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We obtain multiple exact results on the entanglement of the exact excited states of nonintegrable models we
introduced in Phys. Rev. B 98, 235155 (2018). We first discuss a general formalism to analytically compute
the entanglement spectra of exact excited states using matrix product states and matrix product operators and
illustrate the method by reproducing a general result on single-mode excitations. We then apply this technique to
analytically obtain the entanglement spectra of the infinite tower of states of the spin-S AKLT models in the zero
and finite energy density limits. We show that in the zero energy density limit, the entanglement spectra of the
tower of states are multiple shifted copies of the ground-state entanglement spectrum in the thermodynamic limit.
We show that such a resemblance is destroyed at any nonzero energy density. Furthermore, the entanglement
entropy S of the states of the tower that are in the bulk of the spectrum is subthermal S ∝ log L, as opposed to a
volume law S ∝ L, thus indicating a violation of the strong eigenstate thermalization hypothesis (ETH). These
states are examples of what are now called many-body scars. Finally, we analytically study the finite-size effects
and symmetry-protected degeneracies in the entanglement spectra of the excited states, extending the existing
theory.
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I. INTRODUCTION

Nonintegrable translation invariant models have been of
great interest recently. Such models have very few conserved
quantities and show various interesting dynamical phenom-
ena, including thermalization [1] and, upon the introduc-
tion of disorder or quasiperiodicity, many-body localization
[2–4]. Since dynamics depends on the properties of all the
eigenstates, highly excited states of nonintegrable models
have been extensively studied in various models in one and
two dimensions [1,5–14]. Particularly, the eigenstates in the
bulk of the spectrum of several nonintegrable models are
expected to satisfy the eigenstate thermalization hypothesis
(ETH) [1,15,16], with the notable exception of many-body
localized (MBL) systems [5,11,17]. While several analytical
results on the entanglement structure of highly excited states
in generic models have been obtained [18–21], exactly solv-
able examples are desired.

The entanglement structure of low-energy excitations in
integrable and nonintegrable models has been studied analyti-
cally and numerically in detail [22–29], particularly using the
language of matrix product states (MPS) [30,31]. Similar to
the ground states of gapped Hamiltonians [32], low-energy
excited states of gapped Hamiltonians are, in principle, also
captured by this MPS framework [22]. However, even within
single-mode excitations, the lack of explicit examples has
hindered a study of their entanglement in more detail; for

example, the general nature of finite-size corrections to the
entanglement spectra is unknown. Beyond low-energy exci-
tations, the structure of excited states has been studied in
the MBL regime, where all the eigenstates exhibit area-law
entanglement [17], and consequently have an efficient MPS
representation [33–35]. In the thermal regime, however, very
little is analytically known about the kind of excited states that
can exist in the bulk of the spectrum of generic nonintegrable
models [36–41]. For example, can certain highly excited states
of thermal nonintegrable models have an exact or approximate
matrix product structure with a finite or low bond dimension
in the thermodynamic limit?

Recently, a tower of exact excited states were analytically
obtained by us in a family of nonintegrable models, the spin-S
AKLT models [42]. The entanglement of the ground states of
the spin-S AKLT models and their generalizations has been
extensively studied in the literature [43–53]. Being the first
few known examples of exact eigenstates of nonintegrable
models, we propose to use the excited states of these models
to test conjectures on eigenstates that exist in the literature.
We recover the general entanglement spectra of single-mode
excitations, earlier obtained on general grounds [22,23]. We
also derive the entanglement spectrum of an entire tower
of exact states, thus generalizing the single-mode results to
these set of states. The tower of states have an interesting
entanglement structure in that the zero energy density states
entanglement spectra is composed of shifted copies of the
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ground-state entanglement spectrum. This structure general-
izes the earlier result obtained on the entanglement spectra of
SMA excitations. We find that the finite energy density states
in the tower have a subthermal entanglement entropy scaling
in spite of the fact that they appear to be in the bulk of the
spectrum [42]. More precisely, the entanglement entropy S
for these states scales as S ∝ ln L, where L is the subsystem
size. This indicates a violation of the strong ETH [54,55],
which states that all the eigenstates in the bulk of the spectrum
of a nonintegrable model in a given quantum number sector
are thermal, i.e., their entanglement entropy scales with the
volume of the subsystem (S ∝ L).

This paper is organized as follows. We begin by reviewing
the tools we use to compute the entanglement spectrum, i.e.,
matrix product states (MPS) and their properties in Sec. II and
matrix product operators (MPO) in Sec. IV. In these sections,
we provide some examples for the AKLT models. Readers
familiar with these approaches can directly proceed to Sec. V,
where we discuss the structure and properties of states that are
created by the action of an operator (MPO) on the ground state
(MPS). From Sec. VI, we move on to the main results and
derive the entanglement spectra of single-mode excitations,
focusing on the AKLT Arovas states and spin-2S magnons. In
Secs. VII and VIII, we consider states beyond single-mode
excitations. We compute the entanglement spectrum of the
tower of states in spin-S AKLT models, where we work in
the zero energy density and finite energy density regimes
separately. Further, in Sec. IX, we discuss the violation of the
eigenstate thermalization hypothesis and then show numerical
results away from the AKLT point. In Secs. X and XI, we re-
view symmetries and their effects on the entanglement spectra
of the ground states, and discuss symmetry-protected exact
degeneracies and finite-size splittings in the entanglement
spectra of the excited states. We close with conclusions and
outlook in Sec. XII.

II. MATRIX PRODUCT STATES

In this section, we provide a basic introduction to the
matrix product states (MPS) and their properties. We invite
readers not familiar with MPS to read numerous reviews and
lecture notes in the literature [30,31,56,57].

A. Definition and properties

We consider a spin-S chain with L sites. A simple many-
body basis for the system is made of the product states
|m1m2 . . . mL〉, where mi = −S,−S + 1, . . . , S − 1, S is the
projection along the z axis of the spin at site i. Any wave
function of the many-body Hilbert space can be decomposed
as

|ψ〉 =
∑

{m1,m2,...,mL}
cm1m2...mL

|m1m2 . . . mL〉. (1)

In all generality, the coefficients cm1,m2...mL
can always be

written as an MPS [32], i.e.,

cm1,m2...mL
= [

bl
A

T
A

[m1]
1 A

[m2]
2 . . . A

[mL]
L br

A

]
. (2)

The state |ψ〉 then reads

|ψ〉 =
∑

{m1m2...mL}

[
bl

A

T
A

[m1]
1 . . . A

[mL]
L br

A

]|m1 . . . mL〉. (3)

In Eqs. (2) and (3), A
[m1]
1 , . . . , A

[mL−1]
L−1 and A

[mL]
L are χ × χ

matrices over an auxiliary space. χ is the bond dimension
of the MPS and the corresponding indices are the ancilla. bl

A

and br
A are χ -dimensional left and right boundary vectors that

determine the boundary conditions for the wave function. The
{[mi]} are called the physical indices and can take d = 2S + 1
values (d is the physical dimension, i.e., the dimension of the
local physical Hilbert space on site i). In a compact notation,
we can think of the Ai’s as d × χ × χ tensors.

An MPS representation is particularly powerful if the ma-
trices A

[mi ]
i are site-independent, i.e., A[mi ]

i = A[mi ]. Typically,
translation invariant systems admit such a site independent
MPS. Many computations involving an MPS can then be
simplified once we introduce the transfer matrix

E =
∑
m

A[m]∗ ⊗ A[m], (4)

where ∗ denotes complex conjugation and the ⊗ is over the
ancilla. The transfer matrix is thus a χ × χ × χ × χ tensor
that can also be viewed as χ2 × χ2 matrix by grouping
the left and right ancilla of the two MPS copies together.
The simplification provided by the MPS description can be
illustrated by computing the norm 〈ψ |ψ〉 of the state |ψ〉,

〈ψ |ψ〉 = blT

EELbr
E, (5)

where bl
E and br

E are the left and right boundary vectors of the
transfer matrix defined as

bl
E = (

bl
A

∗ ⊗ bl
A

)
, br

E = (
br

A
∗ ⊗ br

A

)
. (6)

An MPS representation is said to be in a left (right) canonical
form if the largest left (right) eigenvalue of the transfer matrix
E is unique, is equal to 1 (this can always be obtained by
rescaling the B’s) and most importantly the corresponding left
(right) eigenvector is the identity χ × χ matrix [57]. Thus, for
a right canonical MPS,∑

γ,ε

Eαβ,γ εδγ,ε = δαβ, (7)

where δ denotes the Kronecker delta function. However, in
general, an MPS cannot be in both a left and right canonical
form simultaneously.

Another useful construction with an MPS is the general-
ized transfer matrix EÔ ,

EÔ =
∑
n,m

A[m]∗ ⊗ OmnA
[n]. (8)

Here, Ô is any single-site operator with matrix elements
〈m|Ô|n〉 = Omn. EÔ is useful when computing the expecta-
tion value of an operator Ô acting on a site i, where

〈ψ |Ôi |ψ〉 = bl
E

T
Ei−1EÔEL−ibr

E. (9)

Similarly, assuming i < j , the two-point function associated
with Ô reads

〈ψ |ÔiÔj |ψ〉 = bl
E

T
Ei−1EÔEj−i−1EÔEL−j br

E. (10)
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Using Eqs. (9) and (10) for large L, the correlation length ξ of
the MPS defined using

〈ÔiÔj 〉 − 〈Ôi〉〈Ôj 〉 ∼ exp

(
−|i − j |

ξ

)
(11)

is given by

ξ = − 1

ln |ε2| , (12)

where ε2 is the second largest eigenvalue of the transfer
matrix [31]. Note that −1/ ln |ε2| is an upper bound for ξ

that is saturated unless Ô has a special structure. Thus, if
the spectrum of the transfer matrix is gapless, the state has
an infinite correlation length. Note that a finite correlation
length for an MPS in a canonical form guarantees that the
wave function is normalized in the thermodynamic limit.

B. Entanglement spectrum and MPS

The MPS representation of any wave function encodes the
entanglement structure of the wave function. For any state |ψ〉
with a number L of spin-S’, a bipartition into two contiguous
regions A and B with an LA number of spins in region A and
an LB number of spins in region B (LA + LB = L) is defined
as

|ψ〉 =
χ∑

α=1

|ψA〉α ⊗ |ψB〉α, (13)

where |ψA〉α and |ψB〉α are many-body states belonging to the
physical Hilbert spaces of subsystems A and B respectively.
Using the MPS representation of |ψ〉 (3), if the region A is
defined as the set of sites {1, 2, . . . , LA} and the region B as
{LA + 1, LA + 2, . . . , L}, the bipartition can be written using

|ψA〉α =
∑

{mi },i∈A

[
bl

A

T
∏
l∈A

A
[ml ]
l

]
α

|{mi}〉,

|ψB〉α =
∑

{mi },i∈B

[∏
l∈B

A
[ml ]
l br

A

]
α

|{mi}〉. (14)

Note that {|ψA〉α} and {|ψB〉α} form complete but not nec-
essarily orthonormal bases on the subsystems A and B, re-
spectively. The reduced density matrix with respect to such a
bipartition is constructed as ρA = TrB|ψ〉〈ψ |. The eigenvalue
spectrum of − ln ρA is the entanglement spectrum and S ≡
−TrA (ρA ln ρA) is the von Neumann entanglement entropy.
An alternate way to obtain ρA that is useful for MPS is through
the definition of Gram matrices L and R,

Lαβ = α〈ψA|ψA〉β, Rαβ = α〈ψB|ψB〉β. (15)

Up to an overall normalization factor, the reduced density
matrix can be expressed in terms of these Gram matrices as
[58]

ρA =
√
LRT

√
L, (16)

where
√
L is well-defined since Gram matrices are positive

semidefinite. The Gram matrices L and R can be expressed in
terms of the MPS transfer matrix E of Eq. (4) as

L = (ET )LAbl
E, R = ELBbr

E. (17)

In Eq. (17), E is viewed as a χ × χ × χ × χ tensor, bl
E and

br
E as χ × χ matrices. Consequently, L and R are χ × χ

matrices. Note that ρA in Eq. (16) has the same spectrum as
the matrix

ρred = LRT . (18)

Since we are only interested in the spectrum of ρA in this
article, we refer to ρred to be the reduced density matrix of
the system even though it is not guaranteed to be Hermitian.
Assuming that the eigenvalue of unit magnitude of the transfer
matrix is nondegenerate (i.e., ln |ε2| �= 0), if LA and LB are
large, (ET )

LA and ELB project onto eL and eR , the left and
right eigenvectors corresponding to the largest eigenvalue of
E. Thus

L = eL

(
eT
Lbl

E

)
, R = eR

(
eT
Rbr

E

)
. (19)

The density matrix thus reads, up to an overall constant [equal
to (eT

Lbl
E )(eT

Rbr
E )],

ρred = eLeT
R. (20)

One should note that the construction of an MPS for a
given state is not unique. Indeed, MPS matrices and boundary
vectors redefined as

Ã[m] = GA[m]G−1, b̃l
A = G−1T

bl
A, b̃r

A = Gbr
A (21)

represent the same wave function. When constructed in a
canonical form, the bipartition Eq. (13) is the same as a
Schmidt decomposition [57] of the state |ψ〉 with respect to
subregions A and B, defined as

|ψ〉 =
χs∑

α=1

λα

∣∣ψs
A
〉
α

∣∣ψs
B
〉
α
, (22)

where {|ψs
A〉

α
} and {|ψs

B〉
α
} are sets of orthonormal vectors on

the subsystems A and B respectively and {λα} are referred
to as the Schmidt values and χs is the number of nonzero
Schmidt values (Schmidt rank). The bond dimension χ of the
MPS constructed in the canonical form is the Schmidt rank χs

of the wave function |ψ〉. Thus we refer to χs as the optimum
bond dimension for an MPS representation of state |ψ〉. The
entanglement entropy then satisfies

S = −
χs∑

α=1

λ2
α ln λ2

α � ln χs. (23)

The entanglement entropy of an MPS about a given cut is thus
upper-bounded by ln χs . Since the Schmidt decomposition
is the optimal bipartition of the system, χ � χs and hence
S � ln χ .

III. MPS AND THE AKLT MODELS

In this section, we provide a few examples of MPS based
on the AKLT models.

A. Ground state of the spin-1 AKLT model

We first focus on the ground state of the spin-1 AKLT
model with open boundary conditions (OBC) [59], one of the
first examples of an MPS [60]. The state with L spin-1’s can
be thought to be composed of two spin-1/2 Schwinger bosons,
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FIG. 1. Ground state of the spin-1 AKLT model with open
boundary conditions. Big and small circles represent physical spin-1
and spin-1/2 Schwinger bosons, respectively. The lines represent
singlets between spin-1/2. The two edge spin-1/2’s are free.

each in a singlet configuration with the spin-1/2 Schwinger
boson of the left and right nearest neighbor spin-1s. Thus there
are dangling spin-1/2’s on each edge of the chain. A cartoon
picture of this state is shown in Fig. 1. For a more detailed
discussion of the model, we refer the reader to Ref. [42].

The two spin-1/2 Schwinger bosons within a spin-1 (see
Fig. 1) form a virtual Hilbert space that corresponds to the
auxillary space of the MPS. The normalized wave function
can be written as a matrix product state with physical dimen-
sion d = 3 (the Hilbert space dimension of the physical spin-
1) and a bond dimension χ = 2 (the Hilbert space dimension
of the spin-1/2 Schwinger boson) [30]. The derivation of the
MPS representation for this state is shown in Appendix A. The
d normalized χ × χ matrices for the AKLT ground state are
[see Eq. (A17)]

A[1] =
√

2

3

(
0 1
0 0

)
,

A[0] = 1√
3

(−1 0
0 1

)
, (24)

A[−1] =
√

2

3

(
0 0

−1 0

)
,

corresponding to Sz = 1, 0,−1 of the physical spin-1, respec-
tively.

Using the matrices of Eq. (24), the AKLT ground-state
transfer matrix can be computed to be

E =

⎛⎜⎜⎝
1
3 0 0 2

3
0 − 1

3 0 0
0 0 − 1

3 0
2
3 0 0 1

3

⎞⎟⎟⎠, (25)

where the left and right indices of the transfer matrix are
grouped together. The eigenvalues of this transfer matrix are
(1,− 1

3 ,− 1
3 ,− 1

3 ). Since the largest eigenvalue is nondegener-
ate, using Eq. (12) the AKLT ground state is a finitely corre-
lated state with correlation length ξ = 1/ ln(3). The boundary
vectors of Eq. (3) for the AKLT ground state correspond to the
free spin-1/2’s on the left and right edges of an open spin-1
chain, shown in Fig. 1. With both edge spins set to Sz = +1/2
the boundary vectors are [see Eq. (A17)]

bl
A =

(
1
0

)
, br

A =
(

0
1

)
. (26)

The Gram matrices L and R for the AKLT ground state are the
left and right eigenvectors of E corresponding to eigenvalue 1,
L = R = 1√

2
12×2. Using Eq. (18), the reduced density matrix

is ρred = 1
212×2 and the entanglement entropy is S = ln 2,

corresponding to a free spin-1/2 dangling spin.

FIG. 2. Spin-2 AKLT model ground state with two singlets be-
tween nearest neighbors. The four edge spin-1/2s are free. Spin-S
AKLT has S singlets.

B. Ground state of the spin-S AKLT model

In a spin-S chain, each of the physical spin-S can be
thought of as composed of 2S spin-1/2 Schwinger bosons,
or equivalently, two spin-(S/2) bosons [42]. The ground state
of the spin-S AKLT model then has S singlets between the
2S Schwinger bosons (S on each site) on neighboring sites,
as shown for S = 2 in Fig. 2. It can also be interpreted
as having a “spin-(S/2) singlet” between the spin-(S/2)’s
of neighboring sites. Here, a spin-(S/2) singlet is the state
formed by two spin-(S/2) with a total spin J = 0, Jz = 0. In
the case of S = 1, this coincides with a usual spin-1/2 singlet.
Consequently, with OBC, there are two free spin-(S/2)’s that
set the boundary conditions of the wave function (see Fig. 2)
[42].

An MPS representation for the spin-S AKLT ground state
can be developed in close analogy to the spin-1 AKLT ground
state (see Appendix A). Here as well, the virtual Hilbert space
of the spin-S/2 bosons corresponds to the auxiliary space.
Thus the MPS physical dimension is d = 2S + 1 (because of
spin-S physical spins) and the bond dimension is χ = S + 1
(because of the spin-S/2 virtual spins). Using Eq. (A17), the
χ × χ MPS matrices of the spin-S AKLT ground states have
the form

A
[m]
αβ = κmαβδα−β,m, (27)

where κmαβ is a constant given in Eqs. (A17) and (A19).
Analogous to Eq. (26), the boundary vectors of the MPS

corresponding to boundary conditions with both the edge
spin-(S/2)’s with Sz = +S/2 are χ -dimensional vectors with
components (

bl
A

)
α

= δα,1,
(
br

A

)
α

= δα,χ . (28)

Indeed, one can verify that the spin-S AKLT ground state of
Eq. (27) is finitely correlated, and the left and right eigen-
vectors corresponding to the largest eigenvalue 1 are both
L = R = 1χ×χ . Thus the reduced density matrix reads

ρred = 1

S + 1
1(S+1)×(S+1) (29)

and the entanglement entropy is S = ln(S + 1).

C. Ferromagnetic states

As discussed in detail in Ref. [42], the ferromagnetic state
is one of the highest excited states of all of the spin-S AKLT
models. Because of the SU(2) symmetry of the AKLT models,
these states appear in multiplets of 2S + 1, of different Sz. In
the highest weight state of the multiplet, all the physical spin-
S have Sz = S [42]. Since this is a product wave function, an
injective MPS has a bond dimension χ = 1 and the matrices
are scalars satisfying

A[m] = δm,S. (30)
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The boundary vectors are just 1 and this trivial MPS leads to
a trivial transfer matrix, which is a scalar 1. Thus ρ = 1 and
S = 0.

IV. MATRIX PRODUCT OPERATORS

In this section, we briefly review matrix product operators
(MPO) and provide some examples relevant to the AKLT
models. A comprehensive discussion of MPOs can be found
in existing literature [30,56,61–63].

A. Definition and properties

Since the exact excited states derived in Ref. [42] are
expressed in terms of operators on the ground state or the
highest excited state, it is crucial to understand how to apply
these operators on an MPS. An MPO representation of an
operator O is defined as

Ô =
∑

{sn},{tn}

[
bl

M

T
M

[s1t1]
1 M

[s2t2]
2 . . . M

[sLtL]
L br

M

]|{sn}〉〈{tn}|.

(31)

In Eq. (31), the operator Ô is written in terms of L χm × χm

matrices with elements expressed as d × d matrices acting on
the physical indices. χm is referred to as the bond dimension of
the MPO and the corresponding vector space is the auxiliary
space. Ô can compactly be represented as a χm × χm × d × d

tensor Mi with two physical indices ({[si], [ti]} and two auxil-
iary indices. bl

M and br
M are the boundary vectors of the MPO

in the operator auxiliary space.
Similar to an MPS, the construction of an MPO for a given

operator is not unique. We now describe a method to construct
an MPO for an operator Ô. The particular MPO construction
we describe here relies on a generalized version of a finite
state automation (FSA) [30,64,65]. An FSA is a system with
a finite set of “states” and a set of rules for transition between
the states at each iteration. In such a setup, each state maps to
a unique state after an iteration. When the states of the FSA
are viewed as basis elements of a vector space, each state is
denoted as a vector and the transition between the states is
described by a square matrix. For example, we consider an
FSA with two states |R〉 and |F 〉, that are denoted as

|R〉 =
(

1
0

)
, |F 〉 =

(
0
1

)
. (32)

If at each iteration, |R〉 and |F 〉 are interchanged, the transi-
tion matrix T is

T =
(

0 1
1 0

)
. (33)

In principle, these transition matrices could vary from an
iteration to the next.

