propagates through
the nuclear spin lattice independently. For |r|2 � 1, we again
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FIG. 5. Scaling plot of change in magnetization �M as a func-
tion of the (scaled) number of injected electrons j . The scaling
collapses for N = 6, 8, 10, 12, 14, using all states with M = 0. The
red line is a numerical fit of the scaling function g to a quartic spline
(it is, in fact, poorly fit by a simple exponential). Data are restricted
to |r|2 < 0.04, to focus on the effects of the zero-r phase transition.
(inset) Predicted nuclear polarization as a function of injected charge
(in micro-Coulombs) for a system with realistic scattering |r|2 =
10−15 and N = 108 spinful nuclei. We set μ = δ = 0 to maintain
numerical stability.

find scaling: the total nuclear polarization is a function of only

M = |r|−2βN−γ g(|r|2ζNσ j (1 + μj + δj 2)), (16)

with numerically identified scaling function g and fit parame-
ters β, ζ, σ, μ, δ (see Fig. 5).

To understand why such scaling might occur, and to con-
strain the collapse, differentiate Eq. (16), combine it with
Eq. (15). Near |r|2 = 0,

N

2
|r|2 = |r|2(ζ−β )Nσ−γ g′(0), (17)

requiring ζ − β = 1, σ − γ = 1, and g′(0) = 1/2, enforced
on the collapse.2

Three different kinds of scaling are responsible for the
collapse: individual scaling, ensemble scaling, and N scaling.
The Mm(j ) polarization functions scale individually: for a
given initial spin configuration m, the expected polarization
obeys Eq. (16), though the N dependence is trivial. In princi-
ple, a generic dependence on the number of injected electrons
j , not a simple linear scaling. Amazingly, the collapse is
very nearly a linear dependence on j , with |μ| < 3 × 10−2

and the higher term |δ| < 3 × 10−3. Given this individual
scaling, the ensemble averages automatically scale, though in
principle such ensemble scaling could exist without individual
scaling. Finally, ensembles with different N obey Eq. (16),
with nontrivial N dependence.

Equation (16) enables precise microscopic predictions
for electronic edge transport through realistic systems, at a
specified energy. The edge states of a HgTe quantum well
of thickness 10 nm and side length 100 μm interact with

2Assuming ζ, σ > 0, which are indeed numerically found to be the
case.

approximately N ∼ 108 spinful nuclei (for an edge state
penetration depth of ∼50 nm [32]). The power of this scal-
ing is demonstrated in the inset of Fig. 5, where we show
the resulting prediction for the nuclear polarization in this
full-scale quantum well with macroscopic injected currents.
To detect these effects experimentally, NMR studies [34]
could be performed and the signals compared before and
after current passage. Because of the limited resolution of
traditional NMR, novel techniques with nanoscale resolution
may be preferable. For example, an individual NV center in
diamond has been recently used for sensing of proton nuclear
magnetic resonance in an organic sample [35]. In addition, the
low-entropy configurations created by the nuclear polarization
might allow energy to be stored and extracted via Landauer’s
principle [14].

VI. CONCLUSION

In conclusion, we have solved the electron-nuclear scat-
tering problem in 2D TI edges for macroscopic numbers of
nuclear spins by exploiting the symmetries of the problem,
dramatically speeding up the numerical computation, and by
leveraging a surprising universal scaling behavior. Our solu-
tion reveals that modest edge currents can generate significant
nuclear spin polarization that should be detectable in current
TI experiments.
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APPENDIX A: SINGLE NUCLEAR SPIN

Here, we consider a single spin-1/2 nucleus, interacting
with the electron spin in the region [xn, x

′
n], with square

interaction profile [as in Eq. (2)]. To allow for spacing be-
tween nuclear spins, we also consider the point xn+1 > x ′

n, and
consider the total length Ln = xn+1 − xn. The width of the
square well is wn = x ′

n − xn. For a single nuclear spin, n =
1, xn = 0, x ′

n = w0, x2 = L1. The index (and L1) is of course
pointless. However, for multiple nuclei, this will establish a
convention. Ln will serve as the total distance between the left
sides of each square well interacting region (see Fig. 6). Inside
the interaction region, in the basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 (the
first spin corresponds to the electron, the second to the nuclear
spin), the Hamiltonian is

Hq =

⎡
⎢⎣Az/wn + q

Bq

Az/wn − q

⎤
⎥⎦. (A1)

We have set h̄v0 = 1 in the above for simplicity. Bq is the 2
by 2 matrix

Bq =
[
q − Az/wn A⊥/wn

A⊥/wn −q − Az/wn

]

= −(Az/wn)1 + d[σz cos θ + σx cos(φ) sin θ

+ σy sin(φ) sin θ ], (A2)
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FIG. 6. Alternative parametrization of eigenstates of Eq. (2). The (dashed) left and right square potentials correspond to interactions with
other nuclei (and serve only as a guide to the eye).

where

d2 = |A⊥/wn|2 + q2. (A3)

Outside [xn, x
′
n], Az = A⊥ = 0 and possibly a different q. The

phase φ defined by A⊥ = |A⊥|eiφ can be set to zero,[
cos θ

sin θ

]
= 1

d

[
q

|A⊥/wn|
]
. (A4)

