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From Kondo effect to weak-link regime in quantum spin-% spin chains

Domenico Giuliano,2 Davide Rossini,>* and Andrea Trombettoni

:5,6,7

1Diparlimenlo di Fisica, Universita della Calabria Arcavacata di Rende 1-87036, Cosenza, Italy
2LN.EN., Gruppo collegato di Cosenza, Arcavacata di Rende 1-87036, Cosenza, Italy
3Dipartimento di Fisica dell’ Universita di Pisa, Largo Pontecorvo 3, 1-56127, Pisa, Italy
4IN.EN., Sezione di Pisa, Largo Pontecorvo 3, I-56127, Pisa, Italy
SCNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, 1-34136 Trieste, Italy
Scuola Internazionale di Studi Avanzati (SISSA), Via Bonomea 265, 1-34136 Trieste, Italy
"IN.FEN., Sezione di Trieste, Via Bonomea 265, I-34136 Trieste, Italy

® (Received 24 September 2018; published 28 December 2018)

We analyze the crossover from Kondo to weak-link regime by means of a model of tunable bond impurities
in the middle of a spin-1/2 XXZ Heisenberg chain. We study the Kondo screening cloud and estimate the Kondo
length by combining perturbative renormalization group approach with the exact numerical calculation of the
integrated real-space spin-spin correlation functions. We show that, when the spin impurity is symmetrically
coupled to the two parts of the chain with realistic values of the Kondo coupling strengths and spin-parity
symmetry is preserved, the Kondo length takes values within the reach of nowadays experimental technology
in ultracold-atom setups. In the case of nonsymmetric Kondo couplings and/or spin parity broken by a nonzero
magnetic field applied to the impurity, we discuss how Kondo screening redistributes among the chain as a
function of the asymmetry in the couplings and map out the shrinking of the Kondo length when the magnetic
field induces a crossover from Kondo impurity to weak-link physics.
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I. INTRODUCTION

The Kondo effect has been first seen in conducting metals
containing magnetic impurities, such as Co atoms; it con-
sists in an impurity-triggered, low-temperature increase in the
metal resistance [1-3]. Physically, Kondo effect is the result
of nonperturbative spin-flip processes involving the spin of a
magnetic impurity and of the itinerant conduction electrons
in the metal, which results in the formation, for vanishing
temperature, of a strongly correlated Kondo state between the
impurity and the conduction electrons [1,2]. In the Kondo
state, spins cooperate to dynamically screen the magnetic
moment of the impurity [1,2,4]. The specific properties of the
correlated state depend on, e.g., the number of independent
“spinful channels” of conduction electrons participating to
the screening versus the total spin of the magnetic impurity.
Denoting the latter by s, when the number of independent
screening channels k is equal to 2s, in the Kondo state the
impurity spin is perfectly screened, which makes the screened
impurity act as a localized scatterer with well-defined single-
particle phase shift at the Fermi level. This corresponds to
the onset of Nozieres Fermi-liquid state [4,5]; at variance,
when k > 2s, the Kondo state is characterized by impurity
“overscreening,” which determines its peculiar, non Fermi-
liquid properties [6,7].

Over the last decades, the Kondo effect emerged as a
paradigm in the study of strongly correlated electronic states,
providing an arena where to test many-body techniques, both
analytical and numerical [8]. Also, the realization of a Kondo
interaction involving Majorana fermion modes arising at the
endpoints of one-dimensional (1D) topological superconduc-
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tors has paved the way to a novel, peculiar form of “topolog-
ical” Kondo effect, sharing many common features with the
overscreened multichannel Kondo effect [9-12]. Besides its
fundamental physics aspects, the Kondo effect has attracted a
renewed theoretical as well as experimental interest, since it
has been possible to realize it with controlled parameters in
quantum dots with either metallic [13—16] or superconducting
leads [17—19]. This led to the possibility of using the Kondo
effect to design quantum circuits with peculiar conduction
properties, such as a conductance reaching the maximum
value allowed by quantum mechanics for a single conduction
channel [3].

Formally, the Kondo effect is determined by a renor-
malization group (RG) crossover between quantum impurity
ultraviolet and infrared fixed points (corresponding to the
Kondo state). Typically, for a spin-1/2 impurity, near the
ultraviolet fixed point (high energy), the coupling between
the quantum impurity and the spin of conduction electrons is
weak, thus merely providing a perturbative correction to the
decoupled dynamics of the two of them. At variance, near the
infrared fixed point (low energy), the conduction electrons in
the Fermi sea adjust themselves to screen the impurity spin
into a localized spin singlet. Regarding the relevant energy
window for the process, the impurity spin screening requires
a cooperative effect of electrons with energies all the way
down to kg Tk, with kg being the Boltzmann constant (which
we set to 1 henceforth) and Tk the Kondo temperature, that
is, a temperature scale invariant under RG trajectories and
dynamically generated by the Kondo dynamics [2]. At ener-
gies ~Tk, a crossover takes place, between the perturbative
dynamics of the impurity spin weakly coupled to itinerant
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electrons and the nonperturbative onset of the Kondo state.
The possibility of using the Fermi velocity vy to trade an
energy scale E, for a length scale L, ~v,/E, led to the
proposal that the crossover might be observed in real space,
as well [4,20]. Switching from an energy to a length reference
scale implies that dynamical impurity spin screening has now
to be thought of as a real-space phenomenon, with the net
effect of substituting, as a reference scale for screening, the
temperature with the distance from the impurity x. In other
words, a physical quantity depending on the distance x from
the impurity is expected (on moving away from the impurity)
to exhibit a crossover from a perturbative behavior controlled
by the ultraviolet fixed point at small x to a nonperturba-
tive behavior controlled by the Kondo state at large x, the
crossover taking place at a scale £x ~ v/ Tk. Such value &k
can accordingly be regarded as the size of the electronic cloud
screening the impurity spin: for this reason, it is typically
referred to as the Kondo screening length.

The presence of a Kondo cloud (KC) is well-grounded
on the theory side and it has also been recently proposed
that an analogous phenomenon takes place at a Majorana
mode coupled to a 1D quantum wire [21]. However, any
attempt to experimentally detect it at magnetic impurities
in metals has so far failed. There is a number of possible
reasons for that: first of all, from typical values of Tx in
metals, £ is estimated to be of the order of thousands metallic
lattice spacings, which makes spin correlations between the
impurity and the itinerant electrons in practice not detectable
as x ~ &k. In addition, in real metals, one typically recov-
ers a finite density of magnetic impurities. Thus the large
value of &x very likely implies interference effects between
clouds relative to different impurities. Also, the simple models
one uses to perform the calculations may be too simplified
lacking, for instance, effects of electronic interactions, etc.
(for a review about the Kondo screening cloud, see Ref. [22]
and references therein). For these reasons, the quest for the
Kondo cloud has recently moved to realizations of the Kondo
effect in systems different from metals, such as quantum spin
chains.

In fact, it is by now well established that the Kondo effect
can be achieved in magnetic impurities coupled to antiferro-
magnetic spin chains with a gapless spin excitation spectrum,
the so called spin Kondo effect [23-25]. Indeed, the Kondo
effect is merely due to spin dynamics [22,25] and, because
of spin fractionalization [26,27], a quantum antiferromagnetic
spin chain can be regarded as a sea of weakly interacting col-
lective spin-1/2 excitations with a gapless spectrum, dubbed
spinons [27,28], which eventually cooperate to dynamically
screen the spin of the magnetic impurity in the chain. Besides
its interest per se, the spin Kondo effect also provides an
effective description of Kondo-like dynamics in a number of
different physical systems that have been shown to be ef-
fectively described as a (possibly inhomogeneous) XXZ spin
chain, such as the Bose-Hubbard model realized by loading
cold atoms onto an optical lattice [29,30], as well as networks
made joining together 1D arrays of quantum spins or of
quantum Josephson junctions [31-35]. Also, studying Kondo
effect in spin chains allows for investigating various aspects
of the problem relevant to quantum information such as, for
instance, entanglement witnesses and negativity [36,37]. To

date, different realizations of Kondo effect in spin chains
have been considered in the case in which an isolated mag-
netic impurity is side-coupled to a single uniform XXZ
chain (single-channel Kondo spin effect) [23], to a frustrated
J1 — J, antiferromagnetic spin chain [25] and to a “bulk” spin
in an XXZ spin chain [24].

In this paper, we consider a magnetic impurity realized in
the middle of the chain by weakening two consecutive bonds
in an otherwise uniform XXZ chain with open boundaries.
Notice that, to have the spin-chain Kondo effect, one needs
to have a single bond impurity (i.e., an altered and decreased
coupling between two neighboring sites) on the edge—or two
bond impurities in the middle (i.e., in the bulk) of the chain,
as we are going to discuss. Remarkably, on the experimental
side, the recent solid-state construction of an XXZ spin chain
using Co atoms deposited onto a CulN,/Cu(100) substrate [38]
paves the way to a realistic experimental realization of the
system we discuss. On the theoretical side, with respect to the
previous systems listed above, our proposed system presents a
number of features that motivate an extensive treatment of the
corresponding realization of Kondo effect. First of all, we con-
sider a magnetic impurity separately coupled to two indepen-
dent screening channels, that is, the spin-chain version of the
two-channel Kondo effect [23,39,40]; this allows us, by tuning
the couplings to the two channels, to move from two-channel
to one-channel spin Kondo effect, and back. As a result, it
enables us to study, for the first time, how screening sets in and
is distributed among the channels in a multichannel realization
of Kondo effect. Moreover, we show that acting upon an ap-
plied magnetic field at the impurity, allows for switching from
a Kondo system to a simple weak-link between two otherwise
homogeneous spin chains, thus allowing for mapping out the
effects on £&¢ when crossing over between the two regimes.
Specifically, we combine the analytical approach based on
the perturbative RG equations, which we derive in the case
of a nonzero applied magnetic field at the impurity, with a
density-matrix renormalization group (DMRG) based numer-
ical derivation of a suitable integrated real-space spin-spin
correlation between the magnetic impurity and the spins of the
chains. In Ref. [41], a similar quantity was originally proposed
as a mean to directly provide the Kondo screening cloud
through its scaling behavior in real space. Here, we construct
a version of the integrated correlation function that is suitable
for a Kondo impurity in an XXZ quantum spin chain. This is
an adapted version of the function used to extract, from nu-
merical data, the Kondo screening length at an Anderson im-
purity lying at the endpoint of a 1D lattice electronic system
[42].

The combination of the analytical and numerical methods
allows us to properly choose the ultraviolet cutoff entering the
solution of the RG equations in the various cases. Doing so,
we recover an excellent consistency between the analytical
and the numerical results, which allowed us to derive analyti-
cal scaling formulas for the integrated correlation functions in
all the cases in which a pertinent version of perturbation the-
ory is expected to apply. Performing a scaling analysis of the
integrated correlation function, we generalize the formalism
of Refs. [41,42] to Kondo effect in a quantum spin chain. Due
to the remarkable mapping between an XXZ spin chain and
a 1D single-component Luttinger liquid, which also describes
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interacting spinless electrons in one spatial dimension [23], by
the same token we also show how to generalize the method of
Refs. [41,42] to Kondo effect with interacting electronic leads.
Within our technique, we prove that, at physically reasonable
values of the Kondo couplings £k in a spin chain ranges from
a few tens, to about 100 times the lattice spacing. We also
provide for the first time, to the best of our knowledge, a
detailed qualitative and quantitative description of the behav-
ior of the screening cloud in two-channel spin Kondo effect,
as well as of the shrinking of the cloud when an applied
magnetic field at the impurity makes the system switch from
a Kondo impurity to a weak link between homogeneous spin
chains.

