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We discuss a method of numerically identifying exact energy eigenstates for a finite system, whose form can
then be obtained analytically. We demonstrate our method by identifying and deriving exact analytic expressions
for several excited states, including an infinite tower, of the one-dimensional spin-1 Affleck-Kennedy-Lieb-
Tasaki (AKLT) model, a celebrated nonintegrable model. The states thus obtained for the AKLT model can be
interpreted as from one to an extensive number of quasiparticles on the ground state or on the highest excited
state when written in terms of dimers. Included in these exact states is a tower of states spanning energies from
the ground state to the highest excited state. Some of the states of the tower appear to be in the bulk of the energy
spectrum, allowing us to make conjectures on the strong eigenstate thermalization hypothesis. We also generalize
these exact states including the tower of states to the generalized integer spin AKLT models. Furthermore, we
establish a correspondence between some of our states and those of the Majumdar-Ghosh model, yet another
nonintegrable model, and extend our construction to the generalized integer spin AKLT models.
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I. INTRODUCTION

Many-body localization [1-9] has sparked a renewed inter-
est in fundamental questions about thermalization in quantum
systems [10-15]. The quests to protect exotic equilibrium
phenomena from thermalization[16—18] and realize them in a
nonequilibrium setting [7,9,19] call for a deeper understand-
ing of quantum dynamics. The dynamics of a quantum system
is tied to the properties of all its energy eigenstates and not
only to the ground state features. It is thus very important to
have models where we know the analytical structure of the
excited states in the bulk of the energy spectrum. Integrable
models, including free systems, fall into this category but are
unfortunately one of the two well known examples (along
with the many-body localized states [4,20]) where the eigen-
state thermalization hypothesis (ETH) [12—14,21-25] breaks
down [10,11,26]. Thus having some simple nonintegrable
models where a partial or complete analytical description
beyond the low-energy states is available would be a perfect
avenue to investigate the ETH.

For generic nonintegrable systems, none of the energy
eigenstates can be obtained analytically. However, the ground
state is known exactly for some nonintegrable models with
local Hamiltonians. One such model is the one-dimensional
spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) chain [27,28],
which was first introduced as a simple model to exemplify the
Haldane gap in integer spin chains. Indeed, the ground state
of the AKLT chain can be explicitly built and it belongs to the
same universality class as that of the spin-1 Heisenberg model.
Along with its generalizations to higher integer spin values, it
is representative of the Haldane phase [29,30]. The simplicity
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of the ground state of the AKLT model makes it one of
the most elegant introductory examples for various concepts
in condensed matter physics, including entanglement in spin
chains [31-36], matrix product state representations of ground
states [37-39], bosonic symmetry protected topological (SPT)
phases in one dimension [40,41], and even some aspects of
the fractional quantum Hall effect [42]. Another example of
a nonintegrable model with a ground state whose expression
is analytically known is the Majumdar-Ghosh model [43],
a spin-1/2 Heisenberg chain with an extra fine-tuned next-
nearest-neighbor coupling.

Beyond the ground state, very little is known about ex-
cited states. Even more difficult is the question of whether
excited states with a closed-form expression, which we dub
exact excited states, exist in these nonintegrable quantum
spin chains. Exact expressions for any of the excited states,
even the ones close to the ground state or the highest excited
states, would help in testing predictions and conjectures made,
on general grounds, about the nature of eigenstates at the
edges of the energy spectrum [44—47]. Caspers et al. [48] and
Arovas [49] have derived three and two exact excited states
in the Majumdar-Ghosh model and the spin-1 AKLT model,
respectively. An obstacle to the discovery of new exact excited
states is the lack of physical intuition regarding their nature.
In this article, we propose to find possible simple excited
states by looking at the entanglement structure of eigenstates
obtained in finite-size systems by exact diagonalization. By
looking at the reduced density matrix of each individual
eigenstate and targeting those having a low rank, we are able
to unveil exact excited states whose analytic expressions we
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then obtain. Interestingly, their energy is, most of the time,
an integer or a rational number, given a suitable choice of the
Hamiltonian normalization.

The paper is organized as follows. In Sec. II we review the
spin-1 AKLT model and the construction of its ground state
using the dimer basis. In Sec. III we introduce the concept of
exact states, i.e., eigenstates having an analytic closed-form
expression. We discuss a numerical approach based on the
rank of the reduced density matrix to track these states in
exact diagonalization studies. We show an extensive numer-
ical study of the spectrum of the spin-1 AKLT chain, listing
all the exact states up to 16 spins. We then proceed to derive
the analytical expressions for all the states. We first consider
the low-energy states in Sec. IV, recovering the two Arovas
states [49]. In Sec. V, we derive the tower of states, a series of
spin-2 magnon excitations on top of the ground state, ranging
from the ground state to the highest-energy state, and present
evidence that shows their position in the bulk of the energy
spectrum. In Sec. VI, we discuss the exact states situated close
to the highest excited state. To show that our approach is valid
beyond the spin-1 AKLT chain, we discuss its generalization
to higher integer spin-S in Sec. VII, obtaining the analytical
expression of all the exact states that we numerically observe
to have a low entanglement rank. In Sec. VIII, we derive a
correspondence between certain exact states of the Majumdar-
Ghosh model and the spin-1 AKLT model as well as between
exact AKLT states with different spin-S.

II. THE SPIN-1 AKLT MODEL
A. Hamiltonian

The spin-1 AKLT Hamiltonian is defined as a sum pro-
jectors that projects two nearest-neighbor spins onto spin-2
[27,28]. Denoting the projector of two spin-1’s on sites i and
j onto total spin-2 as Pi(jz’l), the AKLT Hamiltonian for a

chain of length L with periodic boundary conditions (i.e.,
L 4+ 1 = 1) simply reads

L
2,
H=Zﬁﬁ )

The action of the projector on various configurations of
nearest-neighbor spins in given in Appendix A. The projector
can also be expressed in terms of the spin operators,

P = L(Si + $)M(S; + §;)* — 2. 2

Simplifying the expression Eq. (2), the AKLT Hamiltonian
Eq. (1) can be written in a more familiar form as

H= Z[ + 5 s S+ (S §i+1)2:|- 3)

The AKLT Hamiltonian Eq. (3) has many symmetries.
In particular, it possesses SU(2), translation, and inversion
(reflection about a bond {i,i + 1}) symmetries. Here, we
associate the following quantum numbers to all the eigen-
states of the Hamiltonian: s for the total spin, S, for the
projection of the total spin along the z direction, and mo-
mentum k (quantized in integer multiples of 27 /L) for the
translation symmetry. Furthermore, inversion symmetry maps
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FIG. 1. Energy level spacing statistics for L = 16 with pe-
riodic boundary conditions in a typical quantum number sector
(s, S;, k, I, P,) =(4,0,0, —1, 1) that has a Hilbert space dimension
26 429. AE is the level spacing between adjacent energy levels after
a mapping of the energy spectrum to produce a constant density of
states. P(AE) is the distribution of the level spacings. The peak of
the distribution at nonzero AFE indicates level repulsion. The green
curve is the GOE distribution. The mean ratio of adjacent level
spacings is (r) &~ 0.5316, close to the GOE value of (r) ~ 0.5295
[52,53].

states with momentum k to states with momentum —k. Hence
the eigenstates with momentum k = 0,7 can be labeled
with a quantum number / = %1 corresponding to inversion
symmetry. Similarly, eigenstates with S, = 0 can be labeled
by another quantum number P, = %1 corresponding to the
spin-flip (S; — —S;) symmetry, which is a part of the SU (2)
symmetry.

In spite of these symmetries, the AKLT Hamiltonian is
nonintegrable. Indeed the energy levels of eigenstates with
a fixed set of quantum numbers corresponding to different
symmetries do show level repulsion. In Fig. 1, we plot the
energy level spacing statistics of a typical quantum number
sector of the AKLT model. We find that the level spacing
distribution is close to that of a Gaussian orthogonal ensemble
(GOE). Such a distribution is typical of nonintegrable models
[4,50,51].

B. Ground state

The beauty of the AKLT model is that despite its lack of
integrability, the ground state can be constructed explicitly
[27]. To do this, we write each spin-1 as two symmetrized
spin-1/2 degrees of freedom that can either have S, = +1/2
or S, = —1/2. Thus, two nearest-neighbor spins consist of
four spin-1/2 degrees of freedom. If a singlet is formed
between two of them as in Fig. 2, the remaining two spin-1/2’s
can form at most a spin-1 configuration, meaning that the
projector Pl(l2 +1) annihilates such a configuration. The cartoon
picture of the ground state |G) of energy E = 0 with periodic
boundary conditions is shown in Fig. 2(a). With open bound-
ary conditions, there are two spin-1/2 degrees of freedom at
each edge that are not bound into singlets, so-called dangling
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FIG. 2. AKLT ground state. The big circles are physical spin-1’s
and the smaller circles within the spin-1’s are spin-1/2 Schwinger
bosons. Symmetric combinations of the Schwinger bosons on each
site form the physical spin-1. The lines joining the Schwinger bosons
represent singlets. |G) with periodic boundary conditions.

spins. These fractionalized degrees of freedom, i.e., half-odd
integer spins in a model that contained only integer spins,
represent the topological nature of the spin-1 Haldane phase
[29]. The ground state for open boundary conditions is shown
in Appendix J 1.

In this paper, we mainly work with periodic boundary
conditions (PBCs), although we comment on open boundary
conditions (OBCs) in Appendix J. In this case, it has been
shown that |G) is the unique ground state (with energy 0)
of the Hamiltonian Eq. (3) [27,28]. The ground state |G)
is separated from the excitation spectrum by an energy gap
[27] (the “Haldane gap”), which for the AKLT model can
be bounded from below. The AKLT ground state shown in
Fig. 2(a) can be described more rigorously using a dimer (a
singlet) basis. Since the spin-1/2 degrees of freedom on each
site are symmetrized, it is convenient to introduce Schwinger
bosons, i.e., bosonic creation (annihilation) operators aj (a;)
and bj (bi)forthe S, = +1/2(M)and S, = —1/2 (] ) spin-1/2
degrees of freedom, respectively. Any wave function written
in terms of Schwinger bosons on site i can be converted
to the normalized spin-1 basis on a site i (|1);, 0);, | —1);
corresponding to S, = +1, 0, —1) using the dictionary

_ @y

V2

@)y
V2

1), 10);. 10); =ajbll6),, -1 1),

“

where |6); is the local vacuum defined by the kernel of the
boson annihilation operators of site i, i.e., a;|0); = 0, b;|0); =
0. Since there are two spin-1/2 degrees of freedom on each
site, the number operator N; = aTai + b;[bi has the constraint

N;|yr) = 2|¥) where |¢) is any configuration of spin-1’s.
To describe dimers, one could then define a dimer creation
operator that forms singlets between the bosons on different
sites as
bttt tpt
i =4q bj — ajbi. (®)]

The complete algebra of dimers and Schwinger bosons is
given in Appendix B.

The spin-1/2 Schwinger boson creation and annihilation
operators can be related to the spin-1 operators by
St =alb, ST =bla.  (6)

¢ = Laita; — blby),

In this notation, the operator S; - 5 j can be written as
1 — —
S-S = E(S,.’LSj +8787)+ 7S5
= —Lcleij + Yala: + blb)@la; +blb))

=1-Jclci, @)

where we have made use of the Schwinger boson number

constraint on each site. Using Eq. (7), Eq. (3) can be written

in terms of dimer creation and annihilation operators. In
. 2.1) .

particular, P, ;7 can be written as

en _ IR I TS N I
P =1 = 55¢¢i) + 55¢,€i€€i)

1t 1122
=1- Zcijcij + ﬂcij cij’ (8)

where the expression has been normal ordered using Eq. (B7).
With this representation, the unnormalized AKLT state |G)
of Fig. 2(a) for periodic boundary conditions can be written as

L
1G) =[]l isi10). )
i=1

Here the vacuum |6) is the global vacuum defined as the
kernel of all the annihilation operators, i.e., ¢;;|0) = a;10) =
b; |9)50, Vi, j. We also define the normalized ground state
[28] |G) as

~ 1G)

G) = .
< V3L +3(=DE

III. EXACT STATES

(10)

The energy spectrum of the spin-1 (and, as we will see,
integer spin-S) AKLT model for a finite-size chain with peri-
odic boundary conditions exhibits some remarkable features.
Beyond the unique ground state whose energy is O [for H of
Eqg. (3)], there are many other states with rational energies up
to machine precision, some of them seemingly located in the
bulk of the spectrum. Moreover, several of these states are
even at integer energies. This observation holds for chains
with a length up to L = 16, the upper numerical limit where
we can compute the full spectrum. In this paper, we show that
states with such rational energies are not coincidences and we
can derive analytical expressions for them akin to Eq. (9) for
the ground state. Being exact eigenstates for particular finite
system sizes with a closed analytical expression and rational
energy, we dub these states “exact states.”

One could argue that looking for exact states by targeting
rational energies is ad hoc. Indeed, rescaling the energy by a
random positive number or shifting the ground state energy
would scramble this information although simple algorithms
could be devised to recover it. Moreover, in finite precision
arithmetic, any number can be written as a rational number.
To hunt for possible exact states, we propose another approach
based on the entanglement spectrum [54].

For any eigenstate |y) of a spin-S chain, we consider the
spatial partition into two continuous regions A and B with
L, spins in A and Lp spins in B. We then construct the
reduced density matrix p4 = Trg|¢)(¥|. The entanglement
spectrum is the eigenvalue spectrum of —log p4. Assuming
that L, < Lp, the rank of p4 (i.e., the number of levels in
the entanglement spectrum) is bounded by (28 + 1)“4. Unless
|[vr) has a peculiar structure, this bound is usually saturated.
Most eigenstates (including ground states) of local Hamiltoni-
ans saturate this bound. The fact that the entanglement entropy
of the ground state of a gapped Hamiltonian is not volume
law [55] merely means that the ground state of the system
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can be approximated by a state with a sparse spectrum [56].
However, states whose entanglement spectrum is truly sparse
and whose number of levels in the entanglement spectrum do
not saturate the bound are special. This includes the ground
state of the AKLT model Eq. (9), which has exactly 4 out of
(2S + 1)L+ levels in its entanglement spectrum irrespective of
the length L 4.

