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Finite-entanglement properties in the matrix product states of the one-dimensional Hubbard model
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We study the effects of limited entanglement in the one-dimensional Hubbard model by representing the
ground states in the form of matrix product states. Finite-entanglement scaling behavior over a wide range is
observed at half-filling. The critical exponents characterizing the length scale in terms of the size of the matrices
used are obtained, confirming the theoretical prediction that the values of the exponents are solely determined
by the central charge. The entanglement spectrum shows that a global double degeneracy occurs in the ground
states with a charge gap. We also find that the Mott transition, tuned by changing the chemical potential, always
occurs through a first-order transition, and the metallic phase has a few conducting states, including the states
with a mean-field nature close to the critical point, as expected in variational matrix product states with a finite
amount of entanglement.
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I. INTRODUCTION

Entanglement is a type of quantum correlation character-
izing the inseparability between parts of quantum systems.
Because of this feature, entanglement is closely related to
the ground-state properties of strongly correlated systems
[1–4], which often undergo changes through quantum phase
transitions. It was realized that the changes can be captured
by the amount of entanglement in the wave functions of the
ground states [5,6]. This idea develops into the scaling of
entanglement entropy (EE) in critical systems with a relevant
length scale [7–10], such as block size or correlation length.
In systems with limited entanglement, finite-entanglement
scaling behavior [11] can be obtained by representing the
amount of entanglement in terms of a characteristic length
scale. Finite-entanglement scaling behavior in quantum phase
transitions was found in various one-dimensional systems
[11–15]. Recently, it was discussed that more information
about the entanglement of a quantum state can be obtained
from the entanglement spectrum (ES) distribution [16–20],
from which the finite-entanglement scaling theory can be
derived.

The limitation in the amount of entanglement also affects
the nature of the transition near quantum criticality. The finite
size of the critical systems smoothes out the singularity by
confining the correlation length, which leads the size to be
treated as a scaling variable that behaves with a correct crit-
ical exponent asymptotically. Less studied is the interesting
question of whether a finite amount of entanglement, which
is often characterized by a finite length scale, brings about
an effect similar to the finite-size effect of the system in the
vicinity of criticality. Obviously, in the limit of diminish-
ing entanglement, mean-field-like behavior will govern the
transition [21]. It is a nontrivial question how the behavior
of this transition changes, which is often characterized by
its corresponding exponents, as the amount of entanglement
increases.

In this work, we study the finite-entanglement properties
of the Mott phase and their effects on the metal-insulator

quantum phase transition in the one-dimensional Hubbard
model [22] by representing the ground-state wave function
in the form of matrix product states (MPSs) [23–29]. The
MPS approach provides a useful platform for investigating
how a limited amount of entropy, characterized by the matrix
size χ , exhibits scaling behavior and affects the nature of the
transition. Based on the assumption that a finite amount of
entanglement induces a length scale [11,12], ξχ ∼ χκ , where
κ is an exponent whose value is solely determined by the
central charge c, we investigate the scaling behavior over this
length scale in the critical region. In addition, with a finite
χ we find that the transition from the metal to the insulator
occurs via a first-order transition. We also find multiple vari-
ational MPS solutions in some regions of the metallic phase,
including mean-field-like solutions near the critical point and
first-order transitions between them.

This paper is organized as follows. In Sec. II, we introduce
the MPS method for the one-dimensional Hubbard model,
which yields an accurate estimation of the ground-state energy
in the process of the time-evolving block decimation (TEBD)
[30,31]. In Sec. III, we discuss the finite-entanglement scaling
and the properties of the ES of the Mott phase. The MPS
calculation for various χ is compared with the prediction of
the conformal field theory (CFT). In Sec. IV, we investigate
how the finite entanglement in the MPS changes the nature
of quantum phase transitions. Finally, the conclusions are
summarized in Sec. V.