About focusing our discussion on Kondo effect in spin
chains it is, finally, worth stressing that magnetic impurities
in spin chains mimic the Kondo effect in the precise sense
that the low-energy model describing their dynamics is the
same as the conventional Kondo model [25]. So, in light of
this mapping, most of the results we are going to discuss
have a precise counterpart in other realizations of the Kondo
effect, and similarly the RG treatment presented here can be
performed in other Kondo contexts. Having stated so, it is
worth stressing that studying Kondo effect in spin chains of-
fers two important advantages: (i) it allows for computing cor-
relation functions using DMRG, thus admitting a convenient
exact numerical benchmark for the analytical results; and (ii)
it makes it possible to propose an experimental setup for
realizing the crossover between different impurity regimes,
such as a Kondo impurity and a single weak link, which we
discuss in the paper, by physically simulating various quantum
spin chains with ultracold atoms in optical lattices (see, for
instance, Ref. [29] and references therein). In particular, the
Bose-Hubbard model [43] at half-filling can be mapped onto
the XXZ spin chain [29,44,45] and values of the Kondo length
of order 10-100 lattice sites can be conceivably detected in
ultracold atom experiments by extracting the Kondo length
from correlation functions [30].

The paper is organized as follows. (1) In Sec. II, we
introduce the model Hamiltonian we use throughout all the
paper. We discuss the physical meaning of the Hamiltonian
parameters, introduce the running Kondo coupling strengths
and outline how they are used to estimate £x. (2) In Sec. III,
we define the integrated spin correlation function and discuss
how to use it to estimate £x. In particular, in Sec. III A, we
discuss the scaling collapse technique, while in the following
section, Sec. III B, we review the Kondo length collapse
method. Throughout all Sec. III, we limit ourselves to the case
of symmetric Kondo couplings and zero applied magnetic
field at the impurity. (3) In Sec. IV, we generalize the results
of Sec. III to the case of nonsymmetric Kondo couplings
(Sec. IV A), as well as to the case of a nonzero magnetic
field applied to the impurity (Sec. IV B). (4) In Sec. V, we
summarize our results and discuss possible further develop-
ments of our work. (5) In the various appendices, we discuss
mathematical details, such as the mapping between extended
spin clusters in the chain and effective Kondo or weak-link
impurities, the spinless Luttinger liquid approach to the XXZ
spin chain and its application to derive the RG equations in the
case of a Kondo impurity, as well as of a weak link between
two chains.

II. MODEL HAMILTONIAN

Our main reference Hamiltonian H describes a magnetic
spin-1/2 impurity S¢ embedded within an otherwise uniform
XXZ spin chain. We assume that the applied magnetic field
along the chain is zero everywhere but at the impurity loca-
tion, where it takes a nonzero value B in the z direction. To
avoid unnecessary computational complications, we assume
that the whole chain consists of an odd number of sites,
2¢ + 1, with integer ¢, and Sg sitting in the middle of the
chain. At each site lies a spin-1/2 quantum spin degree of
freedom: we denote with S; ; and with S; r the corresponding
vector operators sitting at site j, measured from the impurity
location (which accordingly we set at j = 0), on respectively
the left-hand and the right-hand sides of the chain. As a result,
H takes the form H = )"y _,  Hx + Hk, with

-1
Hy =7 {STySix+SixShx +AS xS v}
j=1
Hg = {J;S?:L + J;?S?:R}S(; + {JI:S;L + J;QSI_,R}S:;_
+ {JZ,,LST,L + JZ,,RSf,R}Sé + BSg . (1)

The spin operators S; 1) in Eq. (1) satisfy the algebra

. (Sa,h
Sj,X Sj/,X’ = Sj,j’ (Sx_x/{ 2

+ %e‘”’csjc._x} R
with X, X' =L, R, a,b,c = x, y, z, and €**° being the fully
antisymmetric tensor. J is the (antiferromagnetic) exchange
strength, providing an overall energy scale of the system
Hamiltonian. The anisotropy A is the ratio between the ex-
change strengths in the z and in the xy directions in spin
space. In order to recover spin Kondo effect, one has to
avoid the onset of either antiferromagnetically or ferromag-
netically, ordered phases in the chain, which requires (as we
do throughout the whole paper) assuming —1 < A < 1 [46].
S¢ is coupled to the rest of the chain via the boundary,
transverse and longitudinal “Kondo” couplings, respectively,
given by J L JI'e and by ‘Iz/, L JZ/, &~ To achieve Kondo physics,
J L( ) and JZ/‘ L(r) Must respectively be smaller than J and than
AJ (this is necessary to “leave out” some room for the onset
of the perturbative Kondo regime, which is, in turn, necessary
in order to define the Kondo screening length [22,47]). Again,
to avoid unnecessary computational complications, as for the
“bulk” parameters of the chain, we set J;,L(R) = AJL(R).

The model in Eq. (1) corresponds to a two-channel Kondo
spin Hamiltonian [23-25,39,40], in which the impurity spin
S¢ is independently coupled to a two spin-1/2 “spinon baths,”
at the two sides of S [48]. Accordingly, H allows to study
how the Kondo screening is affected by, e.g., an asymmetry
in the Kondo couplings to the two channels, as well as by
a nonzero B applied to the impurity site and, eventually,
to map out the crossover from Kondo to weak-link physics
at the impurity. At this stage, it is worth pointing out one
of the key differences between spin-1/2 multichannel Kondo
effects in systems of itinerant electrons and in spin chains. In
our spin-chain model Hamiltonian, when S¢ is symmetrically
coupled to the spin densities from the XXZ chains, each
chain works as an independent spin screening channel. Yet,
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differently from what happens in electronic Kondo effect,
where the overscreening (that is, k > 2s) leads to the onset
of a nontrivial finite coupling fixed point, in spin chain it
only trades into a symmetric healing of the spin chain, with
the Kondo fixed point simply corresponding to an effectively
uniform chain [23,39,40].

The Kondo effect is triggered by the fact that, depending on
the value of A, Hk either realizes a relevant or a marginally
relevant boundary perturbation, which eventually leads to the
emergence of the dynamically generated length scale &g.
Resorting to the spinless Luttinger liquid (SLL) representation
of the homogeneous chains at the sides of S¢g (the “leads”),
the key parameter determining the behavior of the boundary
interactions is the Luttinger parameter g, which is related to
A via (see Appendix B for details)

b4
&= 2[m — arccos(A)] )

Specifically, Hg is marginally relevant when g = 1/2 (cor-
responding to A = 1, that is, to the SU(2)-isotropic XXX
spin chain), while it becomes relevant as soon as g > 1/2
[23-25]. As we are eventually interested in regarding the XXZ
Hamiltonian as an effective description of cold-atom bosonic
lattices [30], throughout all the paper we will assume g > 1/2.
Incidentally, this also enables us to rely on the Abelian
bosonization approach, which corresponds to the SLL formal-
ism of Appendix B, rather than resorting to the more complex
and sophisticated non-Abelian bosonization scheme, which is
more suitable to provide a field theoretical description of the
isotropic XXX chain [23].

The relevance of Hg is encoded in the RG flow of the
boundary couplings associated to Hg (for an extensive
discussion about this point, see, for instance, Ref. [2]). In the
specific case of Eq. (1), the running couplings are glven by

Gri(©) = 1(0/6) 520 and Gy (0) = | L,
where ¢, is the short-distance cutoff. In Appendix C, we
discuss the derivation of the RG equations. In particular, we
stress the emergence of £¢ as the scale at which the running
couplings enter the nonperturbative regime. Note that, since
we are eventually interested in deriving the expression for &,
throughout our paper we use the system size £, rather than the
temperature T, as the scale parameter triggering the RG flow
of the running coupling strengths. This basically corresponds
to setting 7' = 0 and keeping ¢ finite or, more generally, to
assuming that kg7 < vy /£. The physical interpretation of £k
as the size of the Kondo cloud stems from Nozieres picture
of the Kondo screening cloud, in which spins surrounding
Sc over a distance ~ £x cooperate to screen the magnetic
impurity into the extended Kondo singlet [4,5]. It is worth
now considering the physical picture of the fixed point toward
which the system is attracted, when crossing over to the
strongly coupled regime (that is, as soon as £ ~ £k ). To begin
with, let us focus onto the B = 0 and L-R-symmetric case:
J; = J, and J;’L = J;,R. In this case, one expects the onset
of a two-channel Kondo regime, in which the S¢ is equally
screened by spins at both sides of the impurity, as soon as
£ > &g . The corresponding Kondo fixed point can be easily
recovered as being equivalent to an effectively uniform chain,
as all the possible boundary perturbations preserving the L-R
symmetry become an irrelevant perturbation at such a fixed

point [23,49]. At variance, different fixed points are realized
either when the L-R symmetry is broken, or there is a nonzero
magnetic field B applied to SG (or both) The former case is
realized when, for instance, J, < J, and J 1< J g+ In this
case, one may attempt to deﬁne a left hand and a r1ght -hand
screening length, respectively referred to as £x 1 and as &k g.
From the explicit formulas in Egs. (C7), (C9), and (C11)
of Appendix C, one therefore expects that &g ; > &k g.
This implies that, on equally increasing £ on both sides of
the impurity spin, the condition £ ~ &g g is met first. As
£ ~ &g g, “healing” of the weak link between S and S p is
complete, and one may accordingly regard the whole system
as an £ 4 1-site uniform chain, made out of the ¢ sites hosting
the S; r spins plus Sg, coupled at its endpoint to an £-site
chain—made out of the £ sites hosting the S; ; spins—via the
“residual” weak-link boundary Hamiltonian Hy given by

Hy = J(SEST, + Sa Sy + T/S6ST L 4)
where J',J, are defined from the running couplings
GL(0), G.L(0) at £ ~ &g g.

Hy in Eq. (4) is the prototypical “weak-link” boundary
Hamiltonian we review in Appendix A 2 [50,51]. To address
its behavior on further rescaling ¢, one defines the novel
running dimensionless couplings T'(£) = (£/&x.z)'~"/8 J'
and I';(¢) = J_Z/. For g < 1, standard RG approach implies
that Hw corresponds to an irrelevant boundary interaction
[50,52-54]. This on one hand implies that no additional
length scales associated to screening are dynamically gener-
ated along the RG flow of I'(¢) and I, (£), on the other hand
that any physically relevant quantity, such as the real-space
correlations between the ; and the p spins, can be reliably
computed in a perturbative expansion in Hyw. At variance,
in the case g > 1 (which corresponds to A < 0), Hyw does
become a relevant operator. However, this only quantitatively
affects the final result, in that the weak-link couplings now
become effectively dependent on the scale. Again, the “heal-
ing” of the chain [50,55] sets in without the onset of any
Kondo cloud and, again, no scaling is expected to be seen
in the correlations. More generically, for any value of g we
expect weak-link physics to apply, with no additional length
scales being dynamically generated. This can be discussed in
close analogy to Kondo effect in metals. There, £x emerges at
the crossover to the nonperturbative regime inside the Kondo
cloud. Outside the Kondo cloud, the impurity spin is screened
and what one sees is the residual interaction corresponding
to Nozieres Fermi liquid [4,5], with no additional scales
dynamically generated. So, we may pictorially state that our
weak-link is, in a sense, the analog, for the spin chain, of what
Nozieres Fermi liquid is for Kondo effect in metals.

A similar physical scenario is realized in the case of a
nonzero applied B which, as we discuss in Appendix A2,
again yields an effective weak-link Hamiltonian at the impu-
rity. To get a qualitative understanding, we note that B # 0
induces an additional length scale £ o< J/B. At small values
of B, one typically has £ « &g, which implies that Kondo
effect is not substantially affected, as long as B/J < 1. In
fact, as we discuss below, a finite B merely provides a slight
renormalization of £x which, in a sense, is analogous to what
happens to electronic Kondo effect when the single-electron
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FIG. 1. (a) Semilogarithmic rescaled curves for X[x] corre-
sponding to £ = 300, A = 0.3 and, respectively, J'/J = 0.1 (dashed
black curve), J'/J = 0.2 (full red curve), J'/J = 0.4 (full black
curve), and J'/J = 0.6 (dashed red curve). (b) Same as in (a), but
without rescaling.

spectrum has a gap E at the Fermi level, but the Kondo tem-
perature is still much larger than E [17-19,56]. At variance,
as we discuss in the following, a substantial suppression of
the Kondo effect and a switch to weak-link physics, with a
corresponding collapse of the screening length, is expected
for &g < &g [42,57].