We propose to use the sparsity of entanglement spectrum,
the ratio between the rank of p4 and its dimension, as a probe
to search for exact states. A brute force approach is thus to
numerically compute all the eigenstates for a given system
size and label them with their quantum numbers. We then
focus on those exhibiting an entanglement spectrum sparsity
at the largest possible value of L, (the integer part of L/2).
For the spin-1 AKLT model, we observe that most of the states
in the bulk of the full energy spectrum have a sparsity close or
equal to 1, as expected. However, there are a few eigenstates
that have an entanglement spectrum sparsity less than 5% for
the largest system sizes we have computed. For reasons that
are still not fully clear to us, most of these eigenstates coincide
with those having a rational energy. Of course, some of these
states are trivially exact states. An example is the highest
excited state of the AKLT Hamiltonian that has all spin-1’s
with §, = 1. Itis a product state and its reduced density matrix
has a single eigenvalue. But as we show below, many of these
exact states have an interesting nontrivial structure. We list
these sets of exact states for system sizes L = 12, L = 14,
and L = 16 for the spin-1 case with all their useful quantum
numbers and degeneracies in Table I. The derivation of their
analytic expressions will be detailed in the following sections.

IV. EXACT LOW-ENERGY EXCITED STATES
OF THE SPIN-1 AKLT MODEL

To find and give an expression for the exact excited states
of the AKLT model, we need to choose a convenient basis
to work with. There are two bases that we use. The first
is the usual spin basis. Since the Hamiltonian is simply a
projector onto a particular total spin J, any configuration of
nearest neighbors with S, = m; and §; = m, in a spin-S chain
scatters to the state with J = § and S, = m; + m, with an
amplitude given by a Clebsch-Gordan coefficient. A complete
set of rules for scattering of configurations in the spin basis is
presented in Appendix A.

The second is the dimer basis that we have introduced in
Sec. II. Here, the basis states are defined as linearly indepen-
dent states of dimer or Schwinger boson creation operators
acting on the vacuum |6). Though this representation allows
an elegant representation of (most of) the exact states we will
discuss, the set of dimer basis states is highly overcomplete
and nonorthonormal (see Appendix C for an example). To
study the AKLT model in the dimer basis, we need to derive
rules for the scattering of basis states upon the action of the
Hamiltonian. Since the Hamiltonian in Eq. (8) is normal or-
dered, it is sufficient to compute the actions of c;’}. on the basis

states. The actions of ¢;; and Pi(jz’l) on various configurations
on dimers along with some useful identities are specified in
Appendix D and Fig. 19. An example of such a scattering rule
is diagrammatically depicted in Fig. 3.

TABLE I. The highest weight states with rational energies for
L =12, L =14, and L = 16 (sectors k =0, ). E is energy, D
the degeneracy [excluding the SU(2) multiplet degeneracy], k mo-
mentum, s the spin quantum number, / the eigenvalue under bond
inversion symmetry, P, the eigenvalue under spin flips for the S, = 0
state of the multiplet, and |i) the state we identify it with. The
states in this table with s < L —2 have a very sparse entangle-
ment spectrum compared to typical states in their quantum number
sectors.

L=12
E D k s I P, [yr)
0 1 0 0 1 1 |G)
2 1 T 0 1 1 |A)
2 1 T 0 -1 1 |B)
2 1 T 2 -1 1 1S5)
4 1 0 4 1 1 1S4)
6 1 b3 6 -1 1 |S6)
8 1 0 8 1 1 | Sg)
10 5 T 10 (=1 1 12),n=136
O R (1) 1 12¢)
10 1 T 11 1 -1 [Tier)
2 1 T 10 1 1 12,—0)
1 zZE o1 -1 1k)
11 1 0 10 -1 1 160)
11 .¥Z 1 -1 1k)
Z 1 R b -1 1k)
12 1 0 12 1 1 |F)
L=14
0 1 0 0 1 1 |G)
2 1 T 0 1 1 |A)
2 1 T 0 —1 1 | B)
2 1 T 2 -1 1 1S5)
4 1 0 4 1 1 1S4)
6 1 T 6 -1 1 | S6)
8 1 0 8 1 1 |Ss)
10 1 T 10 -1 1 1S10)
12 5 T 12 (=1y 1 12,),n=1,3-6
12 1 x 12 1 124)
12 1 brs 13 1 -1 [Tier)
3 1 T 12 1 1 [2,=0)
14 1 0 14 1 1 |F)
L=16

0 1 0 0 1 1 |G)
2 1 T 0 1 1 |A)
2 1 T 0 —1 1 | B)
2 1 T 2 -1 1 1S5)
4 1 0 4 1 1 1S4)
6 1 b3 6 -1 1 |S6)
8 1 0 8 1 1 |Ss)
10 1 T 10 -1 1 1S10)
12 1 T 12 -1 1 1S12)
14 7 prs 14 (=1 I |2),n=1,3-8
14 1 brs 15 | [Tier)
¢ 1 T 14 1 1 [2,—0)
16 1 0 16 1 1 |F)
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FIG. 3. An example of the action of Pi(/_2.1> on a dimer configuration. The configurations of the filled small circles are not relevant for the
scattering equation and are the same on all terms in the equation. The directions of the arrows are crucial; reversing an arrow contributes a

factor of (—1).

‘We have already exemplified the construction of the ground
state in Sec. IIB. We now focus on two exact low-energy
excited states, namely the Arovas states [49].

A. Arovas A state

We now follow Arovas [49] to construct two exact excited
states. Consider a configuration of dimers |A,) defined in
Eq. (11) with the cartoon picture of dimers as shown in
Fig. 4(a),

n—2 L
f T T 2 )
1An) = ch,j-H Crt.n2(Cnnt1) 1_[ ¢j 1 |16)
j=1 j=n+2

QY

The Arovas A state is a translation-invariant linear superpo-
sition of these |A,) with momentum k = 7. Up to a global
normalization factor, it is given by

|4) =) (—1)"|4,).

n

12)

The system size is even, greater than 5 sites, and we impose
periodic boundary conditions.

For pedagogical purposes, we now show the derivation of
this first exact state beyond the ground state. This exemplifies
the mechanism that underlies the derivation of all these exact
states of the AKLT Hamiltonian. The proof relies on several
properties of the dimer basis that are given in Appendix D.
From the Hamiltonian Eq. (1) and the property Eq. (D6), we

n-1 n n+l1 n+2
)6 BB D
n-1 n n+1 n+2

FIG. 4. (a) Arovas A configuration |A,). (b) Scattering term
configuration |B,).

deduce that the only terms in the Hamiltonian that give a

nonvanishing contribution upon action on |A,) are P,,(i’ll,),, and
2.1 ;
Pn+1,n+2~ That is,

HIA,) = (P&), + PED )AL, (13)

n—1,n

Using the scattering rules of Eq. (D7) and the cartoon picture
of |A,), it is easy to see that

P2V 1A = 1A + YA, + HG) + 1B, (14)
where | B,,) is shown in Fig. 4(b) and defined as
n—3
|Bn) = l_[ Cj’,j-&-l Cjzfl,ncj172,n+1C:gfl,nJch;rL,nJrl
j=1
L
< | T <t a1 (15)
j=n+2

and |G) is the unnormalized ground state of Eq. (9). As
seen in Fig. 4(a), |A,) is symmetric under inversion about
the midbond {n, n 4+ 1}. Thus the scattering terms obtained
by Pn(ill)n 4olAy) are the same as those in Eq. (14), but with
all the terms inverted about the midbond {n, n 4 1}. Under
bond inversion, since |B,) — |B,11), |A,_1) = |Ans1), and
|G) — |G), we obtain

P lA = 1An) + EHAu) + 3G + 1B.i). (16)

It is important to note that | B,) transforms in that way because
it is symmetric about a site n, and not about any bond.
Combining Eqgs. (14) and (16) with Eq. (13), we obtain
HIA,) = 2|A,) + ¢(1Au1) + [Aw1) +1G)
+ 5By + [Bus1)). a7
It follows that
H|A) = 2|A) — §|A) = 3|A). (18)

Thus, |A) is an exact eigenstate of the spin-1 AKLT Hamilto-
nian with energy E = % and momentum k = m. The crucial
part of the exactness of this state lies in the fact that | B,) and
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n-2 n-1 n n+1 n+2

Y B o)

n-2 n-1 n n+1 n+2

(e) @tﬁ@ &)

n n+1 n+2

FIG. 5. (a) Arovas B configuration |B,). (b) Scattering term
|A,). (c) Scattering term |C,). (d) Scattering term | D,,). (e) Scattering
term |E,).

|B,,+1) appeared in Eq. (17) with equal weight and they could
be canceled off by momentum superposition. However, the
cancellation would not hold if L were not even (since we need
k = m) or for open boundary conditions (because the edge
scattering terms would not cancel). Moreover, |A) appears
only for L > 6 because for L = 4, the scattering equation of
|A,) Eq. (17) would no longer be the same due to boundary
conditions. .
Using Egs. (D2) and (7), it can be seen that |A), the
normalized version of |A), can be rewritten as [49]

A) = rZ( 1)'S, - Sy [G). (19)

Thus, we have an exact eigenstate with £ = 2, k = 7, and
s =0(and P, = +1, I = +1). This state is an exact example
of the single-mode approximation (SMA). This can be viewed
as a magnon with form factor sin(k) as evident from the
momentum space expression of the state

4) = J_Zsm(msk $-41G), (20)

where S'k is the Fourier transform of S,,.

B. Arovas B state

Similar to the Arovas A state built from the |A,,)s, another
exact state can be constructed from |B,)s of Eq. (15). The
Arovas B state then reads

|B) = (=1)"|By) @1)

up to a global normalization factor.

We consider the configuration | B,) defined in Eq. (15) and
also shown in Fig. 5(a). Since the only nearest-neighbor bonds
that do not have dimers between them are {n — 2, n — 1} and
{n 4+ 1, n 4 2}, analogously to Eq. (13), we can write

H|B,) = (P2} _ +P%) ,)IB,). (22)

The scattering terms obtained upon action of Pn( 2])n \» by
using rules of Eq. (D7), are

PEY 1B =B + H(=1G) + Ay 1) +ICo ) +1Du 1))

+ 55 (=1An2) + |Ea1)), (23)

where |A,), |Cy), |Dy), |E,) are defined according to the
cartoon pictures in Figs. 5(b)-5(e). A few typographical er-
rors of Eq. (8) in Ref. [49] including the omission of the
scattering term |E,,_;) have been corrected here in Eq. (24).
Since the scattering configurations are all symmetric terms
that are symmetric under inversion about a bond {n, n + 1},
whereas |B,) is symmetric under inversion about site n,
the action of P(ill)nﬂ changes |A,_1) = |An), |Che1) —
|Cy), |Dy_1) = |D,), and |E,_{) — |E,). The action of the
Hamiltonian on |B,,) thus reads

H|B,) =2|B,) — 3IG) + ;(|1A,_1) + |A,))
+ 2(Com1) +1C)) + $(IDy—1) + D))
— 2 (Au2) + 1Apii) + 5 (I Eact) + |Ep)). (24)

With this property, for L even with periodic boundary condi-
tions, we obtain

H|B) = 2|B). (25)

Thus, we have an exact state with £ =2, k=m,and s =0
(and P, =41, I = —1). Again the key ingredient for this
derivation was the fact that the scattering terms were symmet-
ric and have the opposite (site/bond) symmetry. As for |A),
it is not hard to see that this result would not hold for open
boundary conditions or for odd L. Moreover, | B) appears only
for L > 8: we need L > 5 to define | B,) and for L = 6 with
periodic boundary conditions, the state itself vanishes.

To formulate | B) within the SMA, we need to note that we
obtain | B,,) by acting the c'c term of the projector in Eq. (8) on
|A,). With this observation, along with identities of Eq. (D3),
we obtain the normalized eigenstate [49]

27 &
B) = — Y (=1)'[S, - S,
|B) ,/m;( [ +1

— 1St - SO, - Su)]IG). (26)

Equation (26) can also be written as a Hermitian operator on
the ground state:

~ 1 n
|B) = ,/mZ(—) St Sp Su - S }iGh, 27)

n=1

where {, } denotes the anticommutator.

One might wonder if the pattern of exactness might con-
tinue for other dimer configurations such as |C,), |D,), or a
combination of the two. However, in such cases, the scattering
terms are no longer inversion symmetric, and hence do not
appear in pairs, precluding cancellations at k = 7. For the
Arovas states considered here, the scattering terms appeared
in pairs due to the presence of only two nonvanishing projec-
tors on the state, forcing the exact state to have a momentum
k=m.
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V. MIDSPECTRUM EXACT STATES

We now move on to the study of nonsinglet states, i.e.,
states with a total spin s # 0. Since the AKLT Hamiltonian
Eq. (1) is SU(2) symmetric, it is sufficient to consider the
highest weight state of each multiplet of spin s. The entire
multiplet of 2s 4 1 states can be obtained by repeated appli-
cation of §~ = Zle S, on the highest weight state.

A. Spin-2 magnon state

We start with a configuration with the cartoon picture
as shown in Fig. 6(a). This particular configuration is used
because of the rule Eq. (D23) of Fig. 19, derived in Appendix
D. It shows a fairly simply and symmetric scattering process.
We define |M,,) as a quasiparticle with no dimers around site
n as

n—2 L
M) = l_[c] j+lan (@] Yal Apt1 l_[ C}L'.j+1|9>' (28)
Jj=1 J=n+l

From the cartoon picture Fig. 6(a), it is clear that the only
projectors in the Hamiltonian that do not vanish on |M,,) are
PZD and PV, Using Eq. (D23),

(21) |M>

nln

| M) + 3INa-1), (29)

where |N,) is shown in Fig. 6(b). Since |N,) is bond inver-
sion symmetric under bond {n, n + 1} whereas |M,) is site
inversion symmetric about site n (they have opposite types of
symmetries), the action of the Hamiltonian on |M,,) reads

H|M,) =2|M,) + L(IN,_1) + IN,))) (30)

and one can use the k = 7 superposition to remove the |N,,)
states. The translation-invariant state is thus

L
1$) = > (=1)"1M,). 31

With L even and periodic boundary conditions,
H|S$3) = 2[5,). (32)

Thus we have an exact multiplet of states with s = 2 (4 aiT sin
the state), E =2, k = .