II. MPS REPRESENTATIONS

The Hubbard model on a one-dimensional infinite chain is
given by the Hamiltonian

H = U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
− μ

∑
iσ

niσ

− t
∑
iσ

(c†i+1σ ciσ + c
†
iσ ciσ ), (1)
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where i is the index for sites, σ =↑,↓ is the spin coordinates,
U is the strength of the on-site interaction, t is the hopping
amplitude, and μ is the chemical potential. niσ represents the
number operator and c

†
iσ (ciσ ) denotes the creation (annihila-

tion) operator at the ith site for spin σ . We take the energy
unit t = 1 and investigate the metal-insulator transition of the
system by tuning μ for various U .

Taking into account its translational invariance, a varia-
tional ground state of the system is constructed in the canoni-
cal form of the MPS wave function [31],

|�0〉 =
∑
{si ,ai }

A[s1]
aLa1

�a1B
[s2]
a1a2

�a2A
[s3]
a2a3

· · · B[sL]
aL−1aL

�aL

× |s1, s2, s3, . . . , sL〉, (2)

where, with L → ∞ for an infinite chain, A’s and B’s are the
MPS matrices of size χ × χ , si are physical indices for the
basis states (|si〉 = |0〉, | ↑〉, | ↓〉, | ↑↓〉) of the ith site, and
ai = 1, . . . , χ are the bond indices. Here, we take two sets
of matrices A’s and B’s, multiplied alternatively for conve-
nience in using the two-site TEBD algorithm in the process
seeking the lowest-energy state. Because of the translational
invariance, A’s and B’s are different up to a gauge choice
(i.e., A[s] = QB[s]Q−1 with a unitary matrix Q). It turns out
that the same column vector �, whose elements �a are the
Schmidt coefficients, appears at each site.

The coefficients �a are real non-negative numbers, ordered
such that �1 � �2 � · · · . We adopt a normalization scheme
�1 = 1. We choose a finite χ by truncating the Hilbert space
because �a decays rapidly as a increases for weak entan-
glement. Larger χ is preferred, in general, for more accurate
calculations dealing with strong entanglement. In the critical
region, the limited size χ induces systematic errors reflecting
the amount of entanglement included in the ground-state wave
function. This leads us to expect scaling behavior as a function
of χ .

To determine A’s, B’s, and � that minimize the energy of
the variational wave function in Eq. (2), we use the imaginary
TEBD method: Starting with an arbitrary initial |�〉, we
expect

lim
τ→∞ e−τH |�〉 → |�0〉, (3)

where |�0〉 is the ground state. Because e−τH is an operator
containing noncommuting terms, the Suzuki-Trotter decom-
position is applied by dividing time into small intervals of size
�τ . Then, we have e−τH = (e−�τH )N (�τ = τ/N ). When
�τ � 1, the Suzuki-Trotter decomposition leads to

e−�τH =
L−1∏

i=1,3,...

e−�τhi,i+1

L∏
i=2,4,...

e−�τhi,i+1 ,

hi,i+1 = 1

2

(
h0

i + h0
i+1

) − t
∑

σ

(c†i+1σ ciσ + c
†
iσ ci+1σ ), (4)

h0
i = U

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
− μ(ni↑ + ni↓),

where we divide the system into two parts containing odd
and even bonds. A smaller �τ increases the accuracy of
the decomposition, but requires a longer time in the TEBD

calculations. We choose as small as �τ = 0.002 in our calcu-
lations. A smaller �τ does not bring a difference to the fifth
decimal place of the energy density calculated.

In a uniform system, because of the translational symmetry,
we expect

e−�τhi,i+1 |�0〉 = e−�τε0 |�0〉, (5)

where ε0 is the ground-state energy per site. To find ε0

numerically in the process of the two-site TEBD, we define
a matrix

�
s1s2
ab =

∑
a1,s

′
1,si

′
2

〈s1s2|e−�τh12 |s ′
1s

′
2〉�aA

[s ′
1]

aa1�a1B
[s ′

2]
a1b

�b, (6)

for example for an odd site, and we rewrite it in the form

�
s1s2
ab =

4χ∑
γ=1

Ũαγ �γ Ṽβγ (7)