To conclude this section, it is worth stressing the important
point about #, addressed in detail in Appendix A, that,
besides describing a single spin in a generically nonzero
magnetic field weakly coupled to two uniform spin chains,
it can be regarded as an effective description of a generic
few-spin spin cluster (an “extended region”) in the middle of
an otherwise uniform chain, weakly coupled to the rest of the
chains at its endpoints. An extended region is closer to what
one expects to realize in a bosonic cold-atom lattice [30]. In
such systems, one can in general simulate quantum spin mod-
els by loading the quantum gas(es) on optical lattices [43].
To map the resulting Bose-Hubbard Hamiltonian on an XXZ
model, there are several possible strategies; we refer in par-
ticular to the one proposed in Ref. [29], where the 1D Bose-
Hubbard Hamiltonian at half-filling is mapped on an effective
XXZ model, and their correlation functions compared finding
remarkable agreement also for interaction strength relatively
small. In this physical setup the antiferromagnetic couplings
J’s on the links are proportional to the tunneling rates for the
bosons hopping from one well to its nearest neighbor. So one
can locally alter the tunnelings by adding one or two repulsive
potentials via laser beam (see Fig. 1 of Ref. [29]). Denoting
by o the spatial 1/e> beam waists of the lasers one has
different situations: denoting by d the lattice spacing, ifo < d
and one has just one laser centered on the maximum of the
energy barrier between two minima (i.e., two sites), then one
is practically altering only one coupling J. When one has two
lasers, with intensities denoted by, say, V; and Vg, and again
o < d then one is altering two couplings, and, depending on
the precision with which one is centering the lasers, one can
have equal (J L ~J 1}) or different couplings (J; #* J,;). When
o 2 d then one is unavoidably altering several links, leading
to an approximately Gaussian deviation of the couplings from
the left and right bulk coupling J extending roughly on o/d
sites. We refer to Ref. [29] for details, but typically o 2 2 pum,
and d is order of 0.5-1 um, even though by having tunable
barriers one can have appreciable tunnelings also for 2-3 um
or larger [58]. In summary, for o < d, one approximately has
that for (i) V; = 0 and Vg # 0, all couplings are equal (to J)
and one link is altered (.11;); (i) VL = Vg # 0, all couplings

are equal (to J) but the two central (J L = J;e); and (iii)
fixed Vg # 0 and varying V|, interpolates between the single
nonmagnetic altered bond providing a nonmagnetic weak link
(Vr, = 0) and the case in which the chain is cut in two and
there is a single altered bond in the right half of the chain
(VL > Vg), behaving at variance as a magnetic impurities and
giving rise to the one-channel Kondo effect [25].

Therefore we see that, in realizations with ultracold atoms,
one would generically have an extended region, even though
altering few tunneling terms is conceivable. Yet, H is expected
to be able to catch the relevant physical behavior, as well,
provided its parameters are carefully set by, e.g., following the
route we illustrate in Appendix A in some specific paradig-
matic cases. Eventually, this makes H in Eq. (1) to be worth
studied as a paradigmatic effective description of an extended
region in an otherwise uniform spin chain.

III. KONDO SCREENING LENGTH FROM INTEGRATED
REAL-SPACE CORRELATION: THE B = 0 AND .-z
SYMMETRIC LIMIT

In this section, we illustrate in detail how to construct
and use the integrated real-space correlation function X[x]
to probe the Kondo screening cloud in real space and to
eventually extract the corresponding value of £x. In order
to do so, we refer to the so far firmly established scaling
properties (with £k ) of the real-space correlations between Sg
and the screening spins from the leads, which have been put
forward by making a combined use of perturbative RG meth-
ods, as well as of fully numerical DMRG approach [47,59].
As an extension of the results of Refs. [47,59], Barzykin and
Affleck have proposed to look at the scaling properties of
the integrated real-space correlation function as a mean to
directly map out the Kondo screening cloud in real space [41].
Following their proposal, we introduce the function X[x]
as an adapted version of the integrated correlation function
originally proposed in Ref. [41] to discuss Kondo cloud at an
isolated magnetic impurity in a metal, and later on adapted
to an Anderson impurity lying at the endpoint of a 1D lattice
electronic system [42]. In defining X[x], we necessarily have
to take into account that, even as B = 0, the easy-plane
anisotropy of the XXZ chain at |A| < 1 breaks the spin
SU(2) symmetry, leaving as a residual symmetry the group
U(1) associated to rotations around the z axis in spin space.
Following Ref. [42], we therefore set

¥y ()

= s L ((56)") = (&)’

A full SU(2)-symmetric version of X[x] (which apparently
does not apply to the system we consider here), would be
given by [41,42]

(Sc) - (Si.x)
ZSU(2)[x]—1+Z 2 { (SG)2 —((GSG)) }

i=1 X=L,R

(©)

Due to the normalization we use in Eq. (5), one has
Y[x = 0] =1 while, since the state on which we compute
spin correlations is an eigenstate, or a linear combination of
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eigenstates, of S5 = S& + Z (S5 L + S} g}, one recovers
the second boundary condltlon E[x = Z] =0 [42]. When
moving from the impurity location, X[x] is expected to show
a net decreasing, due to the screening of S by spins in the
leads. In fact, this is the case though, for 0 < A < 1, the
antiferromagnetic spin correlations make the decreasing to
be not monotonic, but characterized by a staggering by one
lattice step, with a net average decrease as x increases [42].
When ¢ > £k, one expects that finite-size effects are sup-
pressed and, therefore, that, as long as x < &k, X[x] probes
the inner part of the Kondo cloud. The farther one moves
from the impurity (increasing x), the more one enters the non-
perturbative regime, till one eventually recovers full Kondo
screening, as soon as x ~ &g. At variance, for x > &g, X[x]
probes the region outside of the Kondo cloud. This latter
region corresponds to Nozieres Fermi liquid theory for the
Kondo fixed point, with a completely different expected be-
havior of the scaling properties of X[x] [4,5]. Basically, one
can state that the behavior of X[x] is described by (i) the
weakly coupled fixed point (Sg weakly coupled to the chains)
for x/£x <« 1 (note that this is profoundly different from
the case of a boundary interaction effectively behaving as a
single weak-link, in which one does not expect any particular
dynamically generated emerging length scale to be associated
with scaling properties of the Kondo cloud [30,60-62]); and
(i1) the strongly coupled Kondo fixed point (uniform chain
limit, corresponding to Nozieres fixed point for electrons in
ametal) for x /&g > 1 [21].

To better illustrate the application of our method, in this
section we set B = 0 and focus on a system with symmetric
boundary couplings J; = J, = J’ and JZ”L = JZ’_R =AJ.
For x « &g, we estimate X[x] to leading order in J'. Within
SLL-framework of Appendix B, we obtain

Z[x]%l+2x: ﬁ g 2'tag[ sin(xj/t)
= 2 | 2rul 14 1 —cos(mj/L)

—8
}. 7

To encode the perturbative RG results in Eq. (7), we follow
the “standard” strategy [2] of substituting the “bare” couplings
JZ' with the running one, G Z(é), obtained from Eqgs. (C12) of
Appendix C, in which the dependence on ¢ has been traded
for a dependence on £ (see Appendix C for details), and x is
used as infrared cutoff, consistently with the fact that one has
to integrate of a spin cluster of size ~x [30,41]. For large ¢,
we may trade the sum in Eq. (7) for an integral, getting

2gall +278mal(—=1)/j |2¢ . (7]
- —sin [ —
ul b4 £

Yx]~ 1+

G (x/§k) de{ g
2 £ 27Tu(
_2“gag|: sin (mw/€) }
£ 1 —cos(mw/l)

2gall + 27 8malw cos(rw)
ul

i—gsin <n7w>

|

®)

Following the approach of Ref. [41], from Eq. (8), we infer
a general scaling formula for X[x] when x /§x < 1, given by

-T2, ©)

dp

X[x]

with the sum taken over the scaling dimensions of the bound-
ary operators entering the SLL representation for Sj L(r) and
the &;,’s being pertinent scaling functions. Based on rather
general assumptions, one expects some analog to Eq. (9) to
describe X[x] for x/§x > 1, as well. Later, we provide a
semiqualitative argument to infer how X[x] behaves outside
of the Kondo cloud. To exactly reconstruct the scaling be-
havior encoded in Eq. (9), we employed DMRG approach to
numerically evaluate X[x] in the case of a central impurity S¢,
with either symmetric or nonsymmetric couplings, as well as
with a zero, or a nonzero, B applied to Sg (for the sake of
presentation clarity, in the remainder of this section, we only
discuss the symmetric, B = 0 case. Later on in the paper, we
consider the more general, nonsymmetric situation).

To recover the scaling behavior of X[x] and to eventually
estimate £x, we follow the strategy of Ref. [42], by making a
combined use of the technique based on the scaling collapse of
¥ [x] and of the technique based on the collapse of the Kondo
length. To compare and combine the two strategies, in the
following, we devote two separate subsections to discuss the
results obtained with the two techniques. As we show below,
to estimate £k it is enough to analyze scaling inside the Kondo
cloud. For this reason, we mostly concentrate on the region
characterized by x/&x < 1 and briefly discuss at the end
of the section the behavior of X[x] outside of the Kondo
cloud. Eventually, we compare the final results with the ones
obtained within the perturbative RG approach of Appendix C.

A. The scaling collapse technique

The scaling collapse technique (SCT) is based on the
expected scaling properties of X[x] in the limit in which
x, Eg < L. In this regime, Eq. (9) reduces to

IE DN o;i]. 10
[x] dZ sd,,[ ™ (10)

At a given £, Eq. (10) shows that X[x] becomes a scaling
function of x/&x. Based on this observation, one readily
concludes that, provided ¢ is large enough, curves for X[x]
drawn at different values of the J’ (which means at different
values of &k), are expected, for x/&x < 1, to collapse onto
each other, provided x is rescaled with the corresponding & .
This is the hearth of SCT. In principle, at fixed A, given
two different values of J', say J| and J;, one may regard
the scaling factor that makes the corresponding curves for
¥[x] collapse onto each other, as a fitting parameter. Once
it is properly estimated via a fitting procedure, it becomes
equal to &x[J{/J, Al/éx[J5/J, A] (note that we henceforth
denote W1th &x[J’/J, A] the Kondo screening length at given
J; L= = » = J'and A). The RG approach of Appendix C pro-
vides us with a direct mean to analytically derive &x[J'/J, A]
up to an overall factor independent of J' and A determined
by the cutoff ¢j. Yet, since any rescaling factor is given by
the ratio between two screening lengths at different values
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TABLE 1. Scaling factors for A =0.3 and —0.3 and for
J'/J =0.6, 0.4, 0.2, and 0.1 evaluated using the scaling collapse
technique.

