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The structural relaxation of multilayer graphene is essential in describing the interesting electronic properties
induced by intentional misalignment of successive layers, including the recently reported superconductivity in
twisted bilayer graphene. This is difficult to accomplish without an accurate interatomic potential. Here, we
present a new, registry-dependent Kolmogorov-Crespi-type interatomic potential to model interlayer interactions
in multilayer graphene structures. It consists of two parts, representing attractive interaction due to dispersion
and repulsive interaction due to anisotropic overlap of electronic orbitals. An important new feature is a dihedral-
angle-dependent term that is added to the repulsive part to describe correctly several distinct stacking states that
the original Kolmogorov-Crespi potential cannot distinguish. We refer to the new model as the dihedral-angle-
corrected registry-dependent interlayer potential (DRIP). Computations for several test problems show that DRIP
correctly reproduces the binding, sliding, and twisting energies and forces obtained from ab initio total-energy
calculations based on density-functional theory. We use the new potential to study the structural properties of a
twisted graphene bilayer and the exfoliation of graphene from graphite. Our potential is available through the
OpenKIM interatomic potential repository at https://openkim.org.
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I. INTRODUCTION

Since the discovery of graphene [1], two-dimensional (2D)
materials have been shown to possess remarkable electronic,
mechanical, thermal, and optical properties with great poten-
tial for nanotechnology applications, such as semiconductors,
ultrasensitive sensors, and medical devices [2–5]. Stacked 2D
materials (or “heterostructures”) have even more unusual and
novel properties that their monolayer and 3D counterparts
do not possess [6,7]. For example, the electronic band gap
of a graphene bilayer can be tuned by applying a variable
external electric field, which allows great flexibility in the
design and optimization of semiconductor devices such as
p-n junctions and transistors [8]. A different manifestation
of interesting behavior not found in the bulk is the recently
reported superconductivity in intentionally misaligned (by a
relative twist of ∼1.1◦) graphene bilayers [9]. As a prototype
of a stacked 2D material, multilayer graphene (“graphitic
structure” hereafter) exhibits strong sp2 covalent bonds within
layers and weak van der Waals (vdW) and orbital repulsion
interactions between layers. Although weak, it is the interlayer
interaction that defines the function of nanodevices such as
nanobearings, nanomotors, and nanoresonators [10].

To simulate the mechanical behavior of graphitic struc-
tures, it is necessary to model the interactions between the
electrons and the ions, which produce the forces governing
atomic motion and deformation. First-principles approaches
that involve solving the Schrödinger equation are most
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accurate, but due to hardware and algorithmic limitations
these methods are typically limited to studying small molec-
ular systems and crystalline materials characterized by com-
pact unit cells with an upper limit on the number of atoms
in the range of ∼103. Empirical interatomic potentials are
computationally far less costly than first-principles methods
and can therefore be used to compute static and dynamic
properties that are inaccessible to quantum calculations, such
as dynamical tribological properties of large-scale graphene
interfaces [11–13].

There have been many efforts to produce an interatomic
potential that would adequately describe the properties of
graphitic structures, in particular the interactions between
layers. However, as we argue in detail in this paper, the
existing potentials fall short of capturing key elements of the
graphitic structures of interest. Therefore, there is a pressing
need to construct an accurate interlayer potential that will
elucidate many of the important structural properties of these
structures.

The paper is structured as follows. In Sec. II, we briefly
review the nature of existing interatomic potentials that might
be applied to graphitic structures, explain their shortcomings,
and elaborate on the need for constructing a new potential. In
Sec. III, the functional form of the new model is presented, to-
gether with a description of the fitting process that determines
the values of all the parameters that appear in it. In Sec. IV, the
predictions of the new model for several canonical properties
of interest are compared with other potentials and results from
ab initio total-energy calculations based on density-functional
theory (DFT). Large-scale applications of the new model are
discussed in Sec. V. The paper is summarized in Sec. VI.
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FIG. 1. Energy and force variations when sliding and twisting a graphene bilayer. (a) Schematic representation of high-symmetry graphene
bilayer configurations: AA, AB, and saddle point (SP) stackings. (b) Energy variation of sliding one layer relative to the other along the
armchair direction. (c) Out-of-plane component of the force on the atom at the rotation center [blue circle labeled 1 in the bottom layer in
panel (a)]. Rotation by 0◦ corresponds to AB stacking, and rotation by ±60◦ corresponds to AA stacking. In both sliding and twisting, periodic
boundary conditions are applied and the layer spacing is fixed at 3.4 Å. Details are provided in Sec. IV.

