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Momentum-dependent spin selection rule in photoemission with glide symmetry
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We present a comprehensive theory of the spin- and angle-resolved photoemission spectroscopy (SARPES)
of materials with glide-mirror symmetry, focusing on the role of glide symmetry in the spin selection rule. In the
glide-symmetric SARPES configuration, where the surface of a material, the incoming light, and the outgoing
photoelectrons are invariant under a glide reflection, the spin polarization of photoelectrons is determined by
the glide eigenvalue of the initial state, which makes SARPES a powerful tool for studying topological phases
protected by glide symmetry. We also show that, due to the nonsymmorphic character of glide symmetry, the
spin polarization of a photoelectron whose momentum is in the second surface Brillouin zone is the opposite of
the spin polarization of a photoelectron which is ejected from the same initial Bloch state but whose momentum
is in the first zone. This momentum dependence of the spin selection rule clearly distinguishes glide symmetry
from mirror symmetry and is particularly important if the Bloch wave vector of the initial state is close to the
first surface Brillouin zone boundary. As a proof of principle, we simulate the SARPES from the surface states
of KHgSb (010) and investigate how the spin selection rule imposed by the glide symmetry manifests itself in a
real material.
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I. INTRODUCTION

In the study of a crystal possessing a certain set of sym-
metries, the electronic band energies and wave functions at
symmetry-invariant crystal momenta provide valuable infor-
mation on the electronic structure over the whole Brillouin
zone. The representation of wave functions at a symmetry-
invariant k point alone greatly restricts the form of the elec-
tronic structure at all the nearby k points. For example, the
effective Hamiltonian of the Bi2Se3 (111) surface is nearly
isotropic with respect to the crystal momentum k around �

[1,2] with its leading correction proportional to k3, yielding
the hexagonal warping of the Fermi circle [3] thanks to the
C3v symmetry at �. In addition to the local information
near the high-symmetry points or lines, analysis of sym-
metry representations at symmetry-invariant k points reveals
topological aspects of the electronic structure throughout the
entire Brillouin zone. For example, a glide-symmetric two-
dimensional material hosts at least one Dirac point along
the glide-symmetric line of the Brillouin zone regardless of
the strength of the spin-orbit coupling (SOC) [4]. Also, the
three-dimensional Dirac point of Na3Bi which resides on its
fourfold rotation axis is robust against any deformation of the
crystal structure as long as the symmetry is preserved [5].

On the other hand, simulating the photoelectron intensity
in angle-resolved photoemission spectroscopy (ARPES) from
first principles is quite subtle due to the effects of elastic
multiple scattering by ions, inelastic scattering by various
collective excitations in a solid (and the finite inelastic lifetime
and the inner potential thereby induced), and the change in the
electric field of light when the light penetrates the surface of
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a material. In particular, neglecting the multiple-scattering ef-
fect by the lattice potential and assuming a photoelectron state
is a plane-wave state even inside the material may often fail to
provide accurate values of photocurrent intensities which are
necessary to simulate the circular or linear dichroism and the
spin polarization of photoelectrons from first principles.

As an important example, if we assume that final states in a
photoemission process are plane-wave states, then the dipole
matrix element 〈kf |A · p|i〉 = A · kf 〈kf |i〉 vanishes when
light polarization A and the momentum of the photoelectron
kf are perpendicular to each other. Here, |i〉 is the initial elec-
tronic state, and |kf 〉 is the (plane-wave) final state. Similarly,
if we assume that final states in spin- and angle-resolved pho-
toemission spectroscopy (SARPES) are the direct product of
the plane wave |kf 〉 and a constant spinor |σ i〉 (σ i = ±1), the
ratio between the spin-up and spin-down photoelectron inten-
sities would be |〈kf , 1|i〉/〈kf ,−1|i〉|2, which cannot explain
the dependence of the spin polarization of photoelectrons on
A observed in experiments [6]. To avoid this difficulty while
retaining the simplicity of the plane-wave approximation for
the final states, one may assume that the relevant part of the
final state in photoemission processes is the Bloch sum of the
atomic orbitals whose phase factor is similar to the plane wave
[7,8]. This approach yields the light-polarization dependence
of the spin polarization of photoelectrons which was absent in
the simple plane-wave approximation [9,10]. Still, however,
an accurate description of the photon-energy dependence of
the ARPES intensities requires a better treatment of final
states.