To exemplify the construction of an MPO, we start with a
simple example:

Ô =
L∑

j=1

eikj Ĉj , (34)

where eikj Ĉj can be written in the physical Hilbert space as

eikj Ĉj ≡ eik1 ⊗ · · · ⊗ eik1︸ ︷︷ ︸
j−1 times

⊗ eikĈ ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L−j times

, (35)

such that the index j does not explicitly appear in any of
the operators. Consider an FSA that iterates L times and
constructs the operator Ô by appending a physical operator
(either 1 or Ĉ) at each iteration to a string of operators. If
|Sn〉 is the state of the FSA at the nth iteration, the appended
physical operator is the matrix element 〈Sn|Tn|Sn+1〉 where
Tn is the transition matrix at the nth iteration. For example, an
FSA that constructs eikjCj of Eq. (35) starts in a state |R〉. It
remains in the state |R〉 for j − 1 iterations with a transition
matrix

TR =
(

eik1 0
0 0

)
(36)

appending an 1 at each step. At the j th iteration, the FSA
transitions to |F 〉 (different from |R〉) with a transition matrix
Tj ,

Tj =
(

0 eikĈ

0 0

)
, (37)

thus appending the operator Ĉ on site j and remains in |F 〉 in
the rest of L − j iterations with transition matrix

TF =
(

0 0
0 1

)
. (38)

Ô is then the sum of operators obtained using an FSA for all
j . The sum over operators can be efficiently represented by
generalizing an FSA to allow for superpositions of FSA states
with operators as coefficients. For example, we allow for FSA
states such as eik1|R〉 + eikĈ|F 〉. The transition matrix in
such a generalized FSA is an arbitrary square matrix with op-
erators as matrix elements. Indeed, fixing the initial and final
states of the FSA to be |R〉 and |F 〉, we can construct the op-
erator O with a transition matrix Mj on site j with elements:

Mj =
(

eik1 eikĈ

0 1

)
. (39)

Writing the entire process of the generalized FSA,
〈F |∏L

j=1 Mj |R〉, we obtain exactly the representation of

Ô as an MPO of the form Eq. (31), where the auxiliary space
is the vector space spanned by states of the generalized FSA.
Note that since Mj does not depend on the site index j , we
can omit this index. The left and right boundary vectors bl

M

and br
M are the vector representations of the FSA states |R〉

and |F 〉, respectively [Eq. (32)],

bl
M =

(
1
0

)
, br

M =
(

0
1

)
. (40)

The MPO representations of more general operators can
be computed similarly with the introduction of intermediate
states of the generalized FSA. For example, in the construc-
tion of the MPO for the operator

Ô =
∑

j

eikj (Ŵj X̂j+1), (41)

one introduces an intermediate state |I1〉 of the generalized
FSA, such that the transition matrix elements at any step read
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〈R|T |I1〉 = eikŴ and 〈I1|T |F 〉 = X̂. The MPO for Ô in the
auxiliary dimension thus reads

M =
⎛⎝eik1 eikŴ 0

0 0 X̂

0 0 1

⎞⎠. (42)

The bond dimension of the MPO χm is the number of states
of the generalized FSA generating it. Since the initial state of
the FSA is |R〉 and the final state is |F 〉, the components of
the left and right boundary vectors of an MPO are always(

bl
M

)
α

= δα,1,
(
br

M

)
α

= δα,χm
. (43)

Since the flow of an FSA is unidirectional, the MPO is
always an upper triangular matrix in the auxiliary indices.
For a translation invariant MPO, any element on the MPO
diagonal appears in the operator as multiple direct products
of the same operator. For example, the MPO

MÔ =
(

Ŵ Ĉ

0 X̂

)
(44)

represents an operator Ô defined on a lattice of length L that
reads

Ô =
(

L−1∏
i=1

Ŵi

)
ĈL + Ĉ1

(
L∏

i=2

X̂i

)
+ · · · , (45)

which is not a strict local operator unless Ŵ and X̂ are propor-
tional to 1. Thus, for an operator that is a sum of strictly local
terms, the only diagonal element that can appear in the MPO
is 1, up to an overall constant (such as eik). Moreover, if the
diagonal element in an MPO corresponding to an intermediate
state is 1, the operator Ô includes a nonlocal term, i.e., a long
range coupling between sites. For example, for the MPO

MÔ =
⎛⎝1 Ŵ 0

0 1 X̂

0 0 1

⎞⎠, (46)

the operator Ô reads

Ô =
L−1∑
i=1

L∑
j=i+1

ŴiX̂j . (47)

Thus, for operators that are the sum of nontrivial operators
with a finite support, the only nonvanishing diagonal elements
correspond to the auxiliary states |R〉 and |F 〉.

B. The AKLT model and MPOs

We now introduce the MPOs for some of the operators
required to build exact excited states of the AKLT model.
These will be useful for the study of the entanglement of
these excited states, introduced in Refs. [42,66]. Whereas
the Arovas A and Arovas B states discussed therein were
for exact eigenstates only for periodic boundary conditions,
here we assume open boundary conditions. The motivation for
this assumption is twofold. First, analytic calculations using
MPS and MPOs are greatly simplified with open boundaries.
Second, we are interested in the thermodynamic limit or large
systems where the properties of the system are essentially
independent of boundary conditions.

We start with the spin-1 AKLT model. The Arovas A state
was introduced in Ref. [66]. The closed-form expression for
the state, up to an overall normalization factor, reads

|A〉 =
⎡⎣L−1∑

j=1

(−1)j �Sj · �Sj+1

⎤⎦|G〉, (48)

where |G〉 is the ground state of the spin-1 AKLT model and
we have assumed open boundary conditions. The operator that
appears in the Arovas A state can be written as

ÔA =
∑

j

(−1)j �Sj · �Sj+1

=
∑

j

(−1)j
(

S+
j S−

j+1 + S−
j S+

j+1

2
+ Sz

jS
z
j+1

)
. (49)

By analogy to the MPO of Eq. (42) corresponding to the
operator Eq. (41), the MPO for ÔA (in the case of open
boundary conditions) reads [also see Eq. (B4)]

MA =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 − S+√

2
− S−√

2
−Sz 0

0 0 0 0 S−√
2

0 0 0 0 S+√
2

0 0 0 0 Sz

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠, (50)

where the negative signs appear due to the (−1)j in Eq. (49).
Similarly, the Arovas B state, introduced in Ref. [66] is

another exact excited state of the AKLT model [42]. As
mentioned in Ref. [42], its closed-form expression, up to an
overall normalization factor, can be written as

|B〉 = ÔB |G〉 (51)

with

ÔB =
L−1∑
j=2

(−1)j { �Sj−1 · �Sj , �Sj · �Sj+1}, (52)

where we have assumed open boundary conditions. As shown
in Eq. (B7) in Appendix B, the MPO for ÔB can be compactly
expressed as

MB =

⎛⎜⎜⎝
−1 −S 0 0
0 0 T 0
0 0 0 S
0 0 0 1

⎞⎟⎟⎠, (53)

where

S =
(

S+
√

2

S−
√

2
Sz

)
,

S =
(

S−
√

2

S+
√

2
Sz

)T

, (54)

T =

⎛⎜⎜⎝
{S−,S+}

2 (S−)2 {S−,Sz}√
2

(S+)2 {S+,S−}
2

{S+,Sz}√
2

{Sz,S+}√
2

{Sz,S−}√
2

2SzSz

⎞⎟⎟⎠.

The bond dimension of the MPO MB is thus χm = 8.
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Another set of excited states for spin-S AKLT models
was obtained in Ref. [42], i.e., the spin-2S magnons. The
closed-form expression for the spin-2S magnon state in the
spin-S AKLT models, up to an overall normalization factor,
reads

|SS2〉 =
L∑

j=1

(−1)j (S+
j )2S |SG〉, (55)

where |SG〉 is the ground state of the spin-S AKLT model.
Unlike the two previous states, |SS2〉 is an exact excited state
irrespective of the boundary conditions [42]. The spin-2S

magnon creation operator thus reads

ÔSS2 =
∑

j

(−1)j (S+
j )2S. (56)

Since ÔSS2 is a sum of single-site operators, by analogy to
Eqs. (35) and (39), its MPO has χm = 2 and reads

MSS2 =
(−1 −(S+)2S

0 1

)
. (57)

Following the spin-2S magnon in Eq. (56), a tower of states
from the ground state to a highest excited state was introduced
for spin-S AKLT models in Ref. [42]. The states in the tower
are comprised of multiple spin-2S magnons, and are all exact
excited states for open and periodic boundary conditions. The
closed-form expression for the N th state of the tower of states
for the spin-S AKLT model reads

|SS2N 〉 = (
ÔSS2

)N |SG〉. (58)

When written naively, the MPO for the operator (ÔSS2 )N has
a bond dimension 2N , since it is a direct product of N copies
of the MPO MSS2 on the auxiliary space. However, a more
efficient MPO can be constructed for (ÔSS2 )N .

For example, consider N = 2. (ÔSS2 )2 can be written as
(up to an overall factor)(

ÔSS2

)2 =
∑
i�j

(−1)i+j (S+
i )2S (S+

j )2S. (59)

Since (S+
j )4S = 0, Eq. (59) can be written as(

ÔSS2

)2 =
∑

i

(−1)i (S+
i )2S

∑
i<j

(−1)j (S+
j )2S. (60)

From Eq. (60), it is evident that the MPO MSS4 for (ÔSS2 )2 can
be viewed as two copies of the generalized FSA generating
MSS2 , where the final state of the first generalized FSA is the
initial state for the second generalized FSA. The MPO thus
reads

MSS4 =
⎛⎝−1 −(S+)2S 0

0 1 (S+)2S

0 0 −1

⎞⎠. (61)

The appearance of three ±1 on the diagonal of MSS4 reflects
the nonlocality of the operator (ÔSS2 )2.

The same strategy can be applied to construct the MPO
MSS2N

corresponding to the operator (ÔSS2 )N . For general N ,
the MPO reads

MSS2N
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 −(S+)2S 0 . . . 0

0 1 (S+)2S
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . (−1)N1 (−1)N (S+)2S

0 . . . . . . 0 (−1)N+11

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (62)

The bond dimension of the MPO MSS2N
is thus χm = N + 1.

V. MPO × MPS

The exact states that we are interested in are obtained
by acting local operators on the ground states [42]. In this
section, we study some of the properties of an MPS formed by
acting an MPO (operator) on an MPS with a finite correlation
length (ground state). Similar approaches (e.g., tangent space
methods) have been used to study low-energy excitations of
gapped Hamiltonians [22,24,25,27,67,68].

A. Definition and properties

A state defined by the action of an MPO on an MPS
(we assume both to be site-independent) has a natural MPS
description,

B[m] =
∑

n

M [mn] ⊗ A[n], (63)

where the tensor product ⊗ acts on the ancilla. We refer to B

as an MPO × MPS to distinguish it from the MPS A, which
we assume to have a finite correlation length. B has a bond
dimension of

ϒ = χmχ, (64)

where χm and χ are the bond dimensions of the MPO and
MPS, respectively. Note that ϒ need not be the optimum bond
dimension of B (i.e., Schmidt rank of the state B represents),
though it is typically the case when M and A have optimum
bond dimensions. The transfer matrix of B reads

F =
∑
m

B[m]∗ ⊗ B[m]

=
∑
m,n,l

A[m]∗ ⊗ M [nm]∗ ⊗ M [nl] ⊗ A[l], (65)

where ⊗ acts on the ancilla. F is thus a ϒ × ϒ × ϒ × ϒ

tensor that can also be viewed as ϒ2 × ϒ2 matrix by grouping
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both the left and right ancilla. F can also be written as

F =
∑
m,l

A[m]∗ ⊗ M[ml] ⊗ A[l], (66)

where

M[ml] ≡
∑

n

M [nm]∗ ⊗ M [nl] =
∑

n

M†[mn] ⊗ M [nl], (67)

where † acts on the physical indices on the MPO. From
Eqs. (63) and (65), the boundary vectors of an MPO × MPS
and its transfer matrix are given by

bl
B = bl

M ⊗ bl
A, br

B = br
M ⊗ br

A,

bl
F = (

bl∗
B ⊗ bl

B

)
, br

F = (
br∗

B ⊗ br
B

)
. (68)

Since M is always upper triangular in the auxiliary indices
(as discussed in Sec. IV), M is a χ2

m × χ2
m matrix with a

nested upper triangular structure in the ancilla, with elements
as d × d matrices, where d is the physical Hilbert space
dimension. For example, if we consider the MPO of Eq. (39),
M reads

M =

⎛⎜⎜⎜⎜⎝
1 Ĉ Ĉ† Ĉ†Ĉ

0 e−ik1 0 e−ikĈ†

0 0 eik1 eikĈ

0 0 0 1

⎞⎟⎟⎟⎟⎠. (69)

In Eq. (65), the matrix elements of F can also be viewed as a
χ2

m × χ2
m matrix with matrix elements

Fμν =
∑
m,l

A[m]∗ ⊗ M[ml]
μν A[l]. (70)

Fμν is indeed the generalized transfer matrix [see Eq. (8) in
Sec. II A] of the operator Mμν . Thus F is also a nested upper
triangular matrix with elements χ2 × χ2 generalized transfer
matrices of the elements of M with the original MPS A. For
M of Eq. (69), we obtain

F =

⎛⎜⎜⎜⎝
E EĈ EĈ† EĈ†Ĉ

0 e−ikE 0 e−ikEĈ†

0 0 eikE eikEĈ

0 0 0 E

⎞⎟⎟⎟⎠, (71)

where E is the transfer matrix of the MPS A and EĈ , EĈ† , and
EĈ†Ĉ are the generalized transfer matrices [defined in Eq. (8)]
of operators Ĉ, Ĉ†, and Ĉ†Ĉ, respectively. Furthermore, since
the MPO boundary conditions are always of the form of
Eq. (43), using Eq. (68) the boundary vectors for the transfer
matrix F read

br
F =

⎛⎜⎝ 0
0
0
br

E

⎞⎟⎠, bl
F =

⎛⎜⎜⎝
bl

E

0
0
0

⎞⎟⎟⎠. (72)

As illustrated in the previous section using Eqs. (44)
and (46), nonvanishing diagonal elements of the MPO can
only be of the form eiθ1. Consequently, the diagonal elements

of F are always of the form eiθE, as can be observed in
the example in Eq. (71). The generalized eigenvalues and
structure of the Jordan normal form of block upper triangular
matrices such as F is discussed in Appendix D. As evident
from Eqs. (D3) and (D1), the block upper triangular structure
of F dictates that its generalized eigenvalues are those of eiθE

blocks on the diagonal. The eigenvalue of unit magnitude of
the transfer matrix F is thus not unique in general, and an
MPO × MPS typically does not have exponentially decaying
correlations even if the MPS has.

Moreover, the transfer matrix F need not be diagonaliz-
able. In general, it would have a Jordan normal form con-
sisting of Jordan blocks corresponding to various degener-
ate generalized eigenvalues. The Jordan decomposition of F

reads

F = PJP −1, (73)

where J is the Jordan normal form of F , the columns of P

are the right generalized eigenvectors of F , and the rows of
P −1 are the left generalized eigenvectors of F (same as right
generalized eigenvectors of FT ). J is composed of several
Jordan blocks of various sizes, and has the form

J =
⊕
i∈�

Ji, (74)

where � is a set of indices that label the Jordan blocks, Ji is a
Jordan block of size |Ji | of an eigenvalue λi and

∑
i∈� |Ji | =

ϒ2. That is, up to a shuffling of rows and columns,

Ji =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0 . . . . . . 0

0 λi 1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

...
. . .

. . .
. . . λi 1

0 . . . . . . . . . 0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|Ji |×|Ji |

. (75)

For a diagonalizable matrix, |Ji | = 1 for all i ∈ �.

B. Entanglement spectra of MPO × MPS

In this section, we outline the computation of the entangle-
ment spectrum for an MPO × MPS state, i.e., for an MPS with
a nondiagonalizable transfer matrix. Since the MPO × MPS
is also an MPS, Eqs. (13) to (18) of Sec. II B are valid here as
well. Analogous to Eq. (17), here we obtain

L = (FT )LAbl
F , R = FLBbr

F . (76)

In the following, we will mostly be interested in the limit n ≡
LA = LB → ∞, i.e., the thermodynamic limit with an equal
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bipartition. Since Fn = PJnP −1, J n = ⊕
i∈� J n

i , and

J n
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λn
i

(
n

1

)
λn−1

i

(
n

2

)
λn−2

i . . .
(

n

|Ji |−1

)
λ

n−|Ji |+1
i

0 λn
i

(
n

1

)
λn−1

i

. . .
...

...
. . .

. . .
. . .

(
n

2

)
λn−2

i

...
. . .

. . . λn
i

(
n

1

)
λn−1

i

0 . . . . . . 0 λn
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|Ji |×|Ji |

, (77)

all the Jordan blocks Ji corresponding to |λi | < 1, vanish in
the thermodynamic (n → ∞) limit. We can thus truncate J

to a subspace with generalized eigenvalues of magnitude 1,
by including a projector Q onto that subspace. This subspace
could involve several Jordan blocks, each of possibly different
dimension. We define

Junit = QJQ =
⊕

i∈�unit

Ji. (78)

where �unit is a set defined such that |λi | = 1 for i ∈ �unit,
and the dimension of Junit is |Junit|, where

|Junit| =
∑

i∈�unit

|Ji |. (79)

Since we are interested in the limit n → ∞, instead of F , we
use a truncated transfer matrix Funit defined as

Funit ≡ PJunitP
−1, (80)

such that

Fn
unit = Fn as n → ∞. (81)

Since Q2 = Q, using Eq. (78), the expression for Funit can be
written as

Funit = PQ(QJQ)QP −1 ≡ VRJunitV
T
L , (82)

where we have used Eq. (78) and have defined

VR ≡ PQ, V T
L ≡ QP −1. (83)

Since VR consists of the columns of P (right generalized
eigenvectors of F ) corresponding to the generalized eigenval-
ues in J and V T

L consists of the rows of P −1 (left generalized
eigenvectors of F ), VR and VL have the forms

VR = (r1 r2 . . . r|Junit|),

VL = (l1 l2 . . . l|Junit|), (84)

where {ri} (respectively, {li}) are the ϒ2-dimensional right (re-
spectively, left) generalized eigenvectors of F corresponding
the generalized eigenvalues of magnitude 1.

Using Eqs. (82) and (83), the truncated Gram matrices read

Runit = VR (Junit )
nV T

L br
F ,

Lunit = VL

(
J T

unit

)n
V T

R bl
F . (85)

We split Eq. (85) into two parts. We first define the |Junit|-
dimensional “modified” boundary vectors that are indepen-
dent of n as

βr
F ≡ V T

L br
F , βl

F ≡ V T
R bl

F . (86)

The n-dependent parts of Lunit and Runit are then encoded in
the (ϒ)2 × |Junit| dimensional matrices

WR ≡ VR (Junit )
n, WL ≡ VL

(
J T

unit

)n
. (87)

Since L and R are viewed as ϒ × ϒ matrices in Eq. (18), it
is natural to view the columns of L̃ and R̃ as ϒ × ϒ matrices
in Eq. (87). Consequently, we can directly view the columns
of VL and VR [defined in Eq. (84)] as ϒ × ϒ matrices.

To obtain a direct relation between the generalized eigen-
vectors of F and the projected Gram matrices Lunit and Runit

[defined in Eq. (85)], we need to determine how WL and
WR depend on the generalized eigenvectors. Suppose the
components of WR and WL have the following forms:

WR ≡ (R1 R2 . . . R|Junit|),

WL ≡ (L1 L2 . . . L|Junit|), (88)

where {Ri} and {Li} are ϒ × ϒ matrices. Runit and Lunit are
n-independent superpositions of the matrices {Ri} and {Li}.
Their expressions read

Runit =
|Junit|∑
i=1

Ri

(
βr

F

)
i
, Lunit =

|Junit|∑
i=1

Li

(
βl

F

)
i
. (89)

To relate {Ri} and {Li} to {ri} and {li}, we need to consider
the Jordan block structure of Junit. If Junit consists of a single
Jordan block of generalized eigenvalue λ, dimension |Junit|,
and of the form of Eq. (75); using Eqs. (77) and (87), we
directly obtain

Ri =
i−1∑
j=0

(
n

j

)
ri−jλ

n−j ,

Li =
|Junit|−i∑

j=0

(
n

j

)
li+jλ

n−j , (90)

where {ri} and {li} are viewed as ϒ × ϒ matrices.
For Junit composed of several Jordan blocks, {Ji} [e.g., in

Eq. (78)], Eq. (90) holds for each Jordan block separately. We
first consider a subset of right and left generalized eigenvec-
tors of Funit, {r (Jk )

i } ⊂ {ri} and {l(Jk )
i } ⊂ {li} that are associated

with the Jordan block Jk of dimension |Jk| and generalized
eigenvalue λk , |λk| = 1. Here, we assume that r

(Jk )
1 (respec-

tively, l
(Jk )
1 ) is the right (respectively, left) eigenvector and

r
(Jk )
i (respectively, l

(Jk )
i ) is the (i − 1)-th right (respectively,

left) generalized eigenvector. We then define {R(Jk )
i } ⊂ {Ri}
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and {L(Jk )
i } ⊂ {Li} that are related to {r (Jk )} and {l(Jk )} as

R
(Jk )
i =

i−1∑
j=0

(
n

j

)
r

(Jk )
i−j λ

n−j

k ,

L
(Jk )
i =

|Jk |−i∑
j=0

(
n

j

)
l
(Jk )
i+j λ

n−j

k . (91)

This is the analog of Eq. (90) for a single Jordan block Jk .
Using Eqs. (89) and (91), Runit and Lunit are of the form

Runit =
|Junit|∑
i=1

fR

(
i, n, βr

F

)
ri,

Lunit =
|Junit|∑
i=1

fL

(
i, n, βl

F

)
li , (92)

where {fR (i, n, βr
F )} and {fL(i, n, βl

F )} are scalar coefficients
that depend on n through Eq. (91) and on the boundary
condition dependent vectors βr

F and βl
F , respectively.