II. NEED FOR NEW GRAPHITIC POTENTIAL

A large number of interatomic potentials have been devel-
oped to model the strong covalent bonds in carbon systems.
Among these are bond-order potentials, such as the Tersoff
[14,15] and REBO [16,17] potentials, which allow for bond
breaking and formation depending on the local atomic envi-
ronments. Such models have been shown to be accurate for
many problems and are widely used, but are not suitable for
layered 2D materials since they do not include long-range
weak interactions. To address this, the AIREBO [18] potential
(based on REBO) added a 6–12 form of the Lennard-Jones
(LJ) potential [19] to model vdW interactions. For graphitic
structures, the LJ potential works well in describing the
overall binding characteristics between graphene layers. For
example, the LJ parametrization used in AIREBO predicts
an equilibrium layer spacing of 3.357 Å and a c-axis elastic
modulus of 37.78 GPa for graphite, in good agreement with
first-principles and experimental results. The isotropic nature
of LJ—that is, the fact that it depends only on distance
between atoms and not orientation—makes it too smooth to
distinguish energy variations for different relative alignments
of layers [20]. Figure 1(b) shows the energy variation obtained
by sliding one layer relative to the other along the armchair
direction of a graphene bilayer. The energy remains nearly
constant with a maximal difference of 0.41 meV/atom be-
tween the AA and AB stackings, a small fraction (6.6%) of
the DFT result (also shown in the figure).

The reason that the LJ potential fails to capture the energy
variations due to interlayer sliding is that in addition to vdW,
the interlayer interactions include short-range Pauli repulsion
between overlapping π orbitals of adjacent layers. These
repulsive interactions are not well described by a simple
pair potential like LJ [10,12,13]. To account for this registry
effect (relative alignment of layers), Kolmogorov and Crespi
(KC) developed a registry-dependent interlayer potential for
graphitic structures [10]. In the KC potential, the dispersive
(vdW) attraction between layers is described using the same
theoretically motivated r−6 term as in LJ, and π orbital over-
lap is modeled by a Morse-type [21] exponential multiplied by
a registry-dependent modifier that depends on the transverse

distance between atom pairs. The KC potential has been mod-
ified and reparameterized to better fit the energy variations
between different stacking states predicted by DFT-D (DFT
with dispersion corrections) [22]. It has also been adapted
for other 2D materials such as h-BN [12] and graphene/h-BN
[13,23] heterostructures.

The energy corrugation obtained by the KC potential is
in agreement with DFT as shown in Fig. 1(b). However, the
forces obtained from the KC potential deviate significantly
from the DFT results. This implies that equilibrium structures
associated with energy minima will differ as well. To illustrate
this point, consider a graphene bilayer where one layer is
rigidly rotated relative to the other. Figure 1(c) shows the
force in the z direction (perpendicular to the layers) acting
on the bottom atom on the rotation axis [atom 1 in the
bottom layer in Fig. 1(a)] as a function of rotation angle.
The force predicted by the KC potential decreases and then
increases from AA (±60◦) to AB (0◦), whereas DFT predicts
a monotonic increase from AA to AB. In particular, the KC
potential yields the same z force for the AA and AB stack-
ings,1 which indicates that the KC potential cannot distinguish
the overlapping atoms at the rotation center in these states.
This is intrinsic to the KC potential. The force on the central
atom in the AA and AB states is identical, regardless of the
choice of KC parameters. The modified KC potential [22]
has the same problem. The LJ potential does even worse
[Fig. 1(c)], predicting a constant force on the central atom that
is independent of the rotation angle.

In the present paper, a new registry-dependent interlayer
potential for graphitic structures is developed that addresses
the limitations of the KC potential described above. A
dihedral-angle-dependent term is introduced into the registry
modifier of the repulsive part that makes it possible to distin-
guish forces in AA and AB states. We refer to this potential as
the dihedral-angle-corrected registry-dependent interlayer po-
tential (DRIP). DRIP is validated by showing that it correctly

1Note that the x and y components of the force are zero at AA and
AB due to symmetry.
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reproduces the DFT energy and forces for different sliding and
rotated states as well as structural and elastic properties. It is
then applied to study structural relaxation in twisted graphene
bilayers and exfoliation of graphene from graphite; these rep-
resentative example are large-scale applications that cannot be
studied using DFT. The potential has been implemented as a
KIM Model Driver [24] and the parametrization in this paper
has been implemented as a KIM Model [25] at OpenKIM
[26,27]. (See details in Appendix.)

III. DEFINITION OF NEW MODEL

The DRIP functional form is

V = 1

2

∑
i∈layer 1

∑
j∈layer 2

(φij + φji ), (1)

where the pairwise interaction is based on the KC form with
dihedral modifications:

φij = fc(xr )

[
e−λ(rij −z0 )

[
C + f (ρij ) + g

(
ρij ,

{
α

(m)
ij

})]

−A

(
z0

rij

)6]
, m = 1, 2, 3. (2)

The cutoff function fc(x) is the same as that used in the
ReaxFF potential [28] and the interlayer potential for h-BN
[12,13]:

fc(x) = 20x7 − 70x6 + 84x5 − 35x4 + 1 (3)

for 0 � x � 1 and vanishes for x > 1, while it has zero first
and second derivatives at x = 1; in the expressions where
this function appears, its argument is always nonnegative. The
variable xr in Eq. (2) is the scaled pair distance xr = rij /rcut.
The use of fc(xr ) ensures that DRIP is smooth at the cutoff rcut