Remarkably, the analysis of ARPES at symmetry-invariant
k points can bypass this difficulty and provide useful guidance
for interpreting ARPES. The symmetry group of the ARPES
configuration including the direction of the light polariza-
tion, the momentum of photoelectrons, and the surface of
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a solid is smaller than the symmetry group of the surface
alone in general. However, when the symmetry group of
the ARPES configuration is the same as that of the surface,
ARPES reflects rich information about the underlying elec-
tronic structure [11,12], and a symmetry analysis provides
exact results on ARPES without subtle assumptions about the
final state of photoelectrons. For example, owing to the mirror
symmetry, when the polarization of the light lies parallel to
(perpendicular to) the mirror plane, the spin polarization of
the photoelectrons must be parallel (antiparallel) to that of the
surface state of Bi2Se3 (111) [9,13]. As another example, the
absence of the circular dichroism on the mirror-invariant line
in the Brillouin zone of the superconductor Bi2Sr2CaCu2O8+δ

plays an important role in proving the nonexistence of an order
which breaks the mirror symmetry [14].

Symmetry also gives valuable information about the
ARPES configuration where the symmetry is broken. Con-
sider the ARPES for Bi2Se3 (111), where the directions of
propagation of light and photoelectrons lie in the mirror plane
but the light polarization is arbitrary. In this case, the spin
polarization of the photoelectrons as a function of the light
polarization is completely determined by symmetry, apart
from one complex-valued parameter which can be obtained
from experiment [11,15]. Therefore, symmetry analysis gives
both qualitative and quantitative results in the ARPES config-
uration with or without symmetry.

So far we have discussed a few cases where mirror sym-
metry plays a key role in interpreting ARPES experiments.
In addition, the implication of the glide-mirror symmetry
for ARPES, when SOC is negligible, was studied in several
papers [16–18]. Due to the fractional translation contained in a
glide symmetry operation, the ARPES selection rule imposed
by glide symmetry depends on the momentum of photoelec-
trons. Suppose that the light polarization is perpendicular or
parallel to the glide plane and translation and glide symmetry
allow the ejection of an electron from a certain valence state to
a photoelectron state whose momentum is in the first surface
Brillouin zone. Then, the transition from the same initial state
induced by the same light is forbidden by symmetry when
the momentum of the photoelectron is in the second surface
Brillouin zone [16–18].

On the other hand, in glide-invariant systems of recent
interest, spin degrees of freedom play an important role in
the electronic structure. For example, a broad range of glide-
invariant topological semimetals are predicted to possess a
line node within theories neglecting SOC, but SOC induces
a gap on the band-crossing line except at a finite number of
k points, thus reducing the line node to point nodes [19–21].
Also, even in glide-invariant materials with weak SOC, such
as black phosphorus, the effect of SOC becomes important
when heavy atoms are adsorbed on the surface [22]. Despite
the abundance of materials with strong SOC which are sym-
metric under a glide operation, however, the optical selection
rule for those materials imposed by glide symmetry has not
yet been investigated.

The optical selection rule in spinless glide-invariant sys-
tems is not directly applicable in systems with strong SOC.
When we take into account the effect of the spin degree of
freedom, the number of the photoelectron states at a given
energy Ef and momentum kf is doubled (i.e., there are final

states with two opposite spin directions with different glide
eigenvalues). Therefore, contrary to the spinless case, the
electronic bands observed in the first surface Brillouin zone
of the photoelectrons in spin-integrated ARPES should also
be observed in the second zone.