Scaling factor A =03 A=-03
£x[0.6,A]
f; [g:_A] 0.4554 0.5662
[0.6,A]
T 07.A] 0.0974 0.2006
£x10.6,A]
0T Al 0.0181 0.0676

of J’/J, it is always independent of the overall factor. This
enables us to directly compare the DMRG results for the
scaling factors obtained within SCT with the analytical results
provided by RG approach. As we show below, the collapse
of the Kondo length eventually lets one fix the overall factor
in £g. Specifically, to check both cases of antiferromagnetic
and ferromagnetic correlations in the leads, we apply SCT to
a system with A = 0.3, corresponding to g &~ 0.83754 (see
Appendix B for details), and with A = —0.3 corresponding
to g &~ 1.24065. In both cases, we derive plots of X[x] at
fixed J'/J = 0.1,0.2, 0.4, 0.6 and at various values of £, the
largest of which corresponds to £ = 300. In Fig. 1(a), we plot,
on a semilogarithmic scale on the x axis, X[x] versus x for
£ =300, A =0.3, and for the values of J'/J listed above.
To compare DMRG results with the ones obtained within
perturbative RG method, in drawing the plots we rescale x
by the scaling factors for the corresponding values of J'/J,
determined using the formulas of Appendix C for £ and
summarized in Table I. For comparison, in Fig. 1(b), we draw
the same plots, but without rescaling x. In Figs. 2(a) and 2(b),
we draw plots constructed following similar criteria, but now
for A = —0.3. From the two figures, one clearly sees that,
except for the black dashed curve in Fig. 1(a) (corresponding
to the largest value of &g at J'/J = 0.1—we discuss this point
in the following), the collapse is quite good.

An important observation about our method is that, differ-
ently from what has been done in Ref. [42], we do not fit the
ratios between the Kondo screening lengths from the numer-
ical data. Instead, we compute them within perturbative RG
approach and eventually find that the collapse of the curves
is quite good after rescaling x with the values we computed.
In Fig. 1(a), we see quite a good collapse of the curves onto
each other for any value of J'/J, but J'/J = 0.1. The lack
of collapse in this last case can be traced back to a possible

(@ (b)

1.0
Z[x] N
0.5F .
. N
N \‘;
e 0.0 LT
10 100 0 10 100

X

FIG. 2. (a) Semilogarithmic rescaled curves for X[x] corre-
sponding to ¢ =300, A = —0.3 and, respectively, J'/J =0.1
(dashed black curve), J'/J = 0.2 (full red curve), J'/J = 0.4 (full
black curve), and J'/J = 0.6 (dashed red curve). (b) Same as in (a),
but without rescaling.

value of £k [0.1, 0.3] exceeding the half-length of the chain
(~300). As we will show below, where we will be using a
different technique allowing for directly estimating &g, this
is, in fact, the case that shows the full consistency of our
results with the expected Kondo scaling behavior. At variance,
in Fig. 1(b), we see a pretty good collapse of all the curves,
implying that, in this case, all the Kondo screening lengths
are <300, including £k [0.1, —0.3]. In addition, due to the fact
that the bulk spin correlations are now ferromagnetic (A < 0),
the staggered component of the integrated spin correlations
disappears, all the curves look quite smooth, as a function of
x, and the corresponding collapse is even more evident than
that of Fig. 1. To ultimately fix the overall factor in &g, we
now discuss the Kondo length collapse technique.

B. The Kondo length collapse technique

The Kondo length collapse technique (KLCT) is grounded
on the “physical” meaning of the Kondo cloud as the cloud
of spins fully screening S into the Kondo singlet [59]. In
the presence of a perfect screening, one would expect ¢ to
emerge as the first zero of X[x] one meets when moving from
the impurity location into the leads. In practice, as we discuss
above, the actual zero of X[x] is set at x = £ by the overall
boundary conditions. Therefore, to extract £k, one first of all
sets a conventional “reduction factor” r(< 1) by defining a
putative Kondo screening length EI(;) as the value of x at which
¥[x] is reduced by r with respect to its value at x = 0, that is,
Y[x = é,fr)] = r. Choosing a specific value for r is equivalent
to fix £y. Yet, variations around a reasonable choice of r (such
that basically all, or almost all, of the Kondo cloud resides
over distances < 51(;) from the impurity location) just affect

the estimated value of S,((r) by a factor of order 1 [42]. Thus,
in the following, we choose to follow Ref. [42], by choosing
r = 0.1 and accordingly using S,((O'l) evaluated at given A and
J'/J as an estimate of &x[J'/J, A]. This eventually allows
us to uniquely set £y and to provide the actual values of &k
for various choices of the system parameters. In practice,
at a given ¢, fixing A and J'/J, one uses DMRG results
to extract an £-dependent scale S,((O'l)[J '/J, A, £] by means
of the condition X[x = E,((O‘I)[J//J, A, £]] = 0.1. For large
enough values of £, S,((O'I)[J’/J, A, £] is expected to reach
an asymptotic value S;(O'])[J ’/J, A] which is independent of
£ and, according to the above observations, provides the
corresponding estimate of £x. Based on these observations,
in Fig. 3, we plot X[x] versus x on a semilogarithmic scale
(on the x axis), at A = 0.3 and, respectively, J'/J = 0.6
[Fig. 3(a)], J'/J = 0.4 [Fig. 3(b)], J'/J = 0.2 [Fig. 3(c)],
J'/J = 0.1 [Fig. 3(d)]. All the plots display curves corre-
sponding to £ = 50 (dashed black curve), £ = 100 (solid red
curve), £ = 150 (solid black curve), and £ = 300 (dashed red
curve).

According to the discussion above, from Figs. 3(a)
and 3(b), we conclude that both £x[0.6, 0.3] and £, [0.4, 0.3]
are «150. In fact, a numerical estimate provides
£x[0.6,0.3] ~ 10.23 and £x[0.4, 0.3] ~ 23.11. At variance,
the absence of collapse at X[x] = r for J//J = 0.1 and = 0.2
implies that in both cases éx must be comparable with (or
larger than) £ = 150. Knowing the actual value of £x[0.6, 0.3]
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©

Z[x]

FIG. 3. (a) Curves for X[x] at A = 0.3,

J'/J =0.6, and
¢ = 50 (dashed black curve), £ = 100 (solid red curve), £ = 150
(solid black curve), and £ = 300 (dashed red curve). As a guide to
the eye, the horizontal line at y = 0.1 is shown as a dashed blue
segment. (b) Same as in (a), but for J'/J = 0.4. (¢c) Same as in (a),
but for J'/J = 0.2. (d) Same as in (a), but for J'/J = 0.1.

allows us to estimate £x[0.2,0.3] and £x[0.1, 0.3] by just
using the scaling ratios derived in Sec. IIT A within the SCT.
The results are summarized in Table II. Apparently, they
confirm the conclusion that both £¢[0.2, 0.3] and £¢[0.1, 0.3]
are >150. The shorter values of the Kondo screening length
at a given J'/J (compared to the ones at A = (.3) allow us
to directly estimate &g [J’/J, —0.3] for J'/J = 0.6,0.4,0.2.
This time, only £x[0.1, —0.3] had to be found using the
corresponding scaling ratio derived in Sec. III A.

To stress the possibility of estimating some Kondo lengths
by only combining the Kondo length collapse with the scaling
collapse approach, in Table II, we report in black the val-
ues directly estimated using KLCT, in red the ones inferred
combining KLCT with the results of Sec. III A for the scaling
factors.

As a general, concluding comment about KLCT, we note
that, in order for the method to be effective, we need at least
the two curves corresponding to the largest value of £ and
to the next-to-largest one (£) to collapse onto each other.
Since this implies that both of them must not be affected by
finite-size effect, we infer that the necessary condition for
the collapse to happen is that £x < €, which motivates the
absence of collapse in some of the plots in Figs. 3 and 4. Of
course, one could increase £ and directly estimate the value of
&k from the collapse. Yet, for the sake of the presentation,
we prefer to present some plots not showing collapse, in

TABLE II. Values for the Kondo length for A = 0.3 and —0.3
and for J'/J = 0.6, 0.4, 0.2, and 0.1 evaluated using the KLCT or
combining the KLCT with the SCT (numbers displayed in italic).

J'JJ Ex[J'/J,0.3] &xlJ'/J, —0.3]
0.6 10.23 9.61
04 23.11 16.47
0.2 109.14 48.33
0.1 565.19 142.16

(@) 1o (b) 0
Z[x] 2[x]
0.5 0.5
00— e ooL— e
0 10 . 100 0 10 100
@ 1o
2[x]
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FIG. 4. (a) Curves for X[x] at A =-0.3, J'/J =0.6, and
£ = 50 (dashed black curve), £ = 100 (solid red curve), £ = 150
(solid black curve), £ =300 (dashed red curve). As a guide to
the eye, the horizontal line at y = 0.1 is shown as a dashed
blue segment. (b) Same as in (a), but for J'/J = 0.4. (c) Same
as in (a), but for J'/J =0.2. (d) Same as in (a), but for
J'/J =0.1.

order to be able to discuss the main scenario and to show
the remarkable consistency of the exact numerical data with
the analytical results obtained within SLL framework, even
for chains with a limited number of sites. Note that, after
fitting the value of £ from DMRG results, the perturbative RG
equations provide quite good estimates for &x[J'/J, A] and
can be effectively used for such a purpose as, for instance, is
was done in Ref. [30]. To conclude the discussion of the fully
symmetric system, we now briefly comment on the behavior
of X[x] outside of the Kondo cloud.

C. Kondo screening cloud in the XXZ spin chain

The way we apply SCT and KLCT to obtain &x from
DMRG data relies upon the validity of Eq. (9) inside the
Kondo cloud. Yet, based on very general grounds, a scaling
form for X[x] such as the one in Eq. (9) is expected to
apply outside of the Kondo cloud, as well, provided x, §x < ¢
[41,47,59] though, clearly, the perturbative RG estimate of the
right-hand side of Eqgs. (9) and (8), does no more apply. To per-
tinently replace Eq. (8), we need the analog, for our spin-chain
model, of the conformal field theory based nonperturbative
approach to Kondo screening cloud developed by Affleck and
Ludwig [7,63]. To do so, we have to work out the analog, in
our case, of Nozieres Fermi liquid theory [4,5]. In fact, in the
spin chain framework, the analog of Nozieres Fermi liquid is
the “healing” of the chain, that is, the saturation of the running
couplings to values that are of the order of all the other bulk
couplings [30]. In addition, the Kondo cloud emerges around
S¢ of size ~ 2£k. This can be roughly regarded as an extended
region R embedded within the chain, which is coupled at its
endpoints to the spins in the remaining part of the chain by
means of the boundary Hamiltonian Hgc, given by

Hsc = J{Sg;(,LSg_KH,L + SE_K,LSQ;(-&-LL + AS§K,LS§K+1,L}
+J{SF kSe i1kt S kSe i1k +ASE RSE 1R}
(1n
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Regarding the Kondo cloud as a spin-singlet spin cluster
of size ~2&g coupled to two spin chains at its endpoints
allows to employ a pertinent generalization of the derivation
in Appendix A 2 to recover the behavior of X[x] for x > &k.
First, we note that, due to the boundary condition X[£] = 0,
we may equivalently set

S {SGSfX <sa><szx>}, -

e L {(86)°) = (s8)°

Therefore we see that, due to strong singlet correlations
within the Kondo cloud, one may legitimately approximate
the whole chain ground state as |V)y = |KC) ® |0); ® |0)g,
with |[KC) being the “Kondo cloud spin singlet ground state”
and |0), and |0) g, respectively, being the ground states of the
portion of the ; and of the p spin chain ranging from &x + 1
to £. Therefore, due to the singlet nature of |[KC), one ob-
tains (\IJ0|SéS§,L(R)|lIJO) = 0 whenever j > &g. Accordingly,
to estimate the leading nonzero contribution to the correlation
function, one has to correct the system’s ground state from
|[Wy) to a state |W;) taking into account the effects of Hgc in
Eq. (11). To leading order, one obtains

(X|Se,L1V)
(W) ~ [Who—TASE 41, Y 1X)— 522 0
X
(XS, r1W)0
+IASE D |X)%} ®10). ® [0),
X

13)

with the sum at the right-hand side of Eq. (13) taken over
low-lying excited states of the Kondo cloud spin singlet,
{|X)}, with corresponding excitation energy § Ex (measured
with respect to the ground state). As a result, to leading order
in H’, one obtains for j > &g