Since Lunit and Runit are the same as L and R in the
thermodynamic limit, using Eq. (92), the unnormalized and
usually non-Hermitian matrix ρred of Eq. (18) that has the
same spectrum as the reduced density matrix reads

ρred =
|Junit|∑
i,j=1

fL

(
i, n, βl

F

)
fR

(
j, n, βr

F

)
lir

T
j . (93)

This calculation has been illustrated in Appendix C with an
example from the AKLT model. In the limit of large n, ρred

can be computed using Eq. (93) order by order in n. Such a
calculation will be discussed with concrete examples from the
AKLT models in the next three sections.

VI. SINGLE-MODE EXCITATIONS

As an example, to illustrate the results of the previous
section, we first consider single-mode excitations. A single-
mode excitation is defined as an excited eigenstate created
by a local operator acting on the ground state. It is known
that such wave functions are efficient variational Ansätze for
low-energy excitations of gapped Hamiltonians [22]. Such
excitations, dubbed as a single-mode approximation (SMA)
or the Feynman-Bijl Ansatz, have also been used as trial wave
functions for low-energy excitations in a variety of models
[22,24,66,69–72].

A. Structure of the transfer matrix

The SMA state obtained by a local operator Ô can be
written as

|Ok〉 =
∑

j

eikj Ôj |G〉 ≡ Ok|G〉, (94)

where Ôj denotes the operator Ô in the vicinity of site j of
the spin chain (if not purely onsite), |G〉 is the ground state of
the system and k is the momentum of the SMA state. In the
spin-1 AKLT model, the three low-lying exact states shown
in Eqs. (48), (51), and (55) have the form of Eq. (94) with
k = π , i.e., the SMA generates an exact eigenstate [42,66].

In the language of matrix product states, SMA states can be
represented as an MPO × MPS, where the MPO represents
the operator Ok , and the MPS is the matrix product represen-
tation of the ground state |G〉. As discussed in Sec. IV, the
MPO of a translation invariant local operator Ok defined in
Eq. (94) can be constructed such that it is upper triangular with
only two nonvanishing diagonal elements, eik1 and 1. This
structure can also be observed in the MPOs of the creation
operators of the excited states of the AKLT model, shown in
Eqs. (50), (53), and (57). For the single-mode approximation,
the transfer matrix F of |Ok〉 thus has four nonvanishing
blocks on the diagonal and its generalized eigenvalues are
those of the submatrices on the diagonal (see Appendix D 1).
Since all the SMA states of the AKLT model are at momentum
π , we set k = π in the following. The same analysis holds for
any k �= 0.

We illustrate the entanglement spectrum calculation for
the simplest case, where F has the form of Eq. (71), corre-
sponding to an MPO with bond dimension χm = 2, the one in
Eq. (39) and k = π ,

F =

⎛⎜⎜⎜⎝
E EĈ EĈ† EĈ†Ĉ

0 −E 0 −EĈ†

0 0 −E −EĈ

0 0 0 E

⎞⎟⎟⎟⎠. (95)

The transfer matrix boundary vectors then have the form of
Eq. (72),

bl
F =

⎛⎜⎝bl
E

0
0
0

⎞⎟⎠, br
F =

⎛⎜⎝ 0
0
0
br

E

⎞⎟⎠. (96)

B. Derivation of ρred

The structure of generalized eigenvalues and generalized
eigenvectors of block upper triangular matrices of the form
of F in Eq. (95) is explained in Appendix D, and the Jordan
normal form of the generalized eigenvalues of unit magnitude
is in derived in Appendix F 1. The generalized eigenvalues of
F of Eq. (95) with a unit magnitude are {+1,−1,−1,+1}, the
largest eigenvalues of the submatrices E (the transfer matrices
of the ground-state MPS). The +1 generalized eigenvalues in
F form a Jordan block as long as a certain condition holds
[see Eq. (F9)], which is satisfied for a typical operator Ok .
Since the off-diagonal block between the subspaces of the two
−E blocks is 0 [as seen in Eq. (95)], the two −1 generalized
eigenvalues in F do not form a Jordan block.

Thus, for a typical operator Ok , the Jordan normal form
Junit of the truncated transfer matrix Funit [defined in Eq. (82)]
is the one in Eq. (F11). It can be decomposed into three Jordan
blocks as

Junit = J0 ⊕ J−1 ⊕ J1, (97)

where the blocks read

J0 =
(

1 1
0 1

)
, J−1 = (−1), J1 = (−1). (98)
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Following the convention of Eq. (84), we assume that VR and
VL have the forms

VR = (r1 r2 r3 r4), VL = (l1 l2 l3 l4). (99)

Since the +1 generalized eigenvalues are due to the top and
bottom blocks of F , r1 (respectively, l1) and r4 (respectively,
l4) are the right (respectively, left) generalized eigenvectors
corresponding to J3. Similarly, r2 (respectively, l2) and r3

(respectively, l3) correspond to the right (respectively, left)
generalized eigenvectors of J−1 and J1, respectively. Thus
the generalized eigenvectors associated with the Jordan blocks
can be defined as

r
(J0 )
1 = r1, r

(J0 )
2 = r4, r

(J−1 )
1 = r2, r

(J1 )
1 = r3,

l
(J0 )
1 = l1, l

(J0 )
2 = l4, l

(J−1 )
1 = l2, l

(J1 )
1 = l3. (100)

Equivalently, we could also write the truncated Jordan normal
form of F as

Junit =

⎛⎜⎝1 0 0 1
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎠. (101)

Since the columns of VR and VL are right and left general-
ized eigenvectors of F corresponding to generalized eigenval-
ues of unit magnitude, they read [see Eqs. (F12) and (F13)]

r1 =

⎛⎜⎝c1eR

0
0
0

⎞⎟⎠, r2 =

⎛⎜⎝ ∗
c2eR

0
0

⎞⎟⎠,

r3 =

⎛⎜⎝ ∗
∗

c3eR

0

⎞⎟⎠, r4 =

⎛⎜⎝ ∗
∗
∗

c4eR

⎞⎟⎠ (102)

and

l1 =

⎛⎜⎜⎝
eL

c1∗
∗
∗

⎞⎟⎟⎠, l2 =

⎛⎜⎜⎝
0
eL

c2∗
∗

⎞⎟⎟⎠, l3 =

⎛⎜⎜⎝
0
0
eL

c3∗

⎞⎟⎟⎠, l4 =

⎛⎜⎜⎝
0
0
0
eL

c4

⎞⎟⎟⎠,

(103)

where eR and eL are the χ2-dimensional left and right eigen-
vectors of the E corresponding to the eigenvalue 1 and the cj ’s
are some constants. The constant cj can be set freely if rj and
lj are eigenvectors (not generalized eigenvectors) of F .

However, in the calculation of WR and WL [defined
in Eq. (87)], the generalized eigenvectors {ri} and {li} of
Eqs. (102) and (103) are viewed as ϒ × ϒ matrices. They
read

r1 =
(

c1eR 0
0 0

)
, r2 =

( ∗ 0
c2eR 0

)
,

r3 =
(∗ c3eR

∗ 0

)
, r4 =

(∗ ∗
∗ c4eR

)
(104)

and

l1 =
(

eL/c1 ∗
∗ ∗

)
, l2 =

(
0 ∗

eL/c2 ∗
)

,

l3 =
(

0 eL/c3

0 ∗
)

, l4 =
(

0 0
0 eL/c4

)
, (105)

where eR and eL are the right and left eigenvectors of the
transfer matrix E, now viewed as χ × χ matrices.

Using Eqs. (100) and (91) [or directly Eqs. (101) and (99)],
WR and WL [whose components are defined in Eq. (90)] read

WR = (r1 (−1)nr2 (−1)nr3 nr1 + r4),

WL = (l1 + nl4 (−1)nl2 (−1)nl3 l4). (106)

Using Eq. (89), we know that Runit and Lunit read

Runit = r1β
r
F 1 + (−1)nr2β

r
F 2 + (−1)nr3β

r
F 3

+ (nr1 + r4)βr
F 4,

Lunit = (l1 + nl4)βl
F 1 + (−1)nl2β

l
F 2

+ (−1)nl3β
l
F 3 + l4β

l
F 4, (107)

where {ri} (respectively, {li}) are ϒ × ϒ matrices defined in
Eq. (104) [respectively, Eq. (105)] respectively, and βr

F i
(re-

spectively, βl
F i

) is the ith component of the right (respectively,
left) modified boundary vector.

Since we are mainly interested in the n → ∞ limit, we
obtain ρred order by order in n. Using Eq. (93), to order n2,
the ρred which has the same spectrum as the reduced density
matrix (up to a global normalization factor), is given by the
product of O(n) terms from both Lunit and Runit in Eq. (107):

ρred = n2βl
F 1β

r
F 4l4r

T
1 + O(n). (108)

However, from Eqs. (104) and (105), since l4r
T
1 = 0, ρred is

a zero matrix at order n2. If we define bi,j ≡ βl
F i

βr
F j

, to the
next order n, ρred reads

ρred = n
(
b1,4

(
l1r

T
1 + l4r

T
4

)+ b1,1l4r
T
1 + b44l4r

T
1

+ b2,4(−1)nl2r
T
1 + b3,4(−1)nl3r

T
1 + b1,2(−1)nl4r

T
2

+ b1,3(−1)nl4r
T
3

)+ O(1). (109)

Computing ρred in Eq. (109) using Eqs. (104) and (105), we
obtain

ρred = nb14

(
eLeT

R 0
∗ eLeT

R

)
+ O(1). (110)

Using Eq. (20), we know that eLeT
R is nothing but the reduced

density matrix of the ground state. Since the ρred in Eq. (110)
is block lower triangular, its eigenvalues are those of its
diagonal blocks. Thus the entanglement spectrum, given by
the spectrum of ρred, of an MPO × MPS for a single-mode
excitation is two degenerate copies of the MPS entanglement
spectrum, in the thermodynamic limit (as n → ∞). We then
immediately deduce that the entanglement entropy is given by

S = SG + ln 2. (111)

The extra ln 2 entropy has an alternate interpretation as the
Shannon entropy due to the SMA quasiparticle being either
in part A or part B of the system. Thus we have provided
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a proof that in the thermodynamic limit, single-mode excita-
tions have an entanglement spectrum that is two copies of the
ground-state entanglement spectrum. Alternate derivations of
the same result were obtained in Refs. [22,23].

We now move to exact examples obtained in the AKLT
models [42]. The Arovas A and B states, and the spin-2
magnon of the spin-1 AKLT model, the Arovas B states
and the spin-2S magnon of the spin-S AKLT model are all
examples of single-mode excitations. While the Arovas states
are exact eigenstates only for periodic boundary conditions,
it is reasonable to believe that they are exact eigenstates for
open boundary conditions too in the thermodynamic limit.
Thus we expect their entanglement spectra to be two degen-
erate copies of the ground-state entanglement spectra in the
thermodynamic limit. While the entanglement spectra in the
thermodynamic limit are the same for all the single-mode
excitations of the AKLT models, they differ in the nature of
their finite-size corrections. We will discuss these differences
in Sec. XI.

VII. BEYOND SINGLE-MODE EXCITATIONS

We now move on to the computation of the entangle-
ment entropy of states that are obtained by the application

of multiple local operators on the ground state. Unlike the
single-mode approximation, the number of operators acted
on the ground state does not uniquely specify entanglement
spectrum. We thus focus on a concrete example in the 1D
AKLT models, the tower of states of Eq. (58) [42]. We
first focus on the state with two magnons (N = 2) and then
generalize the result to arbitrary N in the next section.

A. Jordan decomposition of the transfer matrix

For N = 2, the MPO MSS4 in Eq. (62) has a bond dimen-
sion χm = 3 and it reads

MSS4 =

⎛⎜⎝−1 −(S+)2S 0

0 1 (S+)2S

0 0 −1

⎞⎟⎠. (112)

Consequently, using Eq. (65) and shorthand notations for the
generalized transfer matrices as

E+ ≡ E(S+ )2S , E− ≡ E(S− )2S , E−+ ≡ E(S− )2S (S+ )2S ,

(113)

the transfer matrix F can be written as a 9 × 9 matrix:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E E+ 0 E− E−+ 0 0 0 0
0 −E −E+ 0 −E− E−+ 0 0 0
0 0 E 0 0 E− 0 0 0
0 0 0 −E E+ 0 E− E−+ 0
0 0 0 0 E E+ 0 −E− E−+
0 0 0 0 0 −E 0 0 E−
0 0 0 0 0 0 E E+ 0
0 0 0 0 0 0 0 −E −E+
0 0 0 0 0 0 0 0 E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (114)

The generalized eigenvalues of F that have magnitude 1 are due to the ±E blocks on the diagonals of F . Thus F has nine
generalized eigenvalues of magnitude 1, five (+1)’s and four (−1)’s.

In Appendix F 2, we have derived the Jordan block structure of F of Eq. (114). There, we used the property [see Eq. (E4)]

E+eR = E−eR = 0, eT
LE+ = eT

LE− = 0, eT
LE−+eR �= 0, (115)

where eL and eR are the left and right eigenvectors of E corresponding to the eigenvalue +1, to show that the largest generalized
eigenvalues of any two diagonal blocks in F belong to the same Jordan block if they are related by an off-diagonal block E−+ in
F . Thus, for F , the truncated Jordan normal form Junit of the generalized eigenvalues of largest magnitude reads [see Eq. (F38)]

Junit =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (116)

The forms of the right and left generalized eigenvectors
corresponding to the generalized eigenvalues in Junit are

determined by Eqs. (D67) in Appendix D. For example, the
left and right generalized eigenvectors corresponding to the
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fourth eigenvalue (−1) on the diagonal of Junit in Eq. (116)
read

r4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗
∗

c1,2eR

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, l4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
eL

c1,2

∗
∗
∗
∗
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (117)

where eR and eL are the left and right generalized eigenvectors
of E and c1,2 is some constant. When viewed as 3 × 3
matrices, these read

r2,1 ≡ r4 =
⎛⎝∗ c1,2eR 0

∗ 0 0
∗ 0 0

⎞⎠,

l2,1 ≡ l4 =
⎛⎝0 eL

c1,2
∗

0 ∗ ∗
0 ∗ ∗

⎞⎠, (118)

where we have defined

rα,β ≡ r3(α−1)+β, lα,β ≡ l3(α−1)+β (119)

to be the generalized eigenvectors of F corresponding to the
generalized eigenvalue of magnitude 1 and eR and eL are
viewed as χ × χ matrices. Thus, in general, the expression
for the 3 × 3 rα,β (respectively, lα,β) is obtained by filling
in irrelevant elements “∗”’s column-wise from top-to-bottom
(respectively, bottom-to-top) starting from the top-left (re-
spectively, bottom-right) corner until the (α, β )-th element,
which is set to cα,βeR (respectively, eL/cα,β ). Using the
structure of Junit in Eq. (116), we observe that five Jordan
blocks Jm, −2 � m � 2 are formed, that have generalized
eigenvalues (−1)m and consist of generalized eigenvectors
rα,α+m and lα,α+m with 1 − min(0,m) � α � 3 − max(0,m).

B. General properties of Runit and Lunit

We now proceed to derive some general properties of
Runit and Lunit that are helpful in the calculation of ρred [see
Eq. (93)]. Since ρred is a sum products of the form lα,βrT

γ,δ

[see Eq. (93)], using the forms of the generalized eigenvectors
lα,β and rα,β [for example, Eq. (118)], we note the following
properties:

lα,βrT
γ,δ = 0 if β > δ, (120)

lα,βrT
γ,β =

{
� if α > γ

� + �
(
α, eLeT

R

)
if α = γ

, (121)

where � represents a strictly lower-triangular matrix and
�(α, x) is a diagonal matrix with the αth element on the
diagonal equal to x. As we will see in the next section, these
properties are valid for any number of magnons N .

To compute ρred order by order in the length of the sub-
system n, we need to determine the factor of n that appears
in front of the product lα,βrT

γ,δ in ρred. We first obtain the

factors of n that accompany each of rα,β and lα,β in Runit and
Lunit respectively. Using Eqs. (91) and (89), when N = 2 the
expression for Runit reads

Runit =
((

n

2

)
r1,1 + nr2,2 + r3,3

)
βr

F 9 + (nr1,1 + r2,2)βr
F 5

+ r1,1β
r
F 1 + (−1)n

[
(nr1,2 + r2,3)βr

F 8 + r1,2β
r
F 4

]
+ (−1)n

[
(nr2,1 + r3,2)βr

F 6 + r2,1β
r
F 2

]
+ r1,3β

r
F 7 + r3,1β

r
F 3, (122)

where terms on the same line come from the same Jordan
block Jm. Similarly, the expression for Lunit for N = 2 reads

Lunit =
((

n

2

)
l3,3 + nl2,2 + l1,1

)
βl

F 1 + (nl3,3 + l2,2)βl
F 5

+ l3,3β
l
F 9 + (−1)n

[
(nl2,3 + l1,2)βl

F 4 + l2,3β
l
F 8

]
+ (−1)n

[
(nl3,2 + l2,1)βl

F 2 + l3,2β
l
F 6

]
+ l1,3β

l
F 7 + l3,1β

l
F 3, (123)

The structure of Eqs. (122) and (123) exemplify properties of
R and L that are valid for any value of N :

(1) The largest combinatorial factors CR
α,β and CL

α,β that
multiply the right and left generalized eigenvectors rα,β and
lα,β in Runit and Lunit, respectively, read [as a consequence of
Eqs. (89) and (91)]

CR
α,β =

(
n

N − max(α, β ) + 1

)
, (124)

CL
α,β =

(
n

min(α, β ) − 1

)
. (125)

For example, the largest combinatorial factors to multiply r1,1

and l3,3 in Eqs. (122) and (123) are CR
1,1 = ( n

2 ) and CL
3,3 = ( n

2 ),
respectively.

(2) The dominant term (with the largest factor of n) involv-
ing generalized eigenvectors of any given Jordan block are
all multiplied by the same boundary vector component in the
expression for Lunit and Runit. This is derived using Eqs. (89)
and (91). For example, r1,1, r2,2 and r3,3 (respectively, l1,1, l2,2,
and l3,3) are all associated with the same Jordan block (J0),
and the largest factors of n that multiply them are ( n

2 )βr
F 9,

nβr
F 9 and βr

F 9 [respectively, βl
F 1, nβl

F 1, and ( n

2 )βl
F 1]. That is,

the dominant terms involving these generalized eigenvectors
are all multiplied by the same boundary vector component βr

F 9
(respectively, βl

F 1) in Runit (respectively, Lunit).
(3) All the terms in Eq. (121) associated with a given

Jordan block are multiplied by λn, where λ is the eigenvalue
associated with the Jordan block involved [here either (+1) or
(−1)]. This is seen in Eq. (91).

Using CL
α,β and CR

α,β of Eqs. (125) and (124), respectively,
one can directly compute ρred [defined in Eq. (18)] order by
order in n. Note that

CL
α,βCR

γ,δ ∼ O(nN+min(α,β )−max(γ,δ) ). (126)

Using Eq. (126), we note that any term of order strictly greater
than nN requires min(α, β ) > max(γ, δ), which necessar-
ily implies β > δ. Since all products lα,βrT

γ,δ vanish [using
Eq. (120)], the dominant nonvanishing terms appear at order
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nN or smaller. Directly from Eq. (126), if β < δ, β < γ , α <

γ or α < δ, the product CL
α,βCR

γ,δ necessarily has a smaller
order than nN . Thus, at order nN , we obtain products that
satisfy α � γ , α � δ, β � δ and β � γ . The products with
β > δ vanish [using Eq. (120)] and products with α > γ give
rise to lower triangular terms [using Eq. (121)]; and they do
not contribute to the eigenvalues of ρred when no upper trian-
gular terms are present. We thus deduce that the products that
determine the spectrum of ρred (and hence the entanglement
spectrum) at leading order in n satisfy β = δ, α = γ , α � δ

and β � γ ; and consequently, α = β = γ = δ. Furthermore,
since all the rα,α’s and lα,α’s belong to the largest Jordan block
with eigenvalue +1, all the products lα,αrT

α,α are multiplied
with the same modified boundary vector components.

Indeed, these arguments can be verified using the exact
form of ρred at order n2 using Lunit and Runit in Eqs. (122)
and (123):

ρred =
((

n

2

)
l1,1r

T
1,1 + n2l2,2r

T
2,2 +

(
n

2

)
l3,3r

T
3,3

)
b1,9

+ n2
[
l3,2r

T
1,2b2,8 + (−1)n

(
l3,2r

T
2,2b2,9 + l2,2r

T
1,2b1,8

)]
+
(

n

2

)[(
l3,3r

T
1,3b1,7 + l3,1r

T
1,1b3,9

)
+ (−1)n

(
l3,3r

T
2,3b1,8 + l2,1r

T
1,1b2,9

)]
, (127)

where bi,j ≡ βl
F i

βr
F j

. Thus, at order n2, using Eqs. (127)
and (121), ρred reads

ρred = b1,9

⎛⎜⎝
(
n

2

)
eLeT

R 0 0

∗ n2eLeT
R 0

∗ ∗ (
n

2

)
eLeT

R

⎞⎟⎠+ O(n)

≈ n2b1,9

⎛⎜⎝
1
2eLeT

R 0 0

∗ eLeT
R 0

∗ ∗ 1
2eLeT

R

⎞⎟⎠+ O(n), (128)

where we have used ( n

2 ) ≈ n2

2 , an approximation that is exact
as n → ∞. The entanglement spectrum of two magnons on
the ground state is thus three copies of the ground-state en-
tanglement spectrum. The three copies are however, separated
into one nondegenerate and two degenerate copies.