In this paper, we report the implication of glide symmetry
for the photoemission from glide-symmetric surfaces or two-
dimensional materials. Especially, we show that, due to the
nonsymmorphic character of the glide reflection, the spin po-
larization of the photoelectron whose momentum is in the first
surface Brillouin zone is the opposite of the spin polarization
of the photoelectron in the second zone ejected from the same
initial state. This momentum dependence in the selection rule
imposed by glide symmetry is absent in the mirror-symmetric
case and offers an experimental method to differentiate a glide
plane from a mirror plane. Our paper develops a unified and
comprehensive theory to explain the photoelectric effect from
materials with mirror or glide symmetry. For demonstration
purposes, we apply our theory to the SARPES from the so-
called hourglass surface states of KHgSb (010) [23,24].

II. METHODS

We investigated the photoemission process from a non-
degenerate Bloch state |i〉 with crystal momentum ki to an
outgoing photoelectron state. We adopt the one-step theory
of photoemission [25–27], and by photoelectron state |f, σ ŷ〉
we mean the time-reversed low-energy electron diffraction
(LEED) state labeled by momentum kf , energy Ef , and the
spin quantum number σ/2 (σ = ±1) along the y axis. We
suppose that a material (whose surface lies in the yz plane) is
invariant under glide reflection (x, y, z) �→ (x,−y, z + c/2),
where c is the lattice parameter along the translational di-
rection of the glide reflection. Since we are concerned with
the implication of the glide symmetry in photoemission, we
assume that ki and kf are invariant under the glide reflection
[Fig. 2(b)]; thus, ki

y = k
f
y = 0. (Especially, we will refer to

only the line ki
y = 0 in the surface Brillouin zone as the

glide-invariant line hereafter and will not consider states with
ki
y = π/c. In the latter case, although the crystal momentum

of the initial Bloch state is along the glide-invariant line, the
momentum of the final photoelectron states is not glide invari-
ant.) Due to the lattice symmetry, the in-plane components of
the initial and final states, ki

‖ = (0, 0, ki
z) and kf

‖ = (0, 0, k
f
z ),

satisfy

kf

‖ − ki
‖ = G‖ = n(2π/c)ẑ, (1)

where G‖ is a surface reciprocal lattice vector parallel to the
glide plane and n is an integer. We also assume that the light
beam lies in the glide plane [xz plane; see Fig. 2(b)].

We used the dipole approximation to describe the pho-
toemission. The spin polarization of the photoelectrons at
angular position k̂f can be described using the spinor χ =
χ+ŷ〈f,+ŷ|A · p|i〉 + χ−ŷ〈f,−ŷ|A · p|i〉, where A denotes a
constant vector parallel to the light polarization and χσŷ ,
with σ = ±1, is the constant two-component spinor polarized
along σ ŷ. The spinor χ is proportional to the spinor wave
function (at the position of the detector) of the initial-state
electron after absorbing a photon, obtained by time-dependent
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perturbation theory or general scattering theory [25]. Then
the spin polarization of the photoelectron is given by Pf =
〈χ |2S|χ〉/〈χ |χ〉, where S denotes the spin operator in units
of h̄. For example, the y component of the spin polarization is
given by

P f
y = |〈f,+ŷ|A · p|i〉|2 − |〈f,−ŷ|A · p|i〉|2

|〈f,+ŷ|A · p|i〉|2 + |〈f,−ŷ|A · p|i〉|2 . (2)

This method was also successfully used in Refs. [12,15] to
describe the spin-dependent photoemission from the Bi2Se3

(111) surface.
After deriving the SARPES selection rule imposed by

the glide symmetry, we numerically demonstrated the va-
lidity of the selection rule by simulating the SARPES of
the surface bands of KHgSb (010). In order to simulate the
electronic structure of KHgSb, we used an ab initio tight-
binding method. We used the QUANTUM ESPRESSO package
for density-functional-theory (DFT) calculations of the bulk
material [28] with Perdew, Burke, and Ernzerhof functional
revised for solids (PBEsol) [29] for the exchange-correlation
energy. The energy cutoff for wave functions was set to 80 Ry,
and the Brillouin zone was sampled on a uniform 8 × 8 × 8
grid.