by using a singular-value decomposition. Here, Ũ and Ṽ

are 4χ × 4χ unitary matrices with indices α = χs1 + a and
β = χs2 + b (s1, s2 = 0, 1, 2, 3), and � is a column vector
of size 4χ with its elements arranged in decreasing order
�1 � �2 � · · · . The time-evolved (updated) matrices and
coefficients are then obtained via redefining Ã[s1]

aa1
= Ũαa1/�a ,

B̃
[s2]
a1b

= Ṽβa1/�b, and �̃a1 = �a1/�1. Repeating the same
TEBD until A’s, B’s, and the �’s converge to the ground state
where these matrices and column vectors remain unchanged.
Then, we can find in Eq. (5) that ε0 is obtained from the norm
of the updated wave function as [32]

ε0 = − 1

�τ
ln �1. (8)

We will find below that this method gives an accurate estima-
tion of ε0 for a given χ . We also check that ε0 obtained in
this way is consistent with the expectation value of the local
Hamiltonian with respect to |�0〉 up to the fifth digit below
the decimal point.

III. ENTANGLEMENT PROPERTIES AT μ = 0

A. Scaling behavior

The exact wave functions will be realized only in the
limit χ → ∞. A finite χ limits the amount of entanglement
involved and introduces systematic errors. These effects can
be characterized by an effective quantum correlation length,

ξχ ∼ χκ, (9)

with an exponent κ . This length scale roughly defines a range
over which the entanglement between parts has to be counted.
It has been proposed [11], based on the CFT, that the value of
κ is determined only by the central charge c in the form

κ = 6

c(
√

12/c + 1)
. (10)

The Hubbard model at half-filling (μ = 0) is an ideal place
to check this form in a single model: for U = 0, both the
charge and the spin excitations are gapless, leading to c = 2,
while for U > 0 the charge fluctuations are gapped so that
the central charge becomes c = 1. Equation (10) provides
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FIG. 1. The scaling behavior of the energy per site ε0(χ ) at
μ = 0 for various U as the matrix size χ changes. The consistency
between ε∗

0 , determined numerically by extrapolation of the fitting
curves to the limit χ → ∞, and εex

0 , calculated analytically based
on the Bethe ansatz solution, confirms the validity of the scaling
ansatz. We find that the values of κ numerically determined are
well consistent with Eq. (10) both for c = 2 (U = 0) and for
c = 1 (U > 0).

then κ = 0.870 for c = 2 and κ = 1.344 for c = 1. Below
we check these numbers from the scaling behavior of various
quantities.

Because the quantum correlation length of the MPS ground
state represented in Eq. (2) is limited by ξχ , the energy per site
(i.e., free-energy density at zero temperature), ε0(χ ), of the
ground state with a finite χ obeys the hyperscaling relation
ε0(χ ) − ε∗

0 ∼ ξ−(d+z)
χ , where ε∗

0 is the value of the energy per
site in the limit χ → ∞, d = 1 is the spatial dimension, and z

is the dynamical critical exponent. By using Eq. (9), we have

ε0(χ ) − ε∗
0 = Cχ−κ (1+z), (11)

where C is a constant. We investigate this behavior as a
function of χ with ε0 obtained by Eq. (8).

Figure 1 shows ε0(χ ) at μ = 0 for various U . We de-
termine ε∗

0 by extrapolating the fitting curves to the limit
χ → ∞, and we compare these values with the Bethe ansatz
solution [22]

εex
0 = −U

4
− 4

∫ ∞

0

dω

ω

J0(ω)J1(ω)

1 + exp(Uω/2)
. (12)

As presented in Fig. 1, ε∗
0 and εex

0 are well-consistent, confirm-
ing the validity of the scaling ansatz in Eq. (11) as well as the
method to find ε0(χ ), proposed in Eq. (8). We also determine
the exponent κ from the fitting curves by adopting z = 1 for
the case [33] with the particle-hole symmetry at μ = 0. The
results are consistent with Eq. (10) both for c = 2 (U = 0)
and for c = 1 (U > 0) as shown in the figure.