(set to 12 Å), a feature that the KC model does not possess.
The term with r−6

ij dependence in Eq. (2) models attractive
vdW interactions (as in LJ), while the repulsive interactions
due to orbital overlap are modeled by the exponential term
multiplied by a registry-dependent modifier. The transverse
distance function f (ρ) has the same form as in KC:

f (ρ) = e−y2
[C0 + C2y

2 + C4y
4], y = ρ

δ
, (4)

with its argument in Eq. (2) given by the expression

ρ2
ij = r2

ij − (ni · r ij )2, (5)

in which r ij is the vector connecting atoms i and j , rij is the
corresponding pair distance, and ni is the layer normal at atom
i. For example, as shown in Fig. 2, ni can be defined as the
normal to the plane determined by the three nearest-neighbors
of atom i: k1, k2, and k3:

ni = rk1k2 × rk1k3∥∥rk1k2 × rk1k3

∥∥ . (6)

Note that, in general, ρij �= ρji because the normals ni and nj

depend on their local environments.
The dihedral angle function is given by

g
(
ρ,

{
α

(m)
ij

}) = Bfc(xρ )
3∑

m=1

e−ηα
(m)
ij , (7)

i
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FIG. 2. Schematic representation of an atomic geometry that
defines the normal vectors ni and nj and the dihedral angle �k1ij l2 .

where α
(m)
ij is the product of the three cosines of the dihedral

angles formed by atom i (in layer 1), its mth nearest-neighbor
km, atom j (in layer 2), and its three nearest-neighbors l1, l2,
and l3:

α
(m)
ij = cos �kmij l1 cos �kmij l2 cos �kmij l3 , (8)

cos �kij l = ejik · eij l , (9)

ejik = r ik × rji

‖r ik × rji‖ , eij l = rj l × r ij

‖rj l × r ij‖ . (10)

To understand the physical origin of the terms defined in
Eqs. (8)–(10), recall that a dihedral angle � is the angle
between two planes defined by four points that intersect at
a line defined by two of them as shown in Fig. 2. Here,
the intersection line is defined by atoms i and j . The two
planes are then defined by atoms (j, i, k1) and (i, j, l2). The
normals to these planes are ejik1 and eij l2 , respectively, defined
in Eq. (10), with the corresponding dihedral angle given by
Eq. (9). The dihedral product α

(m)
ij monotonically decreases

when twisting a graphene bilayer from AB to AA stacking,
and consequently can be utilized to construct a potential
function that distinguishes AB and AA stacking and the inter-
mediate stacking states. The cutoff function fc(xρ ) in Eq. (7)
is the same as that in Eq. (3), and xρ = ρ/ρcut, where we set
ρcut = 1.562 Å to include only a few of the computationally
expensive four-body dihedral angle interactions. The potential
has a total of ten parameters, C0, C2, C4, C, δ, λ, B, η, A, and
z0, and two cutoffs rcut and ρcut.

To determine the values of all the parameters that appear
in the DRIP potential, we constructed a training set of ener-
gies and forces for graphene bilayers at different separation,
sliding, and twisting states. The training set is generated from
DFT calculations using the VIENNA AB INITIO SIMULATION

PACKAGE (VASP) [29,30]. The exchange-correlation energy of
the electrons is treated within the generalized gradient approx-
imated (GGA) functional of Perdew, Burke, and Ernzerhof
(PBE) [31].

Standard density functionals such as the local den-
sity approximation (LDA) and GGA accurately represent
Pauli repulsion in interlayer interactions, but fail to cap-
ture vdW forces that result from dynamical correlations
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TABLE I. Properties obtained from various DFT vdW corrections compared with ACFDT-RPA and experimental results. Also included
are results from various empirical potentials. The properties include equilibrium layer spacings of bilayer graphene in AB stacking, dAB,
bilayer graphene in AA stacking, dAA, and graphite, dgraphite; optimal interlayer binding energies for bilayer graphene (binding energy at the
equilibrium spacing in AB stacking), EAB, and graphite, Egraphite; energy differences between AA-stacked and AB-stacked bilayers, �EAA-AB,
and SP and AB stackings, �ESP-AB, at a layer spacing of d = 3.4 Å; and the elastic modulus along the c axis for graphite, C33. All properties
are computed using the in-plane lattice constant a = 2.46 Å.

dAB dAA dgraphite EAB Egraphite �EAA-AB �ESP-AB C33

(Å) (Å) (Å) (meV/atom) (meV/atom) (meV/atom) (meV/atom) (GPa)

PBE+D2 3.248 3.527 3.218 24.84 55.20 10.35 1.16 39.12
PBE+D3 3.527 3.713 3.483 21.40 47.09 3.80 0.42 35.04
PBE+TS 3.357 3.511 3.329 36.36 82.33 7.97 1.01 68.31
PBE+TSIHP 3.379 3.529 3.350 35.73 80.42 7.48 1.22 64.73
PBE+MBD 3.423 3.638 3.398 22.63 48.96 6.17 0.69 31.64
PBE+dDsC 3.447 3.639 3.410 28.04 63.00 5.53 0.74 38.43
ACFDT-RPA 3.39a 3.34b 48b 36b