This state can again be written as an SMA with a spin-2
magnon. From Fig. 6(a), we immediately see that |M,) =
—(Sj2/2)|G); that is, the spin on site n is forced to have
S, = 1. Thus, including the normalization factor, the full state

(a) n-1 @ n+1

FIG. 6. The two configurations that appear in the derivation
of the spin-2 magnon state. (a) The spin-2 magnon state |M,).
(b) Scattering state |N,).

@gh @ bt @) oo

n+3 n+4 n+5

) ~e5~eh E5eh toeh @9 oo

n+3 n+4 n+b

©~e~0b @) &) @ @tk

n n+1 n+2 n+3
<d>+@*@ 4d &9 dotd Gortoto
n n+1 n+2 n+3

FIG. 7. (a) Two-magnon configuration |M,, M,4). (b) Scatter-
ing state |N,, M,14). (c) Two-magnon configuration |M,, M,»).
(d) Two-magnon scattering configuration |M,,, N,1,).

can be written as

nat2
1S3) = ,/4LZ( 1'SF(G). (33)

This state exists for all L even and L > 4. In terms of
momentum space operators, the state has the expression

P 3 tor X
1S2) :‘/E;S" st IG). (34)

The entire multiplet of states with different S, can be obtained
from |S,) by applying the S~ operator.

An exact spin-2 magnon state can be constructed similarly
for the AKLT Hamiltonian with open boundary conditions
too; see Appendix J 2.

B. Tower of states

We now denote the spin-2 magnon “creation” operator
as P =Yk (=1)"S>. The state P*|G) is a state with
two of the k = m spin-2 magnons dispersing on the chain.
The correct basis state is proportional to S}°S*2. |G),
with n 4+ m defined modulo L, containing two magnons
(S 4|G) = 0 for m = 0). It is convenient to denote this basis
state |M,,, M,,+,), n and n 4+ m denoting the position of the
magnons. Similarly, basis states |M,,, N,+,,) can be defined
as the configuration with the spin-2 magnon at position m
and the scattering magnon of Fig. 6(b) at position n + m.
Since S 2|G) annihilates all spin configurations of |G) that
do not have S; = —1 on site n, it follows that S; # —1 on
site n + 1 because the sites n and n + 1 share a singlet in
|G). Thus, (S*)z( n+1)2|G) = 0. For other m, there are two
possibilities. If 3 < m < L — 3, we can write down the action
of the Hamiltonian on the two-magnon basis states using
Eq. (30) as

H|M11’Mn+m> —4|Mn,Mn+m>+ (|Nn 1 n+m>
|an Mn+m> |Mna Nn+m—l>
+ |Mn7 Nn-‘rm))- (35)

An example of such a state and its scattering configuration
are shown in Fig. 7(a) and Fig. 7(b), respectively. If m =2
or m = L — 2, the two magnons fuse to form one spin-4
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magnon, as shown in Fig. 7(c). Using Eq. (D23), the action
of the Hamiltonian can be written as

Han, Mn+2> = 4|Mn» Mn+2> + %('anla Mn+2>

+ My, Npi2)). (36)

In terms of these basis states, the translation-invariant state
comprising two spin-2 magnons on the AKLT chain is

L L-2

1S8) = DY " (=1)" 1My, Myin). (37)

n=1 m=2

Using Egs. (35) and (36) the action of the Hamiltonian on |S4)
can be written as

H|Ss) = 41S4) + 1(Cy) +1C))), (38)

where we group the scattering terms into two: |C) arising
from basis states in Eq. (37) of the type Fig. 7(a) (i.e.,
magnons are separated, 3 < m < L — 3), and |C;) arising
from basis states of the type Fig. 7(c) (i.e., magnons are next
to each other, m = 2, L — 2). Using Eqgs. (35), (36), and (37),
|C) and |C;) can be simplified to

L—
Z _1) (|Nn 1y n+m>+|Nnan+m>

||
i Mh

+ |Mna Nn+m—l> + |Mna Nn+m))a (39)

1C) = (INy. Myyr2) +
n=1

+ |Mila Nn+2) + |Mna Nn+L—3))~ (40)

|Nllv Mn+3)

In Eq. (39), considering the summation over just the first scat-
tering term and relabeling the summation indices considering
L even, we obtain

L L-3 L L-2
DY D Nty M) = ZZ(—1>m|Nn,Mn+m>.
n=1 m=3 n=1 m=4

(41)

Similarly for the third scattering term in Eq. (39), we obtain

L L-3 L L4
DD D My, Nmt) = = Y Y (=1 [Myy, Ny).-
n=1 m=3 n=1 m=2
(42)
Adding all the terms in Eq. (39) back, we obtain
L
C) == (INu. Myi12) + [Ny, My i3)
n=1
+ My, Npj2) + My, Nyyr-3)). (43)
Using Egs. (43) and (40), |C;) + |C;) = 0. Thus,
H|Ss) = 4|S4). (44)

This is an exact state with s =4, k =0, and £ = 4. As with
all the states we have presented, the cancellation here works
only if L is even.

@66 ) @) @) Go—eoforeo-

n n+1 n+2 n+3

(0)~£9-0h @) Go-0h @) Eo-Co~d

n n+1 n+2 n+3 n+4

©~£-eh ) @) doeh doforeo

n n+1 n+2 n+3

FIG. 8. (a) A configuration with magnons on sites n and n + 2.
(b) A configuration with magnons on sites n and n + 3. (¢) Common
scattering configuration.

This construction can be easily generalized by noting that
the spin-2 magnons on the spin chain behave as solitons. A
state with N k = 7 spin-2 magnons reads

N .
1San) = ) (=D)X=l| My, My,
{L;}

M) 45)

As we have seen earlier, ST S+2+] |G) = 0. Hence, in
Eq. (45), all configurations |..., M,, M,+1,...) vanish.
Thus the set {/;} satisfies the constramts 1<j<N, ljp >
[ +1,1<1; <L, where addition is defined modulo L.
Upon the action of the Hamiltonian on Eq. (45), a term
My, ..., My, ..., M) scatters to |M;,..., N, ..., M)
where py = [ — 1 or py = Ix. From Egs. (30), (35), and (36),
observe that for each such scattering term, there always is
a unique different term in Eq. (45) |M;,, ..., M,,, ..., M)
where g, =y — 1 or g =[x + 1 that scatters to the same
term. For example, a state with spin-2 magnons on several
sites, including n and n + 2 [Fig. 8(a)], and another state
with spin-2 magnons on the same set of sites, except for
n + 2 replaced by n + 3 [Fig. 8(b)], share a scattering term
[Fig. 8(c)]. However, for the scattering terms to cancel, the
terms |My,, ..., My, ..., M;,) and |[M;,, ..., M, ..., M;,)
should have the opposite sign in Eq. (45). This is true for the
case when [y =1} =1 and g, = Iy = L only if L is even.
Thus, all the scattering terms arising from Eq. (45) cancel
out and we have an exact state. |Spy) can also be written as
|S>n) = PV|G) and has a momentum k = 0 or 7 depending
on whether N is even or odd. Its total spin is s = 2N, and its
energy is E = 2N. Since each spin-2 magnon annihilates two
dimers from the ground state and L is even, |S;) is a state
with E = L, s = L, the highest excited state of the model.
Thus, {|S>x)} is a tower of exact states from the ground state
to the highest excited state. In terms of the spin operators, the
highest weight states of this tower can be written as

[S2w) NZ( 1>Z~’]_[ SHG). @6

where A is a normalization factor. Similarly to the spin-
2 magnon, the entire tower of states can be extended
to the AKLT chain with open boundary conditions; see
Appendix J 3.

C. Position in the energy spectrum

In this section we study the positions of the tower of
states {|.Son)} in the energy spectrum. It is believed [12,13,22]

235155-8



EXACT EXCITED STATES OF NONINTEGRABLE MODELS

PHYSICAL REVIEW B 98, 235155 (2018)

40

35, o—e

1

N
]
T

Position in %
N
o

15 ]
10t ]
5 o ]
0.0 0.2 04 06 0.8 1.0
0 : : ‘
0 0.2 0.4 0.6 0.8 1

e=E/L

FIG. 9. Positions of the S, = O states of the tower of states within
the energy spectrum of their own quantum number sector plotted
against the energy density € = E/L for L = 8, 10, 12, 14, 16 with
periodic boundary conditions. Each dot corresponds to a state with
N spin-2 magnons with N =0,1,...,L/2 —2. The inset shows
the density of states for L = 16 in the quantum number sector
(s, S, k, 1, P))=(8,0,0, —1, 1). The vertical green line in the inset
indicates the position of |Sg).

that all energy eigenstates of nonintegrable models that lie
in a region of finite density of states satisfy ETH. This is
commonly known as the strong ETH [22,23]. However, the
local density of states can always be changed by tuning the
Hamiltonian to allow level crossings from states with different
quantum numbers. To avoid this possibility, we study the
position of the tower of states in the density of states of their
own quantum number sector defined by (s, S;, k, I, P,).

In the inset of Fig. 9, we show a typical example of the den-
sity of states for the spin-1 AKLT chain for periodic boundary
conditions. We focus on system size L = 16 and the sector
defined by the set of quantum numbers (s, S, k, I, P,) =
(8,0,0,—1, 1). The quantum numbers are defined in Table I.
In this sector lies, for example, the state of the tower with
N = L/4 magnons, i.e., |S2ny) = |Sg). As can be observed,
this state is located in a region with finite density of states.
Since any given state of the tower of states has a fixed energy
as the thermodynamic limit (L — oo) is taken, it is natural
to expect that such a state would eventually lie in a region
of zero density of states. However, for a fixed L, we have a
tower of states of E = 2N,s = 2N, N € [0, L/2], and hence
the number of states and their energies increase as the system
size increases. One could look at the states at a finite energy
density € = E/L and then take the thermodynamic limit
(E — 00, L — 00). In this limit, we conjecture that some
states of the tower lie in the bulk of the energy spectrum in
the thermodynamic limit.

VI. EXACT HIGH-ENERGY STATES

For completeness, we now focus on the exact states in the
upper part of the energy spectrum shown in Table I. Not all the
states presented here are specific to the AKLT model. Some

T HOOOB OO
BB O DO O

FIG. 10. (a) Ferromagnetic state |F'). (b) One-dimer configura-
tion |n).

are eigenstates merely as a consequence of having SU(2)
symmetry and translation invariance. Moreover, it has been
shown that all the states with quantum numbers S, = L — 1
and S, =L —2 (andhences = L — 1 ands = L — 2) can be
analytically obtained for a general SU (2)-symmetric spin-1
Hamiltonian in the thermodynamic limit [57] and for any even
system size [58], in spite of the fact that a general SU(2)-
symmetric spin-1 Hamiltonian is nonintegrable. This is due to
the fact that the scattering equations of states with S, = L — 1
and S; = L — 2 correspond to one- and two-body scattering
problems, respectively, which are integrable. Indeed, states in
these quantum number sectors do not exhibit level repulsion.
However, for S; = L — 2, in most cases it is impossible to
obtain a closed-form expression of the eigenstates for a finite
system size. The states presented in this section are thus
examples of high-energy eigenstates withs = L — 1 and s =
L — 2 that have a simple analytical expression for any finite
system in an otherwise completely solvable quantum number
sector. The scattering equation of states with S, =L —3
similarly corresponds to a three-magnon scattering problem,
that has been solved partially [57]. However, we have not
found any exact states with s = L — 3.

A. Ferromagnetic and 1, states

As we have seen in Sec. V B, the highest excited state of
the spin-1 AKLT model with periodic boundary conditions is
the ferromagnetic multiplet that has s = L and £ = L. In the
highest weight state, all of the spin-1’s are ferromagnetic and
are in the S, = 1 state [Fig. 10(a)]. Since nearest neighbors
already form a spin-2 configuration, each of the projectors in
Eq. (1) contribute 1 unit to the energy of the state. In terms of
Schwinger bosons, the state can be written as |F) = |S.) =

2
]_[jL.=1 aj |6). Using Eq. (4), the normalized state is given by

~ P

|F) = CYaEh (47

As also seen from Eq. (D22), the total energy E of the state
is L.

Another trivial series of states that are exact for periodic
boundary conditions are those with spin s = L — 1. There are
L — 1 of them and they can be expressed by the action of S, .
Indeed the normalized states read

—~ 1 . —~
L) = —= ) ™S, IF), (48)
7 &
with momentum k = 2rw//L, where [ =1,2,..., L —1( =
0 belongs to the multiplet of |F)). In the dimer basis, |1;) is
the translation-invariant superposition of single dimer config-

urations [n) = (S, — S, )| F) depicted in Fig. 10(b).
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FIG. 11. Several configurations relevant for the |2,) states.
(a) Two-dimer configuration |m,m +4). (b) Scattering term
[m + 1, m + 4). (c) Two-dimer configuration |m, m + 1). (d) Scat-
tering term |m, m + 2). (e) Two-dimer configuration |m, m).

Using Eq. (D22), projectors of the Hamiltonian Eq. (1) on
all the bonds except {n — 1, n}, {n,n+ 1},and {n + 1, n 4 2}
contribute a total energy of E = L — 3 to the state |n). Since
the projector on the bond {n,n + 1} vanishes [Eq. (D27)],
the only nontrivial projector actions are P,fill ’)n and P,f_zHl ,)n 4o
Using Eq. (D23) the scattering equation for |n) can be written
as

Hln) = (L =Dln) + 3(n =) +n+1)).  (49)

Thus 1) =), €'*"|n) is an exact state with periodic bound-
ary conditions for all L,

1 .
Hlg) = (L = DIL) + 5 ;e"mun — 1)+ n+1)

=[L — 1+ cos(k)]|1). (50)

We thus have states for all momenta k # 0 with s = L — 1
and E = L — 1 + cos(k). Note that these states, while rather
trivial, have a very simple structure (observed in the entangle-
ment spectrum) but nonrational energies.