VIII. TOWER OF STATES

We now move on to the calculation of the entanglement
spectra for the AKLT tower of states with N > 2 magnons on
the ground state. The expression for the MPO MSS2N

for the
tower of states operator has a bond dimension χm = N + 1
and is shown in Eq. (62). Several results in this section are
a straightforward generalization of results in the previous
section.

A. Jordan decomposition of the transfer matrix

Analogous to Eq. (114), the transfer matrix F for arbi-
trary N can be written as a (N + 1) × (N + 1) block upper
triangular matrix, with χ × χ blocks. Thus the generalized
eigenvectors of F for a general N have inherited a structure as

those in Eq. (118). The right and left generalized eigenvectors
rα,β ≡ r(N+1)(α−1)+β and lα,β ≡ l(N+1)(α−1)+β have the forms
[when viewed as (N + 1) × (N + 1) matrices]

rα,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · · · · ∗ 0 · · · 0
...

. . .
. . .

...
...

. . .
...

∗ · · · · · · ∗ ...
. . .

...
∗ · · · ∗ cα,βeR 0 · · · 0
...

. . .
... 0 · · · · · · 0

...
. . .

...
...

. . .
. . .

...
∗ · · · ∗ 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

lα,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 ∗ · · · ∗
...

. . .
. . .

...
...

. . .
...

0 · · · · · · 0
...

. . .
...

0 · · · 0 eL

cα,β
∗ · · · ∗

...
. . .

... ∗ · · · · · · ∗
...

. . .
...

...
. . .

. . .
...

0 · · · 0 ∗ · · · · · · ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (129)

where the (α, β )-th element in rα,β and lα,β are proportional
to eR and eL, respectively. Since the off-diagonal blocks of
F have the same structure as those in Eq. (114) (because the
structures of the MPOs MSS2 and MSS2N

are the same), the
Jordan normal form is similar to the N = 2 case. That is,
we obtain (2N + 1) Jordan blocks Jm, −N � m � N , that
correspond to an eigenvalue (−1)m and consist of generalized
eigenvectors rα,α+m and lα,α+m with 1 − min(0,m) � α �
N + 1 − max(0,m).

As pointed out in Sec. VII B, the properties observed there
are valid for all N . Thus, using CR

α,β and CL
α,β , ρred can be

constructed order by order in n. However, for arbitrary N ,
we can study two types of limits (i) n → ∞, N finite, and
(ii) n → ∞, N → ∞, N/n → const. > 0. Since n = L/2,
N is the number of magnons in the state |SS2N 〉, and the
state has an energy E = 2N [42], the energy density of the
state we are studying is E/L = N/n. The limits (i) and (ii)
thus correspond to zero and finite energy density excitations,
respectively.

B. Zero density excitations

In the limit where N is finite as n → ∞, we can use the
approximation

(
n

N

)
≈ nN

N !
, (130)

which is asymptotically exact. Thus the product of combinato-
rial factors can be classified by order in n. Since the structure
of the generalized eigenvectors lα,β and rα,β in Eq. (129) are
the same as the N = 2 case in the previous section, properties
Eqs. (120) and (121) are valid here. Using the arguments
following Eq. (126) in Sec. VII B, the first nonvanishing term
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appears at order nN , and the expression for ρred reads

ρred = b1,(N+1)2

N∑
α=0

(
n

α

)(
n

N − α

)
lα,αrT

α,α + � + O(nN−1)

≈ nNb1,(N+1)2

N∑
α=0

1

α!(N − α)!
lα,αrT

α,α + � + O(nN−1),

(131)

where � represents strictly lower triangular matrices. Using
Eq. (121), to leading order in n, we obtain the unnormalized
density matrix

ρred = nNb1,(N+1)2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eLeT
R

N!0! 0 . . . . . . 0

∗ eLeT
R

(N−1)!1!

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . eLeT
R

1!(N−1)! 0

∗ . . . . . . ∗ eLeT
R

0!N!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (132)

where eLeT
R is the ground-state reduced density matrix.

Since eLeT
R for the spin-S AKLT model has (S + 1) degen-

erate levels [see Eq. (29)], after normalizing ρred, the entan-
glement spectrum has (N + 1) copies of (S + 1) degenerate
levels, and each (S + 1)-multiplet reads

λα = 1

2N (S + 1)

(
N

α

)
, 0 � α � N. (133)

The trace of ρred is indeed 1,

Tr[ρred] = (S + 1)
N∑

α=0

λα = 1

2N

N∑
α=0

(
N

α

)
= 1. (134)

The entanglement entropy is thus

S = −Tr[ρred ln ρred]

= −(S + 1)
N∑

α=0

λα ln λα

= SG + N ln 2 − 1

2N

N∑
α=0

(
N

α

)
ln

(
N

α

)
(135)

∼ SG + 1

2
ln

(
πN

2

)
for large N, (136)

where SG = ln(S + 1), the entanglement entropy of the
spin-S AKLT ground state. Equation (136) is derived from
Eq. (135) in Appendix G using a saddle point approximation.
For N = 1, using Eq. (135), we recover the single-mode
approximation result of Eq. (111). Furthermore, note that
O(nN−1) and lower-order corrections to ρred in Eq. (132)
are typically not lower triangular matrices. Thus the replica
structure of ρred breaks at any finite n, giving a particular
structure to the finite-size corrections. We discuss the nature
of these finite-size corrections in Sec. XI.

C. Finite density excitations

We now proceed to the case where the excited state has
a finite energy density, corresponding to a finite density of
magnons on the ground state. That is,

E/L = N/n > 0. (137)

For a large enough N , approximation Eq. (130) breaks down.
Nevertheless, since the MPO for |SS2N 〉 and the MPS for
the ground state of the spin-S AKLT model have bond di-
mensions of χm = (N + 1) and χ = (S + 1), respectively,
the MPO × MPS for |SS2N 〉 has a bond dimension χχm =
(S + 1)(N + 1), i.e., it grows linearly in N . Consequently,
using Eq. (23), the entanglement entropy of |SS2N 〉 is bounded
by

S � ln(χχm) = ln[(S + 1)(N + 1)]. (138)

Using Eqs. (136) and (138), we would be tempted to find a
stronger bound or an asymptotic expression for the entangle-
ment entropy in the finite density limit. Indeed, we expect this
entanglement entropy to have the form

S ∼ P ln N, (139)

where P is some constant. Without the approximation of
Eq. (130), terms that are weighted by the combinatorial factor
( n

a
)( n

k−a
) do not necessarily suppress the terms that appear

with a factor ( n

a
)( n

k−a−b
), where k, a and b are some positive

integers. This invalidates an expansion in orders of n such
as Eq. (131). Consequently the lower triangular structure of
ρred [see Eq. (132)] breaks down. Hence it is not clear if the
expression for the entanglement entropy of Eq. (136) survives
in the finite density regime. A detailed discussion of this is
given in Appendix H.

IX. IMPLICATIONS FOR THE EIGENSTATE
THERMALIZATION HYPOTHESIS (ETH)

In Ref. [42], we conjectured and provided numerical evi-
dence that in the thermodynamic limit some states of the tower
of states are in the bulk of the spectrum, i.e., in a region of
finite density of states of their own quantum number sector.
Furthermore, we showed that the AKLT model is noninte-
grable, i.e., it exhibits Gaussian orthogonal ensemble (GOE)
level statistics. According to the eigenstate thermalization
hypothesis (ETH), typical states in the bulk of the spectrum
look thermal [1,16,73]. That is, the entanglement entropy of
any such states exhibits a volume law scaling, S ∝ L. A
strong form of the ETH conjuctures that all states in a region
of finite density of states of the same quantum number sector
look thermal [54,55].

In the spin-S AKLT tower of states, for a state with a finite
density of magnons, using Eq. (138),

S ∝ ln L. (140)

The ln L scaling of the entanglement entropy in Eq. (138) is
thus a clear violation of the strong ETH. The atypical behavior
of the tower of states is illustrated in Fig. 3. In Figs. 3(a)
and 3(b), we plot the entanglement entropy of all the states
in a given quantum number sector for two system sizes L =
14 and 16 at the AKLT point. The dip of the entanglement
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FIG. 3. The normalized entanglement entropy S/[(L/2) ln 3] for the eigenstates of the Hamiltonian with energy E (141) in the quantum
number sector (s, Sz, k, I, Pz ) = (6, 0, π, −1, +1), where the quantum numbers respectively correspond to the total spin, the projection of the
total spin along the z direction, momentum, inversion and spin-flip symmetries [42]. (a) and (b) show the entropy at the AKLT point. This
sector has a single exact state |S6〉 that belongs to the tower of states, which exhibits a sharp dip at E = 6. (c) and (d) show the entropy for
α = −0.025, where remnants of the low-entropy states are seen. (e) and (f) show the entropy in the same sector for α = −0.05.

entropy at energy E = 6 corresponds to the state |S6〉, which
clearly violates the trends of entanglement entropy within its
own quantum number sector. The dip persists for L = 16, the
largest system size accessible to exact diagonalization. These
states are thus the first examples of what are now known as
“quantum many-body scars” [39,40,74,75].

One might wonder if such a violation of ETH is generic
in nature, i.e., if these states have a subthermal entanglement
entropy even when the Hamiltonian is perturbed away from
the AKLT point. We explore this using the Hamiltonian

Hα =
L∑

i=1

(
1

3
+ 1

2
�Si · �Si+1 +

(
1

6
+ α

2

)
(�Si · �Si+1)2

)
,

(141)

where α = 0 corresponds to the Hamiltonian of the AKLT
model. We find that the dip in the entanglement entropy is
stable up to a value of α = −0.025, as shown in Figs. 3(c)
and 3(d). However, we cannot exclude that the range of
α where we observe this low entanglement in the bulk of
spectrum, will go to zero in the thermodynamic limit [as
observed for α = −0.05 in Figs. 3(e) and 3(f)]. Finally, we
draw attention to the existence of apparently atypical states

in the (nonintegrable) spin-1 Heisenberg model, shown in
Figs. 4(a) and 4(b) that could be an artifact of the finite system
size.

Since the number of states that belong to the tower of states
grows only polynomially in L, the set of ETH violating states
has a measure zero. Thus the existence of these sub-thermal
states do not preclude the weak ETH, which states almost all
eigenstates in a region of finite density of states look thermal.

X. DEGENERACIES IN THE ENTANGLEMENT
SPECTRA OF EXCITED STATES

We now move on to describe the constraints that the AKLT
Hamiltonian symmetries on the entanglement spectra of the
exact excited states.

A. Symmetries of MPS and symmetry
protected topological phases

We first briefly review the action of symmetries on an MPS,
the concept of symmetry protected topological (SPT) phases
in 1D, and their connections to degeneracies in the entangle-
ment spectrum [76–79]. A state |ψ〉 that is invariant under any
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FIG. 4. Apparent atypical eigenstates in the spin-1 pure Heisenberg model (i.e., α = −1/3 in Eq. (141)) in the quantum number sector
(s, Sz, k, I, Pz ) = (0, 0, 0, +1, +1) for system sizes (a) L = 14 and (b) 16. We use the same conventions as Fig. 3 for the axis labels. Looking
at the evolution between L = 14 and 16 might suggest that those atypical states are finite-size artifacts.

symmetry (that has a local action on an MPS) admits an MPS
representation that transforms under the particular symmetry
as [58,76,78,80]

u(A[m] ) = eiθUA[m]U †, (142)

where u is the symmetry operator that transforms the MPS,
U is a unitary matrix that acts on the ancilla, and eiθ is an
arbitrary phase. We now discuss various useful symmetries
that are relevant to the AKLT models.

Since the inversion symmetry flips the chain of length
L (and hence the MPS representation of the state) by in-
terchanging sites i and L − i, the site-independent MPS of
the transformed state is the same as the MPS of the original
state read from right to left in Eq. (3). Consequently, the
site-independent MPS transforms under inversion as [76]

uI (A[m] ) = (A[m] )T = eiθI U
†
I A

[m]UI . (143)

In Ref. [76], it was shown that for an MPS A in the canonical
form, the UI matrices should satisfy UIU

∗
I = ±1. As shown

in Appendix J, each level of the entanglement spectrum has a
degeneracy that should be a multiple of two. The origin of the
degeneracy can be traced back to the existence of symmetry
protected edge modes at the ends of the chain and the SPT
phase.

Time reversal, by virtue of being an antiunitary operation,
acts on the MPS as

uT (A[m] ) =
∑

n

TmnA
[n] = eiθT U

†
T A[m]UT , (144)

where Tmn = (eiπS
y
p )mnK, where K is the complex conjuga-

tion operator and S
y
p acts on the physical index. The two

classes of UT matrices are again UT U ∗
T = ±1, with UT U ∗

T =
−1 indicating an SPT phase [76].

In the case of Z2 × Z2 spin-rotation symmetries (π ro-
tations about x and z axes), the MPS transforms under the
symmetries as

uσ (A[m] ) =
∑

n

Rσ mnA
[n] = eiθσ U †

σA[m]Uσ , (145)

where Rσ mn = (eiπSσ
p )mn, σ = x, z and Sσ

p acts on the phys-
ical index. The two classes of Uσ are the ones that sat-
isfy UxUzU

†
xU

†
z = ±1, where UxU

∗
x = UzU

∗
z = 1. Thus the

classes of matrices can be written as (UxUz)(UxUz)∗ = ±1.

In each of the cases above, we refer to the transformations
with positive and negative signs as linear and projective
transformations, respectively. Since the conditions of SPT
order for the symmetry groups are of the form UU ∗ = −1,
where U is unitary, U should be χ × χ antisymmetric matrix.
If χ is odd, 0 is an eigenvalue of U , contradicting the fact that
U is unitary. Thus protected degeneracies cannot exist due to
the symmetries we have discussed if the bond dimension of
the MPS representation in the canonical form is odd.

The spin-1 AKLT ground-state MPS Eq. (24) satisfies
Eqs. (143)–(145) with UI = UT = iσy , Ux = σx , and Uz =
σz. Thus the entanglement spectrum of the spin-1 AKLT
ground state is degenerate. This analysis can be extended
straight forwardly to a spin-S AKLT model ground state.
Since even S AKLT ground states have an odd bond dimen-
sion, they do not have SPT order nor a doubly degenerate
entanglement spectrum. For odd S, the operators UI = UT =
eiπS

y
a , Ux = eiπSx

a , and Uz = eiπSz
a , where Sσ

a (σ = x, y, z) are
spin-S/2 operators that act on the ancilla, satisfy Eqs. (143)–
(145), respectively. Since these matrices satisfy

UIU
∗
I = UT U ∗

T = (UxUz)(UxUz)∗ = (−1)S1, (146)

all odd-S AKLT chains have SPT order and a doubly degen-
erate entanglement spectrum whereas even-S chains do not.

B. Symmetries of MPO

For any Hamiltonian that is invariant under certain sym-
metries, each of eigenstates are labeled by quantum numbers
corresponding to a maximal set of commuting symmetries.
As shown in the previous section, the AKLT ground states are
invariant under inversion, time-reversal, and Z2 × Z2 rotation
symmetries. However, some of the excited states we consider
are not invariant under the said symmetries. For example, the
tower of states we have consider have Sz �= 0, and are not
invariant under time-reversal or Z2 × Z2 symmetries but they
are invariant under inversion symmetry.

When an excited state is invariant under a certain sym-
metry, it can trivially be expressed in terms of an operator
invariant under the same symmetry acting on the ground state.
Thus, analogous to Eq. (142), under a symmetry u, the MPO
of such an operator should transform as

u(M [mn] ) = eiθ�†M [mn]�, (147)
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where u acts on the physical indices of the MPO and � on the
ancilla.

We first discuss the symmetries that we discussed with
regard to MPS in Sec. X A, i.e., inversion, time reversal, and
Z2 × Z2 rotation. The actions of these symmetries on an MPO
are similar to the actions on the MPS. Inversion symmetry
interchanges the operators acting on sites i and L − i. Thus,
similar to Eq. (143), we obtain

uI (M [mn] ) = (M [mn] )T = eiθI �
†
IM

[mn]�I . (148)

Time-reversal and Z2 × Z2 rotation symmetries act on the
physical indices of the MPO via conjugation as

uT (M [mn] ) =
∑
l,k

TmlM
[lk]T †

kn = eiθT �
†
T M [mn]�T (149)

and

uσ (M [mn] ) =
∑
l,k

Rσ mlM
[lk]R†

σ kn = eiθσ �†
σM [mn]�σ ,

(150)

where Tmn = (eiπS
y
p )m,nK, Rσ mn = (eiπSσ

p )mn, σ = x, z act
on the physical index of the MPO. In each of these cases,
the auxiliary indices of the MPO transform under the �I ,
�T , �x , �z matrices under the various symmetries respec-
tively. Similar to the case of an MPS, we could have MPOs
that transform in two distinct ways �I�

∗
I = ±1, �T �∗

T =
±1, and (�x�z)(�x�z)∗ = ±1. We refer to the transfor-
mation with the positive and negative signs as linear and
projective MPO transformations, respectively. Thus, under
physical symmetries, if an MPS transforms on the ancilla
under U , and an MPO transforms under �, the MPO ×
MPS transforms on the ancilla under U ⊗ �. As a con-
sequence, if an MPO transforms projectively (respectively,
linearly), the MPO × MPS transforms in a different (respec-
tively, the same) way as the MPS.

For example, the MPO corresponding to the Arovas A
operator [see Eq. (48)] transforms linearly under inversion,
time-reversal and Z2 × Z2 rotation symmetries, and the trans-
formation matrices are shown in Eqs. (I3), (I11), and (I16),
respectively. The Arovas B operator [see Eq. (53)] transforms
projectively under inversion, linearly under time-reversal and
rotation symmetries, and the transformation matrices are
shown in Eqs. (I5), (I13), and (I17) respectively. The tower
of states operator transforms projectively and linearly under
inversion symmetry for odd and even N , respectively, with the
transformation matrices shown in Eq. (I7). The transformation
matrices are shown in Appendix I. Note that we do not claim
any topological protection of these states. Indeed, they have a
degenerate largest eigenvalue of the transfer matrix, leading
to long-range correlations that do not decay exponentially.
We discuss the implications of these transformations to the
excited state entanglement spectrum in the next section using
concrete examples from the AKLT models.

XI. FINITE-SIZE EFFECTS IN THE ENTANGLEMENT
SPECTRA OF EXCITED STATES

We proceed to describe the finite-size effects and
symmetry-protected degeneracies in the entanglement spectra

of the exact excited states of the AKLT models. Since the
exact entanglement spectra depend on the configuration of the
free boundary spins, we freeze them to their highest weight
states. Such a boundary configuration is inversion symmetric,
although it violates time-reversal and Z2 × Z2 rotation sym-
metries (on the edges only).

A. Spin-S AKLT ground states

As described in Sec. X A, the entanglement spectrum of
the spin-S AKLT ground state consists of (S + 1) degenerate
levels in the thermodynamic limit. Generically, such a degen-
eracy between (S + 1) levels is broken for a finite system.
However, as shown in the thermodynamic limit in Ref. [76]
and for a finite system in Appendix J, the entanglement
spectrum is always doubly degenerate when symmetries act
projectively. Thus, for odd S, since inversion, time reversal
and Z2 × Z2 act projectively [see Eq. (146)], the entangle-
ment spectrum consists of (S + 1)/2 exactly degenerate dou-
blets. For even-S, the entanglement spectrum need not consist
of degenerate levels for generic configurations of boundary
spins, though some levels can be degenerate for particular
choices of the boundary spins. While the exact form of the
splitting between the entanglement spectrum levels depends
on the configuration of the boundary spins, we find that it is
exponentially small in the system size.

B. Spin-1 AKLT tower of states

We first describe the entanglement spectrum of the spin-2
magnon state of spin-1 AKLT model, |S2〉. In Sec. VI, we have
seen that the entanglement spectrum of such a state consists
of two copies of the ground-state entanglement spectrum. For
a finite n, using an explicit computation of ρred using the
methods described in Sec. V B and illustrated in Appendix C,
with MPS boundary vectors of Eq. (26), the four normalized
eigenvalues of ρred read [see Eq. (C14)]

2 ×
(

n

4n − 3
,

3 − 2n

6 − 8n

)
, (151)

where 2× indicates two copies. In Eq. (151), we have ignored
exponentially small finite-size splitting to obtain a closed form
expression. The two degenerate copies of the entanglement
spectrum thus split into two doublets that have an O(1/n)
(power-law) splitting. Similarly, the six eigenvalues of ρred for
|S4〉 read

2 ×
(

4n2 − 22n + 27

32n2 − 88n + 54
,

2n2 − 5n

16n2 − 44n + 27
,

4n2 − 6n

16n2 − 44n + 27

)
. (152)

This is consistent with the n → ∞ behavior calculated in
Sec. VIII B, i.e., the entanglement spectrum is composed of
three copies of the ground state split into three doublets,
two of which are degenerate in the thermodynamic limit at
half the entanglement energy of the other. The doublets that
are degenerate in the thermodynamic limit have an O(1/n)
finite-size splitting between them.