We constructed maximally localized Wannier functions
which accurately describe the bands near the band gap using
the WANNIER90 package [30]. From those Wannier functions,
which mainly consist of Hg 6s orbitals and Sb 5p orbitals, we
extracted the hopping integrals of the tight-binding model for
the surface calculation.

III. RESULTS AND DISCUSSION

Let M̄y be the glide operation which acts on a spinor as
eiπSy . Since ki is on the glide-invariant line, the initial state is
an eigenstate of M̄y :

M̄y |i〉 = iλ exp
[ − iki

zc
/

2
]|i〉(λ = ±1). (3)

As is well known, compared with the eigenvalue of an or-
dinary mirror operation, the eigenvalue of the glide reflec-
tion contains an additional phase factor exp [−iki

zc/2] which
depends on ki . Similarly, the final state |f, σ ŷ〉 is also an
eigenstate of M̄y . The eigenvalue of |f, σ ŷ〉 with respect
to the glide symmetry is iσ exp [−ik

f
z c/2], no matter how

complicated the wave function is near or inside the crystal.
When the light is p polarized, i.e., the light polarization is

parallel to the glide plane, M̄y (A · p)M̄−1
y = A · p. Therefore,

in this case, the photoemission is allowed only if the glide
eigenvalues of the initial and final states are equal:

iλ exp
[ − iki

zc
/

2
] = iσ exp

[ − ikf
z c/2

]
. (4)

Using Eq. (1), we see that the photoemission is allowed only if

σ = (−1)nλ (p-polarized light). (5)

Hence, the photoelectrons ejected by p-polarized light from
the initial state with glide eigenvalue iλ exp [−iki

zc/2] are
fully spin polarized along σ ŷ = (−1)nλŷ. Similarly, when the
light is s polarized, i.e., the light polarization is perpendicular
to the glide plane, M̄y (A · p)M̄−1

y = −A · p, and thus, the

photoemission is allowed only if

σ = (−1)n+1λ (s-polarized light). (6)

Thus, the photoelectrons ejected by p- and s-polarized light
are fully spin polarized in opposite directions. Equations (4),
(5), and (6) are the key results of our paper.

The selection rule derived above for a glide-symmetric
configuration is clearly different from the selection rule for a
mirror-symmetric configuration. If a system is invariant with
respect to ordinary mirror reflection (x, y, z) �→ (x,−y, z)
instead of glide reflection, then the mirror eigenvalues of
the initial and final states are iλ and iσ , respectively, which
are k independent. Therefore, p-polarized light allows the
transition with σ = λ, and s-polarized light allows σ = −λ

regardless of ki or kf . In the mirror-symmetric case, this
light-polarization dependence of spin of photoelectrons was
reported in several papers [12,31]. The authors of those papers
used the decomposition of the initial state |i〉 into orbital and
spin parts:

ψi (r) = eiki
zz[φeven(r)χλŷ + φodd(r)χ−λŷ], (7)

where ψi (r) is the spinor wave function for |i〉 in real space
and φeven(r) and φodd(r) are orbital wave functions invariant
under in-plane lattice translation that are even and odd un-
der the mirror reflection, respectively. (We note that in the
glide-symmetric case, the same decomposition holds if we
understand φeven and φodd as wave functions that are even
and odd under the glide reflection.) The reversal of spin of
photoelectrons by rotating the light polarization in mirror-
symmetric systems was also verified experimentally [6,12].
However, we emphasize that in the glide-symmetric case there
is no experimental study on such a phenomenon so far.