B. 2, states

We now move on to the next simplest set of exact high-
energy states, those with two dimers on a ferromagnetic
background. The appropriate basis states are |m, m +n), n =
0,1,...,L/2, that denote the configuration with dimers on
the bonds {m,m + 1} and {m +n,m +n + 1}, examples
of which are shown in Fig. 11. Here, we deal with the
cases n > 2 [e.g., Fig. 11(a)], n = 1 [Fig. 11(c)], and n = 2
[Fig. 11(e)] separately because the scattering rules in Ap-
pendix D [Egs. (D23) and (D24)] are applied differently.

If n > 2, the terms in the Hamiltonian that contribute to
the scattering are the four projectors around the two dimers.
According to Eq. (D23), the states scatter as

H|m,m + n) :(L—2)|m,m+n)+%(|m—l,m+n)
+m+1,m+n)+|m,m+n+1)
+|m,m+n—1)). (5D

An example of a configuration |m,m 4 4) and a scattering
term |m + 1, m +4) are shown in Figs. 11(a) and 11(b),
respectively. In Eq. (51), if |m, m + n) is site (bond) inversion
symmetric, all the scattering terms are bond (site) inversion
symmetric, possibly around different bonds (sites). For
periodic boundary conditions and even L, they can thus
be canceled with a k = m superposition. The exact state
for n > 2 is then [2,) =), (=1)"|m, m + n). However,
note that if L/2 is odd, |2,0) =Y, (—=1)"|m,m + L/2) =
Y, (C1 R m o L2 m+ L) = —[20p0). [20p)  thus
vanishes if n = L/2 and L/2 is odd. There is thus a set of
L/2 —2 states if L/2 is even and L/2 — 3 states if L/2
is odd (we are treating n =0, 1,2 separately), all with
E=L-2,s=L—-2andk=m.

When n =1 [Fig. 11(c)], the two dimers share a site
and only two projectors of the Hamiltonian contribute in
scattering. Using Eq. (D23), we obtain

Hm,m+1) = (L—2)|m,m~|—1)+%(|m— 1,m+1)
+ |m, m + 2)). (52)

Since |m, m + 1) is site inversion symmetric (about site m +
1) and the scattering terms are bond inversion symmetric
[e.g., Fig. 11(d)], [2,=1) = >_,, (—1)"|m, m + 1) is an exact
state with periodic boundary conditions and even L with the
quantum numbers s = L —2, k =m,and E = L — 2.

If n = 0 [Fig. 11(e)], the appropriate rule for scattering is
given by Eq. (D25). Hence, |m, m) scatters to

Him,m) = (L — 1)|m,m) + %(Im,m+ 1)+ |m—1,m))
+i(m—1Lm—1)+Im+1,m+1)). (53)

Since |m,m + 1) [Fig. 11(c)] is site inversion symmet-
ric whereas |m,m) is bond inversion symmetric, |2y) =
> (=1)"|m, m) would give rise to the action

H|2) = (L = 1)[25=0) — §124=0) = (L — 5)[24=0). (54)

Thus we have an exact state with with energy £ = L —4/3,
momentum k =, and spins = L — 2.

If n = 2 [Fig. 11(d)], from Eq. (D24) we see that P2 .,
would act nontrivially on the configuration. This scatters
|m, m + 2) into bond-symmetric terms that cannot be can-
celed with a kK = m superposition. Hence, |2,—,) is not an
exact state.

To derive operator expressions for the |2,) states, we note
that |m, m 4+ n) can be expressed in terms of spin variables by
writing down its expression in terms of Schwinger bosons and
using the dictionary Eq. (4). Noting that S7|1) = /210 and
$710) = /2| — 1), this straightforward calculation leads to

[(Sp1 = Si)

_Si;+n)]|F)s lfn$£0, 1,2,

(Sr;+n+l

(St 1Sm2 + S St

|m,m+n) = —S”;S,;+2—2(Sn_1+1)2]|F>v ifn=1,

20(S,41)* + (5,7
=8, Sl ).

m*~m+1

ifn=0.
(55)
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FIG. 12. Typical configurations involved in the derivation of the
|2;) states. Two-dimer configurations (a) |n, n + 1), (b) |n,n + 3),
(c) |n, n +5). Scattering terms (d) |n, n + 2), (e) |n,n +4).

Using Eq. (55), after simplification, the normalized states can
be written as

1 _
T[S,n ~ '

Sironer — S DIFY. ifn#£0,1,
=2 (=" [S-(S-,, — 2SH[F), ifn =1
— 2f m+2 m ) =1L
eSSy P, ifn = 0.

(56)

C. 2; states

Using the scattering Egs. (51) and (52), we obtain another
set of exact states that can be constructed with two dimers on
a ferromagnetic background, the |2;) states. Consider

L/2—1

[2:) = Z el<’<+”>mze'k"|n n+2m+1). (57)
m=0

In Eq. (57), the choice of superpositions have been chosen
such that scattering terms of a particular two-dimer basis
state are canceled by those of other basis states. For example,
[n,n + 1) [Fig. 12(a)] and |n,n + 3) [Fig. 12(b)] produce
the same scattering term |n,n + 2) [Fig. 12(d)] according
to Eqs. (52) and (51), respectively. Similarly the scattering
term |n, n + 4) [Fig. 12(e)] is obtained from both |n, n 4 3)
[Fig. 12(b)] and |n, n 4 5) [Fig. 12(c)] but with opposite signs
and hence vanishes. A detailed proof of the |2;) state being
exact can be found in Appendix E. We also show that these
states have energy £ = L — 2 and L has to be even.

While the state |2;) can be proven to be exact for any
momentum k, the state itself vanishes for certain momenta
[see Egs. (ES) and (E6) in Appendix E],

12¢) = e*5 (5702, (58)

For the state not to vanish, the momenta should satisfy the
relation e/¥3 75D = [,

If L =4p, p integer, e*//> = —1. Since k =2mj/L,
where j is an integer, the previous condition can be satisfied
only for j odd. So, for L = 4p, there is a state |2;) at any
odd momentum, a total of 2p states. If L = 4p + 2, we need
e'*L/2 = 1, restricting to even momenta, a total of 2p + 1
states. Thus the |2;) states lead to a total of L/2 exact states
with s = L —2 and E = L — 2. The operator expression for
the normalized state |2k) directly obtained using Eqs. (57) and
(55) reads

L/2—1
20 =N [Z (e’“‘*’”’"Z s, S;+2m+1>
m=0 n

- Zei;secant<§> Zeik"(S,l)2j| |[FY, (59)

n

where N is the normalization constant.

D. Special states

Apart from all the states above, we numerically observe
a state that is at s = L — 2 that repeats only for particular
values of L. The state |69) appears only for L =6p, p
integer, with energy E = L — 1. In this section, we ex-
emplify a method to obtain such “repeating states,” i.e.,
states with an energy E = L — & that appear periodically in
L.

We work in the orthonormal, complete, spin basis. The
highest weight state in the s = L — 2 can be obtained from
| F), either by flipping one spin to S, = —1 or flipping two
spins to S, = 0. Thus basis states of a fixed momentum k can
be labeled by |n),n €0, 1,..., L/2, where

Ing) =N Ze’kJS SiialF (60)

The Hamiltonian matrix in this basis constructed using
Egs. (A2)—(A7) and (60) is tridiagonal. Eigenvalues of the
form L — & that are periodic in L can then be solved by
a “transfer” matrix method, as demonstrated for kK = 0 in
Appendix F. For k = 0, obtaining repeating states can be
shown to reduce to solving the equation [see Eq. (F18)]

itan (X) _ sin[(r +2)y] 1)
2 2 cos[(r + 3)y]

with r € Z, and y =2m 2. As shown in Appendix F, a
solution to Eq. (61) with integer p, g, r, with p < ¢/2 and ¢
even, corresponds to a state with energy E = L — 4sin’( 5)
that appears for every L = 6 + 2r 4+ gm, where m € Z.

Most of the states obtained by this method correspond
to the |2,) and |2;) states that we have already discussed.
For example, a solution of Eq. (61)isg =4,p=1,r =0,
has E =L —2, and is the |2;—y) that appears for every
L =4m+2.

For p,q,r < 1000, we could find one new solution to
Eq. (61).Itisg = 6, p = 1, r = 0. This state thus has energy
E = L — 1, and since q is even, it appears for L = 6p, where
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FIG. 13. The only two possible dimer configurations up to trans-
lations in |S,) for L = 6.

p is an integer. The exact state can be written as

L2

[60) NZZcos< ) Siinl F), (62)

i n=0

where N is a normalization constant. We thus have an exact
state with £E =L — 1, k=0, and s = L — 2. In momentum
space operators, the state can be written in a more elegant
form,

60) = (sgs:;f +2 S,:S—k) IF), (63)
k

where the sum over k runs over all the momenta. The same
exercise for any other momentum k does not lead to any new
states.

E. Overlap with the tower of states

It is important to note that the tower of states {|S,,)}
obtained in Sec. VB Eq. (46) has some overlap with the
high-energy states we have presented. As we have seen ear-
lier, |S.) = |F). Moreover, the L/2 — 1 magnon state |S;_»)
has a total spin s = L — 2. As illustrated in Fig. 6(a), the
operator (S, )> always annihilates two dimers around a site
n. Since N = L/2 — 1 in Eq. (46) for |S._»), the state is a
superposition of configurations with L — 2 dimers annihilated
from the ground state configuration. Moreover, since (S;")?
annihilates the dimers on neighboring bonds {n — 1, n} and
{n, n + 1}, for even L, the two remaining dimers always have
an even (odd) number of bonds (sites) between them. For
example, the only possible configurations of |S4) for L = 6
up to translation are shown in Fig. 13. Thus, up to an overall
constant, the appropriate two-dimer basis state to describe the
tower of states can be written as

H< ")

L/2 1

P T Sha)’1G), (64)

j=m+1

In,n+2m + 1)

where each (S;r )? annihilates dimers on bonds {i — 1, i} and
{i,i 4+ 1}. Thus, in Eq. (64), the dimers on bonds {n,n + 1}
and {n +2m+ 1,n+ 2m + 2} are the only ones remain-
ing. From Eq. (46), the exponent of (—1) in front of the
configuration |n, n + 2m + 1) can be written as

L/2-1
Z(n+2])+ Z n+2j+1)
j=I j=m+1

~ (£ 1 L 1 65
—(E— )(E'F +n)—m. (65)

Using Egs. (64) and (65), up to an overall phase, the state
|S7_>) can thus be written as

L/2—1
S.2) = Y D (=D a4 2m 4 1), (66)
m=0 n

The two cases L =4p and L = 4p + 2 are considered sep-
arately, p being an integer. When L =4p + 2, |S;_,) has
k=0, (L/2—1) is even and when L =4p, |S._,) has
k =m, L/2 — 1is odd. From Eq. (66), we obtain

[2k=0), if L=4p+2,

L/2—1 (67)

[SL—2) = .
Z (_1)m|2n:2m+l)s if L = 4p
m=0

VII. 1D SPIN-S AKLT MODELS WITH S > 1

AKLT models can be straightforwardly generalized to all
dimensions and also to spins with different Lie algebras
[42,59-61]. In this section, we consider the generalization to
spin-S with S being a positive integer. Such a model has been
studied to explore the Haldane conjecture for § = 2 [62-65].
Particularly, it has been observed that odd integer spin chains
are topological (due to the presence of half-integer dangling
spins at the edge) whereas even integer spin chains are not
[63,65]. The generalization of the AKLT Hamiltonian that was
used [63,64] is

L 28
S
HO =3 3" ;P (68)
i=1 J=S+1

with oy > 0VJ. As we will see later, the ground state is the
same for all the Hamiltonians of the form Eq. (68). However,
the entire energy spectrum is not the same. For example, the
ferromagnetic state need not be the unique highest excited
state unless

25—-1

ws>= Y ay. (69)

J=5+1

As we did for the spin-1 AKLT model, we can write
Hamiltonian Eq. (68) in terms of spin operators. The most

general expression for P(J $) is the projector onto total spin
J for two spin-S on sites 1 and j and can be written in terms
of the spin operators as

28 2 -
.S _ (Si+ S —sts+1)
= 1l (J(J+1)—S(s+l)

s=0,s#J
28 r
28 -8, +28(S+1)— 1

$=0,357 JUJ+1)—ss+1)
Since we are working with spin-S, each spin can be thought to
be composed of 2.5 spin-1/2 Schwinger bosons, with the same
algebra described in Appendix B. However, since the number
of Schwinger bosons per site changes, Eq. (7) also changes to

¢..¢ cf

S; - S = —4elei + Sala; + blbi)ala; + blb)

= Sz — lC'JF~C','j'. (71)
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Using Eq. (71) and Eq. (B7) for normal ordering, we obtain
an expression for the spin-S AKLT Hamiltonian,

25
HS = Z 1+ Z )/_,'(C,]-L’i_,_l)j(ci,iﬁ-l)j ) (72)

i j=1

where the coefficients y; depend on the coefficients «; in the
projectors and the spin S, a closed form of which we could
not obtain for a general S. We have the freedom to choose
(S — 1)y coefficients while retaining the standard ground
state but changing the excitation spectrum. By choosing oy =
1 for all J, we observe that it is possible to set y; =0, 1 <
j < S —1. This is the only choice of {«;} that satisfies the
required condition. The Hamiltonian is then

28
HS = Z 1+ Zﬁj(cj,iﬂ)j(ciaiﬂ)j : (73)

i j=S

As we will show later in this section, this choice of coefficients
is crucial for us to have nontrivial exact states (including a
tower of states) in the bulk of the spectrum. Since the algebra
of dimers described in Appendix B is independent of the spin
model we are working with, it holds here as well.

