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Incompressible even denominator fractional quantum Hall states at fillings ν = ± 1
2 and ν = ± 1

4 have been
recently observed in monolayer graphene. We use a Chern-Simons description of multicomponent fractional
quantum Hall states in graphene to investigate the properties of these states and suggest variational wave
functions that may describe them. We find that the experimentally observed even denominator fractions and
standard odd fractions (such as ν = 1/3, 2/5, etc.) can be accommodated within the same flux attachment scheme
and argue that they may arise from sublattice or chiral symmetry breaking orders (such as charge-density-wave
and antiferromagnetism) of composite Dirac fermions, a phenomenon unifying integer and fractional quantum
Hall physics for relativistic fermions. We also discuss possible experimental probes that can narrow down the
candidate broken symmetry phases for the fractional quantum Hall states in the zeroth Landau level of monolayer
graphene.
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I. INTRODUCTION

When graphene is placed in a strong perpendicular mag-
netic field, a plethora of quantum Hall states are observed
[1–14]. Interactions among electrons can strongly influence
these states when the density is low [15–20]. At the level of
the integer quantum Hall effect, the ν = 0 and ν = ±1 states
are examples of interaction induced Hall states [5–11,21–28],
consistent with the scenario of sublattice or chiral symmetry
breaking (CSB) orders [21–25]. Investigations of the frac-
tional quantum Hall (FQH) effect in graphene [8–14] have
revealed unusual patterns of fractions [11] and unexpected
behavior in a tilted magnetic field [14,29].

Particularly notable is the very recent observation of
incompressible even-denominator fractional quantum Hall
(EDFQH) states at ν = ± 1

2 and ν = ± 1
4 [30]. These ED-

FQH states had not been previously observed in monolayer
graphene, although EDFQH states have been seen previously
in higher Landau levels (LLs) in single-component systems
at ν = 5

2 in GaAs [31], and at ν = 3
2 and 7

2 in ZnO [32].
In multicomponent systems there have been observations of
EDFQH states in bilayer graphene at fractions corresponding
to n = 1 orbital wave functions [33–35] and at fractions of
ν = 1

2 [36–39] and 1
4 [40,41], corresponding to n = 0 orbital

wave functions in systems with multiple layers or subbands.
One of the distinguishing features of the FQH effect in

monolayer graphene is that there are four isospin compo-
nents in the zeroth LL corresponding to two valley and
two spin degrees of freedom [42–53]. In addition, due to
strong electronic interactions in graphene (such as on-site
Hubbard repulsion), these states cannot be assumed to be spin
polarized. This allows for more degrees of freedom than in
systems that have previously demonstrated EDFQH states at
ν = ± 1

2 and ν = ± 1
4 , and a wide variety of possible states

need to be considered in composite fermion or Chern-Simons

theories. Previous theoretical studies of the integer quantum
Hall states at ν = 0 and ν = ±1 that take into account filled
LLs [21–25,54–57] have inferred a preference for CSB orders
due to strong LL mixing. Calculations based on this idea have
shown good agreement with experiment [23,25]. In Ref. [25]
two of us argued for the presence of a canted antiferromagnet
(CAF) for ν = 0 and charge-density-wave (CDW) order with
a small easy-axis component of Néel antiferromagnetism
(AFM) at ν = 1. Hence we suggest that CSB may also occur
for FQH states with 0 < |ν| < 1.

In this paper we make use of the framework for the Chern-
Simons theory of multicomponent FQH states in graphene
in the presence of symmetry breaking orders [43,49,58] to
investigate possible composite fermion wave functions for
the observed EDFQH states. In the n = 0 LL of graphene,
sublattice and valley degrees of freedom are equivalent in
the absence of sublattice-symmetry breaking orders. We start
from a chirally symmetric background and allow for the pos-
sibility of dynamical symmetry breaking in the FQH states.