Entanglement entropy has been recognized as the single
most important quantity to capture the entanglement proper-
ties of quantum systems. It has been discussed that the half-
chain EE of a one-dimensional critical system shows scaling
behavior [9], Sh ∼ (c/6) log2 ξ , with a correlation length ξ . In

FIG. 2. The scaling behavior of the half-chain entanglement en-
tropy S0

h (χ ) at μ = 0 as a function of χ . The slope of the logarithmic
dependence on χ determines cκ/6. The resulting values of κ quite
strongly confirm Eq. (10) again both for c = 1 and for c = 2.

terms of the quantum correlation length ξχ , we expect

Sh = cκ

6
log2 χ + s1, (13)

where s1 is a nonuniversal constant. This prediction has been
confirmed in the various one-dimensional models [11–15].
Thus the effects caused by a limited amount of entanglement
counted in the MPS can be more explicitly investigated by
measuring the half-chain EE,

S0
h (χ ) = −

χ∑
a=1

wa log2 wa, (14)

where wa = �2
a/{

∑χ

b=1 �2
b} are the eigenvalues of the re-

duced density matrix of the half-chain. The eigenvalues are
normalized by the condition

∑χ

a=1 wa = 1 and usually or-
dered as w1 � w2 � · · · so that w1 is the largest eigenvalue.

The results are shown in Fig. 2. The slope of S0
h(χ ) as a

function of log2 χ is determined by fitting data to Eq. (13) and
yields the values for cκ/6. From Eq. (10), we expect cκ/6 =
0.224 for c = 1 (U > 0) and cκ/6 = 0.290 for c = 2 (U =
0). Again the results shown in the figure are well-consistent
with Eq. (10) both for c = 1 (cκ/6 = 0.220–0.226) and for
c = 2 (cκ/6 = 0294) with error ranges as shown in the figure.

B. Entanglement spectrum

Even though the EE clearly shows scaling behavior,
more properties beyond this single number can be revealed
by the ES, which indeed provides the universal properties of
the entanglement entropy, based on the scaling properties of
the moments Rn ≡ Trρn

A. These properties can be written as

Rn = cnL
−(c/12)(n−1/n)
eff , (15)

according to the CFT calculations for ρA of one-dimensional
half-chain systems [9], where cn are nonuniversal constants,
with c1 = 1 by the normalization condition, and Leff is a
relevant length scale.
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FIG. 3. (a) The nth moments of the reduced density matrix for
different U and χ at half-filling. The dotted lines represent Rn =
e−b(n−1/n), where b = − ln w1 with w1 the largest eigenvalue ob-
tained numerically. (b) The scaling behavior of the effective length,
Leff ∼ χκ , gives the critical exponents κ , where Leff is obtained by
fitting Rn to the equation Rn ∼ L

−(c/12)(n−1/n)
eff .

Figure 3(a) represents Rn for c = 2 and 1 in the one-
dimensional Hubbard model. It shows that ln Rn, nearly pro-
portional to n − 1/n for the whole range of n, is very close to
the dotted lines denoting Rn = e−b(n−1/n) with b = − ln w1.
The consistency between the lines and the numerical data
supports the validity of the scaling properties of Rn given
in Eq. (15) and the assumption cn ≈ 1, consistent with other
works [34] in spin systems. Note that, however, different be-
havior of cn has been found [35] in the XXZ model, where cn

decays exponentially with n. In Fig. 3(b), Leff are determined
by fitting data to Eq. (15) for given χ and U . Subsequently, by
using Leff = ξ0χ

κ for a finite χ with a nonuniversal constant
ξ0, we obtain κ = 0.896 and 1.331–1.348, with error ranges
shown in the figure for c = 2 ( U = 0) and c = 1 ( U > 0),
respectively, consistent again with Eq. (10).