More generically, we observe the following pattern in the
entanglement spectrum of |S2N 〉. The (N + 1) copies of the
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FIG. 5. Schematic depiction of the entanglement spectra of spin-1 AKLT tower of states {|S2N 〉} (left) and spin-2 AKLT tower of states
{|2S2N 〉} (right). The almost-degenerate levels shown in red have an exponential finite-size splitting whereas the black doublets are exactly
degenerate. Power-law finite-size splittings are depicted by black two-headed arrows and constants by blue two-headed arrows.

ground state split into (N + 1) doublets, some of which are
separated by O(1/N ) in the thermodynamic limit. The pairs
of doublets that are degenerate in the thermodynamic limit
have a power-law finite size splitting of O(1/n). A schematic
plot of the entanglement spectra of the tower of states is shown
in Fig. 5.

We now distinguish between exact degeneracies and expo-
nential finite-size splittings. As shown in Sec. X B, the MPO
for the tower of states transforms projectively (respectively,
linearly) under inversion symmetry if N is odd (respectively,
even). Since the spin-1 AKLT ground state transforms pro-
jectively under inversion, the MPO × MPS transforms pro-
jectively (respectively, linearly) under inversion symmetry if
N is even (respectively, odd). While the proof for double de-
generacy due to projective representations in Ref. [76] relied
on the uniqueness of the largest eigenvalue of the transfer
matrix of the MPS, in Appendix J, we show the existence
of the degeneracy in the mid-cut entanglement spectrum for
a finite system irrespective of the structure of the transfer
matrix. Consequently, we observe exact degeneracies of the
doublets for even N and exponential finite-size splittings
within the doublets for odd N . This effect is schematically
shown in Fig. 5. The exponential splitting happens for generic
symmetry-preserving configurations of the boundary spins,
though certain configurations of boundary spins lead to “ac-
cidental” degeneracies in the entanglement spectrum.

C. Spin-S AKLT tower of states

Similar to the spin-1 AKLT tower of states, we compute
the exact entanglement spectra for the spin-S tower of states
of Ref. [42]. We start with S = 2. The spectrum of ρred for the
state |2S2〉 (obtained via a direct computation similar to the
one described in Appendix C) has six eigenvalues that read

2 ×
(

9n + 28

84 + 54n
,

9n + 4

84 + 54n
,

9n + 10

84 + 54n

)
. (153)

Similar to the spin-1 case, we note that the two copies of the
ground-state entanglement spectrum split into three doublets
that are separated by an O(1/n) finite-size splitting. For the
state |2S4〉, the eigenvalues of ρred read (ignoring exponen-
tially small splitting)

2 ×
(

27n2 + 117n − 80

6(54n2 + 117n − 40)
,

27n2 − 27n − 104

6(54n2 + 117n − 40)

)
,

2 ×
(

27n2 + 9n − 128

6(54n2 + 117n − 40)
,

(9n + 28)(9n + 10)

9(54n2 + 117n − 40)

)
,

1 ×
(

(9n + 4)2

9(54n2 + 117n − 40)

)
. (154)

Thus we find that the nine levels due to the three copies
of the ground-state entanglement spectrum split into four
doublets and one singlet. Two of the copies of the ground-state
entanglement spectrum are degenerate in the thermodynamic
limit, and at a finite size, these six entanglement levels split
into three doublets that have an O(1/n) splitting.

We numerically observe that a similar pattern holds true
for arbitrary S. For the state |SS2N 〉, the (N + 1) copies
of the ground-state entanglement spectrum (that consists of
(S + 1) levels) splits into doublets and singlets. If S is odd,
we obtain (S + 1)/2 doublets and if S is even, we obtain S/2
doublets and one singlet. The doublets and singlets that are
degenerate in the thermodynamic limit have an O(1/n) finite-
size splitting. Furthermore, as shown in Sec. X B, the MPO
for the tower of states transforms projectively (respectively,
linearly) under inversion symmetry if N is odd (respectively,
even). Consequently, using Eqs. (146) and (I8), the MPO ×
MPS transforms projectively (respectively, linearly) under
inversion symmetry if (N + S) is odd (respectively, even).
Indeed, similar to the spin-1 AKLT tower of states, we find
exactly degenerate doublets in the entanglement spectrum
for arbitrary symmetry-preserving boundary conditions when
the MPO × MPS transforms projectively [i.e., when (N +
S) is odd]. If (N + S) is even, we find that for generic
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symmetry-preserving boundary conditions, we obtain an ex-
ponential finite-size splitting between the doublets that are
degenerate in the thermodynamic limit.

D. Spin-1 Arovas states

For the spin-1 Arovas A state, via a direct computation
similar to the example in Appendix C, we find that the eight
eigenvalues of ρred read

2 ×
(

n + 3 + 2
√

2(1 + n)

4n + 14
,
n + 3 − 2

√
2(1 + n)

4n + 14

)
,

4 ×
(

1

8n + 28

)
. (155)

Thus, similar to the spin-2 magnon, we obtain two copies
of the ground-state entanglement spectrum that splits into
two doublets that have an O(1/

√
n) splitting between them.

In addition, we obtain four entanglement levels that are of
O(1/n). As mentioned in Sec. X B, the Arovas A MPO
transforms linearly under inversion, time-reversal, and Z2 ×
Z2 symmetries. Consequently, the MPO × MPS transforms
projectively and all the doublets are exactly degenerate for a
finite system.

While we were not able to obtain a closed-form expression
for the entanglement spectra of the spin-1 and spin-2 Arovas B
states [42], we numerically observe similar phenomenology as
the Arovas A and the spin-2S magnon entanglement spectra,
although the magnitude of the finite-size splittings [O(1/

√
n)

versus O(1/n)] are not clear.

XII. CONCLUSION

We have computed the entanglement spectra of the exact
excited states of the AKLT models that were derived in
Ref. [42]. To achieve this, we expressed the states as MPO ×
MPS’ and developed a general formalism to compute the
entanglement spectra of states using the Jordan normal form
of the MPO × MPS transfer matrix. We first exemplified
our method by reproducing existing results on single-mode
excitations: we show that their entanglement spectra in the
thermodynamic limit consist of two copies of the ground-state
entanglement spectrum. The low-lying exact excited states
of the AKLT model such as the Arovas states and the spin-
2S magnon states for the spin-S AKLT chain fall into this
category. For single-mode excitations, our method is exactly
equivalent to the tangent-space and related methods developed
to numerically as well as analytically probe low-energy ex-
cited states in the MPS formalism [22,24–27,67,81,82]. We
note that our method can be applied to obtain results on
the entanglement spectra of single-mode excitations in the
fractional quantum Hall effect [72,83].

We then generalized our method to states with multiple
magnons, that are beyond single-mode excitations (“double
tangent space” [84] and beyond). This allowed us to obtain
the exact expression for the entanglement spectra for the
spin-S AKLT tower of states for a zero density of magnons in
the thermodynamic limit. We showed that the entanglement
spectrum of the N th state of the tower consists of (N + 1)
copies of the ground-state entanglement spectrum, not all
degenerate. Apart from the specific Jordan block structure

derived for the special AKLT tower of states, our method
to obtain the entanglement spectrum was completely general.
In particular, it applies to states of the form ÔN |ψ〉, where
Ô is any translation invariant operator and |ψ〉 is a state
that admits a site-independent MPS representation. Moreover,
since the entanglement entropy of the AKLT tower of states
in Eq. (135) has a similar form as the entanglement entropy
in equal-momentum quasiparticle excited states of free-field
theories and certain integrable models [85–88], it is likely
that our formulas for the entanglement spectrum and entropy
holds in more general integrable and nonintegrable models
for equal-momentum quasiparticle excited states in the zero
density limit. We defer the exploration of equal and unequal
momentum quasiparticle excited states using our formalism in
a generic setting to future work. For the AKLT tower of states,
we also showed that the replica structure of the entanglement
spectra of the tower of states persists in the thermodynamic
limit only for states at a zero energy density, conforming with
folklore that only low-energy excitations resemble the ground
state. An interesting problem is to prove this on general
grounds for excited states in integrable and/or nonintegrable
models. Moreover, since the exact excited states of the AKLT
model have noninjective matrix-product expressions with fi-
nite bond dimensions, perhaps one could obtain a class of
noninjective matrix-product states that describe excited states,
similar to a classification of matrix-product ground states
[89,90].

We also studied finite-size effects in the entanglement
spectra of these states and showed a universal power-law
splitting between the different copies of the ground state. We
identified exact degeneracies and exponential splittings based
on projective versus linear transformations of the MPO ×
MPS at a finite size. While protected exact degeneracies in
the entanglement spectrum of excited states are reminiscent
of SPT phases for the ground states, it is unclear if these have
a topological origin in the excited states, given that excited
states do not have a protecting gap.

We emphasized that the states of the tower have an entan-
glement entropy that scales as S ∝ log L, which is incom-
patible with strong ETH, if these states indeed exist in the
bulk of the energy spectrum [42]. Further, we showed that
the violation of ETH seems to persist for SU(2) symmetric
spin-1 Hamiltonians slightly away from the AKLT point, and
we pointed out numerically apparent low-entropy states in the
pure Heisenberg model, far away from the AKLT point. How-
ever, a systematic numerical study of these low-entropy states
away from the AKLT point is necessitated, with and without
breaking the SU(2) symmetry. These special states, first ob-
tained in Ref. [42], provide analytically tractable examples
of “quantum many-body scars,” described in Refs. [39,74].
While such anomalous eigenstates are known to exist in
single-particle chaotic systems, very few examples are known
in many-body quantum systems [91]. An interesting problem
is to determine if these anomalous states play any interesting
role in the dynamics of the AKLT models [39,40,75].
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APPENDIX A: MATRIX PRODUCT STATES FOR SPIN-S
AKLT GROUND STATES

In this section, we derive the matrix product state (MPS)
representations and the structure of the transfer matrix for the
spin-S AKLT ground states with open boundary conditions
(OBC). We follow the derivation in Ref. [30]. Similar expres-
sions can be obtained by alternate methods in the literature
[60,92–96].

1. MPS

As mentioned in Sec. III, each spin-S can be viewed as two
symmetrized spin-S/2 bosons. The AKLT ground state is then
a product of spin-S/2 singlets, i.e., the J = 0 state formed by
two spin-S/2 on nearest neighbor spin-S (see Fig. 2). We use
the labels ui and vi to denote the Sz values of the left and right
spin-S/2 on site i, respectively (see Fig. 6). Thus the spin-S/2

singlet state |0 0〉
S
2
i,i+1 formed between the spin-S/2’s vi and

ui+1 can be written in the Sz basis of spin-S/2 (denoted by
|vi, ui+1〉 S

2
) as

|0 0〉S/2
i,i+1 =

S
2∑

α=− S
2

S
2
〈α,−α|0 0〉|α,−α〉i,i+1

≡
∑

vi ,ui+1

�
S
2
vi ,ui+1 |vi, ui+1〉 S

2
, (A1)

where s〈s1, s2|J Jz〉 is the Clebsch-Gordan coefficient for two
spin-s with Sz = s1 and Sz = s2 to form a state with total spin
J and Sz = Jz = s1 + s2. The matrix � thus assumes the form

�
S
2
αβ = S

2
〈α, β|0 0〉δα,−β, (A2)

where the indices −S/2 � α, β � S/2. For example, for S =
1 (the spin-1 AKLT ground state), we know that vi, ui+1 =
↑,↓ and the singlet |0 0〉

1
2
i,i+1 can be written as

|0 0〉
1
2
i,i+1 = |vi = ↑, ui+1 = ↓〉 − |vi = ↓, ui+1 = ↑〉√

2
.

(A3)

For S = 1, the matrix �
1
2 thus reads

�
1
2 =

(
0 1√

2
− 1√

2
0

)
. (A4)

In terms of these matrices, the spin-S AKLT ground state
|SG〉 S

2
in the spin- S

2 basis with OBC and the edge spins both
having Sz = S/2 (denoted by |S/2〉1 and |S/2〉L) reads

|SG〉 S
2

= |S/2〉1

L−1∏
i=1

|0 0〉
S
2
i,i+1|S/2〉L

=
∑

{ui ,vi }
δu1,

S
2
�

S
2
v1u2 . . . �

S
2
vL−1uL

δvL, S
2
|{ui, vi}〉 S

2
, (A5)

where |{ui, vi}〉 S
2

= |u1, v1, . . . , uL, vL〉 S
2
. The ground state

can be written in the onsite spin-S basis using a projector

P
(S, S

2 )
i to symmetrize the two spin-S/2 on each site, where

the projector reads

P
(S, S

2 )
i =

∑
mi

∑
uivi

M [mi ]
ui ,vi

|mi〉S S
2
〈ui, vi |, (A6)

where |mi〉S denotes the spin-S state on site i with Sz = mi .
The tensor M assumes the form

M
[m]
αβ = 〈S m|α, β〉 S

2
δm,α+β. (A7)

For example, for S = 1, the projector P
(1, 1

2 )
i reads

P
(1, 1

2 )
i = |mi = 1〉1 1

2
〈ui = ↑, vi = ↑|

+ |mi = 0〉1

1
2
〈ui = ↑, vi = ↓| + 1

2
〈ui = ↓, vi = ↑|

√
2

+ |mi = −1〉1 1
2
〈ui = ↓, vi = ↓|. (A8)

The matrices M for S = 1 thus read

M [1] =
(

1 0
0 0

)
,

M [0] =
(

0 1√
2

1√
2

0

)
, (A9)

M [−1] =
(

0 0
0 1

)
.

The projector on the full state, P (S, S
2 ) = ∏

i P
(S, S

2 )
i is then

P (S, S
2 ) =

∑
{mi }

∑
{uivi }

M [m1]
u1v1

. . . M [mL]
uLvL

|{mi}〉S S
2
〈{ui, vi}|,

(A10)

where |{mi}〉S = |m1,m2, . . . , mL〉S . The ground state in the
spin-S basis |SG〉S = P|SG〉 S

2
reads

|SG〉S =
∑
{mi }

∑
{ui ,vi }

(
δu1,S/2M

[m1]
u1v1

�
S
2
v1u2M

[m2]
u2v2

. . .

�
S
2
vL−1uL

M [mL]
uLvL

δvL,S/2
)|{mi}〉S

=
∑

{mi,ui }
bl

Au1
A[m1]

u1u2
. . . A[mL]

uL−1uL
br

uL
|{mi}〉S, (A11)
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where

A[m]
uiui+1

=
S
2∑

vi=− S
2

M [m]
uivi

�
S
2
viui+1 ,

(
bl

A

)
u1

= δS/2,u1 , (A12)

(
br

A

)
uL

=
S
2∑

vL=− S
2

(
�

S
2
)−1

uLvL
δvL,S/2 = (

�
S
2
)−1

uL,S/2.

Equation (A11) is the MPS representation of Eq. (3) for the
AKLT ground state. The matrices and boundary vectors of
the MPS are defined in Eq. (A12). The MPS tensors A can
be brought to a canonical form by ensuring that the largest
eigenvalue of the transfer matrix Eq. (8) is 1. For example,
using Eqs. (A4) and (A9), the spin-1 AKLT matrices after
normalization read

A[1] =
√

2

3

(
0 1
0 0

)
,

A[0] = 1√
3

(−1 0
0 1

)
, (A13)

A[−1] =
√

2

3

(
0 0

−1 0

)
.

The boundary vectors, up to an overall factor, read

bl
A =

(
1
0

)
, br

A =
(

0
1

)
. (A14)

To further study the structure of the matrix A, it is con-
venient to relabel the indices of �

S
2 and M in Eqs. (A2)

and (A7), respectively, to matrix indices as

�̃
S
2 cd ≡ � S

2 +1−c, S
2 +1−d , M̃

[m]
cd ≡ M

[m]
S
2 +1−c, S

2 +1−d,
, (A15)

such that the matrix indices satisfy 1 � c, d � S + 1. The

matrices �̃
S
2 and M̃ then read

�̃
S
2 cd = S

2

〈
S

2
+ 1 − c,

S

2
+ 1 − d

∣∣∣∣ 0 0

〉
,

(A16)

M̃
[m]
cd =

〈
S m

∣∣∣∣S2 + 1 − c,
S

2
+ 1 − d

〉
S
2

.

From Eqs. (A12) and (A16), the MPS tensor A[m] and the
boundary vectors bl

A and br
A can be computed to be

A
[m]
cd =

〈
S m

∣∣∣∣S2 + 1 − c, m −
(

S

2
+ 1 − d

)〉
S
2

× S
2

〈
S

2
+ 1 − c,−

(
S

2
+ 1 − d

)∣∣∣∣0 0

〉
δc−d,m (A17)(

bl
A

)
c

= δ1,c,
(
br

A

)
c
= δS+1,c, (A18)

where c and d are matrix indices. Thus there are (2S + 1)
(S + 1) × (S + 1) MPS matrices for the spin-S AKLT model.

2. Transfer matrix

We now derive the structure of the spin-S AKLT transfer
matrix. Denoting the expression for the MPS (A17) (after
rescaling the matrices such that the MPS is canonical, i.e., the

transfer matrix has a largest eigenvalue 1) as

A
[m]
cd = κmcdδc−d,m, (A19)

the corresponding transfer matrix [Eq. (25)] reads

Ecd,ef =
S∑

m=−S

κ∗
mcdκmef δc−d,mδe−f,m. (A20)

We can group the indices c, e (left ancilla) into a single index
x and the indices d, f (right ancilla) into y, as

x = (c − 1)(S +|, 1) + e, y = (d − 1)(S + 1) + f,

(A21)
where 1 � x, y � (S + 1)2. In terms of x and y, the transfer
matrix reads

Exy =
S∑

m=−S

γmxyδx,y+m(S+2), (A22)

where γmxy = κ∗
mcdκmef . Using Eq. (A17), κmcd = κmdc, and

thus A[m] is symmetric under the exchange of ancilla. Hence
the transfer matrix Exy is also symmetric. For example, the
spin-1 AKLT transfer matrix (after grouping the ancilla) reads

E =

⎛⎜⎜⎜⎝
1
3 0 0 2

3

0 − 1
3 0 0

0 0 − 1
3 0

2
3 0 0 1

3

⎞⎟⎟⎟⎠. (A23)

Moreover, since Exy is nonzero in Eq. (A22) only when
x mod(S + 2) = y mod(S + 2), the transfer matrix is block-
diagonal with blocks Ep formed by the following set of
indices:

{x, y|x mod(S + 2) = y mod(S + 2) = p + 1}. (A24)

That is, the transfer matrix E in Eq. (A22) has a direct sum
structure

E = E0 ⊕ E1 ⊕ · · · ⊕ ES+1, (A25)

where Ep is a block with dimension � S2+2S−p

S+2 � + 1. Conse-
quently, E0 is the largest block, with a dimension (S + 1). For
example, in the transfer matrix of Eq. (A23), the blocks E0,
E1 and E2 read

E0 =
(

1
3

2
3

2
3

1
3

)
, E1 =

(
−1

3

)
, E2 =

(
−1

3

)
. (A26)

This block-diagonal structure of the transfer matrix im-
poses a constraint on the structure of its generalized eigen-
vectors. In particular, for the largest block E0, the eigenvalue
equation for the transfer matrix (without the ancilla combined)
of Eq. (A20) reads∑

df

Ecd,ef vαdf δdf = λαvαceδce. (A27)

Thus the eigenvectors of the E corresponding to the block E0

are diagonal when viewed as χ × χ matrices. In particular,
since the MPS is in the canonical form, 1χ×χ is an eigenvector
of E corresponding to the eigenvalue of unit magnitude.
Thus the largest eigenvalue belongs to the block E0 with
eigenvalue 1.
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APPENDIX B: MPO OF THE AROVAS OPERATORS

To represent the Arovas A and B MPOs compactly, we first
define the notation

S =
(

S+
√

2

S−
√

2
Sz

)
,

S =
(

S−
√

2

S+
√

2
Sz

)T

. (B1)

Using Eq. (B1), we first obtain

�Sj · �Sj+1 = Sj Sj . (B2)

Consequently, the MPO for the Arovas A operator of Eq. (49),

OA =
L−1∑
j=1

(−1)j Sj Sj+1 (B3)

reads

MA =
⎛⎝−1 −S 0

0 0 S
0 0 1

⎞⎠, (B4)

where 0 denotes zero matrices of appropriate dimensions.
Using Eq. (B2), the Arovas B operator of Eq. (52) can be

written as

ÔB =
L−1∑
j=2

(−1)j {Sj−1 Sj , Sj Sj+1}

=
L−1∑
j=2

(−1)j (Sj−1(Sj ⊗ Sj )Sj+1 + Sj−1(Sj ⊗ Sj )Sj+1)

=
L−1∑
j=2

(−1)j {Sj−1T j Sj+1}, (B5)

where

T ≡ S ⊗ S + S ⊗ S =

⎛⎜⎜⎝
{S−,S+}

2 (S−)2 {S−,Sz}√
2

(S+)2 {S+,S−}
2

{S+,Sz}√
2

{Sz,S+}√
2

{Sz,S−}√
2

2SzSz

⎞⎟⎟⎠. (B6)

Using Eq. (B5), the MPO for the Arovas B operator reads

MB =

⎛⎜⎜⎝
−1 −S 0 0
0 0 T 0
0 0 0 S
0 0 0 1

⎞⎟⎟⎠, (B7)

where 0 denotes zero matrices of appropriate dimensions.