Experiment 3.34c 43 ± 5d, 35 ± 10e, 52 ± 5f 7.7g 0.86g 36.5h, 38.7i

AIREBO 3.391 3.418 3.357 22.85 48.86 0.41 0.04 37.78
LCBOP 3.346 3.365 3.346 12.51 25.03 0.47 0.01 29.77
KC 3.374 3.602 3.337 21.60 47.44 6.07 0.44 34.45
DRIP 3.439 3.612 3.415 23.05 47.38 6.02 0.71 32.00

aReference [38].
bReference [39].
cReference [40].
dReference [41].
eReference [42].
fReference [43].
gReference [44]. Values inferred from experimental data on shear mode frequencies.
hReference [45].
iReference [46].

between fluctuating charge distributions.2 To address this
limitation, various approximate corrections have been pro-
posed including the D2 method [32], the D3 method [33],
the Tkatchenko and Scheffler (TS) method [34], the TS
method with iterative Hirshfeld partitioning (TSIHP) method
[35], the many-body dispersion (MBD) method [36], and
the dDsC dispersion correction method [37]. To select a
correction for the DRIP training set, we used these dis-
persion correction methods to compute a number of struc-
tural, energetic, and elastic properties. The results are
shown in Table I, along with experimental values and more
accurate adiabatic-connection fluctuation-dissipation-theory-
based random-phase-approximation (ACFDT-RPA) computa-
tions that have been shown to provide a very accurate descrip-
tion of vdW interactions [38,39]. The conclusion from these
comparisons is that D2 and D3 provide inaccurate estimates
for the layer spacing of AB graphene and graphite (dAB and
dgraphite), and TS, TSIHP, and dDsC significantly overestimate
the graphite binding energy Egraphite. MBD provides the best
overall accuracy for all considered properties and is therefore
the vdW correction used in this work together with the PBE
functional.

2GGA predicts no binding at all at physically meaningful spacings
for graphite. LDA gives the correct interlayer spacing for AB stack-
ing; however, it underestimates the exfoliation energy by a factor of
two and overestimates the compressibility [10].

Each monolayer of the graphene bilayer is modeled as
a slab with in-plane lattice constant a = 2.46 Å, and the
supercell size in the direction perpendicular to the slab is set
to 30 Å to minimize the interaction between periodic images.
The sampling grid in reciprocal space is 20 × 20 × 1, with an
energy cutoff of 500 eV. A primitive unit cell of a graphene
bilayer consists of four basis atoms. To generate a graphene
bilayer with different translational registry, the two atoms in
the bottom layer are fixed at fractional positions b1 = (0, 0, 0)
and b2 = ( 1

3 , 1
3 , 0) relative to the graphene lattice vectors

a1, a2, and c, where c is perpendicular to the plane defined
by a1 and a2 with length equal to the interlayer distance d.
The other two atoms are located at r1 = (p, q, 1) and r2 =
(p + 1

3 , q + 1
3 , 1). The two parameters p ∈ [0, 1] and q ∈

[0, 1] determine the translational registry. For example, the
graphene bilayer is in AA stacking [Fig. 3(a)] when p = 0 and
q = 0, and in AB stacking [Fig. 3(b)] when p = 1

3 and q = 1
3 .

Due to the symmetry of the honeycomb lattice, only 1/12 of

(a) (b) (c)

FIG. 3. Primitive unit cell of a graphene bilayer: (a) AA stacking,
(b) AB stacking, and (c) unique sampling region and sampling points.
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θ = 27.8◦

(a)

(b)

FIG. 4. Example of commensuration of a graphene bilayer.
(a) The two layers are commensurate when rotated relative to each
other by cos−1( 23

26 ) = 27.8◦, which corresponds to m = 3, n = 7
according to the condition in Eq. (11). (b) The resulting supercell
after rotation, with 26 atoms in each layer.

the area defined by a1 and a2 needs to be sampled to fully
explore all translational registry states [see the shaded region
in Fig. 3(c)]. The DRIP training set comprised the seven
states indicated in the shaded region of Fig. 3(c), specifically
(p, q ) = (0, 0), (0, 1

6 ), (0, 2
6 ), (0, 3

6 ), ( 1
6 , 1

6 ), ( 1
6 , 2

6 ), ( 2
6 , 2

6 ).
These states include all the high-symmetry states of interest,
including the AA, AB, and saddle point (SP) stackings (p =
0, q = 3

6 ). The seven translational registry states are sampled
at different layer spacings d, varying from 2.7 Å to 4.5 Å
with a step size of 0.1 Å. For layer spacings larger than 4.5 Å
but smaller than the cutoff rcut = 12 Å, only bilayer graphene
in AB stacking is included since the difference between the
stacking states in this range is negligible (see discussion in
Sec. IV). Thus, 7 × 19 + 75 = 208 translation configurations
are included in the training set.