One way to quantify the ES is to represent it in terms of the
eigenvalue distribution P (w) = ∑

a δ(w − wa ). It has been
claimed that P (w) for one-dimensional systems in the critical
regime provides an approximate distribution [18] determined
by a single parameter. The distribution can be derived by using
Eq. (15) with the assumption cn = 1, which is good in this
case as discussed above. Since

∑∞
a=1 wa = ∫

dw wP (w) =
1, we treat wP (w) as a normalized density function. Then,
using the Stieltjes transform of wP (w), we have [18]

P (w) = δ(w1 − w) + 2bθ (w1 − w)
I1(ξw )

wξw

(16)

with ξw ≡ 2
√

b ln(w1/w), where Iα are the modified
Bessel functions. This equation, as expected, reproduces∫

dw wnP (w) = e−b(n−1/n) for n � 1.
One of the key elements that describes the properties of the

ES is the mean number of eigenvalues larger than a given w,
defined by

n(w) ≡
∫ w1

w

duP (u). (17)

FIG. 4. The mean number of eigenvalues larger than a given
w, n(w), obtained for different U and χ at half-filling. For c =
2 at U = 0, n(w) shows the behavior n(w) = I0(ξw ) with ξw ≡
2[b ln(w1/w)]1/2, as expected by the CFT calculations, while for c =
1 in the region U > 0, n(w) behaves as n(w) = 2I0(ξw ) − 1, show-
ing that a global double-degeneracy in the ES occurs asymptotically.

Inserting Eq. (16) into Eq. (17), then, we have

n(w) = I0(ξw ). (18)

The prediction for n(w) has been checked numerically in
XXZ spin models [18,34,36,37], confirming that Eq. (18)
works well for the isotropic XX point, but it holds a sizable
deviation for some anisotropic points. Here, we check the
prediction in our model for both c = 1 and 2. Figure 4 shows
n(w) obtained by counting the number of eigenvalues wi in
the MPS with finite matrices of size χ . The parameter b

is chosen from the largest eigenvalue in the ES numerically
obtained. For U = 0, n(w) satisfies well the expectation in
Eq. (18) in the wide range of ξw. We believe that a weak
deviation in the area of large ξw is caused by the limited
size of χ . For U > 0, however, we have n(w) ∼ 2I0(ξw ) − 1.
This is a manifestation of the global degeneracy in the ES,
discussed recently [19], which leads to a modified formula
n(w) ∼ gI0(ξw ) for the ES with a global degeneracy g.

To check the global degeneracy, we explicitly display
the ES in Fig. 5. We find that for large eigenvalues (i.e.,
small ξw), including the largest eigenvalue (ξw = 0), no de-
generacy appears, which is a hallmark of the Mott phase
with a charge excitation gap. Namely, the resulting ground
state has antiferromagnetic ordering, and the eigenstate with
the largest eigenvalue of the reduced density matrix state
for the half-chain system is not degenerate. Note that at U =
0, the ground state with a finite χ favors the Mott phase
rather than a metallic phase. In this case, furthermore, no
global degeneracy happens other than some accidental degen-
eracies. However, for U > 0, asymptotically a global double
degeneracy appears in the region of weak entanglement (i.e.,
for rather large ξχ ). This tendency becomes more eminent
for larger U . In fact, it is not easy to decide whether the
global double degeneracy appears for U > 0 just by looking
at the distribution of the eigenvalues since single and double
degeneracies are mixed. Therefore, n(w), which shows quite
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FIG. 5. The eigenvalue distribution of the reduced density matri-
ces of the MPS ground states. For c = 2 at U = 0, no global degen-
eracy happens in spite of some accidental degeneracies. However, for
c = 1 in the region U > 0, asymptotically global double degeneracy
appears, more distinctly at larger U . Note that no degeneracy appears
in the strong entanglement region (for small ξw), which is a hallmark
of the Mott phase.

distinct asymptotic behavior, is indeed a very convenient tool
to figure out the global degeneracy. Indeed, the ES with global
double degeneracy in the weak entanglement region for U >

0 can be regarded as a fingerprint of the state antiferromag-
netically ordered, in which low-energy spin excitations are
gapless while high-energy charge excitations are gapped.