The eigenvectors of Bq correspond to the eigenstates of the
Hamiltonian that couple the electronic and nuclear spins, and
are [

cos θ/2

eiφ sin θ/2

]
and

[ − sin θ/2

eiφ cos θ/2

]
, (A5)

with eigenvalues

E = −Az/wn ± d

where |q| =
√

(E + Az/wn)2 − |A⊥/wn|2, (A6)

where

cot θ = q

|A⊥/wn| = ±
√

(E + Az/wn)2/|A⊥/wn|2 − 1. (A7)

Outside [xn, x
′
n], any electronic spin-up eigenstate’s wave

function must be proportional to eiEx (respectively e−iEx for
electronic spin down). Routine decomposition of ψ (xn) and

ψ (x ′
n) into the eigenvectors of the interacting and noninteract-

ing Hamiltonian (A1) (with appropriate q to give the correct
eigenenergy), along with continuity of the wave function
inside and outside [xn, x

′
n], lead to conditions on the wave

function. Solving for the form of the wave function inside
[xn, x

′
n] leads to the conditions. Next, we outline this boundary

matching process.
The first and fourth component decouple from each other

and all other eigenstates:

e−iE(Ln−wn )ψ↑↑(xn+1) = ψ↑↑(x ′
n) = ei(E−Az/wn )wnψ↑↑(xn)

(A8)

and

eiE(Ln−wn )ψ↓↓(xn+1) = ψ↓↓(x ′
n) = ei(Az/wn−E)wnψ↓↓(xn).

(A9)
The decomposition of the second and third components

into the eigenstates Eq. (A5) does not decouple:[
ψ↑↓(xn)

ψ↓↑(xn)

]
=

[
cos θn/2

sin θn/2

]
c+
n +

[
sin θn/2

cos θn/2

]
c−
n . (A10)

Notice the lack of minus sign in the eigenvector multiplying
c−
n . The c+

n and c−
n are coefficients of eigenstates of Bq ′ and

B−q ′ , respectively, where q ′ is positive and given by Eq. (A6)
with the same energy E. These eigenstates are therefore not
generically orthogonal, though they are linearly independent
except for forbidden energies (cf. Ref. [33]). At x ′

n,

[
e−iE(Ln−wn )ψ↑↓(xn+1)

eiE(Ln−wn )ψ↓↑(xn+1)

]
=

[
ψ↑↓(x ′

n)

ψ↓↑(x ′
n)

]
=

[
cos θn/2

sin θn/2

]
c+
n eiq ′wn +

[
sin θn/2

cos θn/2

]
c−
n e−iq ′wn. (A11)

We capture the left-right symmetry of the problem by using the above linear equations to express, in terms of c±
n , the incoming

amplitudes, [
ψ↑↓(xn)

ψ↓↑(xn+1)

]
=

[
cos θn/2 sin θn/2

ei(−E(Ln−wn )+q ′wn ) sin θn/2 ei(−E(Ln−wn )−q ′wn ) cos θn/2

][
c+
n

c−
n

]
, (A12)

and outgoing amplitudes,[
ψ↑↓(xn+1)

ψ↓↑(xn)

]
=

[
ei(E(Ln−wn )+q ′wn ) cos θn/2 ei(E(Ln−wn )−q ′wn ) sin θn/2

sin θn/2 cos θn/2

][
c+
n

c−
n

]
. (A13)

We invert Eq. (A12) to get [
c+
n

c−
n

]
= �

[
e−iq ′wn cos θn/2 −eiE(Ln−wn ) sin θn/2

−eiq ′wn sin θn/2 eiE(Ln−wn ) cos θn/2

][
ψ↑↓(xn)

ψ↓↑(xn+1)

]
, (A14)
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where

�−1 = e−iq ′wn cos2 θn/2 − eiq ′wn sin2 θn/2 =
√

1 − cos2 q ′wn sin2 θn exp

(
i arctan

sin q ′wn

cos q ′wn cos θn

)
. (A15)

We substitute Eq. (A14) into Eq. (A13) to get[
ψ↑↓(xn+1)

ψ↓↑(xn)

]
= �

[
eiE(Ln−wn )[cos2 θn/2 − sin2 θn/2] −2ie2iE(Ln−wn ) sin(q ′wn) cos θn/2 sin θn/2

−2i sin(q ′wn) cos θn/2 sin θn/2 eiE(Ln−wn )[cos2 θn/2 − sin2 θn/2]

][
ψ↑↓(xn+1)

ψ↓↑(xn)

]
. (A16)

Collecting the results for all four components, we have related all outgoing amplitudes to the incoming amplitudes,⎡
⎢⎢⎢⎣

ψ↑↑(xn+1)

ψ↑↓(xn+1)

ψ↓↑(xn)

ψ↓↓(xn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

pn

tn rn,↪→
rn,←↩ tn

pn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ψ↑↑(xn)

ψ↑↓(xn)

ψ↓↑(xn+1)

ψ↓↓(xn+1)

⎤
⎥⎥⎥⎦, (A17)

where noting that q ′wn = |A⊥
n | cot θ , after simplification,

rn,↪→ = ie2iE(Ln−wn )

[
1 + cot2 θ

sin2(|A⊥
n | cot θ )