A. Lower-spectrum states

We start our analysis of the spin-S AKLT model with
its ground state. Working in the spin basis, if S dimers are
formed between two spin-S (i and i 4 1) that have a total of
4S spin-1/2 Schwinger bosons, the maximum spin of both
spin-S combined cannot exceed S. Such a configuration must
therefore be annihilated by all Pifl.JjFSl) for J > S, and is thus the
unique ground state |SG) of the Hamiltonian Eq. (68). This
can be written as

L
1SG) = [Jccl %16 (74)
i=1

The cartoon picture for the ground state of the spin-2 AKLT
model is shown in Fig. 14. The ground state with open
boundary conditions is computed in Appendix J 4.

One might wonder if any low-energy s = 0 magnons sim-
ilar to the two Arovas magnon states discussed in Sec. IV
exist for the spin-S AKLT models. We have used the method
described in Sec. III to detect exact eigenstates for S = 2 with
L €10 and S = 3 with L < 8. In both the systems, we find
only one singlet exact state apart from the ground state, and
it lies in the quantum number sector s =0, k =, [ = —1
for even L, and has an energy E = 2. Since the Arovas B
state in Sec. IV B is in the same sector, we need a similar
configuration with short-ranged dimers. Numerically, we do
not find an analog of the Arovas A state for higher-spin AKLT
models with the chosen Hamiltonian given by Eq. (73) [i.e.,

FIG. 14. S =2 AKLT ground state with two dimers between
nearest neighbors. Spin-S AKLT would have S dimers. |2G) with
periodic boundary conditions.

FIG. 15. The spin-2 AKLT configurations (a) |BG,) and (b)
|B2). Such configurations form the generalization of the Arovas B
state in the spin-S AKLT model. (c) An example of a symmetric con-
figuration that appears only in C 22. (d) An example of a symmetric
configuration that appears in both C3; and C gz. (e) An example of a
nonsymmetric scattering configuration |¢).

with a; = 1 VJ in Eq. (68)]. At the end of this section, we
provide an intuitive explanation as to why this is the case.
In Appendix H 2, we prove that for S = 2, an Arovas A state
cannot be obtained for the Hamiltonian Eq. (73) but an analog
can be constructed with another suitable choice of coefficients
{oy} in Eq. (68).

To exemplify the derivation of the generalized Arovas B
state, we first focus on the spin-2 AKLT model. The corre-
sponding Hamiltonian Eq. (73) reduces to

1 .0 I 3
H? = Z(l - 8—4CT,',5+1C1'2,5+1 + @CTL[HC?JH

)
- chi,i+1cii+l>' (75)

One could form spin-2 basis states by gluing together
two copies of spin-1 basis states, along with completely
symmetrizing the spin-1’s of the two copies. The spin-2
configuration |BG,) [Fig. 15(a)] is formed by gluing one
spin-1 Arovas B configuration |B,) [Fig. 5(a)] to the spin-1
ground state |G) (Fig. 2) and | BG,,) [Fig. 15(b)] by gluing two
| B,)s together. The scattering equations for the configurations
|BG,) and |B2) with the choice of our Hamiltonian Eq. (73)
are shown in Appendix H, Eqs. (H1) and (H2), respectively.
We find that the scattering terms arising from |BG,) and |B,%)
fall into two types of configurations: symmetric with bond
inversion symmetry and nonsymmetric. While the bond inver-
sion symmetric scattering terms are different for |BG,) (set
CgG) and |B2) (set C;;), the set of nonsymmetric scattering
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terms are the same for both (set CV). The scattering equations
assume the form [see Eqgs. (H1) and (H2)]

+ ) %+ x Y o),

H®|BG,) = 2|BG,)

(neCss) {ceCV)
H?|B})=2|B})+ > ,\B ) —4 > 2 THg)
{neCs,) {gec?)
+(—x) Y Alo). (76)
{ceCN}

In Eq. (76), 7 is a translation operator that translates by
one site to the right and k,,B G AB and ¢ are the scattering
coefficients. We show an example of a configuration from
each of the sets ng, CBG, and CV in Figs. 15(c), 15(d), and
15(e), respectively. In Eq. (76), since nonvanishing projectors
of the Hamiltonian Eq. (73) act on configurations |BG,) and
|B,f) symmetrically about site n [on bonds {n — 2,n — 1} and
{n+1,n+ 2} in Figs. 15(a) and 15(b)], all the scattering
terms that are bond inversion symmetric [e.g., Fig. 15(c)] ap-
pear in pairs that are related by a translation of an odd number
of sites. Hence, they cancel with a momentum 7 superposition
of the configurations |BG,) and |B§) for an even system size
L. Moreover, |B2) and | BG,) can be combined into

12B,) = 2|BG,) — 1|B}). (77)
such that the scattering equation for |2B,) reads

H®12B,) =212B,) + Y Ayln)
{neCs}

+2 > a(le) +

{ceCN}

+T*e)),  (78)

where C5 = Cj; UCj,. In Eq. (78), the nonsymmetric con-
figurations also admit a momentum 7z cancellation for L even.
Thus, [2B) = ), (—1)"|2B,) is an exact state for L even with
s =0, k=m,and E = 2. In terms of spin operators, using
Eq. (71), we find that the normalized state |2 B) can be written
as

|/2-\B/) = NZ (_l)n (_5 + S:nfl . §n + 5:n : §n+1

1
—{S,—
+3{

2
1+ Sns Su - Sn+1}> 12G), (79)
where {, } denotes the anticommutator, |§E) is the normalized
ground state of the spin-2 AKLT Hamiltonian, and N a
normalization factor.

The j =1 term in general Hamiltonian Eq. (72) scat-
ters the state |B2) into nonsymmetric configurations [e.g.,
Fig. 15(d)] whereas it scatters |BG,) into symmetric con-
figurations; this precludes the possibility of cancellation of
nonsymmetric terms as earlier. We thus set 8; = 0, justifying
our choice of the Hamiltonian in Eq. (73).

Moving on to the spin-S AKLT model, the set of config-
urations that can be derived from the Arovas B state |B,)
and the spin-1 ground state |G) is S = {|B"G5™)}, 1 <
m < S, which is obtained by gluing m spin-1 |B,)s with

S —m spin-1 |G)s and completely symmetrizing the corre-
sponding spins. The derivation of the generalized exact states
proceeds in a way similar to that of S = 2. Equation (73)
scatters the configurations in the set S into two types of
configurations: symmetric under bond inversion symmetry
and nonsymmetric. Similar to the S = 2 case, we find that the
nonsymmetric scattering terms of |B” G5~™) are the same as
the nonsymmetric scattering terms of either of | B+ GS—1)
or |B"~1G5~"*1) For § < 5, we find that a |SB,) can always
be constructed from the configurations in the set S such that
the scattering equation of |SB,,) reads

H®|SB,) =2ISB,) + Y dyln)

neCs

+ Y ale) +

cecN

T, ©80)

where C5 and CV are the sets of bond inversion symmetric
and nonsymmetric configurations of all the configurations
in § and x; is an integer. In Eq. (80), the bond inversion
symmetric configurations appear in pairs and vanish for even
L under a momentum-m superposition of |S B, ). The nonsym-
metric terms too appear in pairs, and hence vanish under the
same conditions. We have analytically derived the generalized
Arovas B state up to § = 5. For generic S, we conjecture the
following expression for |SB,),

" /S
|SBn>=Z( m) (m>|B"’GS’">. 81)

m=1

This reduces to |B,) and |2B,) of Eq. (77) for S = 1and § =
2, respectively. The normalized exact state is then

ISB) =N (—1)"ISBy), (82)

where A is a normalization factor. This state has
s =0, k =m, E =2.In spite of the elegant form of Eq. (81)
in terms of dimers, we could not easily find a nice expression
such as Eq. (79) for the state |SB) in terms of the spin
operators.

As mentioned earlier, for our choice of the Hamiltonian
Eq. (73), we do not find an analog of the Arovas A state
numerically for S =2 or S = 3. Analytically, an obstacle
encountered is that some of the scattering terms of |A” G5~™)
(the state obtained by gluing m spin-1 Arovas A configurations
with § — m spin-1 ground states) are of the form of | A" G5~").
Such terms are bond inversion symmetric [for example, |A%)
shown in Fig. 15(d)]; thus precluding a cancellation with
momentum 7 (since the Arovas A configuration is also bond
inversion symmetric). Moreover, for any superposition of the
configurations {|A" G5~™)}, the scattering terms {|A”G5™"))}
appear in superposition with a different set of coefficients,
thus precluding the construction of an exact state. However,
in Appendix H2, we show that for § = 2, a fine-tuning of
the Hamiltonian yields an Arovas A configuration with a
scattering equation similar to Eq. (80), and hence an Arovas A
exact excited state.
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FIG. 16. (a) Spin-4 magnon |2M,,) and (b) scattering state |2V, )
for spin-2 AKLT model. A similar picture holds for spin-S AKLT
model.

B. Midspectrum states

In this section, we derive the generalization of the tower of
states described in Sec. V B for the spin-S AKLT model. We
start with a configuration gluing S spin-1 |M,,) states to obtain
a spin-2S magnon |SM,,):

n—2
IsM,) = [t o 05@l_ DS @h* @l )*
j=1

L
< T« .0%1e). (83)

j=n+1

For example, |2M,,) for S = 2 is shown in Fig. 16(a). With
B; =0for0 < j < S, the Hamiltonian Eq. (73) does not have
any terms (ch)e* for s < S. Due to Eq. (G2), |2M,,) vanishes
under the action of (¢')"¢™ form > S. Thus, using Egs. (G3),
the only term in the Hamiltonian that contributes to scattering
is (c)ScS. Thus, from Eq. (G3), the only scattering terms are
those with § dimers on the bonds {n — 1, n} or {n,n + 1},
denoted by |SN,—;) and |SN,), respectively, and shown for
S = 2 in Fig. 16(b). With this, we find the scattering equation
of [SM,),

H®|SM,) = 2|SM,)) + As(ISN,—1) + [SN,)).  (84)

In the above equation, the precise value of the coefficient Ag
does not matter. For S =2, Ag—» = —2/7 but it is hard to
obtain a closed form for X in terms of S since it involves the
normal ordering recursion relations Eq. (B8). From Eq. (84),
the exact state is

1SS2) =D (—1)'|SM,). (85)

In terms of spins, this can be expressed as

1582) =N Z( D" (SHPISG), (86)

n=1

where N is a normalization factor. Thus, we have an exact
state for the spin-S AKLT model that closely resembles the
spin-2 magnon of the spin-1 AKLT model. This state has
E =2, k=m,and s = 2S. Similarly to the spin-2 magnon
of the spin-1 AKLT model, the spin-2S magnon generalizes
for open boundary conditions as well; see Appendix J 5.

As for the spin-1 AKLT model tower of states, the state
with N spin-2S magnons on the ground state is also exact
for the spin-S AKLT model. We denote the spin-2S magnon
creation operator as P = 25:1 (=1)"(S,f )25, The tower of

« & @ & dd & d» & @
@ e @D d®
© @3eh @b b @b db @3xch
B @ ¢4 @ ded

n n+1

FIG. 17. Upper spectrum state configurations for § = 2. (a) The
ferromagnetic state with s = 2L and E = L. (b) An example of a
nonscattering configuration with s = 2L — 1, E = L. (c) A config-
uration that forms an exact state for S =2 with E =L —2, s =
2L — 4. (d) A dressed configuration that forms an exact state with
E=L-2,5s=2L-5.

exact states is then

1SS2w) = PYISG), 87)

where 0 < N < L/2. |S;n) has k =0 or mw depending on
whether N is odd or even, a total spin s = 2SN, and an energy
of E =2N. This tower of states connects the ground state
to the ferromagnetic state. The proof proceeds exactly in the
same way as for the spin-1 AKLT tower of states. As with the
spin-1 AKLT tower of states in Sec. V C, we conjecture that
the tower of states for any spin S lies in the bulk of the energy
spectrum, although it is hard to obtain any strong numerical
evidence of this for § > 1.

C. Upper-spectrum states

In this section, we briefly comment on the structure of
the simple upper spectrum excited states of the spin-S AKLT
model. For the spin-§ AKLT model, there is no unique
highest excited multiplet. To see this, note that apart from a
constant, the Hamiltonian Eq. (73) contains terms (ciT )" (cij y"
for m > §S. According to Eq. (G2), all such terms vanish
on any configuration with s < S dimers on one bond. For
example, the configuration shown in Fig. 17(b) does not
scatter and contributes one unit of energy, the same as the
fully ferromagnetic state [Fig. 17(a)]. We dub such configu-
rations “nonscattering.” Nonscattering configurations at least
two bonds apart from each other lead to several excited states,
all of which have E = L using the specific set of «; in the
Hamiltonian Eq. (68) described previously. However, these
nonscattering configurations have different total spins.

In the previous section, we saw that the spin-S AKLT
tower of states can be obtained by replacing each dimer in
spin-1 AKLT by § dimers. The construction worked because
of the similarity of Egs. (D23) and (G3) and the structure
of the Hamiltonian Eq. (73). Since Eq. (D23) was crucial
in obtaining the upper spectrum excited states for the spin-1
AKLT model, upper spectrum states of spin-S AKLT models
can be obtained similarly with Eq. (G3). Thus, all the upper

235155-15



MOUDGALYA, RACHEL, BERNEVIG, AND REGNAULT

PHYSICAL REVIEW B 98, 235155 (2018)

spectrum states of the spin-1 AKLT model that used Eq. (D23)
in the scattering (|1%), |2,), and |2;)) have an analog in
the spin-S AKLT model, replacing each dimer of the spin-1
model by S dimers in the spin-S model and spins L — 1 and
L—2by SL—S and SL — 28, respectively. For example,
the configuration in Fig. 17(c) forms the S = 2 analog of the
|2,—¢) state. The exceptions to this rule are |2,—q), which
uses a different scattering rule [Eq. (D25) instead of the
Eq. (D23) used for the other |2,) states] and has no analog
in spin-S, and the special state |6). Special states could be
obtained for the s = LS — 2 sector and the spin-S AKLT too,
where the Hamiltonian would be tridiagonal. In addition to
the generalized versions of the spin-1 upper spectrum excited
states, such states could always be dressed symmetrically with
nonscattering configurations at least two bonds away from
the scattering ones. For example, the configuration shown in
Fig. 17(d) is simply Fig. 17(c) dressed with a nonscattering
configuration. Such a dressed configuration has the same
energy as the parent configuration but a lower spin. Thus,
the upper spectrum of the spin-§ AKLT models are massively
degenerate. The states described above account for all of the
rational energy states we observe numerically for S = 2. As
mentioned earlier for spin-1 models, the quantum number
sectors (L —2) < s < L are fully integrable [57]. Similarly,
for spin-S models, it might be the case that all the spin sectors
S(L —2) < s < SL are fully integrable. In such a case, the
states we have described are some examples of states that have
a simple analytical expression for a finite system. This is an
interesting question for future work.