In addition, in the glide-symmetric configuration, the
glide eigenvalue of the initial state has a ki-dependent
phase factor, while the eigenvalue of the final state con-
tains a kf -dependent factor. These two different phase
factors do not cancel out, introducing an additional ele-
ment, exp [i(kf

z − ki
z)c/2], to the selection rule. Therefore,

in the glide-symmetric configuration, the photoelectron with

momentum (
√

2mEf /h̄2 − (kf
z )2, 0, k

f
z ) and the photoelec-

tron with momentum (
√

2mEf /h̄2 − (kf
z + 2π/c)2, 0, k

f
z +

2π/c) ejected from the same initial surface state |i〉 by the
same light are fully spin polarized in directions opposite to
each other.

We remark that our theory on the glide selection rule is
valid for any nondegenerate initial states of a glide-symmetric
surface, regardless of the time-reversal symmetry. In the case
of a two-dimensional glide-symmetric material, the theory is
applicable except when the material is invariant under PT ,
the combination of the spatial inversion and the time reversal,
which would make every energy band doubly degenerate.
Despite its generality, we demonstrate our theory using non-
magnetic materials.

Figure 1 shows the typical behavior of the spin polarization
of photoelectrons from SARPES on the glide-invariant line
of the surface Brillouin zone when the light is p polarized,
assuming the material is nonmagnetic. Since the time-reversal
and glide-reflection operators commute, every Kramers pair
at ki

z = 0 or π/c is composed of two states whose glide
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FIG. 1. A schematic of the SARPES data with the glide-
symmetric configuration, where the light is p polarized. Solid red
curves show the energy bands of a two-dimensional material or the
surface energy bands of a bulk material which yield photoelectrons
whose spin is fully polarized in a direction perpendicular to the glide
plane (say, spin up), and dashed blue curves show the bands which
yield photoelectrons whose spin is fully polarized in the opposite
direction (spin down). (a) and (b) show two types of possible band
connectivity.

eigenvalues are complex conjugates of each other. Therefore,
the glide eigenvalues of a Kramers pair [Eq. (3)] at ki

z = 0
must be different from each other (±i), while at ki

z = π/c

they must be the same, either 1 or −1. This fact implies that, in
Fig. 1, two bands connected to a single Kramers pair at kz = 0
have different glide eigenvalues, and thus, the photoelectrons
ejected from those two bands are spin polarized in opposite
directions. Near ki

z = π/c, on the other hand, two bands which
are degenerate at kz = π/c have the same glide eigenvalue,
and the spin polarizations of the photoelectrons ejected from
those two bands are the same.

More importantly, due to the dependence of the glide
eigenvalue on the momentum of photoelectrons [Eq. (3)], the
spin polarization of a photoelectron with its in-plane mo-
mentum in the second surface Brillouin zone is the opposite
of its counterpart in the first zone even if those electrons
are ejected from the same initial state (Fig. 1). In particular,
the photoelectrons at two first-zone boundaries (kf

z = ±π/c)
are spin polarized in opposite directions. On the contrary,
in the mirror-symmetric case, photoelectrons with different
in-plane momenta ejected from a single initial state always
have the same spin polarization. Table I summarizes the
result.

The difference in the SARPES behaviors between glide-
symmetric and mirror-symmetric configurations is quite re-
markable since many physical quantities such as electrical

TABLE I. The selection rules determining the spin polariza-
tion of photoelectrons. Here, n is the integer satisfying kf

‖ − ki
‖ =

n(2π/c)ẑ [see Eq. (1)], and σ denotes the spin of the final state along
ŷ.

p-Polarized light s-Polarized light

Glide symmetric: M̄y |i〉 = iλe−iki
zc/2|i〉

Even n σ = λ σ = −λ

Odd n σ = −λ σ = λ

Mirror symmetric: My |i〉 = iλ|i〉
Any n σ = λ σ = −λ

conductivity, the Raman tensor, and the stiffness tensor in
elasticity theory depend only on the point group of the crystal
rather than the full space group [32,33]. In SARPES, however,
due to its momentum resolution, the translation part of a
nonsymmorphic symmetry operation plays an important role
in determining the spin polarization of photoelectrons, and
thus, SARPES provides a way to distinguish glide symmetry
from mirror symmetry.