]−1/2

exp

[
−i arctan

− sin(|A⊥
n | cot θ )

cos θ cos(|A⊥
n | cot θ )

]
,

rn,←↩ = i

[
1 + cot2 θ

sin2(|A⊥
n | cot θ )

]−1/2

exp

[
−i arctan

− sin(|A⊥
n | cot θ )

cos θ cos(|A⊥
n | cot θ )

]
,

tn = eiE(Ln−wn )

[
cot2 θ

sin2(|A⊥
n | cot θ )

]−1/2

exp

[
−i arctan

− sin(|A⊥
n | cot θ )

cos θ cos(|A⊥
n | cot θ )

]
,

pn = ei(ELn−Az
n ). (A18)

p is named for “passing,” as it corresponds to the solutions in which conservation of angular momentum and spin-momentum
locking forbid electronic backscatter. The r and t coefficients are named for reflection and transmission, respectively. The r↪→
and r←↩ refer to reflection outgoing to the right and left, respectively. The two physical scenarios of left-incoming electron with
parallel and antiparallel nuclear spins can be described by particular eigenstates satisfying Eq. (A17), respectively |φ↑↑〉 and
|φ→〉:

〈xn|φ↑↑〉 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦, 〈xn+1|φ↑↑〉 =

⎡
⎢⎢⎢⎣

pn

0

0

0

⎤
⎥⎥⎥⎦, (A19)

〈xn|φ→〉 =

⎡
⎢⎢⎢⎣

0

1

rn,←↩

0

⎤
⎥⎥⎥⎦, and 〈xn+1|φ→〉 =

⎡
⎢⎢⎢⎣

0

tn

0

0

⎤
⎥⎥⎥⎦. (A20)

Similarly, the two right-incoming scenarios with parallel and antiparallel nuclear spin have respective wave functions |φ↓↓〉
and |φ←〉:

〈x ′
n|φ↓↓〉 =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦, 〈x ′

n−1|φ↓↓〉 =

⎡
⎢⎢⎢⎣

0

0

0

pn

⎤
⎥⎥⎥⎦, (A21)

〈xn+1|φ←〉 =

⎡
⎢⎢⎢⎣

0

rn,↪→
1

0

⎤
⎥⎥⎥⎦, and 〈x ′

n−1|φ←〉 =

⎡
⎢⎢⎢⎣

0

0

tn

0

⎤
⎥⎥⎥⎦. (A22)

These four solutions fully characterize the solution space. In this picture, it is clear that simply evaluating the wave function
at a different location, i.e., placing the square well symmetrically, can remove the phase difference between the left and right
reflection coefficients; they are unequal only because the square well potential is not centered in [xn, xn+1]. Setting x ′

n = xn+1
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removes the asymetry, and rn = rn,↪→ = rn,←↩. In that case, a relative phase factor i between rn and tn develops as a consequence
of the restored inversion symmetry, as discussed above Eq. (B16). In fact, we will later find that the phase difference between
rn,↪→ and rn,←↩ is mostly immaterial [see discussion surrounding Eq. (D9)].

APPENDIX B: GENERALIZATION AND SYMMETRIES

The exact form of the r , t , and p parameters in Eq. (A18) depends critically on the exact form of the interaction profile.
However, the symmetries of the system impose strong constraints on these parameters for arbitrary interaction profiles. Again,
we assume no interaction for x � xn and x � xn+1, but otherwise we leave the interaction unrestricted (here the solutions will
be ∝ e±ikx). Then there will again be solutions. Generically, they will satisfy conditions at xn and xn+1. These conditions are
analogous to those calculated in Appendix A. For x � xn and for x ′ � xn+1,

〈x|φ↑↑〉 =

⎡
⎢⎢⎢⎣

eik(x−xn )

0

0

0

⎤
⎥⎥⎥⎦, 〈x ′|φ↑↑〉 =

⎡
⎢⎢⎢⎣

pn,→eik(x ′−xn+1 )

0

0

0

⎤
⎥⎥⎥⎦, (B1)

〈x|φ↓↓〉 =

⎡
⎢⎢⎢⎣

0

0

0

pn,←eik(x ′−xn )

⎤
⎥⎥⎥⎦, 〈x ′|φ↓↓〉 =

⎡
⎢⎢⎢⎣

0

0

0

e−ik(x ′−xn+1 )

⎤
⎥⎥⎥⎦, (B2)

〈x|φ→〉 =

⎡
⎢⎢⎢⎣

0

eik(x−xn )

rn,←↩e
−ik(x−xn )

0

⎤
⎥⎥⎥⎦, 〈x ′|φ→〉 =

⎡
⎢⎢⎣

0
tn,→eik(x−xn+1 )

0

0

⎤
⎥⎥⎦, (B3)

〈x|φ←〉 =

⎡
⎢⎢⎢⎣

0

0

tn,←e−ik(x−xn )

0

⎤
⎥⎥⎥⎦, and 〈x ′|φ←〉 =

⎡
⎢⎢⎢⎣

0

rn,↪→eik(x−xn+1 )

e−ik(x−xn+1 )

0

⎤
⎥⎥⎥⎦. (B4)

Constraints can be placed on r , t , and p due to the symmetries of the system. For instance, probability current conservation
gives us that