In addition to translation configurations, a set of twisted
bilayer configurations are included in the training set. It is
possible to construct a commensurate supercell arbitrarily
close to any twisting angle according to the commensuration
condition [20,47,48]

θ = cos−1

(
3n2 − m2

3n2 + m2

)
, (11)

where m and n are any two integers satisfying 0 < m < n. As
an example, considering the AB-stacked bilayer in Fig. 4(a),
a commensurate bilayer can be obtained by rotating one of
the layers by θ = 27.8◦ (m = 3, n = 7) with the supercell
shown in Fig. 4(b). Four types of twisted bilayers with rotation
angles 9.43◦, 21.79◦, 32.30◦, and 42.10◦ (corresponding to
(m, n) = (1, 7), (1,3), (1,2), and (2,3)) are included in the
training set. The twisted configurations were evaluated at
layer spacings from 3.0 Å to 4.0 Å with a step size of 0.1 Å.
Thus 4 × 11 = 44 twisted configurations are included in the
training set. This does not include rotations for θ = 0◦ and
θ = ±60◦ corresponding to the AB and AA stacking states,
respectively, which are already included in the training set.

The parameters of the potential are optimized by mini-
mizing a loss function that quantifies the difference between
the interatomic potential predictions and the training set. The
training set includes M configurations with concatenated co-
ordinates rm for m ∈ [1,M], such that rm ∈ R3Nm , where Nm

TABLE II. DRIP parameters obtained by minimizing the loss
function L(ξ ) defined in Eq. (12) and preset cutoffs.

Parameter Value Parameter Value

C0 (meV) 11.598 B (meV) 7.6799
C2 (meV) 12.981 η (1/Å) 1.1432
C4 (meV) 32.515 A (meV) 22.216
C (meV) 7.8151 z0 (Å) 3.3400
δ (Å) 0.83679 rcut (Å) 12
λ (1/Å) 2.7158 ρcut (Å) 1.562

is the number of atoms in configuration m. The loss function
is

L(ξ ) =
M∑

m=1

1

2
we

m

[
Em(rm; ξ ) − EDFT

m

]2

+
M∑

m=1

1

2
wf

m

∥∥ f (rm; ξ ) − f DFT
m

∥∥2
, (12)

where ξ is the set of potential parameters, Em and f (rm; ξ ) =
−(∂V/∂ r )|rm

∈ R3Nm are the DRIP potential energy and con-
catenated forces in configuration m, and we

m and wf
m are the

weights associated with the energy and forces of configuration
m. For energy in units of eV and forces in units of eV/Å, these
weights have units of eV−2 and (eV/Å)−2, respectively.

The DFT energy and forces used in the loss function,
Eq. (12), EDFT

m and f DFT
m , require explanation. Since DFT

provides only the total energy and forces on atoms due to
both intralayer and interlayer interactions, it is necessary to
separate out the interlayer contributions when constructing
the training set. This is accomplished as follows. For config-
uration m, first the total energy and forces of the bilayer are
obtained from DFT: EDFT, bilayer

m , f DFT, bilayer
m . Then each mono-

layer is computed separately by removing all atoms from the
other monolayer. Thus, there will be two energies, E

DFT, layer 1
m

and E
DFT, layer 2
m , and two forces, f DFT, layer 1

m and f DFT, layer 2
m

(although each force vector will only contain nonzero com-
ponents for the atoms belonging to its monolayer). The DFT
interlayer energy and forces appearing in Eq. (12) are then
defined as

EDFT
m = EDFT, bilayer

m − EDFT, layer 1
m − EDFT, layer 2

m , (13)

f DFT
m = f DFT, bilayer

m − f DFT, layer 1
m − f DFT, layer 2

m . (14)

In the present case, the training set includes M = 252 con-
figurations. Both the energy weight we

m and force weight wf
m

(m = 1, . . . , 252) are set to 1. The optimization was carried
out using the KIM-based Learning-Integrated Fitting Frame-
work (KLIFF) [49] with a geodesic Levenberg-Marquardt
minimization algorithm [50–52]. The objective is to find
the set of parameters ξ that minimizes L(ξ ). The optimal
parameter set identified by this process and preset cutoffs are
listed in Table II.
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(a) (b) (c)

FIG. 5. Out-of-plane component of the forces on the 26 atoms in the bottom layer of the twisted bilayer shown in Fig. 4 (each represented
as a bar) computed from DFT and the (a) LJ potential, (b) KC potential, and (c) DRIP model. The layer spacing is 3.4 Å.

IV. TESTING OF THE NEW POTENTIAL

We performed an extensive set of calculations to test the
ability of DRIP to reproduce its training set (described in
Sec. III), and test its transferability to configurations outside
the training set. The calculations using the potential were
performed with LAMMPS [53,54] and DFT calculations with
VASP [29,30]. Periodic boundary conditions are applied in
both in-plane directions, and the in-plane lattice constant is
fixed at a = 2.46 Å. The setup for the DFT computations is
the same as that used for generating the training set in Sec. III.

Figure 5 shows the unrelaxed forces on the atoms in the
bottom layer of the twisted bilayer shown in Fig. 4 with a layer
spacing of d = 3.4 Å. There are 26 atoms in the bottom layer.
For each, the out-of-plane force (z component) is displayed
as a bar. The plot compares the results of LJ, KC, and DRIP
with DFT. For the LJ potential, the parametrization in the
AIREBO potential is used. The DRIP forces are in very good
agreement with DFT, whereas the LJ potential yields almost
zero forces, and the KC potential greatly overestimates the
forces. (Note that the force ranges in the three panels are
different). The force on the central atom when twisting a
bilayer obtained from DRIP [denoted as 1 in Fig. 1(a)] is
displayed in Fig. 1(c) as a function of rotation. The results
are in agreement with DFT, indicating that the dihedral mod-
ification in DRIP successfully addresses the deficiency of the
KC potential discussed in Sec. II.