APPENDIX C: EXACT ENTANGLEMENT SPECTRUM FOR THE SPIN-2 MAGNON OF THE SPIN-1 AKLT MODEL

In this section, we explicitly work out the exact expression for the entanglement spectrum of the spin-2 magnon in the spin-1
model, the simplest excited state. The MPS bond dimension χ , the MPO bond dimension χm and the MPO × MPS bond
dimension ϒ are

χ = 2, χm = 2, ϒ = 4. (C1)

Substituting C = (S+)2 and k = π in Eq. (71), the transfer matrix F reads

F =

⎛⎜⎝E E+ E− E−+
0 −E 0 −E−
0 0 −E −E+
0 0 0 E

⎞⎟⎠, (C2)

where

E+ ≡ E(S+ )2 E− ≡ E(S− )2 E−+ ≡ E(S− )2(S+ )2 , (C3)
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shown in Eq. (E3). We refer to the blocks of F as the MPS blocks.
The Jordan decomposition of F reads

F = PJP −1, (C4)

where J (obtained using symbolic calculations) reads

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 − 1

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 − 1

3 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 − 1

3 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C5)

and P , P −1 read

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 0 0 0 0 0 0 − 3
2 0 0 − 3

2
0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 − 3

2 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 − 3

2 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 3

2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

2 0
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 1

2 0 0 0 0 0 0 0 0 1
4 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0

− 1
2 0 0 1

2 0 0 0 0 0 0 0 0 − 1
4 0 0 0

0 0 0 0 1
2 0 0 1

2 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 − 1

2 0 0 1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1

2 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 1

6
0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0
0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 − 1
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C6)
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where in J , P , and P −1 the lines demarcate the MPS blocks. Using Eq. (C5), the truncated Jordan block Junit [defined in Eq. (78)]
reads

Junit =

⎛⎜⎝1 0 0 1
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎠. (C7)

Using P and P −1 in Eq. (C6), VL and VR define in Eq. (83) read

VR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 3
2

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 3
0 0 0 0
0 0 0 0
0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, VL =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0
0 0 0 0
0 0 0 0
1
2 0 0 0

0 1
2 0 0

0 0 0 0
0 0 0 0
0 1

2 0 0

0 0 1
2 0

0 0 0 0
0 0 0 0
0 0 1

2 0
1
4 0 0 1

6
0 0 0 0
0 0 0 0
0 0 0 1

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C8)

For simplicity, we assume that the boundary spin-1/2 are
in the Sz = +1/2 configuration. Consequently, the boundary
vectors read [see Eq. (26)]

bl
A =

(
1
0

)
, br

A =
(

0
1

)
. (C9)

Consequently, using Eqs. (68) and (43), we obtain the 16-
dimensional boundary vectors of the transfer matrix whose
components read

(
bl

F

)
i
= δi,1,

(
br

F

)
i
= δi,16. (C10)

Using

J n
unit =

⎛⎜⎝1 0 0 n

0 (−1)n 0 0
0 0 (−1)n 0
0 0 0 1

⎞⎟⎠, (C11)

VR and VL from Eq. (C8) and the boundary vectors from
Eq. (C10), Runit and Lunit in Eq. (85) (when viewed as ϒ2-

dimensional vectors) read

Runit =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n
6 − 1

4
0
0
n
6

0
0
0
0
0
0
0
0
1
2
0
0
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Lunit =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0
0
1
2

0
0
0
0
0
0
0
0
n
6
0
0

− 1
4 + n

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C12)

where the lines demarcate the MPS blocks. Runit and Lunit

can be viewed as ϒ × ϒ matrices, where the MPS blocks
are reshaped separately. That is, the reshaped ϒ × ϒ matrices
Runit and Lunit read

Runit =

⎛⎜⎜⎝
n
6 − 1

4 0 0 0
0 n

6 0 0

0 0 1
2 0

0 0 0 1
2

⎞⎟⎟⎠,

Lunit =

⎛⎜⎜⎝
1
2 0 0 0
0 1

2 0 0
0 0 n

6 0
0 0 0 n

6 − 1
4

⎞⎟⎟⎠. (C13)
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The (normalized) density matrix ρred [defined in Eq. (18)] then
reads

ρred = LunitRT
unit =

⎛⎜⎜⎝
2n−3
8n−6 0 0 0

0 n
4n−3 0 0

0 0 n
4n−3 0

0 0 0 2n−3
8n−6

⎞⎟⎟⎠. (C14)

We now illustrate the same derivation of Lunit and Runit

using the procedure shown in Eqs. (86) to (92). The columns
of VR and VL (after reshaping the MPS and MPO spaces
separately) are ϒ × ϒ matrices that read

r1 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠, r2 =

⎛⎜⎝0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎠,

r3 =

⎛⎜⎝0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞⎟⎠, r4 =

⎛⎜⎜⎝
− 3

2 0 0 0
0 0 0 0
0 0 3 0
0 0 0 3

⎞⎟⎟⎠,

l1 =

⎛⎜⎜⎝
1
2 0 0 0
0 1

2 0 0
0 0 0 0
0 0 0 1

4

⎞⎟⎟⎠, l2 =

⎛⎜⎜⎝
0 0 1

2 0
0 0 0 1

2

0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

l3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
1
2 0 0 0
0 1

2 0 0

⎞⎟⎟⎠, l4 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 1
6 0

0 0 0 1
6

⎞⎟⎟⎠.

(C15)

The components of WR and WL [defined in Eqs. (87) and (88)]
are computed using Eq. (91). Junit can be written as

Junit = J0 ⊕ J−1 ⊕ J1, (C16)

where the blocks read

J0 =
(

1 1
0 1

)
, J−1 = (−1), J1 = (−1). (C17)

The sizes {|Jk|} and generalized eigenvalues {λk} associated
with the Jordan blocks {Jk} are

|J−1| = 1, |J0| = 2, |J1| = 1,

λ−1 = −1, λ0 = 1, λ1 = −1, (C18)

and the corresponding generalized eigenvectors associated
with the Jordan blocks are

r
(J0 )
1 = r1, r

(J0 )
2 = r4, r

(J−1 )
1 = r2, r

(J1 )
1 = r3,

l
(J0 )
1 = l1, l

(J0 )
2 = l4, l

(J−1 )
1 = l2, l

(J1 )
1 = l3. (C19)

Using Eqs. (91), (C18), and (C19), we obtain

R1 = r1, L1 = l1 + nl4,

R2 = (−1)nr2, L2 = (−1)nl2,

R3 = (−1)nr3, L3 = (−1)nl3,

R4 = nr1 + r4, L4 = l4. (C20)

Using Eqs. (C20) and (C15), we obtain

R1 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠,

R2 =

⎛⎜⎝0 0 (−1)n 0
0 0 0 (−1)n

0 0 0 0
0 0 0 0

⎞⎟⎠,

R3 =

⎛⎜⎝ 0 0 0 0
0 0 0 0

(−1)n 0 0 0
0 (−1)n 0 0

⎞⎟⎠,

R4 =

⎛⎜⎜⎝
− 3

2 + n 0 0 0
0 n 0 0
0 0 3 0
0 0 0 3

⎞⎟⎟⎠,

L1 =

⎛⎜⎜⎝
1
2 0 0 0
0 1

2 0 0

0 0 1
4 + n

6 0
0 0 0 n

6

⎞⎟⎟⎠,

L2 =

⎛⎜⎜⎝
0 0 (−1)n

2 0
0 0 0 (−1)n

2

0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

L3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0

(−1)n

2 0 0 0
0 (−1)n

2 0 0

⎞⎟⎟⎠,

L4 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 1
6 0

0 0 0 1
6

⎞⎟⎟⎠. (C21)

Using Eqs. (C15), (C10), and (86), the modified boundary
vectors read

βr
F =

⎛⎜⎜⎝
0
0
0
1
6

⎞⎟⎟⎠, βl
F =

⎛⎜⎜⎝
1
0
0

− 3
2

⎞⎟⎟⎠. (C22)

Consequently, using Eqs. (C21), (C22), and (89), Runit and
Lunit read

Runit = R1
(
βr

F

)
1 + R2

(
βr

F

)
2 + R3

(
βr

F

)
3 + R4

(
βr

F

)
4

= R4

6
,

Lunit = L1
(
βl

F

)
1 + L2

(
βl

F

)
2 + L3

(
βl

F

)
3 + L4

(
βl

F

)
4

= L1 − 3L4

2
, (C23)

which are precisely the matrices in Eq. (C13). Note that in all
our examples in the text, the form of the βr

F and βl
F do not

matter to the entanglement spectrum in the limit n → ∞.
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APPENDIX D: JORDAN NORMAL FORM OF BLOCK
UPPER TRIANGULAR MATRICES

In this section, we describe a procedure to determine the
structure of generalized eigenvalues, eigenvectors and Jordan
normal forms of particular block upper triangular matrices
that arise in the analysis of the MPO × MPS states in the
text. The systematic construction of Jordan normal forms
for general matrices has been discussed in existing literature
[97,98]. In this section, we consider a block upper triangular
matrix of the form

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M11 M12 M13 . . . M1D

0 M22 M23
. . . M2D

...
. . .

. . .
. . .

...
...

. . .
. . . MD−1,D−1 MD−1,D

0 . . . . . . 0 MDD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D1)

where diagonal submatrices Mii’s are χ × χ diagonalizable
matrices that have at most a single nondegenerate eigenvalue
of magnitude 1. We assume d of the diagonal submatrices
have an eigenvalue of magnitude 1, and they are written as
{Mσ (i),σ (i), 1 � i � d}, where

σ : {1, . . . , d} → {1, . . . , D},
σ (i) = j ⇒ Mjj is the ith block with

eigenvalue of magnitude 1. (D2)

Furthermore, we restrict ourselves to determining the Jordan
block structure of generalized eigenvalues of unit magnitude
and the structure of the corresponding generalized eigenvec-
tors.

1. Generalized eigenvalues

We first derive the generalized eigenvalues of M using its
characteristic equation. Note that for any λ,

det(M − λ1Dχ ) =
D∏

i=1

det(Mii − λ1χ ). (D3)

Thus the generalized eigenvalues of M are the eigenvalues of
its submatrices on the diagonal. However, as we will see, an
eigenvector of M corresponding to an eigenvalue λα need not
exist, particularly due to the upper triangular structure of M.
In such a case, M is not diagonalizable, λα is called a gener-
alized eigenvalue, and corresponding generalized eigenvector
exists. In general, a Jordan decomposition of M of the form

M = P J P−1 (D4)

always exists, where J is the Jordan normal form of M, the
columns of P are the right generalized eigenvectors of M
and the rows of P−1 are its left generalized eigenvectors.
Since P−1 P = 1Dχ , the conventional form for the general-
ized eigenvectors of M is

lT
α rβ = δαβ, (D5)

where lα and rβ are left and right generalized eigenvectors
of M, the rows and columns of P−1 and P , respectively. We

now derive the form of lα and rβ when M has the form of
Eq. (D1).

The Jordan normal form J of M is related to M by means
of a similarity transformation, that is,

J = P−1 M P . (D6)

Thus we can construct J , P and P−1 by sequentially perform-
ing similarity transformations on M to reduce it to a Jordan
normal form. A similarity transformation on a matrix B using
a matrix A is defined as the transformation

B → A−1BA. (D7)

Before we show the explicit construction of the Jordan normal
form, we summarize the three main steps that we use to
proceed:

(I) A similarity transformation of M using a block-
diagonal matrix �. The resultant matrix is �(1,2),

�(1,2) = �−1 M�. (D8)

�(1,2) has the form

�(1,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �
(1,2)
12 �

(1,2)
13 . . . �

(1,2)
1D

0 �22 �
(1,2)
23

. . . �
(1,2)
2D

...
. . .

. . .
. . .

...

...
. . .

. . . �D−1,D−1 �
(1,2)
D−1,D

0 . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D9)

where �ii is the eigenvalue matrix of Mii .
(II) A similarity transformation is then applied to �(1,2)

using a carefully chosen block-upper triangular matrix O,
such that

� = O−1�(1,2) O, (D10)

where � can be written as

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 �13 . . . �1D

0 �22 �23
. . . �2D

...
. . .

. . .
. . .

...
...

. . .
. . . �D−1,D−1 �D−1,D

0 . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D11)

where

(�ij )αβ �= 0 ⇒ (�ii )αα = (�jj )ββ, i < j. (D12)

O in Eq. (D10) has the form

O =
D∏

j=2

⎛⎝ 1∏
i=j−1

O ij

⎞⎠, (D13)
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where O ij and O−1
ij , respectively, read

O ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . Oij

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
i rows,

︸ ︷︷ ︸
j columns

O−1
ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . −Oij

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
i rows

︸ ︷︷ ︸
j columns (D14)

(III) A similarity transformation S of the form is applied
to � to obtain the Jordan normal form J , such that

J = S−1�S. (D15)

2. Step I

We first transform M to an upper triangular matrix (from a
block upper triangular matrix) by a similarity transformation
using the block-diagonal matrix �, defined as

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�11 0 · · · · · · 0

0 �22
. . .

. . . 0
...

. . .
. . .

. . .
...

...
. . . 0 �D−1,D−1 0

0 · · · · · · 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D16)

where

Mjj = �jj�jj�
−1
jj , 1 � j � D, (D17)

where �jj ’s are diagonal matrices consisting of the eigenval-
ues of Mjj ’s. Consequently, the upper triangular matrix �(1,2)

is of the form of Eq. (D9), where

�
(1,2)
ij ≡ �−1

ii Mij�jj , 1 � i < j � D. (D18)

Since the �jj ’s are diagonal matrices, �(1,2) is an upper
triangular matrix.

3. Step II

We first prove a useful lemma.
Lemma D1. An equation of the form

Y = C + �1X − X�2, (D19)

where �1 and �2 are diagonal matrices with (�1)αα =
θ1α and (�2)αα = θ2α , admits solutions to X and Y that

read

Xαβ =
{

Cαβ

θ2β−θ1α
if θ1α �= θ2β

0 if θ1α = θ2β

,

Yαβ =
{

0 if θ1α �= θ2β

Cαβ if θ1α = θ2β
. (D20)

Proof. Writing the components of Eq. (D19),

θ1αXαβ + Cαβ = Yαβ + Xαβθ2β, (D21)

where θ1α and θ2α are the diagonal entries of �1 and �2 (here
eigenvalues of M11 and M22 respectively). As long as θ2β �=
θ1α , a solution of Eq. (D21) is obtained using

Xαβ = Cαβ

θ2β − θ1α

, Yαβ = 0. (D22)

While Eq. (D22) is not the unique solution to Eq. (D21), as we
illustrate later in this section, this particular solution chosen
so that the � matrix we obtain in step II satisfies Eq. (D12).
However, if θ1α = θ2β , again using Eq. (D21), we obtain as a
solution

Xαβ = 0, Yαβ = Cαβ. (D23)

�

a. D = 2 case

We first illustrate the similarity transformation of �(1,2) to
� when D = 2. Here the matrix �(1,2) reads

�(1,2) ≡ �−1 M� =
(

�11 �
(1,2)
12

0 �22

)
, (D24)

where

�
(1,2)
12 = �−1

11 M12�22. (D25)

To obtain the Jordan normal form, we further apply a similar-
ity transformation using O12 defined as

O12 ≡
(
1 O12

0 1

)
. (D26)

The resulting matrix � reads

� ≡ O−1
12 �(1,2) O12 =

(
�11 �12

0 �22

)
, (D27)

where

�12 = �
(1,2)
12 + �11O12 − O12�22. (D28)

Equation (D28) is of the form of Eq. (D19) with

C = �
(1,2)
12 = �−1

11 M12�22, �1 = �11,

�2 = �22, X = O12, Y = �12, (D29)

where we need to solve for X and Y . Thus, using lemma D1
and Eq. (D20), we obtain a solution to �12 that satisfies

(�12)αβ �= 0 only if (�11)αα = (�22)ββ. (D30)

Thus � satisfies the property of Eq. (D12).
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b. General D case

To make our derivation simpler, we first define the matrices

�(i,j ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 · · · · · · �1,j−1 �
(i,j )
1j · · · �

(i,j )
1D

0 �22
. . .

. . .
. . .

...
. . .

...
...

. . .
. . .

. . .
. . . �

(i,j )
i−1,j

. . .
...

...
. . .

. . .
. . .

. . . �ij

. . .
...

...
. . .

. . .
. . .

. . .
...

. . .
...

...
. . .

. . .
. . .

. . . �jj

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . �
(i,j )
D−1,D

0 . . . . . . . . . . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D31)

where �mn’s are matrices that satisfy the property of Eq. (D12). To show that a � of the form of Eq. (D11) whose off-diagonal
blocks satisfy the property of Eq. (D12), we proceed via induction on D and assume that an intermediate matrix has the
form

�(D−1,D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 · · · �1,D−1 �
(D−1,D)
1D

0 �22 �23
. . . �

(D−1,D)
2D

...
. . .

. . .
. . .

...
...

. . .
. . . �D−1,D−1 �

(D−1,D)
D−1,D

0 . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D32)

where �ij , 1 � i < j � D − 1 satisfy the property of
Eq. (D12). We apply a similarity transformation to �(D−1,D)

using OD−1,D that has the structure shown in Eq. (D14):

OD−1,D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0

0 1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 1 OD−1,D

0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (D33)

The resulting matrix �(D−2,D) reads

�(D−2,D)

≡ O−1
D−1,D�(D−1,D) OD−1,D

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 · · · �1,D−1 �
(D−2,D)
1D

0 �22 �23
. . .

...
...

. . .
. . .

. . . �
(D−2,D)
D−2,D

...
. . .

. . . �D−1,D−1 �D−1,D

0 . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D34)

where

�D−1,D = �
(D−1,D)
D−1,D + �D−1,D−1OD−1,D − OD−1,D�DD,

(D35)

and �
(D−2,D)
lm ’s are matrices irrelevant to the current discus-

sion. Note that this similarity transformation using OD−1,D

only affects the blocks in the Dth column (i.e., the �ij ’s are
not modified). Equation (D35) is of the form of Eq. (D19)
where

C = �
(D−1,D)
D−1,D , �1 = �D−1,D−1, �2 = �DD,

X = OD−1,D, Y = �D−1,D. (D36)

Thus, using lemma D1 and Eq. (D20), Eq. (D35) has a
solution for �D−1,D that satisfies the property of Eq. (D12).

We then apply another induction hypothesis on the last
column and assume that an intermediate matrix �(l,D) has the
structure

�(l,D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 · · · · · · �1,D−1 �
(l,D)
1D

0 �22 �23
. . .

. . .
...

...
. . .

. . .
. . .

. . . �
(l,D)
l−1,D

...
. . .

. . .
. . .

. . . �
(l,D)
lD

...
. . .

. . .
. . .

. . . �l+1,D

...
. . .

. . .
. . . �D−1,D−1

...

0 . . . . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D37)
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where �ij ’s satisfy the property of Eq. (D12). Applying a
similarity transformation using O lD , we obtain a resulting
matrix �(m+1) that reads

�(l−1,D)

≡ O−1
lD �(l,D) O lD

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �12 · · · · · · �1,D−1 �
(l−1,D)
1D

0 �22 �23
. . .

. . .
...

...
. . .

. . .
. . .

. . . �
(l−1,D)
l−1,D

...
. . .

. . .
. . .

. . . �lD

...
. . .

. . .
. . .

. . . �l+1,D

...
. . .

. . .
. . . �D−1,D−1

...

0 . . . . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D38)

where

�lD = �
(l,D)
lD + �llOlD − OlD�DD, (D39)

and �
(l−1,D)
kn ’s are irrelevant matrices. Once again the sim-

ilarity transformation using O lD only changes the first l

blocks on the Dth column, leaving the rest of the blocks
unchanged. Eq. (D39) has the form of Eq. (D19) and thus,
using Eq. (D20), �lD satisfies the property of Eq. (D12).

c. Summary

In summary, to obtain � of Eq. (D32) from Eq. (D9),
a sequence of D(D − 1)/2 − 1 similarity transformations is
applied to �(1,2), where each one transforms a single off-
diagonal block into an off-diagonal block of � that satisfies
the property of Eq. (D12). This operation is applied column-
wise starting from second column, and row-wise in each
column starting from the off-diagonal block closest to the
diagonal. Thus the sequence of similarity transformations that
leads to � reads

�(1,2) O12−−→ �(2,3) O23−−→ �(1,3) O13−−→ �(3,4) O34−−→ · · ·
O ij−→ · · · O2D−−→ �(1,D) O1D−−→ �, (D40)

where we have used the notation

A
B−→ C ⇒ C = B−1AB, (D41)

Thus the similarity transformation from �(1,2) to � has the
form of Eq. (D10), where Eq. (D13) holds. At each step the
matrix Omn and �mn are determined as solutions to Eq. (D19)
of the form Eq. (D20), where

C = �(m,n)
mn , �1 = �mm, �2 = �nn,

X = Omn, Y = �mn. (D42)

Thus

(Omn)αβ =
⎧⎨⎩0 if (�mm)αα = (�nn)ββ

(�(m,n)
mn )αβ

(�nn )ββ−(�mm )αα
if (�mm)αα �= (�nn)ββ

,

(�mn)αβ ≡
{(

�(m,n)
mn

)
αβ

if (�mm)αα = (�nn)ββ

0 if (�mm)αα �= (�nn)ββ

.