1 = |pn,←|2 = |rn,↪→|2 + |tn,←|2 and 1 = |pn,→|2 = |rn,←↩|2 + |tn,→|2. (B5)

Acting the time reversal operator � = σ (e)
x σ (I )

x K (where e and I refer to the electronic and nuclear spins, respectively, and K
is the complex conjugation operation) on the “passing” states gives

〈x|�|φ↑↑〉 =

⎡
⎢⎢⎢⎣

0

0

0

e−ik(x−xn )

⎤
⎥⎥⎥⎦ and 〈x ′|�|φ↑↑〉 =

⎡
⎢⎢⎢⎣

0

0

0

p̄n,→e−ik(x ′−xn+1 )

⎤
⎥⎥⎥⎦. (B6)

Recognizing that �|φ↑↑〉 must be proportional to |φ↓↓〉, we conclude that

pn,← = (p̄n,→)−1 or pn,← = pn,→ = pn. (B7)

Similarly,

〈x|�|φ→〉 =

⎡
⎢⎢⎢⎣

0

−r̄n,←↩e
ik(x−xn )

−e−ik(x−xn )

0

⎤
⎥⎥⎥⎦ and 〈x ′|�|φ→〉 =

⎡
⎢⎢⎢⎣

0

0

−t̄n,→e−ik(x−xn+1 )

0

⎤
⎥⎥⎥⎦. (B8)

Here, however, �|φ→〉 must be some linear combination,

�|φ→〉 = A|φ→〉 + B|φ←〉. (B9)
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The second component on the left hand side requires A = −r̄n,←↩, and the third component on the right requires B = −t̄n,→.
The remaining two nontrivial components give equations

−r̄n,←↩tn,→ − rn,↪→ t̄n,→ = 0, and − |rn,←↩|2 − tn,← t̄n,→ = −1. (B10)

The second equation implies

1 = 1 − tn,→ t̄n,→ + tn,← t̄n,→ = 1 − t̄n,→[tn,→ − tn,←], (B11)

so that

tn,→ = tn,← = tn = |tn|eiφtn , (B12)

where the phase of t has been separated out. Separating out the phase for the reflection coefficient

rn,←↩ = |rn|eiφrn , (B13)

the first equation takes the form r̄n,←↩t = −rn,↪→ t̄ , and therefore

rn,↪→ = −e2iφtn r̄n,←↩ = −|rn|ei[2φtn−φrn ]. (B14)

Therefore there are four independent real numbers that fully determine all the scattering amplitudes for an arbitrary poten-
tial: (1) the magnitude of |rn,←↩|2 = |rn,↪→|2 = |rn|2, (2) the phase of pn = pn,→ = pn,←, (3) the phase of tn = |tn|eiφn,t =√

1 − |rn|2eiφtn , and (4) the phase of rn,←↩ =
√

1 − |tn|2eiφrn .
The following relationship proves useful:

rn,↪→rn,←↩ = −|rn|ei[2φtn −φrn ]|rn|eiφrn = −|rn|2e2iφtn = −t2
n

|rn|2
|tn|2 or

rn,↪→rn,←↩

t2
n

= −|rn|2
|tn|2 = |rn|2

|rn|2 − 1
. (B15)

Note that if we also assume inversion symmetry in the above, rn,←↩ = rn,↪→ = r , so that r̄ntn = −rnt̄n, or rnt̄n is imaginary, or

φtn = φrn
+ π/2. (B16)

APPENDIX C: NAIVE DIRECT APPROACH

An arbitrary state of the Hilbert space can be written as

|�〉 =
∑

s

∫
[ψ→,s (x)|x,↑〉 + ψ←,s (x)|x,↓〉] dx ⊗ |s〉, (C1)

where s ranges over all nuclear spin configurations, and |x,↑〉 and |x,↓〉 are basis states on the Dirac Hilbert space for,
respectively, spin-up and spin-down states. Because of spin-momentum locking, the propagation direction of the electron
automatically determines its spin; it proves more convenient to denote the electron basis states in terms of the propagation
direction (using left/right arrows), so this is the notation we will use henceforth in this appendix. For 0 < n � N , define the
projector

Pn =
∫ xn+1

xn

[|x,→〉〈x,→| + |x,←〉〈x,←|] dx ⊗
∑

s

|s〉〈s|, (C2)

which projects the wave function to zero away from the nth spin. To keep things uniform, define

P0 =
∫ 0

−∞
[|x,→〉〈x,→| + |x,←〉〈x,←|] dx ⊗

∑
s

|s〉〈s| (C3)

and

PN+1 =
∫ ∞

xN+1

[|x,→〉〈x,→| + |x,←〉〈x,←|] dx ⊗
∑

s

|s〉〈s|, (C4)

which, respectively, restrict wave functions to the left and right of the nuclear spin lattice. Next, let |φn,(E),full
j 〉 be the solutions

of the two-body problem:

H
(n)
0 = −ih̄∂xvσ (e)

z + V (e−In )(x). (C5)

As in Appendix B, we choose these eigenstates to have only rightward or leftward incoming amplitude, and incom-
ing nuclear spin only up or down.3 Furthermore, we project these wave functions with Pn. Using the notation from

3We are assuming there are no bound states.
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Appendix B, ∣∣φn,(E)
←,↑