To investigate the accuracy of the potentials in a dy-
namical setting, trajectories are generated at a temperature
of 300 K using ab initio molecular dynamics (AIMD) for
bilayers in AA and AB stackings and the twisted bilayer
shown in Fig. 4. For each configuration along the trajectories,
the DFT forces due to interlayer interactions are computed
using the procedure defined in Eq. (14) and explained above.
Next, LAMMPS is used to compute the LJ, KC, and DRIP
interlayer forces for the AIMD configurations. The error in
the potential forces is shown in Fig. 6. Each dot in the plot
represents one atom pulled from one of the configurations
along the AIMD trajectories. The horizontal coordinate in
the plot is the magnitude of the in-plane component (left
panels) and out-of-plane component (right panels) of the DFT
interlayer force acting on the atom. The force is separated
in this way because the in-plane component is significantly
smaller than the out-of-plane component. (Note that this is

only the force due to interlayer interactions. The force due
to intralayer bonding is not included.) The vertical coordinate
is the magnitude of the difference between the potential and
DFT force vectors for that atom. We see that the in-plane force
error for LJ aligns with the diagonal, i.e., the error equals the
DFT force, which means that LJ predicts an in-plane force
close to zero. This is because LJ provides a poor model for

FIG. 6. Deviation of potential forces from DFT results due to in-
terlayer interactions. The configurations are taken from three AIMD
trajectories at 300 K.

235404-6



DIHEDRAL-ANGLE-CORRECTED REGISTRY-DEPENDENT … PHYSICAL REVIEW B 98, 235404 (2018)

(a) (b) (c)

FIG. 7. Interlayer binding energy Eb of a graphene bilayer versus layer spacing d for AA stacking, AB stacking, and a twisted bilayer with
rotation angle θ = 27.8◦ (see Fig. 4) using (a) LJ potential, (b) KC potential, and (c) DRIP model, compared to DFT results.

the anisotropic overlap of electronic orbitals between adjacent
layers and thus has almost no barrier for relative sliding.
The KC model performs better in the sense that it predicts
resistance to sliding, however the overall accuracy in forces
is poor (see Sec. II for a discussion of the limitations of the
KC model). In contrast, DRIP provides consistently accurate
in-plane forces across the range of DFT forces with errors
less than 20 meV/Å. For the out-of-plane component, both
LJ and DRIP perform comparably providing good accuracy
across the range of DFT forces, whereas the KC model again
shows poor accuracy with very large errors in some cases.

Next, we consider energetics. The interlayer binding en-
ergy Eb of a graphene bilayer as a function of layer spac-
ing d is shown in Fig. 7 for AB and AA stackings and
the twisted configuration shown in Fig. 4. The LJ potential
[Fig. 7(a)] cannot distinguish these states and gives nearly
identical binding energy versus layer spacing curves for all
three. Both KC [Fig. 7(b)] and DRIP [Fig. 7(c)] correctly
capture the energy differences between the three stacking
states. For all three potentials, the twisted bilayer curve lies
between the other two, which is expected since the AB and
AA stackings are minimum and maximum energy states. Also
notable is that at large layer spacing, the curves for all three
stacking states merge since registry effects due to π -orbital
overlap become negligible and interactions are dominated by
vdW attraction, which are the same for all three states and
captured equally well by all three potentials.

A more complete view of the interlayer energetics is ob-
tained by considering the generalized stacking fault energy
(GSFE) surface obtained by sliding one layer relative to the
other while keeping the layer spacing fixed. Figure 8 shows
the results for a layer spacing of d = 3.4 Å calculated using
DRIP and DFT. DRIP is in quantitative agreement with DFT
results. The KC GSFE has a similar appearance and the LJ
GSFE is nearly flat. The KC and LJ results are not included
for brevity, but the energies of the three potentials along the
dashed line in the left panel of Fig. 8 are displayed in Fig. 1(b).

As a final test, Table I shows the predictions of DRIP
for a number of structural, energetic, and elastic properties.
The table also includes results for the LCBOP [55] and
AIREBO [18] potentials, as well as DFT and experimental
results as described in Sec. III. The LCBOP potential uses two
Morse-type [21] terms to model long-range interactions, and

LJ [19] is used in the AIREBO potential as discussed in Sec. I.
The properties of the DRIP model are in good agreement with
the PBE+MBD DFT computations with which the training
set was generated.

V. APPLICATIONS

To further compare the predictions of the KC potential
and DRIP, we carried out two large-scale simulations, beyond
the capability of DFT: (1) structural relaxation in a twisted
graphene bilayer and (2) exfoliation of a graphene layer
off graphite. In these simulations, the interlayer interactions
are modeled using either KC or DRIP, and the REBO [17]
potential is used to model the intralayer interactions.