Having established the glide-symmetry selection rule,
we simulate spin-dependent photoemission from the surface
bands of the glide-invariant material KHgSb (010) (Fig. 2) and
investigate the manifestation of the glide-symmetry selection
rule in this numerical simulation. The (010) surface of KHgSb
hosts four branches of the metallic surface bands with hour-
glasslike energy-momentum dispersion inside the bulk band
gap [23,24,34,35]. Due to its large SOC, KHgSb is an appro-
priate test bed for verifying the spin selection rule imposed by
glide symmetry in the spin-dependent photoemission.

We constructed the Wannier functions from an ab initio
calculation of the bulk material without considering SOC and
extracted the hopping integrals among them [Fig. 3(a)]. To-
gether with the on-site spin-orbit coupling term αSbL · S/h̄2,
with αSb = 0.56 eV for the 5p-like orbitals at Sb atoms, the re-
sulting tight-binding Hamiltonian well describes the ab initio
calculation of the bulk where SOC is fully taken into account
near the Fermi energy [Fig. 3(b)]. We then constructed a
surface slab containing 60 bulk unit cells along the surface
normal direction and calculated the surface band structure
(Fig. 4), which shows four hourglass surface bands partially

x
y
z

K

Hg

Sb

A
L

Y

U
Z

kx
ky

kz hv

e

(a) (b)

FIG. 2. (a) The bulk unit cell of KHgSb. (b) The bulk and surface
Brillouin zones.
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FIG. 3. The electronic band structure of bulk KHgSb (a) without
and (b) with SOC. Black dots denote the energy eigenvalues obtained
from DFT calculations, and solid red curves denote the results
obtained from ab initio tight-binding models containing Hg 6s and
Sb 5p orbitals.

buried in bulk bands. We remark that our theory applies to any
surface band on a glide-invariant line in the Brillouin zone, not
necessarily restricted to hourglass bands.

Since the purpose of our paper is not to accurately calculate
the photocurrent intensity in ARPES but to demonstrate the
selection rule imposed by glide symmetry, it is not necessary
to calculate the photoemission final state exactly. (Neverthe-
less, as discussed below, a single complex parameter, the
ratio of the dipole matrix elements for s- and p-polarized
light, determines the relative photoemission intensity and the
spin polarization of the photoelectron for an arbitrary light
polarization at a k point on the glide-invariant line.) Therefore,
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FIG. 4. (a) The electronic band structure of KHgSb (100). (b)
Close-up of (a) on the hourglass surface bands.

although the exact final state (i.e., time-reversed LEED state
calculated by solving the Schrödinger equation with in-plane
momentum kf

‖ , energy Ef , and an appropriate boundary con-
dition) contains inwardly and outwardly propagating waves in
vacuum and atomic orbitals with high principal and angular
quantum numbers, we neglect those contributions, and we in-
stead take various combinations of the valence atomic orbitals
(e.g., Sb 5s and Hg 6p orbitals) as the final state and show that
all of these combinations satisfy the spin selection rule shown
in Table I.

The final state inside the material can be described as the
Bloch sums of atomic orbitals:

|f, σ ŷ〉 =
∑

α,R

cRαeikf ·Rα−Rα,z/2l|φRα〉. (8)

Here, α denotes the combined index of the atom, orbital, and
spin in the surface unit cell, Rα is the position of the αth atom
in the unit cell displaced by the surface lattice vector R, |φRα〉
is the state representing the αth atomic orbital located at Rα ,
and l is the inelastic mean free path of the final state. We
set l = 10 Å and the final state energy Ef = 13.6 eV in the
calculation below.