〉 = Pn

∣∣φn,(E)
←

〉
, (C6)∣∣φn,(E)

→,↑
〉 = Pn

∣∣φn,(E)
↑↑

〉
, (C7)∣∣φn,(E)

←,↓
〉 = Pn

∣∣φn,(E)
↓↓

〉
, (C8)∣∣φn,(E)

→,↓
〉 = Pn

∣∣φn,(E)
→

〉
. (C9)

Similarly, let the n = 0 and n = N + 1 states ∣∣φn,(E)
←

〉
, and

∣∣φn,(E)
→

〉
, (C10)

refer to the plane-wave solutions (i.e., for H = h̄vσ (e)
x ) restricted, respectively, to the left and right of the nuclear spin lattice

(i.e., acted on by P0 and PN+1, respectively). Notice that these states together span the full Hilbert space—but are not a basis;
they are overcomplete. Indeed, every energy eigenstate (of energy E) can be written as

|�〉 =
N∑

n=1

∑
s/n

[
αn,s/n

∣∣φn,(E)
→,↑

〉|s/n〉 + βn,s/n

∣∣φn,(E)
←,↑

〉|s/n〉 + α′
n,s/n

∣∣φn,(E)
→,↓

〉|s/n〉 + β ′
n,s/n

∣∣φn,(E)
←,↓

〉|s/n〉
]

+
∑

s

[
ζ−1,s

∣∣φ−1,(E)
→

〉|s〉 + ζ ′
−1,s

∣∣φ−1,(E)
←

〉|s〉 + ζN+1,s

∣∣φN+1,(E)
→

〉|s〉 + ζ ′
N+1,s

∣∣φN+1,(E)
←

〉|s〉], (C11)

where s/n is the spin configuration for all nuclear spins other than n, and |s/n〉′ the corresponding vector in H⊗N−1
I . Notice that not

every combination is an energy eigenstate: if appropriate boundary conditions are not met, jump discontinuities exist, and the
derivative in Eq. (C5) then leads to Dirac delta functions. The approach for the single nucleus case followed the basic structure:
(1) find solutions in particular regions and (2) match boundary conditions.

We have already described the many-body system in terms of solutions in “particular regions,” though now we have 2N “spin
regions” for each N + 2 spatial regions—for a total size of (N + 2)2N regions. The size of this parameter space is what makes
this problem difficult.

1. Boundary matching

Consider the case where an electron is injected on the left, moving right, into an initial nuclear spin configuration s. In this
case, the boundary conditions fully specify the scattering eigenstate:

∣∣� (E)
→e,s

〉 =

internal degrees of freedom︷ ︸︸ ︷
N∑

n=1

∑
s/n

[
αn,s/n

∣∣φn,(E)
→,↑

〉|s/n〉′ + βn,s/n

∣∣φn,(E)
←,↑

〉|s/n〉′ + α′
n,s/n

∣∣φn,(E)
→,↓

〉|s/n〉′ + β ′
n,s/n

∣∣φn,(E)
←,↓

〉|s/n〉′
]

+
incoming wave︷ ︸︸ ︷∣∣φ0,(E)

→
〉|s〉 +

outgoing wave︷ ︸︸ ︷∑
s ′

[
ζ ′

0,s ′
∣∣φ0,(E)

←
〉|s ′〉 + ζN+1,s ′

∣∣φN+1,(E)
→

〉|s ′〉] . (C12)

Moreover, notice that each boundary matching conserves total spin. This allows for some simplifications:

∣∣� (E)
→e,s

〉 = ∣∣φ−1,(E)
→

〉|s〉 +
N−1∑
n=0

∑
s ′

An,s ′
∣∣φn,(E)

γs,s′ ,sn

〉|s ′〉′ +
∑
s ′

Zs,s ′
∣∣φγ ′

s,s′ ,(E)
γs,s′

〉|s ′〉, (C13)

where γs,s ′ is → if Jz[s ′] = Jz[s], and ← if Jz[s ′] = Jz[s] + h̄ (and does not matter for other values). Similarly, γ ′ is,
respectively, N + 1 or 0. Note also that, by conservation of probability current, the total incoming amplitude equals the sum
of the total outgoing amplitudes:

1 =
∑
s ′

|Zs,s ′ |2. (C14)

The direct approach to satisfying all the boundary conditions is to consider all possible “paths” of the electron through the
nuclear spin lattice. The word is placed in quotes because here we are using it to refer not to a physical path—quantum or
classical—but rather to the procedure one follows to satisfy all boundary conditions by choosing appropriate wave function
amplitudes. It is important to stress that, while these paths can actually be related to some interpretation of the electron’s actual
path, what is being referred to here is simply the mathematical procedure to satisfy all boundary conditions. Each “path” π

consists of a sequence of adjacent sites 1 � πi � N (with π0 = 0, and πfinal either 0 or N + 1), and with certain constraints
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placed on the wave function at each site. For example, π = [010] corresponds to an electron coming from the left, reflecting off
of the first site and exiting to the left.

To help understand this process, consider an electron incoming from the left and impinging on the nuclear spin configuration
↑↑↓ as an example. Here, we assume that all the single-nucleus scattering amplitudes are independent of the site index n and
that each interaction profile is inversion symmetric for simplicity. We will match boundary conditions. By definition, the far left,
right-moving segment must have coefficient 1.