(D43)

For future convenience, the second line in Eq. (D43) can be
written as

�mn ≡ T
[
�(m,n)

mn ,�mm,�nn

]
, (D44)

where we have defined a function T [A,B,C] that acts on
matrices A, B, C:

(T [A,B,C])αβ =
{
Aαβ if Bαα = Cββ

0 if Aαα �= Bββ

. (D45)

We now discuss a few properties of �mn that will be
useful later in the paper. To determine the structure of �mn in
Eq. (D43), it is thus useful to study the dependence of �(m,n)

mn

on the blocks of �(1,2). In Eq. (D40), if �(i,j ) O ij−→ �(i ′,j ′ )

(�(i ′,j ′ ) = O−1
ij �(i,j ) O ij ), then using Eqs. (D31) and (D14),

we obtain

�
(i ′,j ′ )
st =

⎧⎪⎪⎨⎪⎪⎩
�

(i,j )
st + �

(i,j )
si Oit if s < i, t = j

�
(i,j )
st − Osj�

(i,j )
j t if s = i, t > j

�
(i,j )
st otherwise

, (D46)

where, by abuse of notation, �
(i,j )
st is the block on the sth

row and t-th column of �(i,j ). When the blocks of �(i ′,j ′ )

are written in terms of the blocks of �(i,j ), we observe the
following properties from Eq. (D46). (P1) Oij appears only in

the expressions for the blocks �
(i ′,j ′ )
it ’s for t > j and �

(i ′,j ′ )
sj ’s

for i > s. (P2) �
(i ′,j ′ )
st depends only on the blocks �

(i,j )
si and

�
(i,j )
j t of �(i,j ).
As a consequence of property (P1), the similarity trans-

formations O ij modify �(1,2)
mn only when i = m, j < n or

i > m, j = n, i.e., when (i, j ) is directly below or directly
to the left of (m, n). Thus, using the sequence of similarity
transformations of Eq. (D40) and the structure of �(i,j ) in
Eq. (D31), the expression for �(m,n)

mn can be written as follows:

�(m,n)
mn = �(1,2)

mn +
n−1∑
t=m

�mtOtn −
n−1∑
t=m

Omt�
(m,t )
tn . (D47)

As a consequence of Eq. (D47) and property (P2), when the
blocks of �(m,n) are written in terms of the blocks of �(1,2)

and {Oij } using the sequence of similarity transformations of
Eq. (D40), �(m,n)

mn is of the form

�(m,n)
mn = �(1,2)

mn + f
({

�
(1,2)
ij }; {�kk

})
,

m � i < j � n, m � k � n, (i, j ) �= (m, n),

(D48)
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where f is a function of matrices that depends on the blocks within the following boxed region of �(1,2):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 �
(1,2)
12 · · · · · · · · · · · · · · · · · · · · · �

(1,2)
1D

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . . �mm �

(1,2)
m,m+1 · · · �(1,2)

mn

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
. . . �

(1,2)
n−1,n

...
...

. . .
. . .

. . .
. . .

. . . �nn

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . �

(1,2)
D−1,D

0 . . . . . . . . . . . . . . . . . . . . . 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D49)

Note that we could expect the function f in Eq. (D48) to
depend on Oij ’s involved in the sequence of similarity trans-
formations in Eq. (D40). However, every Oij is determined
using Eq. (D43), and thus it depends on �

(i,j )
ij , �ii , and �jj ,

that are already included in {�(1,2)
ij } and {�kk} in Eq. (D48).

We now derive a useful property of the function f in
Eq. (D48). For simplicity, we refer to the resulting matrix as
f , i.e., f ({�(1,2)

ij }; {�kk}) ≡ f . As evident from Eq. (D43),

the block structure of �
(i,j )
ij is preserved in Oij and �ij . Thus,

by repeated applications of Eqs. (D47) and (D48), we deduce
the following.

(f1) If every off-diagonal block �
(1,2)
ij that appears in the

argument of f can be written as �
(1,2)
ij = 0 ⊕ Lij , where 0

is the zero matrix and Lij ’s are some nonzero matrices with
identical dimensions, then f can be written as f = 0 ⊕ g

where g has the same dimension as the Lij ’s.
For example, if all the off-diagonal blocks within the boxed

region in Eq. (D49) are of the form

�
(1,2)
ij =

⎛⎜⎜⎝
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . . ∗

0 ∗ · · · ∗

⎞⎟⎟⎠,

m � i < j � n, (i, j ) �= (m, n), (D50)

then f ({�(1,2)
ij }; {�kk}) of Eq. (D48) has the same structure as

the �
(1,2)
ij ’s in Eq. (D50) irrespective of the �kk’s. Thus, using

Eq. (D44), the block �mn of � is related to the blocks of �(1,2)
mn

as

�mn = T
[
�(1,2)

mn + f
({

�
(1,2)
ij

}
; {�kk}

)
,�mm,�nn

]
,

m � i < j � n, m � k � n, (i, j ) �= (m, n), (D51)

where the function T is defined in Eq. (D45) and the function
f satisfies property (f1).

4. Step III

We now proceed to the final step of similarity transforma-
tions to obtain the Jordan normal form J . Note that Eq. (D12)
imposes a direct sum structure on �, which we write as

� =
⊕

k

�k, (D52)

where �k is an upper triangular matrix with all its diago-
nal entries λk , an eigenvalue of M. Consequently, similarity
transformations can be applied separately to each of the �k’s
to obtain the Jordan normal form. That is, one can apply a
similarity transformation on � using

S ≡
⊕

k

Sk (D53)

such that the Jordan normal form J of M reads

J = S−1�S =
⊕

k

Jk, (D54)

where

Jk = S−1
k �kSk. (D55)

Jk is a Jordan block of M corresponding to eigenvalue λk .
Combining Eqs. (D8), (D10), and (D15), M can be written as

M = P J P−1, (D56)

where

P ≡ QS, Q ≡ �

D∏
j=2

⎛⎝ 1∏
i=j−1

O ij

⎞⎠. (D57)
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Using Eqs. (D8), (D16), (D14), and (D57), Q and Q−1 read

Q = �

D∏
j=2

1∏
i=j−1

O ij

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�11 ∗ · · · · · · ∗
0 �22

. . .
. . . ∗

...
. . .

. . .
. . .

...
...

. . . 0 �D−1,D−1 ∗
0 · · · · · · 0 �DD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Q−1 =
2∏

j=D

j−1∏
i=1

O−1
ij �−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�−1
11 ∗ · · · · · · ∗
0 �−1

22

. . .
. . . ∗

...
. . .

. . .
. . .

...
...

. . . 0 �−1
D−1,D−1 ∗

0 · · · · · · 0 �−1
DD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D58)

where ∗’s are matrices whose structure we will not need for
the discussion in the main text.

5. Structure of generalized eigenvectors

We now study the columns (respectively, rows) of P (re-
spectively, P−1) that are the generalized eigenvectors corre-
sponding to the generalized eigenvalues of unit magnitude.
For �, S, J , it is convenient to write Eqs. (D52)–(D54) as

� = �unit ⊕ �rest, S = Sunit ⊕ Srest, J = Junit ⊕ Jrest,

(D59)

where

�unit =
⊕

{k:|λk |=1}
�k, �rest =

⊕
{k:|λk |�=1}

�k,

Sunit =
⊕

{k:|λk |=1}
Sk, Srest =

⊕
{k:|λk |�=1}

Sk, (D60)

Junit =
⊕

{k:|λk |=1}
Jk, Jrest =

⊕
{k:|λk |�=1}

Jk.

Indeed, only the generalized eigenvalues of magnitude one
are relevant in our case and we have assumed that each Mii

has at most one such eigenvalue (note that this does not mean
that these eigenvalues are identical). Since � has a direct sum
structure shown in Eq. (D59), M can be written as

M = Qunit�unitQ̃unit + Qrest�restQ̃rest, (D61)

where Qunit, Q̃unit, Qrest, and Q̃rest are rectangular matrices
such that the columns (respectively, rows) of Qunit (respec-
tively, Q̃unit) and Qrest (respectively, Q̃rest) act on the sub-
spaces of �unit and �rest, respectively.

Since � has the structure shown in Eq. (D11) and only
the blocks Mσ (i),σ (i) (and consequently �σ (i),σ (i)), 1 � i � d

contain eigenvalues of magnitude 1, using Eq. (D58) Qunit and
Q̃unit have d rows and columns, respectively, and are of the

forms

Qunit = (qσ (1) qσ (2) · · · qσ (d ) ), Q̃unit =

⎛⎜⎜⎜⎝
q̃σ (1)

q̃σ (2)
...

q̃σ (d )

⎞⎟⎟⎟⎠,

(D62)

where

qσ (i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
...
∗

rσ (i)

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎬⎪⎭ σ (i) − 1,

q̃σ (i) = (
0 · · · 0 lTσ (i) ∗ · · · ∗ )︸ ︷︷ ︸

d−σ (i)+1

(D63)

where {rj } (respectively, {lj }) are right (respectively, left) gen-
eralized eigenvectors of {Mjj } corresponding to the general-
ized eigenvalues of unit magnitude. Further, using Eqs. (D55)
and (D61) can be written as

M = PunitJunitP̃unit + PrestJrestP̃rest, (D64)

where

Punit ≡ QunitSunit, P̃unit ≡ S−1
unitQ̃unit,

Prest ≡ QrestSrest, P̃rest ≡ S−1
restQ̃rest. (D65)

Since Qunit and Q̃unit have the forms shown in Eqs. (D62)
and (D63), using Eq. (D65), we obtain that

Punit = (sσ (1)qσ (1) sσ (2)qσ (2) · · · sσ (d )qσ (d ) ),

P̃unit =

⎛⎜⎜⎜⎜⎜⎝
q̃σ (1)

sσ (1)

q̃σ (2)

sσ (2)

...
q̃σ (d )

sσ (d )

⎞⎟⎟⎟⎟⎟⎠,

if Sunit is upper triangular and has the form

Sunit =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

sσ (1) ∗ · · · · · · ∗
0 sσ (2)

. . .
. . . ∗

...
. . .

. . .
. . .

...
...

. . . 0 sσ (d−1) ∗
0 · · · · · · 0 sσ (d )

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D66)

where the si’s are nonzero constants. Thus, when Sunit is upper
triangular with all nonzero diagonal entries on its diagonal,
the left and right generalized eigenvectors corresponding to
generalized eigenvalues of unit magnitude have the following
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forms:

rj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
...
∗

cj rj

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, lj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
lj
cj

∗
...
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D67)

where rj and lj are the left and right eigenvectors of Mjj

corresponding to eigenvalue of unit magnitude, and cj is a
nonzero constant that need not be the same as sj since lj and rj

can be rescaled freely in a way that lTj rj = 1. In Appendix F,
we show that for the examples we work with in the text,
Sunit is indeed a diagonal matrix, thus imposing the forms of
Eq. (D67) on the left and right generalized eigenvectors of
those transfer matrices. For the construction of the matrix S
in general, we refer to discussions in Ref. [98].

6. Exact example with D = 2

We now illustrate the above results with the help of an
example. We consider the following block-upper triangular
matrix:

M =

⎛⎜⎝4 −1 4 3
6 −1 2 6
0 0 46 −30
0 0 63 −41

⎞⎟⎠, (D68)

where the diagonal blocks are

M11 =
(

4 −1
6 −1

)
, M22 =

(
46 −30
63 −41

)
, (D69)

and the off-diagonal block M12 is

M12 =
(

4 3
2 6

)
. (D70)

The eigenvalue decompositions of M11 and M22 read

M11 = �11�11�
−1
11 , M22 = �22�22�

−1
22 , (D71)

where

�11 =
(

1 0
0 2

)
, �22 =

(
1 0
0 4

)
,

�11 =
(

1 1
3 2

)
, �22 =

(
4 5
6 7

)
. (D72)

Since both M11 and M22 have eigenvalues 1, we have σ (i) = i

and d = D in Eq. (D2). Consequently, applying the similarity
transformation of Eq. (D8) using

� =

⎛⎜⎝1 1 0 0
3 2 0 0
0 0 4 5
0 0 6 7

⎞⎟⎠, (D73)

we obtain

�(1,2) = �−1 M� =

⎛⎜⎝1 0 −24 −30
0 2 58 71
0 0 1 0
0 0 0 4

⎞⎟⎠. (D74)

Using Eqs. (D26), (D29), and (D20), O of Eq. (D13) reads

O =

⎛⎜⎜⎝
1 0 0 −10
0 1 −58 71

2

0 0 1 0
0 0 0 1

⎞⎟⎟⎠. (D75)

Then, using the similarity transformation of Eq. (D27), we
obtain

� = O−1�(1,2) O =

⎛⎜⎝1 0 −24 0
0 2 0 0
0 0 1 0
0 0 0 4

⎞⎟⎠. (D76)

� in Eq. (D76) has the direct sum structure of Eq. (D59),
where

�unit =
(

1 −24
0 1

)
, �rest =

(
2 0
0 4

)
. (D77)

To obtain the Jordan normal form, similarity transformation
of the form of Eq. (D54) is applied to �, where

S =

⎛⎜⎝−24 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠. (D78)

The matrix S acts on �unit and �rest separately, S = Sunit ⊕
Srest, where

Sunit =
(−24 0

0 1

)
, Srest =

(
1 0
0 1

)
. (D79)

Thus the Jordan normal form J = Junit ⊕ Jrest, where

Junit =
(

1 1
0 1

)
,

Jrest =
(

2 0
0 4

)
, J =

⎛⎜⎝1 0 1 0
0 2 0 0
0 0 1 0
0 0 0 4

⎞⎟⎠. (D80)

To write J in the conventional form with the Jordan blocks
consisting of 1’s on the superdiagonal, the generalized eigen-
values can always be rearranged by a unitary transformation.
However, for our purposes, it is easier to work with J of the
form of Eq. (D80). Using Eqs. (D66), P reads

P =

⎛⎜⎜⎝
−24 1 −58 51

2

−72 2 −116 41
0 0 4 5
0 0 6 7

⎞⎟⎟⎠,

P−1 =

⎛⎜⎜⎜⎜⎝
1

12 − 1
24 − 5

4
5
6

3 −1 − 619
2 216

0 0 − 7
2

5
2

0 0 3 −2

⎞⎟⎟⎟⎟⎠. (D81)
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Note that the generalized eigenvectors corresponding to the
eigenvalue 1 have the structure of Eq. (D67). This is a direct
consequence of the fact that Sunit in Eq. (D79) is a diagonal
(and hence upper triangular) matrix.

APPENDIX E: STRUCTURE OF GENERALIZED
TRANSFER MATRICES OF OPERATORS

IN THE AKLT MPS

To compute the entanglement spectra of the spin-2S

magnon and the tower of states, we need the structure of the
generalized transfer matrices Eq. (8) for the operators (S−)2S ,
(S+)2S and (S−)2S (S+)2S . In the spin-S basis, these operators
have the following representations (up to overall constants):

(S+2S )mn ∼ δm,Sδn,−S,

(S−2S )mn ∼ δm,−Sδn,S, (E1)

((S−)2S (S+)2S )mn ∼ δm,−Sδn,−S,

where −S � m, n � S. Using the expression of the spin-S
AKLT ground-state MPS (χ = S + 1) of Eq. (A19), the χ2 ×
χ2 generalized transfer matrices E+, E−, E−+ corresponding
to the operators (S+)2S , (S−)2S , and (S−)2S (S+)2S read

(E+)ij ∼ δi,χ δj,χ2+1−χ ,

(E−)ij ∼ δi,χ2+1−χδj,χ , (E2)

(E−+)ij ∼ δi,χ2δj,1,

where 1 � i, j � χ2. For example, for the spin-1 AKLT MPS
of Eq. (24), the form of these generalized transfer matrices
read

E+ =

⎛⎜⎝0 0 0 0
0 0 − 2

3 0
0 0 0 0
0 0 0 0

⎞⎟⎠,

E− =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 2

3 0 0

0 0 0 0

⎞⎟⎟⎠, (E3)

E−+ =

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 0 0
2
3 0 0 0

⎞⎟⎠.

As mentioned in Eq. (A25), the AKLT ground-state transfer
matrix can be written as a direct sum of (S + 2) blocks {Ep},
where the block Ep is the submatrix of E consists sets of rows
and columns in Eq. (A24). Using Eq. (E2) and the fact that the
left eigenvector eL corresponding to the largest eigenvalue is
located in block E0, we directly obtain

E+eR = E−eR = 0, eT
LE+ = eT

LE− = 0,

eT
LE−+eR �= 0, (E4)

where 0 denotes the zero vector of appropriate dimensions.
For example, the eigenvectors for the spin-1 AKLT transfer
matrix of Eq. (25) have the forms

eT
L = eT

R =
(

1√
2

0 0
1√
2

)
(E5)

and Eq. (E4) is directly verified using Eq. (E3). As we will
show in Appendix F 2, the properties of Eq. (E4) determine
the Jordan normal form of the transfer matrix for the tower of
states in Sec. VIII.

APPENDIX F: EXAMPLES OF JORDAN NORM FORM
OF BLOCK UPPER TRIANGULAR MATRICES

In this section, we show examples of determining the
Jordan normal forms of block upper triangular matrices.

1. Single-mode excitation transfer matrix

Our first example is the transfer matrix of Eq. (95) for a
single-mode excitation with a generic operator:

M ≡ F =

⎛⎜⎜⎜⎝
E EĈ EĈ† EĈ†Ĉ

0 −E 0 −EĈ†

0 0 −E −EĈ

0 0 0 E

⎞⎟⎟⎟⎠. (F1)

If E has the eigenvalue decomposition

E = PE�EP −1
E , (F2)

where �E , PE , and P −1
E read

�E =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0 λ1
. . .

...
...

. . .
. . .

...
0 · · · · · · λχ2−1

⎞⎟⎟⎟⎟⎠, |λi | < 1, PE = (eR ∗ · · · ∗), P −1
E =

⎛⎜⎜⎜⎝
eT
L∗
...
∗

⎞⎟⎟⎟⎠, (F3)

where ∗’s are left and right eigenvectors of E corresponding to the eigenvalues of magnitude less than 1. Using Eqs. (D8)
and (D16), we obtain

�(1,2) =

⎛⎜⎜⎜⎜⎜⎝
�E �

(1,2)
Ĉ

�
(1,2)
Ĉ† �

(1,2)
Ĉ†Ĉ

0 −�E 0 −�
(1,2)
Ĉ†

0 0 −�E −�
(1,2)
Ĉ

0 0 0 �E

⎞⎟⎟⎟⎟⎟⎠, (F4)
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where

�
(1,2)
Ĉ

≡ P −1
E EĈPE, �

(1,2)
Ĉ† ≡ P −1

E EĈ†PE, �
(1,2)
Ĉ† ≡ P −1

E EĈ†ĈPE. (F5)

Using the procedure described in Appendix D 3, since λi �= 1 we obtain the matrix � that reads

� =

⎛⎜⎝�E �Ĉ �Ĉ† �Ĉ†Ĉ
0 −�E 0 −�Ĉ†

0 0 −�E −�Ĉ

0 0 0 �E

⎞⎟⎠, (F6)

where

�Ĉ =

⎛⎜⎜⎜⎜⎝
0 · · · · · · 0
... ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎟⎟⎠, �Ĉ† =

⎛⎜⎜⎜⎜⎝
0 · · · · · · 0
... ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎟⎟⎠, �Ĉ†Ĉ =

⎛⎜⎜⎝
s 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎠, (F7)

where the ∗’s are irrelevant. The forms of �Ĉ , �Ĉ† , �Ĉ†Ĉ in Eq. (F7) are a consequence of condition of Eq. (D12) applied to �

in Eq. (F6). In Eq. (F7), the matrix element s in �Ĉ†Ĉ involves components of EĈ† , EĈ , EĈ†Ĉ and PE , and it does not have a
simple expression in general. Using Eqs. (F6) and (F7), �unit [defined in Eq. (D59)] reads

�unit =

⎛⎜⎝1 0 0 s

0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎠, (F8)

where s in general does not have a simple expression in terms of the generalized transfer matrices. Thus a Jordan block is formed
between the generalized eigenvalues +1 iff

s �= 0. (F9)

Equation (F9) holds for general operators Ĉ, in which case one can rescale s to 1 by means of a similarity transformation Sunit

that reads

Sunit =

⎛⎜⎝s 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠, (F10)

such that the Jordan block of the generalized eigenvalues of unit magnitude reads

Junit = S−1
unit�unitSunit =

⎛⎜⎝1 0 0 1
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎠. (F11)

Furthermore, since Sunit is an upper triangular matrix, the right and left generalized eigenvectors of M corresponding to
generalized eigenvalues of unit magnitude have the forms given by Eq. (D67):

r1 =

⎛⎜⎝c1eR

0
0
0

⎞⎟⎠, r2 =

⎛⎜⎝ ∗
c2eR

0
0

⎞⎟⎠, r3 =

⎛⎜⎝ ∗
∗

c3eR

0

⎞⎟⎠, r4 =

⎛⎜⎝ ∗
∗
∗

c4eR

⎞⎟⎠ (F12)

and

l1 =

⎛⎜⎜⎝
eL

c1∗
∗
∗

⎞⎟⎟⎠, l2 =

⎛⎜⎜⎝
0
eL

c2∗
∗

⎞⎟⎟⎠, l3 =

⎛⎜⎜⎝
0
0
eL

c3∗

⎞⎟⎟⎠, l4 =

⎛⎜⎜⎝
0
0
0
eL

c4

⎞⎟⎟⎠, (F13)

respectively.
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2. Spin-S tower of states transfer matrix with N = 2

Our second example is the tower of states transfer matrix shown in Eq. (114),

M ≡ F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E E+ 0 E− E−+ 0 0 0 0

0 −E −E+ 0 −E− E−+ 0 0 0

0 0 E 0 0 E− 0 0 0

0 0 0 −E E+ 0 E− E−+ 0

0 0 0 0 E E+ 0 −E− E−+
0 0 0 0 0 −E 0 0 E−
0 0 0 0 0 0 E E+ 0

0 0 0 0 0 0 0 −E −E+
0 0 0 0 0 0 0 0 E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (F14)

The eigenvalue decomposition of E for the spin-S AKLT ground-state transfer matrix given by Eq. (F2) and the diagonal matrix
�E has the structure shown in Eq. (F3). Consequently, we obtain [using Eqs. (D8) and (D16)]

�(1,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�E �+ 0 �− �−+ 0 0 0 0

0 −�E −�+ 0 −�− �−+ 0 0 0
0 0 �E 0 0 �− 0 0 0
0 0 0 −�E �+ 0 �− �−+ 0

0 0 0 0 �E �+ 0 −�− �−+
0 0 0 0 0 −�E 0 0 �−
0 0 0 0 0 0 �E �+ 0
0 0 0 0 0 0 0 −�E −�+
0 0 0 0 0 0 0 0 �E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (F15)

where

�+ ≡ P −1
E E+PE, �− ≡ P −1

E E−PE, �−+ ≡ P −1
E E−+PE. (F16)

Using the properties of Eq. (E4) and the structures of PE and P −1
E in Eq. (F3), the matrices of Eq. (F16) read

�+ =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0

0 ∗ . . . ∗
...