Since the surface state is mainly composed of Sb 5p and
Hg 6s orbitals, the relevant atomic transition is the p → s

transition at Sb and the s → p transition at Hg by the atomic
dipole selection rule. Having this fact in mind, we consider
the following three simplified cases: (i) the p → s transition
at Sb is dominant, and the effect of SOC on the final state is
negligible, in which case cRα in Eq. (8) is a nonzero constant
for 5s orbitals at Sb with sy = σ/2 and zero otherwise;
(ii) the s → p transition at Hg is dominant, the effect of SOC
is very strong, and cRα is a nonzero constant for 5p1/2 orbitals
(i.e., 5p orbitals with total angular momentum j = 1/2) at Hg
with jy = σ/2 and zero otherwise; and (iii) cRα is taken so that
the final states in the preceding two cases are superposed. We
note that, in cases (ii) and (iii), we consider the possibility that
even when the detector measures, say, spin-up electrons, the
time-reversed LEED state |f, ŷ〉 inside the materials contains
both spin-up and -down components due to the spin-orbit
coupling.

For those final states, we show in Fig. 5 the spin po-
larization of the photoelectrons ejected from the surface
state denoted by P in Fig. 4, with crystal momentum
ki = (0, 0, 0.45(2π/c)), as a function of the direction of
the linear light polarization. Irrespective of the final state
[Figs. 5(a)–5(c)], the spin polarization of photoelectrons
whose momentum is in the first surface Brillouin zone [kf =
0.45(2π/c)ẑ] is along −ŷ when ejected by s-polarized light
(θph = 0◦) and is along +ŷ when ejected by p-polarized
light (θph = 90◦). On the contrary, the spin polarization of
photoelectrons whose momentum is in the second Brillouin
zone [Figs. 5(d)–5(f), kf = −0.55(2π/c)ẑ] is along +ŷ when
ejected by s-polarized light. The opposite spin polarizations
in the first and second surface Brillouin zones are a direct
consequence of the glide symmetry.

In a real experiment, in order to compare the spin po-
larizations of photoelectrons at different kf

‖ , one typically
rotates the sample while fixing the position of the detector
and the light source. In our coordinate system, attached to the
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FIG. 5. Spin polarizations of photoelectrons with kf = (0, 0, 0.45(2π/c)), ejected from the initial state denoted by P in Fig. 4, assuming
that the final state is composed of (a) Sb 5s orbitals, (b) Hg 6p orbitals with j = 1/2, and (c) a coherent superposition of both. (d)–(f) The
same quantities as in (a)–(c) for photoelectrons with kf = (0, 0, −0.55(2π/c)).

sample, this rotation amounts to the change in the incident
angle of the light so that the angle between the incoming
light ray and the outgoing photoelectron beam is constant.
Because we are dealing with the case in which the momentum
of photoelectrons lies in the glide plane, the rotation of the
light ray also occurs within the glide plane. Therefore, s-
polarized light (whose polarization vector is perpendicular to
the glide plane) remains s polarized after rotation, and so
does p-polarized light (whose polarization vector is parallel
to the glide plane), although the polarization vector of the
p-polarized light rotates. Hence, for s- or p-polarized light,
because of the glide symmetry, the rotation does not affect
the direction or the magnitude of the spin polarization of the
photoelectrons.

When the light is neither s nor p polarized, the photoemis-
sion configuration breaks the glide symmetry; that is, A · p
is not invariant under the glide reflection. Even in this case,
however, any light polarization A is a linear combination of s

and p polarizations As and Ap. For example, when the light
polarization is rotated from the s polarization by θph, the pho-
toemission matrix element is 〈f σ |A · p|i〉 = cos θph〈f σ |As ·
p|i〉 + sin θph〈f σ |Ap · p|i〉. (We have suppressed ŷ for sim-
plicity.) Therefore, as in the mirror-symmetric case [11,12],
a single complex parameter, namely, the ratio between the
matrix elements for s-polarized light 〈f (−σ )|As · p|i〉 and
for p-polarized light 〈f σ |Ap · p|i〉, with σ = (−1)nλ, de-
termines the relative photoemission intensity and the spin
polarization of photoelectrons ejected with arbitrary light
polarization. Conversely, by measuring the spin polariza-
tions of photoelectrons ejected by light with a few different
polarizations, we can obtain the ratio of the matrix elements
for s- and p-polarized light, which in turn enables us to

predict the SARPES behavior for any other light polarization.
Our finding that the photoemission intensity and the spin
polarization are determined from a single complex parameter
in glide-symmetric systems when the propagation directions
of incident light and photoelectrons are included in the glide
plane extends the previous studies of SARPES from mirror-
symmetric topological insulators [11,12].