The possibility of incompressible EDFQH states in mono-
layer graphene was noted in Ref. [49]. However, there are
numerous ways to realize such fractions. Our approach to
identifying candidate variational states is as follows. First,
we consider flux attachment schemes that give either ν = 1

2
or ν = 1

4 . Second, we note that Zibrov et al. [30] observed
that the magnetic fields at which these two EDFQH states
are observed, some odd denominator fractions coexist with
them, while other fractions disappear or weaken (with some
sample dependence). For example, at fields where ν = 1

2 was
observed, both ν = 1

3 and ν = 2
5 were also present, and in

their sample B, ν = 3
7 and ν = 4

9 were also unaffected. For
ν = 1

4 , they found that ν = 1
5 and ν = 2

7 were mostly present
at the same field, whereas ν = 2

9 and ν = 3
11 were generally

not, but were seen at higher and lower magnetic fields. We
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use these observations to winnow out candidate states by
postulating that for filling fractions close to the EDFQH
states with the same flux attachment scheme are the most
likely states to be seen at the same magnetic field. We also
determine the other fractions that naturally arise from the flux
attachments that give rise to EDFQH states and compare with
the experimental observations to narrow down the possible
states that might give rise to EDFQH effects.

Our main result is that we identify candidate variational
wave functions for the observed EDFQH states, which are
summarized in Tables I and II. We observe that the majority
of these candidate states show CSB in the form of either
a CDW or AFM. In light of this result and the role that
chiral symmetry plays in the integer quantum Hall effect in
the zeroth LL [25], we suggest that CSB is likely a unifying
phenomenon for both regular and composite Dirac fermions in
the zeroth LL in monolayer graphene. We discuss experiments
that can be used to test this idea and to discriminate between
potential orderings for a given flux attachment scheme.

II. COMPOSITE DIRAC FERMIONS AND SYMMETRY
BREAKING

The effective low energy Hamiltonian for graphene
is H = H+ ⊕ H−, which acts on eight component
spinors � = [�K,�−K]T , where for τ = ±, �T

τK =
[u↑, v↑, u↓, v↓](τK), ±K label the two valleys, and uσ (vσ )
is the amplitude on the A(B) sublattice of graphene’s
honeycomb lattice with spin projection σ =↑,↓. In the
absence of symmetry breaking orders H± can be written as
(setting h̄, vF = 1)

H± = ±I2 ⊗ σ1 D1 − I2 ⊗ σ2 D2, (1)

where Di = −i∂i − eAi, A is the vector potential. We label
the valley-spin configurations (K ↑), (K ↓), (−K ↑), (−K ↓)
by α = 1, 2, 3, 4, respectively. We can thus write the kinetic
part of the Hamiltonian as [49]

H =
∑

α

�†
α (±σ1D1 − σ2D2)�α,

where �†
α = (u†

α, v†
α ). We introduce the transformation �α =

ei�α ψ̃α , where ψ̃α is a composite fermion field and

�α = Kαβ

∫
dr′arg(r − r′)ρβ (r′).

Under this transformation

�†
α (±σ1D1 − σ2D2)�α −→ ψ̃†

α (±σ1D̃1 − σ2D̃2)ψ̃α,

where D̃1,2 = D1,2 − aα
1,2, with Chern-Simons field

aα = Kαβ

∫
dr′g(r − r′)ρβ (r′), g(r) = ẑ × r

r2
.

Requiring the ψ̃α to be fermionic constrains the values of K

so that Kαβ is integer valued with Kαβ = Kβα and Kαα even
[59]. In the composite fermion picture the filling fraction να

for species α of composite fermion is related to the densities
ρα = ψ†

αψα = �†
α�α by [49]

ρα

να

= ρ

ν
− Kαβ ρβ. (2)

TABLE I. Parameters for possible ν = 1
2 states. Other fractions

that can occur for the same (k, m, n) are indicated. Fractions ob-
served in Ref. [30] are indicated in bold. Note that when the order
parameters take values ±1 these correspond to the same phase since
C, F , and N represent Ising-like orders.