A. Structural relaxation of a twisted graphene bilayer

The electronic properties of stacked 2D materials can be
manipulated by controlling the relative rotation between the
layers, which in turn leads to different structural relaxation.
A prototypical problem is the twisting of a graphene bilayer.
The bilayer is created by rotating one layer relative to the
other by θ = 0.82◦, setting (m, n) = (1, 81) as discussed in
Sec. III. The out-of-plane relaxation δ of an atom is obtained
by subtracting the mean out-of-plane coordinates of all atoms

FIG. 8. The GSFE obtained by sliding one layer relative to the
other at a fixed layer spacing of d = 3.4 Å. The energy is relative to
the AB state, which is −22.98 meV/atom for DRIP (on the left) and
−22.33 meV/atom for DFT (on the right). The sliding parameters
�a1 and �a2 are in units of in-plane lattice constant a = 2.46 Å.
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DRIP KC

(Å)

(a)

(b)

FIG. 9. Out-of-plane relaxation in a twisted bilayer with a rela-
tive rotation of θ = 0.82◦. (a) Contour plot obtained from the DRIP
model and the KC potential, and (b) relaxation along the diagonal
indicated by the dashed line in panel (a). The bilayers shown in the
figure corresponds to 3 × 3 supercells used in the computation, i.e.,
a1 and a2 are in units of in-plane lattice constant a = 2.46 Å.

in the top layer from the out-of-plane coordinate of that atom:

δi = zi − 1

N

N∑
j=1

zj , (15)

where zi is the out-of-plane coordinate of atom i in the top
layer and N = 9842 is the number of atoms in the top layer.3

The out-of-plane relaxation of the twisted bilayer is plot-
ted in Fig. 9. The results of the DRIP and KC models are
qualitatively similar. The bright spots correspond to high-
energy AA stacking, the long narrow ribbons correspond to SP
stacking, and the triangular regions correspond to alternating
AB and BA stackings. It has been shown that the formation
of this structure is due to local rotation at AA domains
[56]. Quantitatively, however, the two potentials give different
out-of-plane relaxation, especially at the peaks as seen in
Fig. 9(b). The peak value predicted by DRIP is 0.076 Å, which
is 26% smaller than the KC potential value of 0.103 Å. This
difference at the peaks could lead to significant differences
in electronic properties because twisted graphene bilayers
develop highly localized states around AA-stacked regions for
small twist angles [57].

B. Exfoliation of graphene from graphite

Graphene can be prepared by exfoliating graphite. In this
process, the vdW attraction between layers is overcome by
peeling a single layer off a graphite crystal. A method as

3Using the atoms in the bottom layer will yield the same results
because the relaxed structure of the bottom layer and the top layer
are identical.

x
y

z

fz

d

(a)

(b)

FIG. 10. (a) Schematic demonstrating the process of peeling a
graphene layer off graphite and (b) the normal force, fz, needed to
peel the top layer as a function of the displacement at the left end of
the top layer, d − d0. The armchair direction of graphite is aligned
with the x axis. The initial layer spacing is d0 = 3.35 Å.

simple as sticking Scotch tape to graphite and applying an
upward force can be used [1]. To simulate this process, one
edge of the top layer of a graphite crystal is pulled up under
displacement control conditions as illustrated in Fig. 10(a).
The atoms at the left end of the top layer are displaced in the
z direction according to d = d0 + 0.2k, where d0 = 3.35 Å
is the initial layer spacing, and k = 0, 1, . . . , 99 is the step
number. At each step k, once the displacement is applied to the
left atoms, the remaining atoms in the top layer are relaxed.
The substrate (bottom three layers) is kept rigid during this
process. The system contains 600 atoms in each layer of size
105.83 Å and 14.76 Å in the x and y directions, respectively.
The system is periodic in the y direction and nonperiodic the
other two directions.

The normal force, fz, needed to pull the left end of the top
layer is plotted in Fig. 10(b). Both the KC and DRIP models
give qualitatively similar results. The force first increases as
the left end is pulled up and then exhibits a sudden drop at
about 3 Å. The normal force has two contributions: (1) inter-
layer interactions with atoms in the substrate and (2) covalent-
bonded interactions with other atoms in the top layer. The
former is almost unchanged before and after the load drop,
therefore the drop is mainly due to the in-plane interactions
in the top layer. Before the load drop, the right-end of the top
layer is trapped in a local minimum created by the substrate
(similar to the one denoted as AB in Fig. 8, although there we
only consider a graphene bilayer) and, consequently, as the
left end is pulled up, the top layer experiences an increasing
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axial strain. At about 3 Å, the right-end of the top layer snaps
into an adjacent local minimum by moving in the negative
x direction. (A movie showing the snap-throughs associated
with the load drops is provided in the Supplemental Material
[58].) As a result, the axial strain in the top layer is released
and the load is reduced. The same explanation applies to the
load drop at a displacement of about 15 Å, and it is expected
to continue to occur periodically with continued pulling.

As for the results in Sec. V A, KC and DRIP are in qualita-
tive agreement, but there are quantitative differences. The KC
potential predicts an initial peeling load of about 0.65 eV/Å,
which is about 75% of the 0.87 eV/Å value predicted by
DRIP. The second snap-through occurs at a displacement of
16.6 Å for DRIP, and at 15.0 Å for KC.