< )= (W[ SG [ W) (1[5 1 ry [ 91)
(i |(SE)7[wr) = ({wi] g |w))’

W, s2 X)(X| S5 |,
N_JAE: <0|&A§Lj |G|@ LR
X
(OIS +1.Lr) S L) O L) (14)

To compute the correlation functions r(r)(01S;, 11 1)
S5 L(r)|0) L(r), We use the result for the homogeneous open
XXZ chain, Eq. (B10), by substituting £ with £ = ¢ — &x and
x with j = j — &. As a result, we therefore conclude that
these correlation functions are independent of £x up to terms
& (Ex /) < 1. Moreover, at a given | X), the matrix element
(X |Sj.|\110) is poorly dependent on j, as long as the spin S;
lies within the Kondo cloud. Since one expects § Ex ~ E,;l,
we eventually combine Egs. (12)—(14) to conclude that, for
x > £k, one obtains

BRI wd(%f) +o. (15)
dy

with the sum taken over a pertinent set of scaling exponents
and the ellipses standing for additional contributions o &k /¢,

0.12 L 01
S, xRN
0.06} 0.06}

0.00 B 0.00 ‘

10 X 100 10 x 100

FIG. 5. (a) Rescaled curves (see main text) for [x] at
A =03, J'/J =0.6, and ¢ = 300 (dashed red curve), J'/J = 0.4
(solid black curve), and J'/J = 0.2 (solid red curve). There is
an apparent collapse of the first two curves onto each other for
x > £¢[0.4,0.3] and of all three curves onto each other for x >
£x[0.2, 0.3]. (b) Same as in (a), but for A = —0.3.

which we neglect, due to the assumed condition £ /¢ < 1.
For instance, from Eq. (B10), we infer that, for £ < x < £,
one obtains

X g ¢ 1 2ag
d oo (5 ~ — _ a8
hon(f) e X 5]
b

j=x+1 | 1 —cos ( 7

N .
%sin (n_;) cot (n_]>:| . (16)
T £ 20

As a result, we expect that, when synoptically consider-
ing plots of X[x] derived at different values of J'/J (that
is, of &k), with x lying outside of the Kondo cloud, the
curves collapse onto each other, provided X[x] is rescaled to
)A:[x] = E;l ¥[x], which incidentally appears to be consistent
with Affleck-Ludwig result for the real-space correlations at
x lying outside of the Kondo cloud [7,63].

To check this result, in Fig. 5, we plot curves for fl[x]
for A=0.3 and J'/J =0.2,0.4,0.6 [Fig. 5(a)], and for
A =—0.3 and the same values of J'/J [Fig. 5(b)]. In
drawing the plots, we rescaled the various curves with the
ratios between the corresponding Kondo screening lengths,
as derived in Sec. IITA. In the two plots, the dashed red
curve and the solid black curve, respectively, correspond to
J'/J = 0.6 and 0.4. We see that, both for A = 0.3 and —0.3,
the two curves collapse onto each other for x > £x[0.4, A].
Moreover, in both plots, we note that the solid red curve
(corresponding to J'/J = 0.2) collapses onto the other two
ones for x > £x[0.2, A]. This remarkable result is consistent
with the discussion provided above and constitutes another
direct evidence for the emergence of the Kondo cloud over
a length scale ~ &g.

We now move to discuss models in which either the
L-R symmetry in the Kondo couplings, or the spin-parity
symmetry (or both) are broken and see how the lack of those
symmetry affects the main picture for the Kondo cloud we
derived so far.

4
x ) [(—w’

Jj=x+1

IV. NONSYMMETRIC KONDO INTERACTION
HAMILTONIAN

In this section, we discuss how Kondo effect is affected by
either a breaking of the symmetry between the couplings of
S¢ to the two leads, or by the onset of a nonzero B (or both),
starting with the asymmetry in the couplings to the leads.
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A. Magnetic impurity with asymmetric Kondo couplings

To discuss the effects of asymmetries in the Kondo cou-
plings, here we assume that, in H in Eq. (1), we have J, < Jr '
and J;,L(R) = AJi(R), which eventually implies J, L < JZ R>
as well. According to the discussion of Sec. IIIB we again
expect a Kondo cloud to emerge, with £ = &k g, thatis, £k is
set by the stronger coupling of S, while the weaker coupling
leads to the residual Hamiltonian Hyw in Eq. (4). As stated
in Sec. III B, Hw does not lead to an additional dynamical
length scale. In fact, it merely affects the value of &x by
continuously renormalizing it from what one would have for
just a magnetic impurity Kondo-coupled at the endpoint of
a single XXZ chain [23], to the value one obtains in the
case of symmetric couplings. Note that the dependence of
&k on the (stronger) Kondo coupling strength can be readily
inferred from Eqgs. (C3), which, just as in the symmetric
case, fixes the screening length, up to an overall factor. The
latter carries information on how the screening is distributed
throughout the two channels and, in general, it can hardly be
recovered within SLL-based perturbative RG approach. Thus,
in the following, we directly determine it from numerical
DMRG data. Specifically, to spell this point out, we define
integrated correlation functions at both sides of S, X g[x],
both depending on a parameter y, so that

{SGSh) <Sé><S§.L>}
((s6)7) - (&)™ )

X Z Q2 4 Z
Telxl=1—x+ Z {(SGS/,R2> <SG><S/éR>} %))
= U ((86)) = ()

By definition, from Eq. (17) one has X[x]=X [x]+Xz[x],
which implies the boundary condition X[{] = X,[¢] +
Y z[€] = 0. In addition, to fix x, we explicitly require that
both integrated correlation functions are vanishing at x = £,
that is, X, [¢] = Xg[£] = 0. Doing so, we roughly state that
the Kondo cloud is, in general, non symmetrically distributed
across the leads and is such that the part at the right(left)-hand
side lead screens the impurity by a fraction equal to 1 — x
(x). Apparently, one has 0 < x < I and, varying x, one can
continuously move from the two-channel Kondo regime we
studied in Sec. III, corresponding to x = 1/2, in which the
Kondo cloud is symmetrically distributed over the two leads,
to the perfect one-channel Kondo regime, either correspond-
ing to x =0, or to x = 1, in which the Kondo cloud is fully
distributed over one lead only. x appears to be a smooth
function interpolating between the values 0 (at J; /J, 1} =0)
and 1 (at J; /J, — o), and equal to 1/2 at J; /J, = 1. We
also have y < (>)1/2 according to whether J; < (>)Jy,
which implies that the lead that actually sets £x has to screen
an impurity effectively larger by 1/2 — x (x — 1/2) than what
it would be at the symmetric point. Eventually, this shows
us the rationale of introducing Eqs. (17), that is, that any
asymmetry between the Kondo couplings must imply an in-
crease in £x with respect to the value it takes at the symmetric
point. To check our prediction, in the following we estimate
Ex and &k g for A =03, J, =06, J.; z = AJ ). and
JI/‘/J =0.6, 0.4, 0.2 (note that our choice for JI;/J is
expected, based on the results of the previous sections, to

. 0x] —x+2

j=1

10 X 100

FIG. 6. (a) Curves for X[x] at

A =03,
JL/J = 0.4, and £ =50 (dashed black curve), £ =100 (solid
red curve), £ = 150 (solid black curve), and £ = 300 (dashed red
curve). As a guide to the eye, the horizontal line at y = 0.1 is shown
as a dashed blue segment. (b) Same as in (a), but for J L /J =0.2.

Jo/J = 0.6,

make &g of the order of 10 lattice spacings, which allows
us to make reliable simulations using chain with at most 300
sites at each side of Sg). To estimate &g, we used KLCT at
JL/J = 0.4 and 0.2. In Fig. 6, we show the collapse of the
curves for X[x] derived at £ = 50, 100, 150, and 300. The
estimated values of £ are reported in Table III.

Next, we estimate the parameter x in the three cases
we consider. To do so, we just consider the value of the

function Z[x] =1+ Y7, {%
largest available value from simulations, x = £ = 300. From
the plots of ¥[x] reported in Fig. 7, we extract the values of
x reported in Table III. At a given value of Ji /J, once x is
determined as discussed above, we extract £ g by applying
the KLTC to the function Xg[x] defined in Eq. (17) and
plotted in Fig. 8.

The results, reported in the last column of Table III, have
an excellent consistency with the ones obtained for £k at the
same values of JL /J. This ultimately confirms our prediction
that the £¢ can be determined by assuming that right-hand
lead (the one feeling the stronger coupling to the impurity)
screens an effective impurity larger by 1/2 — x than that
would be at the symmetric point. In addition, we verify that,
as expected, the residual weak-link interaction in Eq. (4)
does not induce any additional length scale associated with
screening [51]. To do so, we resorted to SCT and plotted
the curves for X[x] computed at A = 0.3, J,/Q/J = 0.6, and
at Ji/] = 0.6, 0.4, 0.2 and for £ =300 by rescaling the
x coordinate with the ratio between the corresponding &g
and the £¢ computed at JL /J = 0.6 (result of Table III). We
plot the result in Fig. 9(a) where, for comparison, we also

} at x equal to the

1.0

>[x]

% 10 . 100

FIG.7. Curves for E[x] vs x at A =03, J/J =0.6,
£ =300, J,/J = 0.4 (solid red curve), and J, /J = 0.2 (solid black
curve). The estimated value of x (see text) is y = 0.238 in the former
case, x = 0.055 in the latter case.
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TABLE III. Estimated values of the parameter x (from Fig. 7), éx (from Fig. 6), and & r (from Fig. 8) for J;/J = 0.6 and JL’/J =

0.6, 0.4, and 0.2.

JL/J (at J,;/J = 0.6) Parameter y

&k (from X[x]) £k, r (from Xg[x])

0.6 0.5
0.4 0.238
0.2 0.055

10.23 10.23
14.07 13.87
18.13 17.98

plot the same curves drawn without rescaling x [Fig. 9(b)].
Apparently, the excellent collapse in Fig. 9(a) evidences that
no length scales but £x = £k g are dynamically generated by
Kondo interaction.

To summarize, we may conclude that, for a magnetic
impurity in an XXZ chain, an L-R asymmetry in the Kondo
couplings does not spoil Kondo effect, as evidenced by scaling
properties of the X[x]. However, it takes some important con-
sequences in that it affects the distribution of the net screening
between the leads, ultimately resulting in a renormalization
of £k, which, as a function of the weaker coupling, continu-
ously evolves from the value it takes in the two-channel case
(symmetric coupling), to the value it takes in the one-channel
case (weaker coupling set to 0) [23]. Conversely, on keeping
J fixed and increasing J, k> We expect a continuous shrinking
of &x. Eventually, when J, r = J, the right-hand lead plus Sg
turns into a uniform ¢ + 1-site chain, coupled to the ¢-site
left-hand lead via the weak-link Hamiltonian with parame-
ters J,, JZ .- This suggests a first mean to experimentally
trigger the crossover from Kondo effect to weak-link regime
by continuously increasing JI’-‘, till it becomes equal to J.
At the same time, the expected continuous shrinking of &g
makes it eventually become of the order of the lattice site,
which is appropriate when the onset of the weak-link regime
suppresses the scaling with &g .