(k, m, n) (ν1, ν2, ν3, ν4) (C,F,N ) Other fractions

(1,2,1) (1, 0, 1, 0) (0, 1, 0) 1
3 , 2

5 , 3
7 , 4

9
(1, 0, 0, 1) (0, 0, 1)
(0, 1, 1, 0) (0, 0, −1) 7

13 , 5
9 , 4

7 , 5
11

(0, 1, 0, 1) (0, −1, 0)

(1,1,2) (1, 1, 0, 0) (1, 0, 0) 1
3 , 2

5 , 3
7 , 4

9
(0, 0, 1, 1) (−1, 0, 0)
(1, 1, 1, 0) (1, 0, 0) 7

13 , 5
9 , 4

7 , 5
11

(1, 1, 0, 1) (1, 0, 0)
(1, 0, 1, 1) (−1, 0, 0)
(0, 1, 1, 1) (−1, 0, 0)
(1, 1, 2, 0) (1, 0, 0)
(1, 1, 0, 2) (1, 0, 0)
(1, 1, 1, 2) (1, 0, 0)
(1, 1, 2, 1) (1, 0, 0)
(1, 2, 1, 1) (−1, 0, 0)
(2, 1, 1, 1) (−1, 0, 0)
(1, 1, 0, 3) (1, 0, 0)
(1, 1, 3, 0) (1, 0, 0)
(0, 3, 1, 1) (−1, 0, 0)
(3, 0, 1, 1) (−1, 0, 0)

We also have the following relations between the compos-
ite fermion densities and order parameters:

1 = ρ1 + ρ2 + ρ3 + ρ4

ρ
, C = ρ1 + ρ2 − ρ3 − ρ4

ρ
,

F = ρ1 − ρ2 + ρ3 − ρ4

ρ
, N = ρ1 − ρ2 − ρ3 + ρ4

ρ
, (3)

where C represents CDW order, F is ferromagnetism, and N

is easy axis Néel order. We parametrize the K matrix as

K =

⎛
⎜⎝

2k1 m1 n1 n2

m1 2k2 n3 n4

n1 n3 2k3 m2

n2 n4 m2 2k4

⎞
⎟⎠, (4)

and consider the following simplification that k1 = k2, k3 =
k4, n = n1 = n2 = n3 = n4, so that flux attachment is the
same within a valley (sublattice), but not necessarily the same
as the other valley (sublattice). We combine Eqs. (2) and (3)
to get the set of equations

M

⎛
⎜⎝

1
C

F

N

⎞
⎟⎠ = 1

ν

⎛
⎜⎝

ν∗
νC

νF

νN

⎞
⎟⎠, (5)

where we introduce the following quantities:

ν∗ = ν1 + ν2 + ν3 + ν4, νC = ν1 + ν2 − ν3 − ν4,

νF = ν1 − ν2 + ν3 − ν4, νN = ν1 − ν2 − ν3 + ν4,

and M is written out in full in the Supplemental Material [60].
The entries of the matrix Kαβ specify the flux attachment
scheme. In the framework of Modak et al. this corresponds
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TABLE II. Parameters for candidate ν = 1
4 states. Other frac-

tions that can occur for the same (k, m, n) are indicated. Fractions
observed in Ref. [30] are indicated in bold.

(k, m, n) (ν1, ν2, ν3, ν4) (C,F, N ) Other fractions

(2, 3, 2) (1, 1, 0, 0) (1, 0, 0) 1
5 , 2

9 , 3
13 , 2

7 , 4
9

(0, 0, 1, 1) (−1, 0, 0)

(2, 2, 3) (1, 0, 1, 0) (0, 1, 0) 1
5 , 2

9 , 3
13 , 2

7 , 4
9

(1, 0, 0, 1) (0, 0, 1)
(0, 1, 1, 0) (0, 0, −1)
(0, 1, 0, 1) (0, −1, 0)

to a variational wave function of the form (omitting Gaussian
factors) [49]

�({zα}) = PZLL

[
4∏

α=1

�να

(
uα

1 , . . . , uα
Nα

)]

×
Nα∏
i<j

(
zα
i − zα

j

)2kα

Nα,Nβ∏
i,j,α,β;α 	=β

(
zα
i − z

β

j

)Kαβ
, (6)

where for the Nα particles of species α, zα
i = xα

i − iyα
i are

the complex coordinates for the ith particle, �να
is the wave

function for να filled LLs of species α, and PZLL indicates
projection into the zeroth LL (ZLL). Different parametriza-
tions of the K matrix correspond to different variational
wave functions. We consider parametrizations of increasing
complexity and search for solutions of Eq. (5) which have
either ν = 1

2 or ν = 1
4 .