Moreover, we claim that the magnitude of that complex
parameter is an indicator of tunability of the spin direction
of a possible spin-polarized photocathode using glide- or
mirror-symmetric materials [1,6]. If |〈f (−σ )|As · p|i〉| �
|〈f σ |Ap · p|i〉|, then the SARPES behavior is mostly deter-
mined by the p-polarization component of the light, and the
spin polarization of photoelectrons will be close to σ ŷ unless
the p-polarization component is very small. Even in this case,
the photoemission intensity is low due to the low magnitude
of |〈f (−σ )|As · p|i〉| [9]. A similar argument holds for the
case |〈f (−σ )|As · p|i〉| 	 |〈f σ |Ap · p|i〉|. Therefore, the
magnitudes of the two matrix elements must be similar in
order for the spin polarization of photoelectrons to be tuned
easily by changing the light polarization.

We finally discuss the effect of the change in the photon
energy. Although the final-state wave function depends on the
photon energy, its glide eigenvalue is determined only by the
spin direction of the plane wave in the vacuum. Therefore, for
s- and p-polarized light (θph = 0◦, 90◦, respectively), the spin
polarization of photoelectrons is independent of the photon
energy [Sy = −1 and Sx = Sz = 0 for θph = 0◦ and Sy = 1
and Sx = Sz = 0 for θph = 90◦ in Figs. 5(a)–5(c)]. For a
light polarization which is neither s polarized nor p polarized
(0◦ < θph < 90◦), the spin polarization depends on the com-
plex ratio between the optical transition matrices for s- and
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p-polarized light, and this quantity does depend on the photon
energy. Therefore, if we increase or decrease the photon
energy in Figs. 5(a)–5(c), the angular position θph where the
sign of Sy flips (from negative to positive) changes. Also, the
signs of Sx and Sz may change differently for 0◦ < θph < 90◦,
as we vary the photon energy, like in Figs. 5(d)–5(f).

IV. CONCLUSIONS

In summary, we have studied spin-resolved ARPES of
materials with glide symmetry where the propagating direc-
tions of the incident light and outgoing electrons are also
in the glide plane. When the light polarization is parallel
or perpendicular to the glide plane (say, the zx plane), the
spin polarization of photoelectrons is +ŷ or −ŷ, which is
perpendicular to the glide plane. Whether the spin polarization
is +ŷ or −ŷ is determined by (i) the glide eigenvalue of
the initial surface state and (ii) the in-plane momentum of
photoelectrons. Regarding point (ii), even if the photoelec-
trons are ejected from a single initial state by the same
light, when the in-plane momentum of photoelectrons changes

by the smallest surface reciprocal lattice vector, the spin of
photoelectrons is reversed. In particular, when the momentum
of photoelectrons is near the first surface zone boundary, the
spin polarizations of the photoelectron and the initial state
are either parallel or antiparallel to each other depending on
whether the momentum of photoelectrons is near one zone
boundary or the other. This momentum-dependent spin selec-
tion distinguishes glide symmetry from mirror symmetry. Not
only do these results manifest the nonsymmorphic character
of glide reflection, they also show that the spin-resolved
ARPES is a powerful tool in studying the topological phases
protected by glide symmetry because it directly measures the
glide eigenvalue of the initial states. We also have shown
that the spin of photoelectrons is fully controlled by a single
complex parameter due to glide symmetry, and the magnitude
of that complex parameter measures the tuning power of the
spin of electrons using light.
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