VIII. PROJECTION PRINCIPLE

Spin-S AKLT exact states have intriguing connections to
the spin-1 AKLT exact states [e.g., see Eq. (81)]. Some of the
exact spin-S eigenstates can be constructed from other exact
spin-S’ eigenstates with S’ < S. This notion can be formalized
via the projection principle (PP). Originally introduced for
spin singlet ground state wave functions [61,66,67], here we
show that the PP can be applied to excited states as well. In
particular, it can be applied to states with nonzero magnetiza-
tion, i.e., nonsinglet states. In the following, we demonstrate
that the PP also holds beyond integer spin models. We briefly
introduce the Majumdar-Ghosh model and its ground states,
which we use to demonstrate the PP by constructing the AKLT
ground state. Subsequently we discuss how it can be applied
to exact excited eigenstates.

A. Majumdar-Ghosh model

Majumdar and Ghosh [43] (MG) noticed in 1969 that on a
spin § = % chain, the two valence bond solid or dimer states

MG®o) = [T el 1a10) (88)
(i odd)
|—0 o—0 o—0 o) “even”,
= (39)
|]o o—0 o—o o—o) “odd”,

where the product runs over all even sites i for one state and
over all odd sites for the other, are exact zero-energy ground

states of the Hamiltonian

Hyvc =Y (5.5 115540 (90)
MG — : i-9i+1 ) i-9i42 3 .

Note that Eq. (88) implies that only one Schwinger boson
operator (a3'|9)i = [1); or bj|0)i = |]); where |6), is the local
vacuum of site i) is applied per lattice site i leading to spin-
1/2 states, unlike the spin-1 (spin-§) AKLT case where two
(28) Schwinger bosons act on each lattice site. The proof is
simple. We rewrite Hyig = % > Hi with

31 . S .
H; = Pi,(iz-tllz,?-&-Z = %[(Si + Siv1 + Si42)” = ?T]’ O

31
where Pl(?fl ?i 4 is the spin-1/2 projector onto total spin-3/2 of
the three sites i, i + 1, and i + 2. Hence, any state in which
the total spin of three adjacent spins is % is annihilated by H;.
(The total spin can only be % or % as % ® % ® % = % @ % @
%.) For the dimer states above, this is guaranteed as two of
the three neighboring spins are in a singlet configuration, and

0® % = % Graphically, we may express this as
Hi|o—o o) =H;|o o—0)=0. (92)

As H; is positive definite, the two zero-energy eigenstates of
Hyig, shown in Eq. (89), are also ground states. Note that the
two ground states can be written as two translation-invariant
states with k = 0 and k = 7 as

’MG+> — ’MGeven> + ’MGodd>’

93)
IMG™) = [MG*"") — |[MG*%).

B. AKLT ground state from the projection principle

In the following, we slightly modify our cartoon pictures
used previously for the AKLT states:

= =~ o0—0 O
= = -0 0—9

Note that their physical interpretation remains unchanged.
From the figure, note that the two spin-1/2 MG ground states
of Eq. (88) can be glued together to form the spin-1 AKLT
ground state Eq. (9),

Gy =[] clii- [T eliale)

i even i odd

o—o 0—0 o0—0 © >
=| o o0—o o0—0 0—o0 94)
projection onto spin 1
= |MG®"*") © [MG°Y). (95)

In terms of Schwinger bosons the projection onto the fully
symmetric spin-1 subspace in Eq. (94) is accomplished auto-
matically due to their bosonic character. We can immediately
generalize this construction to higher spin-S AKLT ground
states,

|SG> — |MGeven>®S o} |1\/I(}0dd)®s7 (96)
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where we introduced

)" =) O...0Y). o7

n times

Applying Eq. (95) to Eq. (96), we find that we can glue S spin-
1 AKLT ground states together to obtain one spin-S AKLT
ground state, |SG) = |G)®5. The PP can thus be applied to
obtain arbitrary spin-S AKLT ground states.

C. Projection principle for excited singlet states

We now establish that it is possible to combine MG states
via PP to obtain the AKLT exact eigenstates that are obtained
by a single-mode approximation, viz., the Arovas states and
the spin-2S magnon state. To be more precise, for the AKLT
exact states that are of the form |Ex) =), g, [e.g.,
for the Arovas A state of Eq. (12), |§,) = |A,), k = m, and
|Er) = |A)], we apply the projection principle to the configu-
rations |&,) but not directly to the eigenstates | Ey).

Certain exact excited states for the MG model have been
obtained previously [48,68]. For instance, the state |¢) of
Eq. (9) in Ref. [48] can be rewritten as

. T 3
X)) =) &My, k==, =, 98
|X,) ;e %) > (98)
where |x,) is defined as [see Appendix I, Eq. (I5)]
Iy p—
n n+l
99)

Careful analysis reveals that |A,) = |x,) © MG Y™y re
sulting in

0 o0—0 o0—0 o>
n n+l (100)

projection onto spin 1

is identical to the Arovas A configuration |A,) shown in
Fig. 4(a). Thus the PP can also be used for excited states.

In the following, we show that all Arovas-type eigenstates
can be constructed via projection principle. For instance, the
Arovas B state configuration reads |B,) = |x,—1) O [x,),

o—o0 o—o0 o—o>
o O~ _O0—=0 O o
n-l 0 n+l . (101

projection onto spin 1

As discussed before, the spin-2 Arovas configuration can be
written as |2B,) = 2|BG,) — %|Bf); see Eq. (77). In terms of
the PP for spin-1 configuration, this can be formulated as

12B,) = 2|G) © |B,) — 3|Bx) ©|By), (102)

where |G) and |B,) are the spin-1 AKLT ground state and the
Arovas B state, respectively. This can be further generalized to
express the spin-S Arovas state configuration in terms of the
PP as (see Eq. (81)),

N

" /S
5By =3 ) (m)nm@“"”@ B)C]. (103)

m=1

D. Projection principle for nonsinglet states

So far, we have applied the PP only to ground states and
excited states which were spin singlets. Now we consider the
simplest type of nonsinglet states, and express them through
the PP. Another MG eigenstate which was found to be exact
in Eq. (8) of Ref. [48] can be rewritten as

T 37w

|Te) = ;el'k"m), k=27 (104)
where [see Appendix I, Eq. (I8)]
[tn)= ’ o0—o0 cT) rT) o—o>
N ntl (105)

Using the PP we can readily express the magnon configuration
|M,) of Eq. (28) for the spin-1 AKLT model as |M,) =

|tn—l) O] |tn>,
o o——o0
. o | L
n-1 n n+l1 (106)

projection onto spin 1

leading to the spin-2 magnon state under momentum su-
perpositions, |S;) = >, (—1)"|M,). For higher spin-S AKLT
chains, magnon states with spin-2S can be constructed from
the PP. For instance, in the spin-2 AKLT chain we obtain the
spin-4 magnon state via

|Mn>@zwn>=‘@:@? ) @%:®> (107)
n- n n

Since the MG model is SU(2) symmetric, the ferromagnetic
state (state with all spins having S, = 4+1/2) is an exact
eigenstate. The same symmetry dictates that the exact quasi-
particle excitations around the ferromagnet are one-dimer
configurations analogous to the |1;) states of the spin-1 AKLT
model. With these upper spectrum exact states of the MG
model, the ferromagnetic and the one-dimer configurations of
the AKLT model (Fig. 10) and the two-dimer configurations
(e.g., Fig. 11) can be trivially constructed via PP.

IX. CONCLUSION

In this article, we have derived tower exact eigenstates with
a closed-form expression in nonintegrable models, the spin-S
AKLT models. For this purpose, we first used finite-size exact
diagonalizations to look for states with a low rank of their
reduced density matrix. These turned out to usually coincide
with a rational or even an integer energy. For each of them, we
have then derived an analytical formula. Apart from the tower
of states from the ground state to the highest excited state, we
have obtained several exact excited states in the low-energy
and the high-energy spectrum.

Our approach could potentially be applied to any non-
integrable model, irrespective of its dimensionality. Numer-
ically, for certain system sizes, we do see exact states of
the Majumdar-Ghosh model (including the ones obtained by
Caspers et al. [48]), the spin-3/2 model [69], and the spin-1
Heisenberg model. However, the exact states in those models
do not include an infinite tower of states, as the AKLT models
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do. In the context of the eigenstate thermalization hypothesis,
some of the exact states we have obtained seem to be located
in the bulk of the spectrum but still have nongeneric entan-
glement properties [70], which call into question the strong
ETH. As we discuss in another article [70], those states have
a low entanglement entropy, and it is unlikely that any of them
would be thermal. Our results pave the way for the search of
nonintegrable models that provide some analytical insight on
the eigenstate thermalization hypothesis. They also suggest
that a special class of “semisolvable” but nonintegrable spin
models could exist [57,71,72]. These models would contain
thermal and nonthermal eigenstates mixed together [73-75],
something that is usually thought to be impossible in noninte-
grable models.
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APPENDIX A: SPIN BASIS

If all the spins are represented in the S, basis, and
|S my, S my) = |my, my) represents the spins i and j having
S, = my, my, the rules for scattering by the action of the pro-
Jector of two spin-S onto a spin-J state (defined as |J J;) ;)
can be succinctly written as

7.5
Pi(j mi,ma) = (J my 4 malmy, ma)|J my +ma)

mi+my
= |:(J my + ma|my, my) Z ((m, my + my

m=0
—ml|J my +my)|m, my +m; —m))},

(AD)

where (J m| 4+ my|my, my) ((m, m; +my —m|J m; + my))
is the Clebsh-Gordan coefficient for adding two spin-S with
S,=my and S, =my (S;=m and S, =m; +my —m) to
obtain a spin-J state with S, =m +m, (|J, m; + my)).
When Eq. (A1) is written down explicitly for J = 2and § = 1
(spin-1 AKLT model), these yield

plﬁf'“u 1) =111), (A2)

PEVIL0) = PEVIOD) = J(10) +101),  (A3)

2,1) _ 2,1)
PVl —1) = PV-11)
=11 =)+ [-11)+1/00), (A4

PZDI00) =2(00)+ (11 — 1) +|-11)),  (AS)

PEVI0 — 1) = PEVI=10) = 510 = 1) +[=10)). (A6)

PEVI-1 1) =|-1-1). (A7)

APPENDIX B: FUNDAMENTAL ALGEBRA OF DIMERS
1. Commutation relations

We start by defining operators that create and annihilate up
(at, a) or down (b, b) spin-1/2 Schwinger bosons. By virtue
of being bosons, they obey the boson commutation relations

as
la;, a}] =0, lai,a;]1=0, [b;, b}] =&, B1)
[bi,bj1=0, [al,b;1=0, [a;,b;j]=0,

where i is the site index. We can then define dimer (singlet)
annihilation and creation operators between sites i and j as

Cij = a,-bj — Cljb,', C;rj = ajb;r — ajbj (B2)

Since bosons on each site are identical, note that a singlet (an-

tisymmetric) state within each site vanishes (ciTl. = 0). Using
Eq. (B1), one can derive the algebra for the dimer operators as

[ €1 = 28805 — 285i8mj + (@l + blb)sy
+(@lay + bby)Sn: — (@ ay + blb,)y;
— (ala + b'b)Sur,
[¢pn, cij] = 0. (B3)
Form =i and n = j, Eq. (B3) can be written as
[cijocl1 =2+ N; + Nj, (B4)

where N; = a;[ a; + bjbi, the total number operator of the
Schwinger bosons on site i. Commutation relations between
the remaining operators can also be computed as

[a), Cunl = ~8imbn + Sinbim,
(Bl Conl = —Bintim + Simin,
lai, cmn] =0,  [bi, cunl =0,
[Ni, ) = Gin + Sim)Chns

[N, a),] = 8ima,,

[Ni, b1 = 8imb! . (B5)

Equations (B1), (B3), (B4), and (BS5) along with their Hermi-
tian conjugates specify the entire algebra of all the objects we
are working with.