From the Rényi entropy Sn ≡ 1
1−n

log2 Rn, we have S0
h ∼

−2 log2 w1 with Rn = e−b(n−1/n). This means that − log2 w1,
the so-called single-copy entanglement [38–40], which can
be distilled from a single specimen of the quantum system,
is half of the half-chain EE, which can be obtained from
many identically prepared systems. Therefore, it is interesting
to check this relation in our MPS of the one-dimensional
Hubbard model. Figure 6 shows this behavior supporting the
relation S0

h = −2 log2 w1 + b1 with a nonuniversal parameter

FIG. 6. The comparison between the half-chain entanglement
entropy S0

h and the single-copy entanglement − log2 w1 supports the
relation S0

h = −2 log2 w1 + b1, with a nonuniversal parameter b1 that
is determined numerically.

FIG. 7. A few of the largest eigenvalues of the reduced density
matrix in the metallic and the Mott-insulating phases. The metallic
phase clearly shows double degeneracy in the whole ES denoted by
two dots in the figure, distinctly different from the nondegenerate
Mott-insulating phase denoted by single dots.

b1, which is determined numerically for a good agreement
between these two quantities.

IV. FIRST-ORDER NATURE OF THE METAL-INSULATOR
TRANSITION FOR μc < 0

We investigate the nature of the transition between the
metallic and the Mott-insulating phases in the MPS with a
finite χ by tuning the chemical potential μ in the region
below half-filling (μ < 0). The two phases can be identified
by the degeneracy in the ES as shown in Fig. 7: the metallic
phase clearly shows doubly degenerate ES for the whole
range of the eigenvalues, while the Mott-insulating phase
shows nondegenerate ES for large eigenvalues. The double
degeneracy in the metallic phase reflects the Z2 symmetry for
the parity of the fermionic particle number. In the insulating
phase, the Schmidt gap [41], defined as w1 − w2, is finite and
is expected to be vanishing only in the limit χ → ∞. This
causes a first-order transition between these two phases for a
finite χ because the ES cannot be smoothly connected across
the transition point.

The transition point is determined by comparing the ener-
gies of the MPS for two phases as plotted in Fig. 8. As a func-
tion of the chemical potential, ε0 + μ is constant in the Mott-
insulating phase. In the metallic phase, we perform the TEBD
process by using the final MPS for a given μ as the initial
trial wave function for the next stage with μ slightly changed.
In this way, we gradually change μ until the value of the
energy deviates from a smooth curve of ε0(μ). The energy
curves for the metallic and the Mott-insulating phases cross
at a first-order transition point when χ is rather small [42].
Furthermore, in some regions of the metallic phase, there are
multiple curves for ε0(μ) crossing each other as shown in
the figure, which is a typical phenomenon in the variational
solutions, such as the MPS solutions, with a finite number of
parameters. This means that there are first-order transitions
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FIG. 8. The energy curves for the metallic and the Mott-
insulating phases with a given χ as a function of the chemical
potential μ. In some metallic regions, there are multiple curves. The
curves cross each other, showing the nature of first-order transitions.

from a metallic phase to a different metallic phase in the MPS
with a finite χ .

Now we investigate the transition from the metal to the
Mott insulator by measuring the particle density, n0, as a
function of μ. Grand canonical calculations in an infinite
system allow us to change n0 continuously as μ changes. In
the Mott-insulating phase, the density keeps constant as n0 =
1. In the metallic phase, n0 changes as a function of μ and be-
comes closer to n0 = 1 as it approaches the insulating phase.
Figure 9(a) shows this behavior of n0 for U = 8. Obviously,
the curves for n0(μ) exhibit different asymptotic behaviors
depending on χ , even though the first-order transitions occur

FIG. 9. (a) The particle density, n0, as a function of μ for the
MPS with a given χ shows different asymptotic behavior depending
on χ as it approaches the insulating phase. The dotted lines represent
the metal-to-insulator transition points. (b) The critical exponents
governing the asymptotic behavior of n0. The values are divided into
two groups showing a mean-field nature (red diamond) approaching
y1 = 1 and a strongly correlated nature (black square) approaching
y1 = 1/2 as χ increases. (c) The transition points extracted from the
curves. (d) Amplitudes in the asymptotic behavior of n0.