III. FLUX ATTACHMENT FOR EDFQH STATES

We use the information about which fractions are seen at
the same magnetic field as the EDFQH states to constrain
flux attachment schemes that may give rise to these states
[30]. In particular, we postulate that states with the same
parametrization of the K matrix are more likely to be robust
at the same field, since they differ only in the occupation
of composite fermion LLs but not in the nature of the flux
attachment. We also expect that states which can be specified
with the fewest number of independent entries in the K matrix
are the most likely to occur and focus on these as candidate
variational states.

We first consider the Toke-Jain states [45]. The simplest
construction of the K matrix is when all elements are equal,
i.e., 2k = 2k1 = 2k3 = m = m1 = m2 = n and parametrized
by a single parameter k. This leads to the Toke-Jain sequence
of states: ν = ν∗/(2kν∗ + 1) [45], yielding the sequence
1
3 , 2

5 , 3
7 , 4

9 , . . . for k = 1. They are always odd denominator
states (except in the limit ν∗ → ∞, for which ν → 1/(2k) and
we expect a compressible composite fermion state [49,61])
and hence are not candidates for EDFQH states.

We next consider more general states with k = k1 = k3

and m = m1 = m2, which are labeled by the triplet (k,m, n).
A simple limit is when m = 2k but n 	= 2k, so the flux
attachment is of the form (k, 2k, n) and specified by two
independent parameters k and n. One can show that the

allowed fractions for such states are [49]

ν = ν∗ + (k − n/2)
(
ν2

∗ − ν2
C

)
1 + 2 k ν∗ + (k2 − n2/4)

(
ν2∗ − ν2

C

) , (7)

and the order parameters can be expressed in simple analytic
forms [60]. A second class of two parameter states can be
obtained by assuming n = 2k and m 	= 2k in which case the
flux attachment is of the form (k,m, 2k) [60]. We find that the
EDFQH state at ν = 1

2 can be described in terms of these two
types of flux attachments, but they are insufficient to describe
the EDFQH state at ν = 1

4 .
There are many different triplets (k,m, n) which can give

rise to EDFQH states at ν = 1
2 . However, if we apply the con-

dition that these triplets should also give rise to the fractions
ν = 1

3 , 2
5 , 3

7 , 4
9 , then we find that this restricts us to (k, 2k, n)

states with k = 1 and n = 1, i.e., (1,2,1) states and (k,m, 2k)
states with k = 1 and m = 1, i.e., (1,1,2) states. For the (1,2,1)
combination we also expect to see incompressible states at
ν = 7

13 , 5
9 , 4

7 , and 5
11 and similarly for (1,1,2). The ν = 5

9 and
4
7 states were observed by Zibrov et al. [30] but were weaker at
the fields where the ν = 1

2 state was observed. The 20 states
that meet these criteria are listed in Table I. All the (1,1,2)
states all have C 	= 0, N = 0, F = 0 while all the (1,2,1)
states all have C = 0 and either N or F nonzero.

For the incompressible state at ν = 1
4 we first consid-

ered states with flux attachment in the form (k, 2k, n) and
(k,m, 2k) and found possibilities with (k,m, n) = (2,4,3),
(2,3,4), or (3,6,1) as listed in the Supplemental Material [60].
For k = 2 it is easy to find (k, 2k, n) states at the fractions
ν = 1

5 , 2
9 , 3

13 , 4
9 , which are seen in Ref. [30], while for k = 3

and n = 1 one finds the fractions ν = 1
7 and 2

13 which are not
seen in Ref. [30], instead of ν = 1

5 and 2
9 . However, neither

of the combinations (k, 2k, n) nor (k,m, 2k) above support
states at the experimentally observed fraction ν = 2

7 .
Hence, we consider more general states with m 	= 2k and

n 	= 2k, which depend on the three parameters (k,m, n).
We solved the equations for the filling fractions and order
parameters [60], but were not able to find compact analytic
forms for their solutions. Noting that the k = 2 states appear
to be more promising for ν = 1

4 than the k = 3 states, we
found the following combinations in addition to (2,4,3) and
(2,3,4) that can give rise to a ν = 1