B. Nonzero applied magnetic field

We now discuss the effects of a nonzero B at the impurity
site, i.e., the last term in Eq. (1) on the Kondo screening and
on the consequent value of £k . In general, in the context of an
XXZ spin chain, the effect of a finite uniform magnetic field in
the z-direction can be accounted for by pertinently modifying
the SLL approach [64], which proves that a uniform field only
qualitatively affects Kondo effect at the impurity. Also, when
regarding the XXZ chain as an effective description of the
Bose-Hubbard model, a uniform magnetic field arises from
a uniform deviation of half-filling in the chemical potential of

@)
%, [x]

FIG. 8. (a) Curves for Xg[x] at

A =03,
JL//J = 0.4, and ¢ = 50 (dashed black curve), £ = 100 (solid red
curve), £ = 150 (solid black curve), and £ = 300 (dashed red curve).
As a guide to the eye, the horizontal line at y = 0.1 is shown as a
dashed blue segment. (b) Same as in (a), but for JL//J =0.2.

Jp/J = 0.6,

the Bose-Hubbard model which, again, does not qualitatively
affect the system’s behavior, at least as long as one works at
finite particle number in the Bose-Hubbard model (canonical
ensemble), corresponding to fixed z component of the total
spin in the XXZ chain [29,30].

In the context of electronic Kondo effect, a nonzero B
has shown to result in a splitting in the Kondo resonance
(with respect to the electron spin) that sets in at values of B
comparable with Tx. This comes together with a substantial
suppression of the magnetoresistance/magnetoconductance
across the Kondo impurity [57,65]. As for what concerns the
effects of a nonzero B at an impurity in a spin chain, to the
best of our knowledge there is no, so far, systematic study of
how B affects £ and, more in general, the development of
the Kondo cloud. We now investigate this point by means of a
combined use of the perturbative RG approach, based on the
finite- B RG equations in Eqgs. (C3), and on DMRG approach
to estimate £x at given values of the system parameters.

Within perturbative RG approach, we integrate Egs. (C3)
(which are expected to rigorously apply in the small-B limit,
that is, for B/J < 1), and use the integrated curves to define
a “generalized” Kondo length, &x[J'/J, A, B/J], to be the
scale at which the running couplings enter the nonperturbative
regime, at given J', A and B (an important point to stress here
is that, strictly speaking, &x[J'/J, A, B/J] can be regarded
as an actual Kondo length only as long as Kondo effect is
not suppressed by B, that is, for B < Tx. At larger values
of B, Kondo effect gets suppressed by Zeeman energy [57],
no Kondo length is dynamically generated though, still,
Exl[J'/J, A, B/J] keeps its meaning as overall length scale
of the system). On numerically integrating Eqs. (C3) we draw
plots of &x[J'/J, A, B/J] versus B at fixed J'/J and A. In
Fig. 10, we plot éx[J'/J, A, B/J] versus B/J evaluated at
A =0.3and J'/J =0.6, 0.4, 0.3, and 0.2, after rescaling
the values of &£k taking into account the numerical value
of the overall scale in the Kondo length evaluated with the

@ 1,
>[x]

®) 10
X[x]

0.0 0.0
0 0

10 x 100

FIG. 9. (a) Curves for X[x] at A = 0.3, ¢ = 300, J,;/J = 0.6,
and J L /J = 0.6 (red dashed curve), J, ; /J = 0.4 (black solid curve),
and J, /J = 0.2 (black solid curve); here, the x coordinate is rescaled
with the ratio between the corresponding screening length, to induce
curve collapse. (b) Same as in (a), but without rescaling x.
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FIG. 10. &x[J'/J, A, B/J] vs B/J derived from the integral
curves corresponding to Egs. (C3) for A =0.3 and J'/J =0.6
(dashed red curve), J'/J = 0.4 (solid black curve), J'/J = 0.3
(solid red curve), and J'/J = 0.2 (dashed black curve).

KLCT. While the curves should actually be trusted only at
small values of B/J, it is interesting to attempt to draw some
qualitative conclusions by looking at a window of values of
B/J ranging from O to 2, which is what we do in Fig. 10.
The main trend of all the plotted curves is a decrease in &k
at small values of B/J followed by a remarkable collapse of
all the various £ ’s onto a single value, of the order of a few
lattice step, as B/J ~ 1. To account for such a behavior, we
observe that a nonzero B introduces an additional “magnetic”
length scale in the problem, &z = «J/B, with o being a
numerical factor of the order 1, which we estimate later on
from DMRG data. Accordingly, in employing the scaling
approach, one has to properly modify Eq. (9), consistently
with what is done in Ref. [42] for the Anderson impurity in an
otherwise noninteracting electron chain. This eventually leads
to a two-parameter scaling behavior, that is, by denoting with
¥ g[x] the integrated spin correlation function at a nonzero B,
we generalize Eq. (9) as

% slx] = Zedbsdb[if‘ =, ;} (18)

with, again, the sum taken over the scaling dimensions of the
boundary operators entering the SLL representation for the
XXZ spin chain with the local spin-1/2 impurity [note that in
Eq. (18), we used d,, to denote a generic scaling dimension of
a relevant boundary operator; using a different symbol from
Eq. (9) is motivated by the observation that, in principle,
a nonzero B breaks symmetries such as, for instance, spin-
parity, thus potentially allowing the emergence of relevant
boundary operators which were forbidden by symmetry at

= 0]. To keep consistent with the zero-B limit, as “initial
condition” of Eq. (18), we require that

Z dbg |:‘§K gKiI — Z dbédb[%:; Eii| _ Z[X]
d,

dy
(19)

From Eq. (19), we see that at small, but finite, values of
B/J, X[x] is modified by a term o B&g with respect to its
value at B = 0, and so does &k, as well. Moreover, a finite
B polarizes Sg, so to break the S¢ — —S¢g symmetry in the
system Hamiltonian. The net average (‘“‘static”’) polarization
of S¢ corresponds to a reduction in the fluctuation of the

10.5
(

E;}; ¢

7.0
0.00

0.18

B/J

FIG. 11. Solid red curve: &x[J'/J, A, B/J] vs B/J derived for
J'/J =0.6 and A =0.3 from the integral curves corresponding
to Egs. (C3). Black dots: &¢[J'/J, A, B/J] vs B/J derived for
J'/J =0.6 and A =0.3 by applying Kondo length collapse ap-
proach to the DMRG results obtained for B/J = 0.0, 0.04, 0.1, and
0.16.

local impurity spin. Since the finite extension of &g is a
consequence of the dynamical mechanism of Kondo screening
(related to the fluctuations in Sg), the smaller the fluctuations
are, the less spins are needed to dynamically screen the
impurity spin. Therefore one naturally expects that a nonzero
B implies a reduction in £k, as it appears from the plots in
Fig. 10. This can be ultimately inferred from Eq. (19) taken
in the limit &g, &5, x < £, required to suppress finite-size
corrections to scaling, and &g >> £k, corresponding to small
values of B. In this limit, £x works as a reference length scale,
and Eq. (18) simplifies into

Tslx] ~ B plx] = Zﬂdhsdb[g 5] (20)

Equation (20) determines &x[J'/J, A, B/J] from the
KLCT condition,

; Ep
Edh _
dZ 5‘”[ Ex[J)J, AT

where we choose r = 0.1. Increasing B from B to B’ = pB
(p > 1), we therefore obtain

Ep
(b
Z Sdb[ T pEx[J']J, AT

Zedh%. |: EB EK[J//J’A’B/J]}
h VOV NE VYN

dy

xlJ'/J. A, B/J]
ExlJ'/J, Al

]_r, 21

lO%_K[J//Jv Av B//]]i|
psx[J'/J, Al

(22)

which implies a reduction of &x[J'/J, A, B'/J] by a fac-
tor p~! = B/B’. To check this conclusion, we compare the
values of &x[J'/J, A, B/J] obtained from the integrated
Eqgs. (C3) at J'/J = 0.6 and A = 0.3 as a function of B/J
with the estimates we derive by applying the KLCT to the
DMRG results at the same values of J'/J and A and at the
selected values of B/J. Note that, in order to enhance the win-
dow of expected validity of Egs. (C3), we have chosen the
largest possible value of J'/J among the ones we consider in
this work, so to minimize the corresponding value of £x). In
Fig. 11, we plot £¢[0.6, 0.3, B/J] versus B/J derived from
Egs. (C3) for 0 < B/J < 0.18, and we display as black dots
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B/J

FIG. 12. &[J'/J, A, B/J] vs B/J derived for A = 0.3 by ap-
plying KLCT to the DMRG results obtained for J'/J = 0.2 (full red
dots), J'/J = 0.4 (full blue dots), J’/J = 0.3 (full black dots), and
J'/J = 0.6 (empty dots), at B/J = 0.0, 0.6, 1.4, and 2.0.

the values of £x[0.6, 0.3, B/J] estimated within the Kondo
length collapse technique applied to the DMRG results for
B/J =0.0, 0.04, 0.1, and 0.16. We see that the dots lie
quite close to the curve for B/J < 0.1, so, we infer a validity
of the analytical RG Egs. (C3) for values of B less or equal
to ten percent of the high-energy cutoff (~J). Beyond those
values of B/J, we may extrapolate that the DMRG results are
systematically larger than the predictions of the perturbative
RG approach, which is consistent with the fact that the latter
technique systematically underestimates higher-order fluctua-
tions, that are ultimately responsible for the size of the Kondo
cloud [66-68].

The second remarkable feature shown in Fig. 10 is that
increasing B all the £k ’s collapse onto a single value, of the
order of a few lattice steps. To understand this, we note that, as
B/J ~ 1 and, accordingly, £ < &k, Eq. (18) simplifies into

Tplx] & s plx] = lim Zed”sdb[o;y;il (23)
P 1
dp

Equation (23) again displays an universal scaling function,
but now scaling with &g being the reference length scale,
since any reference to the value of J'/J has disappeared.
This eventually accounts for the collapse of all the Kondo
lengths onto a J’'-independent value, at large enough values
of B. To confirm this result with our numerical analysis, we
applied KLCT to DMRG data for X[x] derived at £ = 300 for
J'/J =0.2,03,04,0.6 at B/J =0.0, 0.6, 1.4, and 2.0.
We plot our result in Fig. 12, from which we see that, as soon
as B/J takes off, a remarkable collapse of the scaling lengths
at various values of J’/J sets in (note that this also allows us
to estimate o ~ 3.5). In Fig. 12, we ultimately see an evident
large- B collapse, as predicted by Egs. (C3), though up to an
overall numerical factor.

To conclude this section, a comment is in order about
the possibility of using B as a control parameter to drive
the system along a crossover from a Kondo-like behavior
to a weak-link like behavior. We note that, in the B/J > 1
limit, one of the two impurity levels is pushed very high in
energy, with respect to the other one. This strongly suppresses
processes in which Sg switches between the two eigenstates
of S¢, leaving them only as virtual processes. To take this into
account, one may resort to an effective, low energy description
of the impurity dynamics. Summing over virtual processes

leads to a second-order (in the J’s) weak-link Hamiltonian,
of the form

J1Tx

2|B|
with the ellipses standing for subleading corrections to Hp.
Hp in Eq. (24) corresponds to a weak-link Hamiltonian,
which is expected to behave, under scaling, completely dif-
ferently from a Kondo-like Hamiltonian.

Thus we see that increasing B works as an alternative (to
acting on channel anisotropy) knob to tune the crossover from
Kondo effect to weak-link regime. While it is qualitatively
analogous to increasing the couplings of Sg to one lead
keeping the other fixed, it is definitely different with respect to
possible experimental realizations of either method. Indeed,
tuning B means acting on a single lattice sites. At variance,
acting onto one of the two bond impurities leaving the other
unaltered implies pertinently adjusting a single-bond coupling
strength. Both operations can be in principle implemented in,
e.g., cold-atom realization of the XXZ spin chain and one
can choose either one, according to which one is easier to
operate. More specifically, using the notations of Sec. II, for
B =0 (no added on-site potentials), having o < d one can
fix the added right potential intensity Vg (which fixes JI;),
and vary the left one, V. For V; > Vg one has J L < J}e and
for V;, >> Vg, one has J, < Ji and the one-channel Kondo
physics is retrieved, which is the case studied in Sec. IV A.
When at variance V; < Vg, then J L > J 1}, and for V., =0
then only one link—in the middle of the chain—is altered
and J/L is equal to the bulk value, and the physics of the
weak-link is retrieved. In practice, we expect that the Kondo
length decreases from its value at Ji =0 (for VL > Vg) to
smaller values, arriving to be order of the lattice spacing
for V; « Vg. It would be interesting as a future study to
quantitatively analyze this crossover at B = 0 from the Kondo
to the weak-link regime, which we expect to be similar to the
crossover studied increasing B in the present section.