FIG. 10. (a) The half-chain EE as a function of the chemical
potential μ in the vicinity of the transition point μex

c = −2.340 for
various χ . The dotted lines mark the first-order transition points for
given χ . (b) An enlarged figure of the curves for χ = 32 provides a
better view for the existence of multiple MPS solutions showing the
strongly correlated as well as the mean-field nature.

at crossing points of the energies. The asymptotic properties
of n0 can be investigated by expressing it in the form

n0 = 1 − c1(μ∗
c − μ)y1 , (19)

where y1 is an exponent characterizing the power-law behav-
ior, μ∗

c is an effective transition point of the curves, and c1 is
an amplitude. The values of these three parameters determined
by fitting for given χ are shown in Figs. 9(b)–9(d). Note that
the exact values [8] based on the Bethe ansatz solutions are
yex

1 = 1/2, μex
c = −2.340, and cex

1 = 0.215.
Figures 9(b)–9(d) show that there are two groups of curves

denoted by squares (black) and diamonds (red), whose y1

approaches 1 (the mean-field value) and 1/2 (the exact value),
respectively, as χ increases. This implies that when the corre-
lation length is larger than ξχ , we always have mean-field so-
lutions (black squares) with effective transition points |μ∗

c | <

|μex
c |, consistent with the expectation that in the limit χ →

0 the mean-field solution has μ∗
c → 0. On the other hand,

the other group of curves (red diamonds), say, the strongly
correlated solutions, has |μ∗

c | > |μex
c |. The parameters y1, μ∗

c ,
and c1 for these curves converge to the exact values as χ

increases.
The half-chain EE in the metallic phase, Sh, also shows

the mean-field nature close to the critical point. Figure 10(a)
represents the half-chain EE for various χ . The asymptotic
behavior of the strongly correlated solutions shows Sh ∼
log2 |μ∗

c − μ|, whereas the mean-field solutions appear de-
viating from the logarithmic behavior close to the critical
point. This can be more explicitly observed in Fig. 10(b) of
the enlarged curves for χ = 32. There are multiple curves
of the strongly correlated solutions, roughly logarithmically
changing, in the metallic regions and first-order transitions
between them. Near the critical point, however, curves ap-
pear deviated from the strongly correlated solutions, which
is smoothly increasing as it approaches the insulating phase.
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Those curves, the mean-field solutions for χ = 32, have larger
energy than those of the strongly correlated solutions at the
transition point. For smaller χ ’s, however, the mean-field
solutions appear in a wider range of μ as the ground states. In
this case, the first-order transitions occur between the mean-
field metallic state and the Mott-insulating state.

V. SUMMARY

We study the effects caused by a limited amount of entan-
glement on the ground states of the one-dimensional Hubbard
model by adopting the MPS representations with finite-size
matrices. The two-site TEBD method is used to optimize this
variational MPS. As a function of the matrix size χ , we find
that the finite-entanglement effects can be characterized by
an effective correlation length ξχ ∼ χκ . The finite-χ scal-
ing behavior of the energy and the half-chain entanglement
entropy at half-filling provides values of κ consistent with
the theoretical prediction based on the CFT for both c =

1 (U > 0) and c = 2 (U = 0). The entanglement spectrum
also shows a distribution consistent with the CFT prediction
for U = 0, while the case for U > 0 shows an occurrence of a
global double degeneracy in the Mott phase. In the MPS with
finite-size matrices, the metal-to-insulator transitions always
occur through a first-order transition. Furthermore, multiple
variational solutions exist in the metallic phase, including
those showing the mean-field nature close to the critical point.
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