4 EDFQH state: (2,0,3),
(2,1,3), (2,2,3), (2,3,0), (2,3,1), (2,3,2), and (2,3,3). When
we investigate the above combinations of (k,m, n) to see
which combinations also allow for FQHE states at ν = 1

5 and
ν = 2

7 , three prominent candidates emerge: (2,2,3), (2,3,2),
and (2,3,3). All three combinations can also have ν = 2

9 states,
but only the (2,3,3) combination also allows for a ν = 3

11 state.
Given that the ν = 3

11 state disappears at fields at which the
ν = 1

4 state is observed, we eliminate the (2,3,3) combina-
tion, leaving (2,2,3) and (2,3,2) as competing flux attachment
schemes. The parameters for these candidate ν = 1

4 states are
listed in Table II.

The (2,3,2) combination has C 	= 0, with F = 0, N = 0,
while the (2,2,3) combination has C = 0 and allows for either
F 	= 0 or N 	= 0. We observed that the ν = 2

7 state is quite
robust when the ν = 1

4 state forms and is similar to the ν =
1
4 state in that only one of C, N , or F is nonzero when it
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occurs. In contrast, the ν = 1
5 and ν = 2

9 states have |C| =
|N | = |F | = 1, and appear to be weaker at the fields where
the ν = 1

4 EDFQH is observed.
Based on the idea that fractions that coexist with EDFQH

states at the same magnetic field are likely to have the same K

matrix, but different fillings of Dirac composite fermion LLs,
we suggest that the likely candidate variational wave functions
for ν = 1

2 have (k,m, n) = (1, 1, 2) or (1,2,1) and those for
ν = 1

4 have (k,m, n) as (2,2,3) or (2,3,2). Even within this
limited set of flux attachments there is still threefold degener-
acy associated with the pattern of symmetry breaking orders
present in the states, as shown in Tables I and II. In order
to discriminate further, we need information about the nature
of the broken symmetries in the various EDFQH states. Note
that C and N are CSB orders and therefore cause strong LL
mixing. As a result, the onset of CDW and AFM orders may
cause the system to lower its energy by pushing all filled
LLs of composite Dirac fermions further down in energy.
Hence we expect any FQH state with C 	= 0 or N 	= 0 to
be energetically superior to those with F 	= 0. Such states
can be expected to arise in graphene due to electron-electron
interactions. The pattern of symmetry breaking realized in
any particular sample will depend on the relative strength of
various finite range components of the Coulomb interaction.

IV. DISCUSSION

Zibrov et al. [30] noted that there was a sublattice gap
in their experiments, the size of which was correlated with
the magnetic field at which EDFQH states were seen. They
proposed that the EDFQH states are associated with a phase
transition from a partially sublattice polarized (PSP) to a CAF
phase. Within the variational states we consider this would
correspond to a transition from a state with C 	= 0 to one
with spin ordering. A more general variational state than
we have considered here might be achieved by taking linear
combinations of states of the form of Eq. (6) with the same
(k,m, n) but different (ν1, ν2, ν3, ν4). These might give ways
to realize PSP or CAF states. On the other hand, experiments
by Amet et al. [14] reported that the FQHE states in the
n = 0 LL do not show appreciable change in a tilted magnetic
field, leading them to conclude that the state is possibly spin
polarized, which would favor F 	= 0. However, as noted in
Ref. [25], the order parameters in ν = 0 states (believed to
be a CAF) can be relatively insensitive to even quite strong

parallel fields. Thus it may be possible to have both F � 0
and relatively little sensitivity to tilted fields.

We suggest that measurement is the best way to resolve
the ambiguity of the nature of the broken symmetry in the
EDFQH states. In the case of CDW order, sublattice resolved
STM measurements could determine the presence of nonzero
C at EDFQH states, and the spin ordering (either F or N )
could potentially be probed with spin resolved STM. Such
information could pare down the possible states quite sig-
nificantly. Additionally, studies of edge states via tunneling
measurements could provide additional constraints on pos-
sible orders [30]. Investigation of the excitation spectra for
different possible states might also provide ways to discrim-
inate between different orders. The recent construction of a
multicomponent Abelian Chern-Simons theory in a functional
integral approach is a promising step in this direction [50].