2. Normal ordering

For our calculations, it is useful to know the expressions for
the normal ordering of the operator (cj]. ¢;j)". To compute this,
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we first need to know the commutation relation [c;;, (cjj ).
Using the commutation relations in Egs. (B4) and (BS5), this
can be easily computed to be

[cij. (c])"] = [n(N; + N)) +n(3 =)l (B6)

We now work in a subspace of spin-S AKLT Hamiltonian
basis states |g) that satisfy N;|ys) = 2S|yg) for any site i.
Using this fact and Eq. (B6), we can expand (cj]-c,- ;)" into a
normal ordered form as '

(el =" flm n)(e])" )" (B7)
m=0

f(m, n) is determined recursively with the relations

f,n)=f(n—1,n—1),
fm,n)= f(m —1,n— 1)+ [(4S + D)m — m?]

x f(m,n—1),
o [0 i a8
A ’")_{1, ifn=0. (BS)

APPENDIX C: OVERCOMPLETENESS
OF THE DIMER BASIS

In Sec. IV, we mentioned that that dimer basis is overcom-
plete. We illustrate this property here with a few examples.
For example, the following three different dimer configura-
tions are not linearly independent, as shown in the following
relation, where i, j, and k are distinct:

(cjja,i + ajc;k)le) = (ajb;a}:—bga;a£+a3a}bz—ajbja,i)l@)
= (a}albf—blalal)lo) = cfallo). (1)

Written diagrammatically, Eq. (C1) reads
oo &) +14 Q>O>=Imk>~ (C2)

i j k i j ki

Another example of linear dependence for dimer configura-
tions on four sites is, where i, j, k, and [ are distinct,

(chel +chctplo) = [alb! — blal)alb] — bla))
+(a}b] — bla))(alb] — bla])|0)
= (a/b} — bla})(a!b] — bla])i0)
= clch10). (C3)
Written diagrammatically, Eq. (C3) reads

o) +16 0w 2 ) = [T oy
1]

| o0
i ]

]

APPENDIX D: DIMER BASIS STATES AND SCATTERING
RULES FOR THE SPIN-1 AKLT MODEL

In this section, we derive rules for action of the projector
Pl.(jz' D Eq. (8) on various configurations of dimers around sites
i and j. Since the projector is normal ordered, it is sufficient

(a) @

FIG. 18. Two types of singlet configurations around a bond {i, j}.

to determine the action of (¢;; )" on the dimer configurations.
A useful identity in simplifying dimer expressions is

cijch el 18) = —cl 10y,

mi~ jn

(D1

where i, j, m, n are assumed to be distinct and |®), referred
to as the local vacuum, is a state annihilated by any of
annihilation operators involving sites i, j, m, n.

1. Singlet basis states

Since each dimer has s =0 and S, = 0, any basis state

expressed in terms of only dimer creation operators (c;[ ;8) is
a singlet state. For the spin-1 AKLT model, there are two
different possible configurations of dimers around two sites i

and j. They are c};c;, c}, |©) [Fig. 18(2)] and ¢}, ¢}l ¢, 1©)
[Fig. 18(b)] where {m, n, p, r} are distinct from {7, j}. Using
Eq. (B3), we can derive the action of ¢;; on the two different

kinds of dimer configurations:

c,'jcrcf o |®) = —cle |®) —i—4cJr o |®),

ijmi*~ jn ij-mn mi~ jn

D2)

c,-ch clel e |®) = —cl et ol |®) —clel ol |®)

mi~ni~ jp~jr mi-np=jr ni-mp~ jr

—cl el el |®) —chel et |®). (D3)

mi~ jp=nr ni~ jp-mr

Similarly, the expressions for the action of (c;; )2 on these
configurations are

(cij)clichicl,10) = —6cf,,10), (D4)
(cip)Pchiclicl e 18y = 2(c], cl, +cl,ch )@y, (DS)

Using Egs. (D2)—(D5), and the expression for the projector
Eq. (8), the action of the projector on the configurations can
be written as

P&Vl el ol @) =0,

ij ij-mi*~ jn

(Do)

P(z’l)CT »CT»CT CT |©) :CT »CT CT CT |®>+%(C‘TCT »CT CT

ij mi~ni~ jp~ jr mi~ni~ jp=jr ij-mi~np~jr
T F T Tt
+CijCniCmpCr + CijCmi€pCar

+clel el of )|®)+%[(cjj 2et ef

ijoni~jp-mr mr=np

+ (e[, 110,

nr-mp (D7)
From Eq. (D6), the projector vanishes on any singlet state that
t

contains a ¢;;. This is heavily used in our calculations. As

shown in Fig. 19, these can be written as a set of diagrammatic
rules for obtaining a set of configurations into which an initial

configuration of dimers scatters.
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70| @ @Cém -1® @ﬁ@\@ B © ®)
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pi"| @ @%\@ )-| €~ @f?@\@
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(2,1) _
P | od) =0 (D27)
1 J
B | @ ~69-E8)=0 (029)
,J . .
m i ]

FIG. 19. Diagrammatic representation of the action of the projector Pigz’l) on various configurations of dimers around bond {i, j}. The
configurations of the filled small circles are not relevant to the scattering equation and are the same (in terms of the Schwinger bosons) on both
sides of a given equation. The directions of the arrows are crucial; reversing an arrow contributes a factor of (—1).

(D24)

(D25)
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&
o~

{i, j}. Analogously to Egs. (D2) and (D3), we derive identities
for the action of ¢;; on each of these configurations:

cial al’1©) =0 (DS)
ijdi 4; =Y,
2
cijcliaja} |®) = —2aiaja}|®), (DY)

chalatel |®) = —(CT alal +al alct + alalct )|®),

CijCpid; A;Cjy mij%n m%i ¢ jn i “jCmn
? (D10)
@@ A
(d) - @ @ c--(aT)zcT cl |®) = —Z(aTa‘LcT +alatcl )|®), (D11)
i j p r ij &) CipCir - i“r%jp itpTr ’
TooTr T _ (R Tt
ciic,.a;c: c. |®)=—(c .c.a +c .c:a
A 2 JEmi™i = jp*jr mi~ jp™r mi~ jrp
(e) tel o gl +dh o ahi@). d12)
m 1 J P T mr~ jp™i mp* jri ’
(1) () cijclyala}|) = 4alal@), (D13)
! J cijcjchia‘}%I@) = —a;c;j|®) + 4a;cjj|®). (D14)
(2) Similarly, the actions of (c;;)* are given by
j
m i j
2 42
. . . (cijY'a)"a}’1©) =0, (D15)
FIG. 20. Types of nonsinglet configurations around a bond {i, j}. J
. . L2
. 2. Nor.lsmglet basis states . . (cij )2 lei aiT a; 1©) =0, (D16)
In the previous section we worked with singlet states,
where all the configurations could be written only in terms (cij )ZCLiaj“;C;n@) = 2a} al|©), (D17)
of dimers. States with s # 0, because of SU(2) sym-
metry, would appear in multiplets of 2s 4 1 states. As (c~)2(aff)2ct. ol 10) = 4a’ al|©) (D18)
mentioned in the main text, it is sufficient to focus on YT e Tr prril
the highest weight states of each multiplet. If s # 0, the sttt Coi
configurations in the highest weight multiplet would have (Cij) Cpi@; €j,C5,1O) = 2(c,, 0, +¢,,a,)10), (D19)
free spin-1 (a/) on the chain. Once this possibility is al- 24 ot
lowed, several new configurations are possible. The distinct (cij)°e;;a;a;10) =0, (D20)
22 52 ) © o2 )
ones are al"al"|®) [Fig. 20(a)]; cj”:ai'?; |©) [Fig. 20(b)], (cij)’clicl al|®) = —6a} @) (D21)
. 2 T .
Cl;iaitaécjz% ©) [F lfb" 20()]; (?i )T C{pcjr@). [Fig. 20(d)l, Again, using the expression of the projector in Eq. (8) and
i@ CjpC; |©) [Fig. 20(e)], ¢;;a;a;10) [Fig. 20(H)], and  Egs. (D8)—~(D21), we derive the expression for the action of
c;[j c;“.a} |®) [Fig. 20(g)], where {m, n, p, r} are distinct from the projector P, jz’l) on each of the configurations:
|
2 12 2 42
P Val"al"10) = ol al"10), (D22)
PR 4
PVl ala!"10) = cl.al(@]?10) + La]a]c]alio), (D23)
@n t t 1.1 N R I N | Lot 0 1 4 oot Tt ot Lreafy2 tot
Pij Cpi i ajcjn|®) =C,,q; ajcjn|®) + Z(cijcmaja,Z +¢ana;c;, + ¢4, ajc,Tnn)lé)) + ﬁ[(ci_,') a)a,) 1|1©), (D24)
PV (@2l el 1) = (a))cl cl 10) + Lalalclcl, + alalclicl)10) + Halalc])M110), (D25)
@un t t.r N S N N 1PN JON I S TSN BN BN I [ N ) IR BN S
Pij Cpi i cjpcjr|®> = C,,q; ijcjr|®> + Z(cijcmicjpar +€CpiCiray + €€y + cijclnpcjrai )|®)
+ Sle)eh af + (]l al o), (D26)
PValcl.al|®) =0, (D27)
PVl el alio) = 0. (D28)

Equations (D27) and (D28) along with Eq. (D6) state that the projector P,

on bond {i, j}. The actions of Pif’l)

2.1

7 vanishes on all configurations that have a dimer

on the various configurations are summarized diagrammatically in Fig. 19.
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APPENDIX E: DERIVATION OF THE 2, STATES

We show that the |2;) states given in Eq. (57) are eigenstates of the spin-1 AKLT Hamiltonian:

L/2—1
2= 3 S o 1), (57)
m=0 n

Splitting Eq. (57) into three parts, the m =0, m = L/2 — 1,and m € [1, L/2 — 2], we obtain

L/2-2
200 = Y e n 4 1) 4 S EEOERTDN gy 1) 4 N CEIN R gt 2m 1), (E1)
n n m=1 n

The action of the Hamiltonian on |2;) can be obtained using Eq. (52) for the m = 0, L/2 — 1 terms in Eq. (§7) and Eq. (51) for
the rest of the terms:

H|2) = (L=2)2)+ Y ™ (n—1n+1)+nn+2)+EDERDN"pl(n — 1 n 4 1) + |n,n — 2))

n

L/2-2
+ Z ei<’<+”>'"ze"’<"(|n,n+zm>+|n+1,n+2m+1)+|n,n+2m+2)+|n—1,n+2m+1)). (E2)
m=1 n

Simplifying the sum over n corresponding to m € [1, L/2 — 2] in Eq. (E2), one arrives at (by successively shifting n and m)

L/2-2
Z ! ktmom Zeik"[ln, n+2m)(1 4+ e *) + |n,n + 2m + 2)(1 + )]
m=1 n
L/2-2
— Zeikn Z el'(k+7'[)m|n’n+2m>[1 _'_efik +e*i(k+7r)(1 +eik)] +ei(k+7r)(1 +eiik)|n,n _|_2>

m:2
4 FFOL2=D (1 4 oKy p — 2)

— Zeik"[—(l + M) n,n+2) — S LD 4 7Ry 0 —2)]. (E3)

The sums in Eq. (E2) corresponding to m = 0 and m = L/2 — 1 can be written as

Zeikn(|n —La+1)+nn +2))+ei(k+n)(L/2—l)Zeikn(|n —1Ln+1)+|n,n—-2))

n

= Zeik”[(l + e n,n+2) + ! ®FOE2=D (1 4 ey —2)]. (E4)

Equations (E3) and (E4) cancel with each other, thus showing that |2;) is an exact state with energy £ = L — 2.
However, as discussed earlier, the states vanish for certain momenta. We prove the relation

124) = e* 3502, (58)

To derive Eq. (58), we make the variable substitution n = n’ — 2m — 1. Equation (57) reduces to

L/2—1
[2¢) = /Z e/ ktmom p=ik@m+1) Zeik”/m/ —2m—1,n")
m=0 n
L/2—1
= Y TN —om — 1, 0). (E5)
m=0 n'

235155-22



EXACT EXCITED STATES OF NONINTEGRABLE MODELS

PHYSICAL REVIEW B 98, 235155 (2018)

In Eq. (ES), the sum over n was converted to a sum over
n' because it is over all the possible values of n (for any
given m). Furthermore, making the variable substitution m =
L/2 —1—m’/, we arrive at

L/2—1
_ im(L—1—m")—ik(k—1—m")—ik
2) = ) €m0 :
=0

X Zeik”/|n/—L+2m’+ 1,n)
-

L/2—1
L (L o ,
:e’”Ze ik(3—1) § : el(k T)m
=0

X Zeik”/|n/ +2m' +1,n)

=30y, (E6)

where in the last step, expressions have been simplified using
the facts that L/2 and m’ are integers and that the system is
periodic.

APPENDIX F: SPECIAL STATES IN
THE HIGH-ENERGY SPECTRUM

We discuss the construction of the special state |6g),
defined in Eq. (62), and in particular derive Eq. (61). As
discussed in Eq. (60), we define the basis in the sector
s=L—-2k=0as|n)=|nx=),n €0,1,...,L/2, where

|n)_{ﬁZflSiSi+an>» ifn <L/2—1,
717 it S Sigal F),ifn=L/2.

Note that this basis is orthonormal. In Eq. (F1), each |n), n >
1, is a momentum superposition of spin configurations of the
form

(F1)

|dy)=11...101...101...1) (F2)

n J

and |0) is a momentum superposition of the spin configuration
|do) =11...1 —11...1). (F3)

The action of Pl(12+11) on each pair of neighboring spins in the

configuration Eq. (F2) is computed using Eqgs. (A2)—-(A7). For
the configuration shown in Eq. (F2), the scattering equation
for n > 2 reads [using Egs. (A2) and (A3)]

Hld,) = (L = 2)|dy) + ldn-1) + |dnt1)- (F4)
Hence,

Hin) = (L —2)|n)+n— D+ln+1), 2<n<L/2-2.

(F5)

Using Eqgs. (A2), (A3), and (AS5), the action of H on |d}) is
given by

H\dy) = (L = 2)ldy) + |d2) + 31d1) + 3do)
= (L = 3)ld1) + |do) + 31do). (F6)
The scattering equation of |1) thus reads

HI1) = (L= $)1) +12) + 2)0). (F7)
Similarly, using Eqgs. (A2) and (A4), the scattering equation of
|dp) reads
H|do) = (L — 2)|do) + %|do) + 5|dy)
= (L = §)Ido) + 3ldy). (F8)

The scattering equation of |0) thus reads

H|0) = (L —3)I0) + 2|1). (F9)

The representation of the spin-1 AKLT Hamiltonian in the basis of {|n)} can thus be computed to be

10) 1)
4 2
2 4
0 1 L-2
H= ;
0

Any eigenstate with £ = L — £ in this subspace decomposes as

W) = xaln).
n=0

|L/2)
0 |0)
[1)
0 :
: (F10)
L-2 1 :
1 L-2 V2 :
V2 L-2/|L)2)
(F11)
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Acting the Hamiltonian on |y/), we arrive at a set of equations

xp = ( —zé)xo,

Xy = (;%‘2 - 4%' + 2))(?0,

x3=02—8&)x —xy,
X =2 —-8x-1 —x-0,

Xppp-1 = (\/EXL/z +xr0-2)/(2—=§),
Xpp = \/EXL/z—l/(Z —&).