Hp ~ {SﬁLSI_,R + S[LSfR} +..., 24)

V. CONCLUSIONS

By combining the renormalization group approach with the
numerical density-matrix renormalization group technique,
we have studied in detail the Kondo screening length at a
magnetic impurity in the middle of a spin-1/2 XXZ spin chain.
The combination of the two methods allowed us to exactly
derive the dependence of £k on the various system parameters,
as well as to provide a systematic physical interpretation
of its behavior when, for instance, the magnetic impurity is
separately coupled to two different leads, and/or a nonzero
magnetic field applied to the impurity induces a crossover
from a Kondo impurity to a weak link. To this aim, we have
generalized to spin Kondo effect in the XXZ chain the method
of extracting £x from the scaling properties of the integrated
real-space spin correlation functions, used in Refs. [41,42] for
“conventional” Kondo effect in metals.

Our technique enabled us to provide realistic estimates for
&g from 10 to 100 lattice sites, to systematically discuss how
it varies as a function of the asymmetry in the couplings to
the two channels and, eventually, to map out the shrinking of
the Kondo length that characterizes the crossover from Kondo
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impurity to weak-link physics in the presence of a large value
of the magnetic field B applied to the impurity. As real-space
equal-time spin correlations are measurable, e.g., in ultracold
realizations of the homogeneous XXZ spin chain [30], we
believe that our results suggest a new way to measure the (so
far) rather elusive Kondo screening length. We observe that
in metals the Kondo length is expected to be of the order of
thousands of the lattice spacings, but the overlap of different
Kondo cloud makes it difficult to detect the Kondo length. In
quantum spin chains, we get typical values of ~10-100 lattice
spacings, which is realistic for experimental implementation
of the XXZ chain with ultracold atoms, and at the same
time tunable (unlike what happens in metals) varying the
ratio J'/J. Moreover, we note that our derivation is based
on properties of quantities, such as real-space spin-spin cor-
relation functions, which can be experimentally accessed by
measuring the density-density correlations and their spatial in-
tegrals, as discussed, for instance, in Refs. [69,70]. Therefore
we see that directly accessing in a realistic experiment the
real-space correlation functions at low enough temperatures
and, therefore, probing the Kondo screening length is already
a possibility within the reach of nowadays technology.

In view of the fact that both the XXZ spin chain and its
spin-liquid phase and a 1D system of spinless interacting elec-
trons are described as a spinless Luttinger liquid with suitably
chosen parameters, our approach can be straightforwardly
generalized to Kondo effect in the presence of interacting
electronic leads [71-73].

Finally, we observe that in the paper we considered (one
or) two tunable bond impurities. However, in experimental
implementations of the XXZ model for ultracold atoms in
optical lattices one may think to alter the couplings (i.e., the
tunnelings) by using localized external potentials via laser
beams with width o applied on the quantum gas. The fact that
one cannot perfectly center these additional potentials exactly
between two lattice sites finally results in an asymmetry of
the couplings (see Ref. [30]), such as the one we discuss here.
However, generically the added potentials will have a width
o larger than one or two lattice sites spacing. Therefore one
has to consider an extended region of width o in which the
couplings are altered. Since the Hamiltonian # in Eq. (1) can
also be regarded as an effective description of an extended
spin cluster coupled to two homogeneous XXZ chains (as we
outline in Appendix A), it would be interesting to generalize
our combined approach to study the crossover from Kondo
effect to weak-link regime in the case of a finite central
region of “realistic” shapes, such as Gaussian. Of course, this
requires going through a number of subtleties, both on the
formal/analytical side as well as on the numerical side, on
how to define and extract the Kondo length for these extended
multibond impurities. Yet, this line of work is important
both to understand the persistence of the Kondo effect for
extended defects and to address the applicability of our model
to realistic systems, and we plan to leave this as the subject of
future investigations.
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APPENDIX A: MAPPING OF EXTENDED MANY-SPIN
REGIONS ONTO EFFECTIVE WEAK-LINK AND
SINGLE-IMPURITY HAMILTONIANS

In this appendix, we show, by means of a few paradigmatic
examples, that H in Eq. (1) can be regarded as an effective
description of a generic M-spin extended region R in the
middle of the chain, weakly coupled to the rest of the chain
through its endpoints. To do so, we start with the reference
Hamiltonian H given by

H= ) Hx+Hg+H.,
X=L,R

with H; and Hpg as in Eq. (1), and

(AD)

M—1
Hg =7 Z {STRSiir + 8 rS5R + AS; 28541 2]
=1

M

+BY Sig.

j=1
H' = Ji {SrLS?:R + Sl_,LSIJr,R} + ‘Iz/,LSiLSf.R
+Ip ST RSh R + ST aSr) + T &ST RSy k- (A2)

Note that, in Eq. (A2), for the sake of simplicity, we have set
the spin exchange strengths, as well as the applied magnetic
field B, to be uniform in the Hyp term. Yet, we expect no
particular complications to arise in the more general case of
nonuniform parameters. As B = 0, symmetry of Hyp under
spin-parity, S;  —> —S; », implies that its ground state is
either twofold degenerate, or nondegenerate, according to
whether M is odd, or even. This suggests to make, in the
following, two separate discussions for the odd-M and for the
even-M case, respectively.

1. Mapping for M =3

Besides the trivial case M = 1, M = 3 corresponds to the
prototypical situation in which Hy, is expected to map onto an
effective spin-1/2 Kondo impurity Hamiltonian. To illustrate
how this works, let us start by assuming B = 0. For M = 3,
we therefore obtain

Hr = J{S{zS;» + S5z S5z +h.c)
+JA{S] g+ S5} S5 - (A3)

The “natural” basis for the Hilbert space of Hy is the one
made out of the simultaneous eigenstates of SiR, SS’R, S5 =
which we label as |0}, 02, 03). Making Hy act onto each one
of the eight basis states above, we obtain

JA
HR'T’ T’ T) = T'T’ T’ T)’

Hrlb 44 = TR0 ),

Hrlh, 1, 1) = 11, 4, 1),

Hrlt 4 1) = T00 0+ 141 D) = o1, 4 1),
Hrllo 1 1) =TI, 4 1),
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HR|‘L7 \l’v T) = J_|\L’ T’ ‘l’)v

_ JA
HR"L?T? \l’) =J{|‘L3\L7T)+|T’ \L’ \L>}_T|‘L7Tv ‘l’)5
Hel 4 =T 1) (A4)

As a result, the lowest-energy eigenvalue of Hpy is

€ = —% —V2J% + (J_A/4)2. As expected, for B =0, € is

twofold degenerate, with corresponding eigenstates given by

1 _
I = m{e 08+ 111
~ V231, 4 D)

1 _
) = TJT@){E LA RN DI o e (R

—V2e3 ], 1, DY, (A5)

with
sinh(§) = @

_ - \2
J27 (L)
COSh(é) = T ﬁj .

To complete the mapping onto an effective spin-1/2 Kondo
Hamiltonian, we need to resort to an effective low-energy
formulation of the dynamics of R only involving the states
in Egs. (A5). To do so, we employ the projection opera-
tor over the corresponding subspace of the Hilbert space,
Pr = Zp:ﬂ,u |p)(p|. Within the low-energy subspace of
the Hilbert space, we also define the “collective” spin-1/2
operators for the central region, S¢, as

(A6)

’

1
SE=—IM, Sg=—1W(nl, S§ = EZ plp)pl .
)
(A7)
Now, by direct calculation, one finds
1
IS M) = IS £IM) = _«/ETsh(g)’
(MISTRIL) = (M1S5 R :_—\/icosh(é;)’ (A8)
et
(pISTrlP) = (PS5 11P) = 2cosh(@)

all the other matrix elements being equal to 0. As a result, we
obtain

PrH'Pr = T {[S], + S{x1Sg + [S1, + S; z1S¢)

+J[S7 L+ S5 R]S6 (A9)
with
_ J' 7 _ eEAT
V2cosh(g) " °  2cosh(§)’

Equation (A9) takes the desired form of an effective spin-1/2
impurity Kondo Hamiltonian. Note that, at variance with the
case M = 1, in using the Hamiltonian in Eq. (A9) to perform
the perturbative RG analysis, one has to cut off the dynamics
to energy scale of the order of the energy gap between

(A10)

the states |p) and the next excited eigenstates of Hg. This
implies a “cutoff renormalization”, from Dy ~ J to Dy ~ J,
potentially leading to an unavoidable renormalization to lower
values of the Kondo temperature and, correspondingly, to
higher values of £g. Clearly, a finite B breaks the twofold
ground-state degeneracy of Hp, resulting into an additional
term BSE to add at the right-hand side of Eq. (A9), with
B « B.

2. Mapping for M =2

The simplest even-M central region is realized as a single
weak-link, corresponding to M = 0, in which case one ob-
tains

Hr = J'{S{, S p+ S .87 x}b + 1.8 ST . (A11)

Besides M = 0, the first nontrivial case corresponds to
M = 2, that we discuss in the following. Again, for the sake
of simplicity, we start our analysis by assuming B = 0. In this
case, the ground state of R is nondegenerate. To construct it,
we start by recovering the action of Hy on the set of the simul-
taneous eigenstates of S{  and S5 , |01, 02). Specifically, we
obtain

JA JA
Hg| T,T)=TIT,T), HR| ¢,¢>=TI¢,¢),
1
H y— ) :l: k]
Rﬁ“T DEHLN
—{if jA} SRR (A12)
= 4 ﬁ £ 9 M
From Egs. (A12), we find that the ground state of Hg, |0),
is the nondegenerate singlet |0) = «/Li{l M)y =14, 1)} Let
Po be the projector onto |0). We obtain
PoH' Py =0, (A13)

which implies that the first nontrivial contribution to the
effective weak-link Hamiltonian arises to second-order in
J'. This is recovered within a systematic Schrieffer-Wolff
(SW) procedure, eventually yielding the effective weak link
Hamiltonian HES [74] given by

Eff 'y _ -

WL — m{s Sl,R+Sl,LS1,R}
(JA)2
27 SiSix- (Al4)

Equation (A14) ultimately shows that an M = 2 central
region (and, more generally, an even-M central region with
B = 0), can be regarded as a simple weak link, at least as long
as the involved energies are lower than the energy gap between
10) and the first excited eigenstate(s) of Hg. As |0) is a spin
singlet, a non vanishing B does not alter this picture, at least as
long as B « J. Remarkably, as a finite B breaks the ground-
state twofold degeneracy for M odd, it can make the junction
with M = 3 effectively behave as a weak-link, as well. To
spell this out, let us set M = 3 and assume B > J. Let us set
P_ to be the projector onto the eigenstate of Sg belonging
to the eigenvalue —1/2. To leading order in the boundary
couplings, one may again employ the SW procedure, to resort
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to a P_ projected effective Hamiltonian for the whole chain.
The result is

P_HP_ =

-1
J{ Z Z [S7xSinx + Sj,XS}L+1,x+AS§,XS§+1,X]}

X=L,Rj=1

— ST ST R+ ST STR (A15)
with J, =~ J L J;,e /(2B) and the ellipses corresponding to sub-
leading correction to the most relevant terms in the effective
boundary Hamiltonian. The Hamiltonian in Eq. (A15) again
describes a single weak link, just as Hywy in Eq. (4).