. . .
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎟⎟⎠, �− =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0

0 ∗ . . . ∗
...

. . .
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎟⎟⎠, �−+ =

⎛⎜⎜⎜⎜⎝
s ∗ · · · ∗
∗ ∗ . . . ∗
...

. . .
. . .

...
∗ · · · · · · ∗

⎞⎟⎟⎟⎟⎠, (F17)

where ∗’s are irrelevant values and the matrix element s is given by

s = eT
LE−+eR �= 0, (F18)

where eL and eR are the left and right eigenvectors of E corresponding to the eigenvalue 1. A matrix � that satisfies Eq. (D12)
can be obtained from �(1,2) of Eq. (F15) using the procedure described in Appendix D 3. We obtain the form of the blocks of
� using its dependence on {�(1,2)

ij } as shown in Eqs. (D51) and (D49), and the forms of �+, �− and �−+ of Eq. (F17). An
important result is that the function f in Eq. (D51) preserves the direct sum structure, any �mn that only depends on �+ and
�− keeps the same form as the ones of �+ and �− in Eq. (F17). We first define three matrix types, and then show that the
off-diagonal blocks of � that we obtain from �(1,2) of Eq. (F15) fall into one of these types:

A =

⎛⎜⎜⎝
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎠, B =

⎛⎜⎜⎝
s 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎠, C =

⎛⎜⎜⎝
∗ 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎠, (F19)

where, as we will show, the ∗’s are not relevant to the Jordan normal form of the eigenvalues of unit magnitude. In Eq. (F15),
note that the blocks �−+ all lie on a single diagonal of �(1,2), which we call D. As we will show, these blocks determine the
Jordan normal form of M. We now consider the structure of various blocks of �(1,2) of Eq. (F15) and obtain the structure of the
corresponding block in � using the properties of f in property (f1) in Appendix D 3, the definition of T in Eq. (D45), the forms
of the blocks �+ and �− in Eq. (F17), and the form of �E in Eq. (F3):

235156-36



ENTANGLEMENT OF EXACT EXCITED STATES OF … PHYSICAL REVIEW B 98, 235156 (2018)

(c1) Blocks to the left of the diagonal D, and the blocks on D that are not �−+ in �(1,2): According to Eqs. (D51), (D49),
and (F15), the expressions for these blocks can be written in one of the following forms:

T [f ({�+,�−}; {�E}),±�E,∓�E] ∼ A, T [f ({�+,�−}; {�E}),±�E,±�E] ∼ A, (F20)

where we have used the fact that

f ({�+,�−}; {�E}) ∼ A (F21)

as a consequence of the structures of �+ and �− in Eq. (F17) and property (f1) in Appendix D 3.
(c2) Blocks on the diagonal D that are �−+ in �(1,2): These blocks of � are of the form

T [�−+ + f ({�+,�−}; {�E}),±�E,±�E] ∼ B, (F22)

where we have used Eq. (F21) and the structure of �−+ in Eq. (F17) to deduce that �−+ + f ({�+,�−}; {�E}) has the same
structure as �−+ in Eq. (F17), and subsequently used the definition of T in Eq. (F32).

(c3) Blocks to the right of D on rows that have a �−+ in �(1,2): Here, the blocks are one of two forms:

T [f ({�+,�−,�−+}; {�E}),±�E,∓�E] ∼ A, T [f ({�+,�−,�−+}; {�E}),±�E,±�E] ∼ C, (F23)

which is true irrespective of the structure of f ({�−,�+,�−+}; {�E}) due to the definition of T in Eq. (F32) and the structure
of �E in Eq. (F3).

(c4) Blocks to the right of D on rows that do not have a �−+ in �(1,2): We first show via induction on n that any �mn in such
a row (that does not have a �−+ in �(1,2)) is always of the form of A in Eq. (F19). We start with the induction hypothesis that

�
(m,t )
mt ,Omt ∼

⎛⎜⎜⎝
0 0 · · · 0
∗ · · · · · · ∗
...

. . .
. . .

...
∗ · · · · · · ∗

⎞⎟⎟⎠, �mt ∼

⎛⎜⎜⎝
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

⎞⎟⎟⎠, ∀t, m + 1 � t � n − 1, (F24)

which is true for n = m + 2 due to the case (c1).
Using Eqs. (D47) and (F24), and the fact that �(1,2)

mn is either 0, �+ or �−, we directly obtain that �(m,n)
mn is of the form of

�
(m,t )
mt shown in Eq. (F24), irrespective of the structures of Otn and �

(m,t )
tn .

As a consequence of Eq. (D43), Omn and �mn have the forms of Omt and �mt shown in Eq. (F24).
Thus all the blocks on such a row �mn are of the form of A in Eq. (F19).
Thus, as a consequence of the cases (c1) through (c4), � obtained from �(1,2) of Eq. (F15) has the following structure:

� ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�E A A A B A C A C

0 −�E A A A B A C A

0 0 �E A A A A A A

0 0 0 −�E A A A B C

0 0 0 0 �E A A A B

0 0 0 0 0 −�E A A A

0 0 0 0 0 0 �E A A

0 0 0 0 0 0 0 −�E A

0 0 0 0 0 0 0 0 �E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (F25)

where the structures of A, B, and C matrix types are shown in Eqs. (F19). In Eq. (F25), A, B, and C denote only the structures of
the matrices [shown in Eq. (F19)] and not the matrices themselves. That is, the ∗’s in different copies of A’s are not guaranteed
to be identical, and similarly for the B’s and the C’s. As we will show, only the element s in matrix B is relevant to the Jordan
normal form. This element originates from the �−+ block in Eq. (F15) due to the dependencies of blocks of � on the blocks of
�(1,2) shown in Eqs. (D51) and (D49). Consequently, �unit reads

�unit =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 s 0 ∗ 0 ∗
0 −1 0 0 0 s 0 ∗ 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 s 0
0 0 0 0 1 0 0 0 s

0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (F26)

As we now show, the ∗ values are not relevant to the Jordan normal form (and are in general not identical). To show that and
transform �unit to the Jordan normal form, we first prove a useful lemma.
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Lemma F1. Consider an upper triangular matrix R that
satisfies the following conditions: (C1) t diagonal entries
Rii’s are all equal and (C2) for any i < j such that Rij �= 0
and Rik = 0 ∀ k, i < k < j , the entries of R satisfy Rmj =
0 ∀ m, i < m < j .

Condition (C2) translates to the following: the leftmost
nonzero off-diagonal element on any row of R should also be
the bottommost nonzero off-diagonal element of its column.
For example, this condition is satisfied by �unit of Eq. (F26).

The Jordan decomposition of R satisfying these conditions
reads R = SJS−1 where S is an upper triangular matrix with
all its diagonal entries nonzero, and J is the Jordan normal
form of R that has the property: (P1) Jij = 1 for some i < j

only if Rij �= 0 and Rik = 0 ∀ i < k < j .
The property of Jordan normal form J translates to the

following: the nonzero off-diagonal elements of J are in the
same positions as the leftmost nonzero off-diagonal elements
in any row of R. Thus, for R satisfying conditions (C1) and
(C2), the Jordan normal form is obtained by replacing the first
nonzero off-diagonal element in each row by 1.

Proof. We proceed via induction on the matrix dimension
d. We assume that lemma F1 holds for (d − 1)-dimensional
matrices and show that it holds for d-dimensional matrices.
That is, for a d-dimensional matrix R, we assume that the
(d − 1)-dimensional submatrix formed by the first (d − 1)
rows and (d − 1) columns is a Jordan normal form (i.e., the
only off-diagonal elements are 1). We then focus on the last
column of the d-dimensional matrix R and focus on one
element at a time starting from Rd−1,d and working up the
column to R1d .

At any step, if Rmd = t �= 0 for some 1 � m < d, there are
two possible cases: (1) Rmj = 0 ∀ j, m < j � d − 1. In this
case, we know that Rnd = 0 ∀ m < n < d − 1 because of
condition 2 in lemma F1. We apply a similarity transformation
to R using a diagonal matrix � whose components read

�ii =
{ 1

t
if i = d

1 if i �= d
. (F27)

The resulting matrix

R′ = �−1R� (F28)

has the property that (R′)md = 1.
For example, we consider R reads (d = 4)

R =

⎛⎜⎝λ 1 0 5
0 λ 0 2
0 0 λ 0
0 0 0 λ

⎞⎟⎠, (F29)

and focus on m = 2. Thus R24 �= 0 and R2j = 0 ∀ j, 2 <

j � 3. Using � that reads

� =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2

⎞⎟⎟⎠, (F30)

we obtain R′ of Eq. (F28) reads

R′ =

⎛⎜⎜⎝
λ 1 0 5

2
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎞⎟⎟⎠. (F31)

(2) Rmn = 1 for one n, m < n � d − 1. We never obtain
the case Rmn = 1 for more than one n, m < n � d − 1 be-
cause the submatrix consisting of the first (d − 1) rows and
first (d − 1) columns is a Jordan normal form due to the
induction hypothesis.

Here we apply a similarity transformation using an upper
triangular matrix T whose components read

Tij = δij − tδinδjd . (F32)

The resulting matrix

R′ = T −1RT (F33)

has the property R′
md = 0. For example, we consider R that

reads (d = 4)

R =

⎛⎜⎝λ 1 0 5
0 λ 1 0
0 0 λ 1
0 0 0 λ

⎞⎟⎠, (F34)

and we focus on m = 1. Thus R14 �= 0 and R12 = 1. The
corresponding T is

T =

⎛⎜⎝1 0 0 0
0 1 0 −5
0 0 1 0
0 0 0 1

⎞⎟⎠. (F35)

We then obtain the following expression for R′ of Eq. (F33):

R′ =

⎛⎜⎝λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

⎞⎟⎠. (F36)

Thus, by sequentially applying similarity transformations
Eqs. (F28) and (F33), we transform the entries of the last
column of R to either 1 or 0, resulting in a matrix J that
satisfies property (P1) of lemma F1. Since the full similarity
transformation S is a product of diagonal matrices with only
nonzero elements on its diagonal [�’s of Eq. (F27)] and
upper triangular matrices [T ’s of Eq. (F32)] with only nonzero
elements on its diagonal, we obtain

R = SJS−1, (F37)

where S is an upper triangular matrix with only nonzero
elements along its diagonal and J is the Jordan normal form
of M . This shows that �

�unit of Eq. (F26) is a direct sum of two matrices (one
for the generalized eigenvalues +1, one for the generalized
eigenvalues −1), both of which satisfy the conditions of the
lemma F1. This validates that only the off-diagonal matrix
elements s (first nonzero off-diagonal elements in each row) in
�unit are relevant when finding the nonzero upper-diagonal el-
ement in the Jordan normal form. Moreover, Sunit of Eq. (D60)
is an upper triangular matrix with nonzero elements on its
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diagonal as a consequence of lemma F1. Thus Punit and P̃unit

have the forms of Eq. (D66), and the left and right generalized
eigenvectors of M of Eq. (F14) have the forms of Eq. (D67).
Furthermore, applying lemma F1, Junit reads

Junit =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (F38)

APPENDIX G: ASYMPTOTIC BEHAVIOR OF THE TOWER OF STATES ENTANGLEMENT ENTROPY

To obtain the large-N behavior of Eq. (135), we first use Stirling approximation to obtain(
N

α

)
∼ eNH ( α

N
)

√
1

2πα
(
1 − α

N

) , (G1)

where H (x) ≡ −x ln x − (1 − x) ln(1 − x) is the Shannon entropy function. The sum in Eq. (135) can then be written as

I ≡
N∑

α=0

(
N

α

)
ln

(
N

α

)
∼

N∑
α=0

eNH ( α
N

)√
2πα

(
1 − α

N

)[NH

(
α

N

)
− 1

2
ln

(
2πα

(
1 − α

N

))]

≈ N

∫ 1

0
dp

eNH (p)

√
2πNp(1 − p)

[
NH (p) − 1

2
ln(2πNp(1 − p))

]
, (G2)

where p = α
N

. To evaluate Eq. (G2) for large N , we can use a saddle point approximation:∫ b

a

dx g(x)eNf (x) ≈
∫ b

a

dx g(x)eNf (x0 )+ N
2 f ′′(x0 )(x−x0 )2 = g(x0)eNf (x0 )

√
2π

N |f ′′(x0)| , (G3)

where f ′(x0) = 0 such that a < x0 < b and f ′′(x0) < 0. Thus we obtain

I = N
eNH (p0 )

√
2πNp0(1 − p0)

√
2π

N |H ′′(p0)|
[
NH (p0) − 1

2
ln(2πNp0(1 − p0))

]
, (G4)

where p0 is defined by H ′(p0) = 0. Substituting p0 = 1/2,
H (p0) = ln 2 and H ′′(p0) = −4, Eq. (G4) simplifies to

I = 2N

(
N ln 2 − 1

2
ln

(
πN

2

))
(G5)

Substituting I into Eq. (135), we obtain Eq. (136).

APPENDIX H: BREAKDOWN OF EQ. (132) IN THE FINITE
DENSITY LIMIT

In Sec. VIII C, we mentioned that terms weighted by
( n

a
)( n

k−a
) do not suppress the terms that appear with the factor

( n

a
)( n

k−a−b
). To see that this is indeed the case, we write

N = pn, where p > 0, and use the asymptotic form(
n

pn

)
∼ enH (p), (H1)

where H (x) ≡ −x ln x − (1 − x) ln(1 − x), the Shannon en-
tropy function. Expansions in orders of n breaks down if, for

some finite b,

∃ k1, k2 �
(

n

k1

)(
n

k − k1

)
<

(
n

k2

)(
n

k − b − k2

)
. (H2)

In terms of the H function, condition Eq. (H2) translates to

∃ p1, p2 � H (p1) + H (p − p1)

< H (p2) + H

(
p − p2 − b

n

)
, (H3)

where p1 ≡ k1/n, p2 ≡ k2/n, and p ≡ k/n. However, by us-
ing p1 → 0 and p2 → p

2 − b
2n

, the condition Eq. (H3) reduces
to

H (p) < 2H

(
p

2
− b

2n

)
. (H4)
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Since H (x) is a strictly concave function for x ∈ [0, 1], we
know that

H (x) + H (y)

2
< H

(
x + y

2

)
. (H5)

Using x = p and y = 0, for any nonzero p, we obtain

H (p) < 2H

(
p

2

)
, (H6)

which is the same as Eq. (H4) in the limit n → ∞ and b finite.
Thus the replica structure of the ground-state and excited
state entanglement spectra breaks down at any nonzero energy
density.

For small densities p, we expect the prefactor in Eq. (139)
to be P = 1/2, the same as the one in the zero density
limit. The entropy contribution in Eq. (136) is due to the
copies of the ground state with α ∼ N/2 in Eq. (135). Using
Eqs. (129), (124), and (125), the dominant corrections to those
eigenvalues of ρred are due to products of the form

lα,βrT
γ,δ, where α, β, γ, δ ∼ N/2 − εn. (H7)

However, using Eq. (H1), such terms are suppressed by a
factor of(

n

N/2 − εn

)2( n

N/22

) ∼ e4(H ( p

2 −ε)−H ( p

2 )) ∼ e−4H ′(p/2)εn. (H8)

Thus we do not expect the saddle point form of the entropy in
Eq. (136) to change for small p.

APPENDIX I: TRANSFORMATION OF MPOS
CORRESPONDING TO THE AKLT EXCITED STATES

UNDER VARIOUS SYMMETRIES

In this section, we describe the transformation of the MPOs
corresponding to the AKLT excited states under inversion,
time-reversal, and Z2 × Z2 rotation symmetries.

1. Inversion symmetry

Under inversion symmetry, all the physical operators are
mapped to themselves.

I : (S+, S−, Sz) → (S+, S−, Sz) (I1)

The MPOs transform under inversion as described in
Eq. (148). The Arovas A MPO MA of Eq. (48) satisfies

�A
I MA�A

I

† = MT
A, (I2)

where by brute force we obtain

�A
I =

⎛⎜⎜⎜⎝
0 0 0 0 1
0 0 −1 0 0
0 −1 0 0 0
0 0 0 1 0
1 0 0 0 0

⎞⎟⎟⎟⎠. (I3)

Since �A
I �A

I

∗ = +1, the Arovas A MPO transforms linearly
under inversion. Similarly, the Arovas B MPO MB of Eq. (53)
satisfies

�B
I MB�B

I

† = −MT
B , (I4)

where

�B
I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −1
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(I5)

Since �B
I �B

I

∗ = −1, the Arovas B MPO tranforms projec-
tively under inversion. The tower of states MPO MSS2N

of
Eq. (62) transforms as

�t
IMSS2N

�t
I

† = −MT
SS2N

, (I6)

where

�t
I = eiπS

y
a , (I7)

where S
y
a is the spin-N/2 operator that acts on the (N + 1)-

dimensional ancilla. For N = 1, �t
I = iσy . Since

�t
I�

t
I

∗ = (−1)N1, (I8)

the tower of states MPO transforms linearly for even N and
projectively for odd N .

2. Time-reversal symmetry

Under time reversal, the physical integer spin operators
transform as

T : (S+, S−, Sz) → (−S−,−S+,−Sz). (I9)

Thus the Arovas A MPO MA transforms as

�A
T MA�A

T

† = T (MA), (I10)

where T transforms the physical operator in the MPO under
Eq. (I9), and

�A
T =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 0

⎞⎟⎟⎟⎠. (I11)

Since �A
T �A

T

∗ = +1, this is a linear transformation. The
Arovas B MPO MB transforms linearly as well with

�B
T MB�B

T

† = T (MB ), (I12)

where

�B
T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(I13)
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The spin-S AKLT tower of states we have considered have
Sz �= 0 and thus explicitly break time-reversal symmetry.

3. Rotation symmetry

Under π rotations about the x and z axes, the physical
integer spin operators transform as

Rx : (S+, S−, Sz) → (S−, S+,−Sz),

Rz : (S+, S−, Sz) → (−S+,−S−, Sz). (I14)

Consequently, the Arovas A MPO transforms as(
�A

σ

)
MA�A

σ

† = RσMA σ = x, z. (I15)

where

�A
x =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 −1 0
0 0 0 0 1

⎞⎟⎟⎟⎠,

�A
z =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠. (I16)

This is a linear transformation since �A
x �A

z (�A
x �A

z )∗ = +1.
The Arovas B MPO also transforms similar to Eq. (I15) where

�B
x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

�B
z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (I17)

Since �B
x �B

z (�B
x �B

z )∗ = +1, this is a linear transformation.
Since the tower of states does not have Sz = 0, the states are
not invariant under the Z2 × Z2 rotation symmetry.

APPENDIX J: SYMMETRY-PROTECTED DEGENERACIES
IN THE ENTANGLEMENT SPECTRUM

FOR A FINITE SYSTEM

In this section, we show that under certain conditions,
degeneracies in the entanglement spectrum are protected (i.e.,

without any finite-size splitting, not even exponential) due to
symmetries. For example, if the system is inversion symmet-
ric, we consider the case where the left and right boundary
vectors of the MPS are related by

U
†
I b

r
A = bl

A. (J1)

Here, UI is the action of inversion symmetry on the ancilla,
defined in Eq. (143). Using Eqs. (17) and (143), we obtain the
following property for the transfer matrix,

ET = (
U

†
I ⊗ UT

I

)
E(UI ⊗ U ∗

I ). (J2)

Consequently, using Eqs. (J1) and (17), if the left and right
subsystems have an equal size, we obtain

L = U
†
IRUI . (J3)

Using the definition of ρred in Eq. (18), we obtain

ρred = LRT = U
†
IRUIU

∗
I LT UT

I . (J4)

Since UIU
∗
I = ±1, and consequently UT

I = ±UI , we obtain

UIρred = ρT
redUI . (J5)

Suppose rλ is the right eigenvector of ρred corresponding to an
eigenvalue λ, using Eq. (J5), we obtain

ρT
redUI rλ = UIρredrλ = λUI rλ. (J6)

Thus lλ ≡ UI rλ is a right eigenvector of ρT
red, and hence a left

eigenvector of ρred corresponding to the eigenvalue λ. If UT
I =

−UI , we show that

lTλ rλ = rT
λ UT

I rλ = −rT
λ UI rλ = −rT

λ lλ = −lTλ rλ. (J7)

Thus we obtain lTλ rλ = 0, which is impossible if λ is nonde-
generate. Consequently, all the eigenvalues of ρred are doubly
degenerate.

For other unitary symmetries we have considered, such as
time reversal and Z2 × Z2 rotation, the boundary conditions
satisfy

Ubr
A = br

A and Ubl
A = bl

A. (J8)

Consequently, using Eq. (142) and (17), we obtain

R = U †RU and L = U †LU. (J9)

Since [L, U ] = 0 and [R, U ] = 0, we obtain [ρred, U ] = 0. U
can thus be block-diagonalized into blocks Uλ (of dimension
Dλ) labeled by the eigenvalues λ of ρred. Since Uλ is antisym-
metic, it satisfies

det(Uλ) = det
(
UT

λ

) = (−1)Dλ det(Uλ) (J10)

However, Uλ is also unitary and thus det(Uλ) �= 0, requiring
Dλ to be even.
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