↑ ↑ ↓
1

Because each boundary matching step does not change the total angular momentum, all left moving electronic wave functions
vanish. Moreover, all right moving wave functions are easily seen to collect either a factor of p (from both of the first two spins),
or t (from the last spin).

↑ ↑ ↓
1 p p2 tp2

This process corresponds to the path π = [01234], or

π (0) = 0; π (1) = 1; π (2) = 2; π (3) = 3; π (4) = 4. (C15)

Next, let us find the wave function in the spin sector ↑↑↑. The only important boundary condition for this sector is the reflection
off site 3. We already calculated this above, so it is easy to find the wave function,

↑ ↑ ↑
rp2rtp2rt2p2

and, as above, all right-moving components vanish. This process used information about the wave function calculated up to the
third step of π , and then worked back to the far left hand side: π ′ = [0123210]. Repeat the process for ↑↓↑ and ↓↑↑.

↑ ↓ ↑
r2p2 r2p3

↓ ↑ ↑
r2tp2 r2tp3 r2tp4

These two processes corresponded to paths [0123234] and [012321234], respectively. Notice that any other path will provide
no new information about the wave function: every other path would involve another reflection, but that would have amplitude
zero. Moreover, notice that at any step of the path, the state of the spin sector (i.e., the spin configuration that is matched) had
some value, sπ ;i (n). We will often use heuristic language, referring to the electron as moving from site π (i − 1) to π (i), and the
spin configuration is in the state sπ ;i—even though it is not strictly correct. In this same sense, the spin must move right as you
follow a path (taking into account the electrons spin). It follows that there is a finite number of paths to consider to match all
boundary conditions.

Moreover, there may be multiple paths that impose requirements on the same part of the wave function. Because the boundary
conditions impose linear constraints, the requirements for different paths are simply summed. The final outgoing amplitude for
the nuclear spin lattice to start in configuration m and end in configuration m′ can be expressed in terms of paths:

Zm,m′ =
∑

paths π producing m′

∏
n

r
Nr←↩ (π ;n)
n,←↩ r

Nr↪→ (π ;n)
n,↪→ tNt (π ;n)

n p
Np (π ;n)
n , (C16)

where Nr↪→ (π ; n) is the number of reflections (outgoing to the right) in path π at site n, and so on.
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Example calculation

A more complicated example is included here, fully completed. Once understood, the process is purely mechanical.

↑ ↓ ↓
1 p1 t1p1 t2p1

↑ ↑ ↓
r1t1p1 r1p1

↓ ↑ ↓
r2p1 r2p2 r2t1p2

↑ ↓ ↑
r1t1p1r1t1p2r1t2p2

↓ ↑ ↑
r3t0p22r3t1p22r3t1p3

↓ ↓ ↑
r2t1p2

r4t0p2

+
r2t2p2

r4t0p3

+
r2t2p3

2. Naive algorithm

As seen from the example, an algorithm can be followed.
(1) Fix an initial spin configuration. Put the electron on the far left, moving right (up-spin). Add this initial configuration to a

list of configurations to consider.
(2) While there are still configurations in this list, process each configuration as follows: (i) If the electron is moving right

and at the far right, or moving left and at the far left, this is a terminal configuration. Record it. (ii) If the electron is moving right
(left) and the right (left) spin is up (down), the electron simply passes through the barrier. Add this same configuration, but with
one additional pn multiplying the amplitude. (iii) If the electron is moving right (left) and the right (left) spin is down (up): the
electron can transmit through the barrier (with an amplitude multiplied by tn), add this to the list of configurations to consider.
Or, the aforementioned spin can flip, the electron can flip direction, and the amplitude can be multiplied by rn,←↩ (rn,↪→). Add
this to the list of configurations to consider.

(3) At the end, each terminal state may be recorded multiple times—representing different paths through the lattice. Add all
the possible amplitudes—this is the final amplitude for that configuration.

This algorithm must take time proportional to the number of paths—which grows very quickly with system size. If the
individual paths are not needed (i.e., if the only the outgoing amplitudes are desired), there are simplifications. Appendix D
addresses this.

APPENDIX D: COMBINATORIAL REDUCTION

The high symmetry of the situation permits a dramatic reduction in the complexity of the calculation. In particular, there
are several nontrivial restrictions on the number of reflections, passes, and transmissions of any permitted “path.” Here, these
restrictions are identified, and then used to reduce the problem to a much simpler combinatorial problem.