APPENDIX B: SPINLESS LUTTINGER LIQUID
FORMULATION OF THE UNIFORM CHAIN

Here, we review the bosonization approach to the (open
boundary) XXZ spin chain, which was our main theoretical
tool to derive the analytical results we present in our paper.
In doing so, we strictly follow the approach developed in
Refs. [23,24], eventually leading to the SLL-formulation of
the problem [75]. Our reference Hamiltonian for an open-
boundary homogeneous XXZ spin chain over an £-site lattice
is given by

—1

H=1J) {sist

JoJ+1

Y QY
+57S

1 T ASSS;

Sl (B

j=1
Resorting to the continuum, low-energy, long wavelength
SLL description of the chain requires introducing a spinless,
real bosonic field ®(x) and its dual field ®(x). The canon-
ically conjugated momentum of ®(x) is realized, in terms
of ®(x), as [T(x) = %E)x@(x), which implies the equal-time
commutation relation [9,O(x), ®(x')] = 27id(x — x’) [23].
Because throughout our paper we are interested in equal-time,
equilibrium spin correlations only, it is more useful to resort to
the imaginary-time formulation for the theory of the @ field.
Letting ®(x, t) be the field ®(x) at imaginary time t, the
corresponding imaginary time action is given by

L 2 2
g 1/0d I
(B2)

The parameters g and u in Eq. (B2) keep memory, in the
effective continuum description of the spin chain, of the mi-
croscopic parameters in Eq. (B1). Those are referred to as the
Luttinger parameter and the plasmon velocity, respectively,
and are given by

— A2
T - u:vf|:n V1I—A j|’ (B3)

- 2[m — arccos(A) 2 arccos(A)

8

with vy = 2dJ, d being the lattice step (which we explicitly
report here for the sake of clarity, though we set d = 1 any-
where else in our paper). The “dual” formulation of Eq. (B2),
involving the imaginary-time field ®(x, t), is recovered by
simply substituting ® with ® and g with 1/g [31,33,50].
For the sake of completeness, it is worth pointing out that

typically, within bosonization procedure, one recovers an
additional Sine-Gordon, Umklapp interaction term that should
be added to Sg[®] in Eq. (B2). This is better expressed as a
functional of ®, and is given by [50]

B L
Sw@krﬁufzh/ dx cos[2v/20(x, 7)]. (B4)
0 0

The scaling dimension of SS6[@] is hsg = 4g. Therefore it
is always irrelevant for 1/2 < g, while it becomes marginally
irrelevant at the “Heisenberg point,” g = 1/2, which we do
not consider here and, in general, deserves special attention
and care in going along the bosonization procedure [23,25].
To account for the open boundary conditions of the chain,
one imposes Neumann-like boundary conditions on the field
®(x, ) at both boundaries, that is

090, 1) _ 0P, 7) _
ax - 0x -

0, (BS)

which implies the following mode expansions for ®(x, 7) and
O(x, 7) [31,33,35,50,76,77]:

2 ITut ) a(n) TAXT _an
dx,t)=./—-{g9— P+i —=cos e” "L
) n ¢
8 n#0

. X a(n) . rmnx .
@(x,t)—\/ﬁ{e—l—TP—l—ZTsm[T]e z },

n#0
(B6)
with the normal modes satisfying the algebra
lg, P1=1i, [a(),a(n)]=nd,wo. (B7)

Finally, in terms of the continuum bosonic fields, the original
spin operators are realized as [23,49]

S;r {C(—l)jeﬁq)(xj’t) +beﬁ®(x/’,r)+i\/§®(x/’,r)}’

PL}®WJ)

S —
V27 0x

J

+a(—1y sin[ﬁ®<xj>]],
(B8)

with Sf = %[S}‘ + iij], and the parameters a, b, c in Eq. (B8)
depending only on the anisotropy parameter A. a, b, and ¢
have been numerically computed for quite a wide range of
values of the system parameters. Since they are actually not
essential to the analytic RG analysis (which is the only reason
why we have to consider the Luttinger liquid formulation
of the spin chain), we refer the interested reader to the
literature [49,64,78-80]. Using the bosonization formalism,
it is possible to generalize to a finite imaginary time differ-
ence T the spin-spin correlation functions for the chain with
open boundary conditions at its endpoints, this generalizing
the results for the equal-time spin-spin correlation functions,
derived in Ref. [49] and extended in Ref. [64] to the case of
a nonzero uniform magnetic field in the chain. The deriva-
tion of the finite-t correlation functions G4 _(x,x’;7|¢) =
(T:SF()S,(0)) and G, .(x,x";7|€) = (T.S3(1)S%(0)), is
discussed in detail in Ref. [30]. Here, we just quote the main
result, which we have diffusely used in the body of our paper.
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One obtains

G (x, X T]0) = (= 1) () e (x)|

% sinh[¢; ]
T

1 1
%20 T
” — sinh[¢; (x 20| 4 BPlao)lF e

20 ~2728) g 5t s 1
x |— sinh[¢; (x — x/)]‘ — sinh[Z; (x + x)] + be sgn(x — x")|a(x)| % |a(x")| *
T
2 onte x| |2 sinbi, e ] SR ED (B9)
X - sinh[{; (x — x - sinh[{: (x + x ()¢ a0l |
as well as
, g { 1 — cosh[mut/€] cos[m(x — x')/€]
G¥(x,x";t|0) = ——= :
402 | 1 4 cos?[m(x — x)/€] — 2 cos[m (x — x’)/€] cosh[mut/L] + smhz[nur/ﬁ]
+ 1 — cosh[mut/€]cos[m(x + x")/£] }
1 + cos?[m(x + x")/€] — 2 cos[m (x + x")/£] cosh[mut /€] + sinhz[nur/ﬁ]
2 : ’ —2g . ’ 2g
a g1 vy —g ) | SIBALE (x = xD] T sinh[¢ (x — x7)]
o GO @)l )] { sinh[Z, (x + )] sinh[Z, (x + )]
- %(—I)X'Ia(x’)l‘g{coth[ér (x 4+ x")] = coth[¢; (—x — x")] = coth[¢; (x — x")] + coth[¢. (x" — x)]}
- %(—1)" |l (x)| "¢ {coth[¢, (x 4+ x")] — coth[¢; (—x — x')] + coth[¢; (x — x")] — coth[¢, (x" — x)]} ,
(B10)
[
where we defined o«(x)= 3{_5 sin(mx/¢), and also Introducing a scale £y (of the order of the lattice step) as a

L (x) = ;—l[ut + ix]. The correlation functions in Egs. (B9)
and (B10) are the main ingredient we used throughout our
paper to analytically discuss the properties of our system.

APPENDIX C: RENORMALIZATION GROUP FLOW
OF THE RUNNING COUPLING STRENGTHS

We here review the derivation of the RG equations for the
running couplings associated to the effective Kondo Hamil-
tonian Hg. To do so, we employ the framework used in
Ref. [30], eventually generalized to the case of a nonzero B
applied to Sg. To recover the RG equations for the bound-
ary running coupling associated to Hg, we resort to the
imaginary-time SLL formalism of Appendix B. The weak-
coupling assumption for the boundary couplings, J i( »d <1,
J! Lry/J < 1, allows us to separately bosonize the two leads,
which eventually allows us for trading Hg for the Kondo
action Sk given by

Sk =/ dr {[J;e3®L‘°’”+JI;le‘DR(O*”]SG(r)

+[J, e A0 4 e PO g ()

[J;,L 90,(0,7)  J.x a®R(o,r>]Sé(T)

V2n ox 27 ox
—}—BS{‘;(I)} . 1

As we are interested in the behavior of the system as its
size grows, we use £ as the running scale of the RG flow.

reference length, we define the running boundary couplings
GrLr)(£), G Lr)(€) as [30]

1
1/e\' 2 J)
Grry(¥) = 5(7) $,
0

l
JZ,L(R)

1
G, rpy(®) = 377

(C2)
To derive the RG equations for the running couplings,
we employ a boundary version of the technique based on
the operator product expansion (OPE) discussed by Cardy
within the context of deformed conformal field theories [81].
In principle, higher order OPEs can induce contributions
mixing the ; and ; boundary couplings, such as terms
x cos[%(¢L(0) — ¢r(0))]. Such terms correspond to
channel-mixing contributions to the boundary Hamiltonian.
In the context of two-channel electronic Kondo effect, they
would imply that only a single, “hybridized,” electronic
channel couples to the magnetic impurity, thus switching
back to single-channel Kondo effect. Here, since those terms
are bilinear operators of the spin densities at the two sides of
the impurity, they correspond to irrelevant or, more generally,
subleading correction to the boundary Hamiltonian [30].
Accordingly, neglecting them and assuming B/J < 1, we
obtain

dGrr) () _ <

dln (;) a

1
1 - 2—) Grry(€)
8

B¢
+ cosh <ﬁ> GG Lr)(£),

AGorm® _ <ﬁ) (Gra (O (C3)
dl1n (%) J
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As B — 0, Egs. (C3) reduce back to the ones implemented
in Ref. [30] to derive the Kondo screening length in various
regimes. In that case, it is possible to provide a closed-form
solution for the integral curves, from which one can extract
the analytical expression of £x. For the sake of completeness,
we now review the analytical derivation of £x for B = 0.
In this case, one may simplify Eqs. (C3) by introducing
the boundary coupling strengths Xz () = Gr)(£) and
X, 1m)=1- ﬁ + G, 1(r)(£). In terms of the novel run-
ning coupling strengths, Egs. (C3) take the form

dXx(©) _

dln—(%) - XX(E)Xz,X(e)v

dXz,X(Z) 2

==X 4
dln(é) x(0), (C4)

with X = L, R. To integrate Eqgs. (C4), we note that there is
an RG-invariant ky, given

kx = (X, x(0)* — (Xx(€))*. (C5)

From the integral curves of Eqgs. (C4), one estimates £k as
the length scale at which the boundary couplings enter the
nonperturbative regime. As Eqgs. (C4) are separated in the L-R
indices, in the following we drop the corresponding labels in
the running couplings. &k is estimated as the scale at which
the running couplings diverge and, clearly, its functional form
explicitly depends on the sign of « [30]. Specifically, one
obtains the following.

(1) k = 0. In this case, X(¢) = X, (£), with the explicit solu-
tion given by

B X.(£o)
KO = T X ) m@i) (o

From Eq. (C6), one obtains
e foexp [szo)} ’ P

which is the familiar result one recovers for the ‘“standard”
Kondo effect in metals [59].

(2) k < 0. In this case, the explicit solution of Egs. (C4) is
given by

X.(€) = v/—« tan {atan[XZ(EO)} + =« In (;)} ,
0

A/ —K
X() = /—Kk + X2(£), (C8)
which yields
7 —2atan(X;(£o)/~/Ik])
§x ~ Loexp [ /il } . (C9)

(3) k > 0. In this case,
X.(0)
_ f{ [X.(£) — /K (£/€VF + [X.(b) + Vi1 }
= —JK ,

[X. (L) — /&1 (£/€0)™V* — [X,(£o) + /K]

X)) =,/—k + X%(E) . (C10)
As a result, we obtain
X.(6o) + v/ |
EK Eo{m} . (Cll)

Remarkably, it is also possible to recast Egs. (C6), (C8),
and (C10) into a scaling form, in which ¢ is traded for an
explicit dependence on £k of the running couplings which,
accordingly, become a function of the dimensionless running
parameter £ /&g . In particular, for £ < &g, one obtains

1
\/—_Ktan{%—i-\/—_lcln <€i
K:@K/z)@+ 1}
(Ex /0™ — 1

In general, no closed-form solutions can be recovered for
B #0, which therefore implies numerically solving
Egs. (C3), as we did to discuss the finite-B case.

(k =0),

X,(0)= >} (k <0), (Cl12)

K

(k >0).
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