The multicomponent states we consider here are consider-
ably more complex in their flux attachment than the standard
sequence of FQHE states that have been proposed for mono-
layer graphene but actually show many of the same fractions
(e.g., 1

3 , 2
5 , 3

7 , 4
9 , ...). This observation raises questions about

the nature of states that have been observed in graphene
previously [11,12,14] and whether these do indeed belong to
families with the simplest flux attachment. Finally, we note
that the flux attachments for the states at ν = 1

4 are related
to those found for ν = 1

2 by j → j + 1 for j = k,m, n and
that the symmetry breaking orders flip, i.e., C ↔ F,N . This
switching of CSB (CDW or AFM) orders is reminiscent of
the transition from CAF to CDW in going from ν = 0 to
ν = 1 [25] and suggests that there is a hierarchical splitting
of degenerate composite Dirac fermion LLs occurring within
the zeroth LL.

In summary, we propose candidate wave functions for the
recently observed incompressible EDFQH states at ν = 1

2
and ν = 1

4 . The possibilities we uncover indicate that the
zeroth LL in graphene may harbor even more richness in
possible electronic states than previously anticipated. We urge
additional experimental efforts to uncover the nature of these
unusual states which may help to pin down the patterns of
broken symmetry FQH states in graphene.

ACKNOWLEDGMENTS

S.N. and M.P.K. were supported by NSERC and M.P.K.
acknowledges the hospitality of the Max-Planck Institute for
the Physics of Complex Systems in Dresden while a portion
of this work was completed.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature
(London) 438, 201 (2005).

[3] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801
(2005).

[4] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M.
Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P.
Kim, Phys. Rev. Lett. 96, 136806 (2006).

[5] D. A. Abanin, B. E. Feldman, A. Yacoby, and B. I. Halperin,
Phys. Rev. B 88, 115407 (2013).

[6] G. L. Yu, R. Jalil, B. Belle, A. S. Mayorov, P. Blake, F.
Schedin, S. V. Morozov, L. A. Ponomarenko, F. Chiappini, S.
Wiedmann, U. Zeitler, M. I. Katsnelson, A. K. Geim, K. S.
Novoselov, and D. C. Elias, Proc. Natl. Acad. Sci. 110, 3282
(2013).

[7] A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-
Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard,
and P. Kim, Nat. Phys. 8, 550 (2012).

235411-4

https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.96.136806
https://doi.org/10.1103/PhysRevLett.96.136806
https://doi.org/10.1103/PhysRevLett.96.136806
https://doi.org/10.1103/PhysRevLett.96.136806
https://doi.org/10.1103/PhysRevB.88.115407
https://doi.org/10.1103/PhysRevB.88.115407
https://doi.org/10.1103/PhysRevB.88.115407
https://doi.org/10.1103/PhysRevB.88.115407
https://doi.org/10.1073/pnas.1300599110
https://doi.org/10.1073/pnas.1300599110
https://doi.org/10.1073/pnas.1300599110
https://doi.org/10.1073/pnas.1300599110
https://doi.org/10.1038/nphys2307
https://doi.org/10.1038/nphys2307
https://doi.org/10.1038/nphys2307
https://doi.org/10.1038/nphys2307


INCOMPRESSIBLE EVEN DENOMINATOR FRACTIONAL … PHYSICAL REVIEW B 98, 235411 (2018)

[8] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature
(London) 462, 192 (2009).

[9] I. Skachko, X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S.
Levitov, and E. Y. Andrei, Philos. Trans. R. Soc. London Ser. A
368, 5403 (2010).

[10] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H.
Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L.
Shepard, Nat. Phys. 7, 693 (2011).

[11] B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby, Science
337, 1196 (2012).

[12] B. E. Feldman, A. J. Levin, B. Krauss, D. A. Abanin, B. I.
Halperin, J. H. Smet, and A. Yacoby, Phys. Rev. Lett. 111,
076802 (2013).

[13] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P.
Kim, Nature (London) 462, 196 (2009).

[14] F. Amet, A. J. Bestwick, J. R. Williams, L. Balicas, K.
Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Nat. Com-
mun. 6, 5838 (2015).

[15] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001); H.
Leal and D. V. Khveshchenko, Nucl. Phys. B 687, 323 (2004).

[16] I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006); I. F. Herbut, V.
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