VI. SUMMARY

The interlayer interactions in stacked 2D materials play
an important role in determining the functionality of many
nanodevices. For graphitic structures, the two-body pairwise
LJ potential is too smooth to model the energy corrugation in
different stacking states. The registry-dependent KC potential
improves on this and correctly captures the energy variation,
but fails to yield reasonable forces. In particular, the KC
model does not distinguish forces on atoms in the AA and
AB stacking states that are different in DFT calculations.
The KC model is also discontinuous at the cutoff, which can
lead to difficulties in energy minimization and loss of energy
conservation in dynamic applications.

To address these limitations, we developed a new poten-
tial for graphitic structures based on the KC model. The
DRIP model has a smooth cutoff and includes a dihedral-
angle-dependent term to distinguish different stacking states
and obtain accurate forces. The potential parameters were
determined by training on a set of energies and forces for
a graphene bilayer at different layer spacing, sliding and
twisting, computed using GGA-DFT calculations, augmented
with the MBD dispersion correction to account for the long-
range vdW interactions.

To test the quality of the potential, we employed it to
compute energetics, forces, and structural and elastic prop-
erties for a graphene bilayer in different states and graphite.
The validation tests show that compared with first-principles
results:

(1) DRIP correctly predicts the equilibrium layer spacing,
interlayer binding energy, and GSFE of a graphene bilayer, as
well as the equilibrium layer spacing of graphite.

(2) DRIP underestimates the c-axis elastic modulus C33

of graphite by about 10% relative to ACFDT-RPA and exper-
iments, but this result is in good agreement with PBE+MBD
to which DRIP was fit.

(3) DRIP provides more accurate forces than the KC
model across the entire range of bilayer rotations and in
particular distinguishes the forces in the AA and AB states
that the KC potential cannot.

In two large-scale applications, not amenable to DFT cal-
culations, we showed that DRIP and the KC potential agree
qualitatively, but differ quantitatively by 26% in the out-of-
plane relaxation of a twisted graphene bilayer, and by 23%

in the normal force required to peel one graphene layer off
graphite.

The added four-body dihedral-angle-dependent correction
in DRIP is very short ranged (ρcut = 1.562 Å) and therefore
the computational overhead relative to KC is small. In fact, for
the large-scale applications (bilayer relaxation and peeling)
described in Sec. V, DRIP was actually faster than the KC
potential in terms of the overall computation time due to
improved convergence.

Although DRIP was parameterized against a training set
consisting of graphene bilayers, it can be used to describe
interlayer interactions for other systems such as graphite and
multiwalled carbon nanotubes where the carbon atoms are
arranged in layers. This potential only provides a description
of the interlayer interactions, and therefore must be used
together with a companion model that provides the intralayer
interactions, such as the Tersoff [14,15] or REBO [16,17]
potentials. The DRIP functional form and associated carbon
parametrization are archived in the OpenKIM repository
[24–26]. They can be used with any KIM-compliant
molecular simulation code, see Appendix for details.
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APPENDIX: USING THE OPEN KNOWLEDGEBASE
OF INTERATOMIC MODELS (OpenKIM)

The Open Knowledgebase of Interatomic Models
(OpenKIM) is an open-source, publicly accessible repository
of classical interatomic potentials, as well as their predictions
for material properties that can be visualized and compared
with first-principles data. Interatomic potentials stored in
OpenKIM that are compatible with the KIM application
programming interface (API) are called KIM Models.
KIM Models will work seamlessly with a variety of major
simulation codes that are compatible with this standard
including LAMMPS [53,54], ASE [59,60], DL_POLY [61],
and GULP [62,63].

As an example, we describe how a KIM Model would
be used with LAMMPS. In LAMMPS, reactive interatomic
potentials are specified using the pair_style command.
LAMMPS has a pair_style kim option for using KIM
Models. To use KIM Models with LAMMPS, perform the
following steps:

(1) Install the KIM API (see instructions at [64]).
(2) Download and install the desired potential from

[24,25] (see instructions that come with the API).
(3) Enable KIM Models in LAMMPS by typing:

make yes-kim and then compiling LAMMPS.
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In a LAMMPS input script, a KIM Model is then selected in the same way as other LAMMPS potentials. For example, the
potential developed in this paper can be used with the following two commands:

pair_style kim DRIP_WenTadmor_2018_C__MO_070247075036_000

pair_coeff * * C

To use it together with another potential for the intralayer interactions, such as Tersoff [14,15] or REBO [16,17], use the
LAMMPS “pair_style hybrid/overlay” command (see the LAMMPS manual for details).

The advantage of releasing a potential as a KIM Model (as opposed to just a file compatible with LAMMPS or another code),
is that it will work with not just LAMMPS, but other major codes as noted above. In addition, a KIM Model has a KIM ID
and a DOI that can be cited in publications. The KIM ID provides a unique permanent link to the archived content and includes
a three-digit version number to track changes. For example, a modification to the model parameters would lead to a version
upgrade (or a new forked model if appropriate). Citing a KIM ID in a publication makes it possible for the reader to download
the exact potential used in the reported simulation and to reproduce the results.
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