1. Spin Migration: relationships between Nr , Nt , and Np

In this section, the fact that the system conserves spin will be exploited to derive some useful relationships. First, define δJ

to be the (normalized) change in the nuclear spin on site n:

δJm,m′ (n) = m′
i − mi

2
= Nr←↩

(n) − Nr↪→ (n), (D1)

where mn is ±1 for spin-up and spin-down, m denotes the input spin configuration, and m′ the final configuration. We have also
included an observation that each reflection to the left (right), Nr←↩

(n) (Nr↪→ (n)) imparts +2 (−2) angular momentum to the site.
Consider the (normalized) net change in spin in the first n sites:

�Jm,m′ (n) =
∑
i�n

δJm,m′ (n). (D2)

Since spin must move right in this system, and exactly one spin is injected at the far left, this quantity is at most 1. By spin
conservation, exactly 1 − �Jm,m′ (n) up spins must be deposited on the sites right of n or exit on the right. This means that an
up spin must move right from site n to site n + 1 (or exit right) exactly

Np→ (n) + Nt→ (n) + Nr↪→ (n) = Np→ (n + 1) + Nt→ (n + 1) + Nr←↩
(n + 1) = λm,m′ (n) = 1 − �Jm,m′ (n) (D3)
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times. Np→ (n′) is the number of passes (of an electron moving rightward) at site n′, and likewise for the other symbols; the
expression should be ignored for n′ = 0, N + 1. Similarly, since the electron is neither created nor destroyed, it must move left
between these same sites:

Np← (n) + Nt← (n) + Nr↪→ (n) = Np← (n + 1) + Nt← (n + 1) + Nr←↩
(n + 1) = ρm,m′ (n) =

{
1 − �Jm,m′ (n), left exiting

− �Jm,m′ (n), right exiting.

(D4)

It follows then that the total number of interactions at a site is

Nt (n) + Np(n) + Nr (n) = λm,m′ (n − 1) + ρm,m′ (n) =
{

2 − 2�Jm,m′ (n − 1) − δJm,m′ (n), left exiting

1 − 2�Jm,m′ (n − 1) − δJm,m′ (n), right exiting.
(D5)

To visualize the situation, consider a site n and initial and final configuration m and m′, respectively. By the discussion above,
we know how many approaches and departures are made from the right and left to this site—numbers independent of the path.
Label each approach and each departure on each side—i.e., left approach No. 1, left departure No. 1, etc (call these sequence
numbers). Every path is uniquely identified by specifying where each arrival must go (i.e., reflecting or not). Illustrations are
provided below, for left-departing electrons (for mn = −1,−1, 1, 1, and m′

n = −1, 1, 1,−1),

...

−Δ
J
(n

−
1
)

...

−Δ
J
(n

−
1
)

↓

...

−Δ
J
(n

−
1
)

...

−Δ
J
(n

−
1
)
−

1

→

...
−Δ

J
(n

−
1
)

...

−Δ
J
(n

−
1
)

↑

...

−Δ
J
(n

−
1
)

...

−Δ
J
(n

−
1
)
+

1

→

and right-departing electrons.

...

−Δ
J
(n

−
1
)

...

−Δ
J
(n

−
1
)

↓

...

−Δ
J
(n

−
1
)

...

−Δ
J
(n

−
1
)
−

1

→

...

−Δ
J
(n

−
1
)

...

−Δ
J
(n

−
1
)

↑

...
−Δ

J
(n

−
1
)

...

−Δ
J
(n

−
1
)
+

1

→

The above illustrates the situation for all four combinations of initial and final state, for both left and right exiting cases (eight
total), and constitutes a complete case breakdown. The right and left facing solid arrows represent the right and left approaches to
the nuclear spin (visualized as the circled arrow, which graphically indicates its initial and final state). The ordering in the vertical
direction indicates the sequence number (downward is increasing), and is enforced by requiring that connections do not skip over
yet-unused sequence numbers. The dashed semicircles to the far left and right indicate some combination of reflections occurring
elsewhere in the lattice. Some arrows are shown already connected—indicating that all valid paths have this connection. The
remaining unconnected arrow heads and tails must be connected, such that the ordering of the arrows in the path is maintained
(and that a reflection is allowed by the spin state at the site). The grey boxes connecting quadruples of arrows can be used here
to guide the eye, visually grouping the terms (but will be used later).

For example, for the left exiting, mn = m′
n = −1 case, the initial arrow has two choices: right exiting No. 1 (transmission), or

left exiting No. 2 (reflection). Any other connection violates the assertion that the path segments are already sequenced. Compare
this to the illustration for mn = m′

n = 1; here, left entering No. 1 has only one choice to connect: right exiting No. 1 (a pass),
because a reflection would not be possible. That connection is already made in the illustration.

After one is convinced of the validity of this case breakdown, it is clear that each transmission or reflection must be followed
by a pass: if another approach occurs, the spin cannot have changed. In fact, by considering each of the cases above, we conclude
that

Np(n) =
{

Nt (n) + Nr (n) − δJm,m′ (n), left exiting

Nt (n) + Nr (n) + δJm,m′ (n) + mn, right exiting.
(D6)

Combining this with Eq. (D5), we obtain

Np(n) =
{

1 − �Jm,m′ (n), left exiting

1 − �Jm,m′ (n − 1) + mn−1
2 , right exiting,

(D7)
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and a quantity we call the “surplus,” which will prove critically important:

N0
m,m′ (n) = Nt (n) + Nr (n) =

{
1 − �Jm,m′ (n − 1), left exiting

1 − �Jm,m′ (n − 1) − (m′(n) + 1)/2, right exiting.
(D8)

Summarizing the results, the number of passes Np(n) at each site is determined by the initial and final nuclear spin
configurations; if the number of reflections at each site Nr (n) is also specified, so is the number of transmissions (as well as
the number of rightward and leftward reflections). Equation (C16) can be rewritten by summing over the possible numbers of
reflections at each site Nr (n), and introducing the path-counting function Pm,m′ (Nr ), which we will explore momentarily:

Zm,m′ =
∑

{Nr (n)}
Pm,m′ (Nr )

∏
n

r
Nr←↩ (n)
n,←↩ r

Nr↪→ (n)
n,↪→ tNt (n)

n p
Np (n)
n

=
[∏

n

p
Np (n)
n tN

0(n)
n

] ∑
{Nr (n)}

Pm,m′ (Nr )
∏
n

(rn,←↩/tn)Nr←↩ (n)(rn,↪→/tn)Nr↪→ (n)

=
[∏

n

p
Np (n)
n tN

0(n)
n

] ∑
{Nr (n)}

Pm,m′ (Nr )
∏
n

ei[Nn,r←↩ (φrn −φtn )+Nn,r↪→ (φtn−φrn +π )]|rn/tn|Nr (n)

=

Z0;m,m′︷ ︸︸ ︷[∏
n

p
Np (n)
n tN

0(n)
n ei(φrn −φtn −π/2)δJ (n)

] ∑
{Nr (n)}

Pm,m′ (Nr )
∏
n

(

zn︷ ︸︸ ︷
i|rn/tn|)Nr (n), (D9)

where we have used the fact that Nr←↩
(n) − Nr↪→ (n) = δJ (n). When δJ (n) = 0, Eq. (B15) cancels phases associated with

reflection. The residual phase when δJ (n) = −1 combines with the factor of i (because Nr must be odd) to give the extra
minus π phase from rn↪→.

2. The “surplus” N0
s,s′ (n)

Finally, a combinatorial argument is used to count all paths that (a) produce a particular final spin configuration m′, and (b)
has a specified number of reflections at each site, N ′

r (n). The formula is surprisingly compact:

Pm,m′;{N ′
r (n)} =

∏
n

(
N0

m,m′ (n)

N ′
r (n)

)
. (D10)

To break down and prove this relationship, first, we show that the number of paths can be expressed as a product over data about
each site. To see this, notice that, in the above case of breakdown, if two paths agree on all of these connections, on all sites, the
paths are the same. Similarly, if the paths differ for any choice of connection at any site, they are different. It follows that the
number of paths is therefore a product of the number of ways of connecting these arrows at each site.

It remains to be proven that the number of ways to connect these arrows is precisely
(N0

m,m′ (n)
N ′

r (n)

)
. This follows from a simple,

albeit tedious, case analysis. The above visualization makes this verification relatively easy: observe that each shaded block
connects four segments. The interaction is simple: a choice of upper, outgoing arrow (either right or left) is made; once done, the
electron must come back on the respective incoming segment; the spin at this point only allows the electron to then pass through
to the unchosen outgoing segment, and then brought back in along the final, incoming segment. A single choice must be made
(to either reflect or not) in each box. Carefully tracking through all the blocks shows there is a single, additional possible location
for reflection at the very end. Counting these up, we find that the surplus, as defined, properly captures the counting factor.

3. Polynomial form

Working with these products is vastly simpler than the direct counting described in Appendix C, but there are still some
meaningful simplifications. The total number of paths with Nr reflections is

Pm,m′ (Nr ) =
∑

{N ′
r (n)| ∑n N ′

r (n)=Nr}

∏
n

(
N0

m,m′ (n)

N ′
r (n)

)
. (D11)

The Nr (n)′ are restricted here to be valid for the m to m′ transformation. Using Eq. (D9), we have

Zm,m′ = Z0;m,m′
∑

{N ′
r (n)}

∏
n

(
N0

m,m′ (n)

N ′
r (n)

)
z
N ′

r (n)
n . (D12)
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Furthermore, the restriction on N ′
r (n) is still implied, but can be expressed simply in terms of the absolute value of δJm,m′ (n):

Zm,m′ = Z0;m,m′
∑
{kn}

∏
n

(
N0

m,m′ (n)

|δJm,m′ (n)| + 2kn

)
z
|δJm,m′ (n)|+2kn

n . (D13)

This allows an interchange of sum and product, reducing the calculation to a polynomial multiplication problem:

Zm,m′ = Z0;m,m′
∏
n

∑
k

(
N0

m,m′ (n)

|δJm,m′ (n)| + 2k

)
z
|δJm,m′ (n)|+2k
n . (D14)

Alternatively, the sum over k can be expressed in terms of binomial factors:

Zm,m′ = Z0;m,m′
∏
n

1

2
((1 + zn)N

0
m,m′ (n) + (−1)|δJm,m′ (n)|(1 − zn)N

0
m,m′ (n) )

= Z0;m,m′

2N

∏
n

((1 + zn)N
0
m,m′ (n) + (−1)|δJm,m′ (n)|(1 − zn)N

0
m,m′ (n) ). (D15)

APPENDIX E: TOTAL SPIN MOVEMENT

Define the change in “center of angular momentum” (measured from the far right),

dS (m, m′) =
∑

n

(N + 1 − n)m′
n −

∑
n

(N + 1 − n)mn =
∑

n

(N + 1 − n)δJm,m′ (n) =
∑

n

�Jm,m′ (n). (E1)

Summing Eq. (D7) over all sites gives

Np =
{

N − dS (m, m′), left exiting

N − dS (m, m′) + N↑−N

2 , right exiting.
(E2)
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