Equations (F12) can be written with a “transfer matrix” as

(=7 D)

for 2 <1 < L/2—2. Here the 2 x 2 matrix is the transfer
matrix M. The last two equations in Eq. (F12), which signal
the end of the transfer matrix, give

2 —E)xppn = (E* —4E + )xp )y

Since we are only looking for states that appear when the
system size L is a multiple of some integer g, we want
the matrix M to be idempotent. If M? =1, we arrive at
the constraint that both the eigenvalues of M are gth roots
of unity. Since M has real entries, the determinant of the
matrix must be real, which imposes the constraint on the two
eigenvalues to be conjugates of each other. Thus, AL = ey
for some p, g such that gcd(p, g) = 1. This also means that
Tr(M)(=2—-&)=2 cos(2n§). This imposes a constraint on
the energies L — & of the repeating states with the condition

(F12)

(F13)

(F14)

£ = 4sin? (nﬁ) for p,q € Z*. (F15)
q
Using Eq. (F15), the identity with y = 271§
2cos(y) —1\"
1 0
1 sin[(n + 1 —sin(n
_ [{ ] . (ny) . (F16)
sin(y) sin(ny) —sin[(n — 1)y]
the recurrence relation
(x”z“) = ML23 (“), (F17)
XL/2-2 X1

and the expressions for x; and x; in Eq. (F12), the constraint
Eq. (F14) reduces to the equation

3 (y) sin[(r + 2)y]
—tan|{Z)=——-"--——"",
2 2 cos[(r + 3)y]

where r = L/2 — 3 mod g. If there is a solution to Eq. (F18)
for integer p, g, r, we obtain a state with energy £ = L —
4 sinz(ng), s = L — 2 that appears for every L = 6 4+ 2r +
2gm, where m € Z. In addition, if ¢ is even, and r is a

(F18)

solution, r + ¢ /2 is also a solution. This means that the
repeating state would appear for L = 6 + 2r 4+ gm, where
m € Z. Moreover, if p is a solution, g — p is also a solution
that would give rise to the same transfer matrix (because
the eigenvalues are the same). So, we restrict ourselves to
p<q/2

From Eqgs. (F11) and (F1), the operator expression for the
unnormalized |y) is

L2 L

) =D ) xS7STLIF).

n=0 i=1

(F19)

APPENDIX G: DIMER BASIS SCATTERING RULES
FOR SPIN-S AKLT BASIS STATES

In this section, we give a brief overview on how terms in
the Hamiltonian Eq. (73) act on basis states of a spin-S chain.
To achieve this, since the Hamiltonian is normal ordered, it is
sufficient to compute the actions of (¢;;)" form = §,...,2S
on various configurations that can appear in a spin-S chain.
However, such expressions are lengthy in general and here we
merely note the structure of the scattering terms. Note that the
results in Appendices A and B are valid for any value of S.

First we derive singlet scattering rules, analogous to the

results in Appendix D 1. If the basis element does not contain
any c[.Tj, from Eqgs. (D1) and (D3), the action of ¢;; on any basis
state results in a sum of all possible configurations with one
dimer annihilated on each site i and j, and the resulting vacant
sites on sites different from i and j connected. For example,
the spin-2 singlet configuration shown in Fig. 21(a) scatters
to configurations such as the one shown in Fig. 21(b). If the
basis state has many dimers (cfj )", using Egs. (B6) and (D2),
the action of ¢;; gives rise to an additional term where the

dimer cj. is annihilated.

With these observations, the action of ¢;; on a singlet basis

state with no dimers cj ; and N dimers connecting each of the
sites i and j to other sites {p;} and {r,}, respectively, can be
written as

N N
Cij HCLM' l_[cjlrn 1©)
=1 n=1
N N . N .
==Y [1 ehi IT €lchil®. ©n

Un'=1=1,l1#l n=1,n#n’'

In Eq. (G1), on the first application of ¢;; on the spin-S singlet
state, N = 2S. Upon each application of ¢;;, N decreases by
1 (one dimer is annihilated on each of the sites i and j). The
action of (c;;)™ can be computed by consecutive applications
of Eq. (G1). The scattering configuration of (c;;)" acting
on the original spin-S singlet state would then be a sum
of terms annihilating m pairs of dimers, each pair with one
connecting site i and one connecting site j, and reconnecting
the vacant sites in different possible ways. The different ways
to annihilate m dimer pairs that lead to the same scattering
term result in an overall m ! factor. Moreover, a factor of (_.1 "
appears because of the negative sign in Eq. (G1). Each ciT]. in
the original basis state gives rise to an additional scattering

term where the cj ; is annihilated. Though tedious to prove in
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o @@ ®

FIG. 21. Scattering examples of S = 2 dimer configurations un-
der the action of ¢;;. Configurations of type (a) scatter to config-
urations of the type (b). Configurations such as (c) and (d) are
annihilated by (c;; )*. Configuration (e) scatters to (f) under the action
of (c;j )2. The configurations of the filled small circles are irrelevant
for the scattering due to c;;.

general, we recover that Pl.(jj’s) , for J > S, vanishes on any
configuration containing (c;fi)s , similarly to Eq. (D6).

To derive the nonsinglet scattering rules, we need to
consider basis elements that consist of some free spin-1
Schwinger bosons (a'). First, ¢; ; annihilates any basis state
that does not have dimers on sites i or j, analogously to
Eq. (DS8). From Egs. (DS8) to (D14), observe that the action
of ¢;; on other basis states results in a sum of terms with
one free spin (or dimer, but not both spins) annihilated on
each site i and j and the resulting vacant site(s) populated
with a free spin (dimer). As earlier, each cj ; in the original
basis state gives rise to an additional scattering term with

the cj ; annihilated. The action for (¢;;)" can then be derived
J

H®|BG,) = 2|BG,) — 112G) + 1(|IAG,_1) + |AG,)) —

following the same procedure by repeated applications of ¢;;s
and accounting for the overcounting factors.

The important conclusion from the above observations is
that (¢;; )" annihilates all configurations on bonds {i, j} with a
total of less than m dimers on it or surrounding it, analogously
to Egs. (D8), (D15), (D16), and (D20). For example, if a
configuration has N; dimers connecting site i to a site different
from j, N; dimers connecting site j to a site different from i,
and N;; dimers connecting sites i and j, the action of (¢;;)"
can be written as

N; Nj
@) TTeh T Tek,, @Y )™ @h*V1ey = 0
=1 n=1

if NL+N]+N,j<m, (GZ)

where the sites {p;} and {r,} are assumed to be distinct from
J and i, respectively. For example, the spin-2 configurations
shown in Figs. 21(c) and 21(d) are annihilated by (c;; )* since
they have a total of three dimers on and around the bond {i, j}.

Another useful configuration that we have used in our
calculations is if N; +N; =m and N;; = 0. As discussed
above, since each ¢;; annihilates a dimer connected to either
of the sites i or j, up to an overall constant, the scattering
equation reads

Ni N;
)" Ieb, T Teh, @Y @ly*s="e)
=1 n=1
N; Nj
~ (ala) " [a} ] [al1©) if N+ N; =m.
=1 n=1
(G3)

This is analogous to Egs. (D9), (D17), and (D18). In
Eq. (G3), all the dimers connected to sites i and j are
annihilated. For example, the spin-2 configuration shown in
Fig. 21(e) scatters to the one shown in Fig. 21(f) under the
action of (c;;)>. Thus the term (cl.Tj)m(c,-j)m in a Hamilto-
nian acting on such a configuration results in a configura-

tion where the m dimers around bond {i, j} move on to
bond {i, j}.

APPENDIX H: SCATTERING EQUATIONS
OF THE S = 2 AROVAS CONFIGURATIONS

1. Arovas B configurations

We start with the Arovas B configurations |BG,)
[Fig. 15(a)] and | B?) [Fig. 15(b)]. Applying the S = 2 AKLT
Hamiltonian Eq. (75) on |BG,,) and |B§) generates nontrivial
scattering terms due to the action of the projectors on the
bonds {n —2,n — 1} and {n + 1, n + 2}. The scattering equa-
tions of |BG,,) and |B,f) read

#(AG, ) +1AG, 1) + E(AA, 1) + |AA))

+3(CGu1) +1CG) + FUEG,u_1) + |EG,)) + 3(IDGu—1) + I1DGy)) — 5(|Ar o) + |Ariy)
+ 5160+ 187.) + % (162 + 122.) + B (1) + 63), (H1)
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H?P|BY) =2|B2) — 212G) + £ (I1AG,_1) + |AG,) — = (|AL_)) + |A2) + 12 (|AA,_1) + |AA,))
— 2 (1AG,2) + |AGu11) + £(CG,—1) + ICGu) + 2E(IEG,—1) + |EG,) — 5 (IDG,—1) + |DG,))
— L (|A2) + A2,) — L (|C2) +|CF) = & (ICEu1) + ICE)) — 2 (ICDy—1) + 1C D))
H(ET 1)+ |ED)) = 555 (DEs-1) + IDE)) = 3 (1D)-1) + [ D7) = (6] + [¢01))
— s () 182 = (6l + () + S5 () + 180D + 567+ [E2) + 15 (167) + [€3). H2)

where the symmetric and nonsymmetric scattering configurations are defined in Figs. 22 and 23, respectively. The scattering
equation for |2B,) = 2|BG,) — %IB,%) [see Eq. (77)] is thus

HP2B,) = 2[2B,) — B12G) + 2(IAG,—1) + 1AG,) + 5 (JAr_ ) + |A})) + £ (1AA._1) + |AA,)
— 2(|AG,2) + |AG 1) + 3(ICGuo1) + 1CG) + 7 (IEG 1) + |EGy)) 4+ 2(IDGy1) + [DG,))
— a5 (An o)+ [A20) + 5 () +]Co) + B35 (CE,-1) +ICER) + 155(IC D1} + [C D))
+ag(|Ena) + | E2)) + 105 IDEs1) + IDED)) + 35 (|03 ) + [D2)) + 5 ([60-1) + 42))
+ s () + 16D + 3 () + e + Z (1) + 1)) + 1 (182) + [20a) + 3 ([63) + [630)-
(H3)

Note that Eq. (H3) is of the form Eq. (78) and all the scattering terms can be canceled by a momentum 7 superposition.

2. Arovas A configurations

In this section, we show that an exact state constructed from the spin-1 Arovas A configuration does not exist for our choice
of Hamiltonian Eq. (75). However, we construct two spin-2 Hamiltonians, that have such an exact excited state.

The Arovas A configurations that can be obtained for § = 2 are |Aﬁ) [Fig. 22(a)] and |AG,) [Fig. 22(b)]. A general § =2
AKLT Hamiltonian that has the ground state shown in Fig. 14 reads

2 4.2) (3,2)
Hx( ) = Z (Pt i+1 +x Pz l+1) (H4)
i

where the projectors Pi(jj’s) are defined in Eq. (71). In terms of the dimers, H® can be written as

x—1 3—-Tx 2 21x =5 .3 1 —7x .4
H? = Z <1 + ch,iﬂciiﬂ + Wcti,#lciwl + WCT,‘,HW?,[H + MCTMJAC?.HA)- (H5)
Note that our choice of Hamiltonian in Eq. (75) to obtain the tower of states corresponds to H )52:)1 The scattering equations of
|Ai) and |AG,) under Hf) read

—Tx 5—21x 6 — 14x
IG) +2(1 —x)|AG,) + —(|AGn—1> +1AG 1) + (IBG,) +|1BGuy1))

H?|A7) = 2]47) +

35 7
1-7 3— 5-21 ~
= (A2 )+ Az + —(|Bn)+ |BL)) + x(!zn>+ %) + (=) (|6,) + [£%,1),
(H6)
HP|AG,) = 21AG,) + x|G) — 2(1 — X)|AG,) + 2%(|AG"_1> +1AG 1)) + x(IBG,) + [BG 1)
25 (142 + [42) + S (15 + [84). (H7)

where the symmetric and nonsymmetric scattering configurations are defined in Fig. 22 and Fig. 23, respectively. An exact state
similar to the Arovas A state of the spin-1 AKLT model can be constructed from a superposition |24, (y)) of |A%) and |[AG,),
defined as

24,(y)) = A7) + YIAG,) (H8)
only if nonsymmetric configurations £+ ) and |£) appear in the scattering equation with the same coefficient, thus enabling
their cancellation at momentum 7. Hence, we want

yx  5-—2lx

27 =1- H
5+ T x, (H9)
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leading to
30 — 14x
y=——. (H10)
Tx
The scattering equation of |24, (y = 30;%)) then reads
30 14x 30— 14 33 -21 42x% — 102 60
H? |24, 2N Zoea,(y = 1)+ Yoy - =2 199 46,)
Tx Tx 7 Tx
65 49x 36 — 28x

35

2182 4 B2

With a momentum 7 superposition of |24, (y = %)) and
an even system size L, all the scattering terms except |A,)
and |AG,,) cancel. The scattering equation for the state |24, ),

defined as
30 — 14x
24,) = 1y 24,(y="—""1)), H12
|>2nj(> <y 7x)> (H12)
thus reads
112x2 — 380x + 300
HPPRA,) = 224,) — —— * 20 46)
35x
n 14x — 16|A2) (HI3)
35 ’
where
|AG) = Z( 1"|1AG,) Z( 1)"|A2). (H14)

For |2A,) to be an exact excited state, the coefficients of |AG)
and |A?) in Eq. (H13) should be in the ratio y, determined in
Eq. (H10). That is,

112x2 —380x +300 30— 14x 14x — 16

35x T T3 (H15)
Solving Eq. (H15), we obtain
x:% or x:17—5. (H16)
With these values of x, the Hamiltonians read
HZ) 1 124,—0p7) = 35|2Ax:9/7>,
H2 s 1124,21577) = 2124,2157). (H17)

The exact Arovas A eigenstates of the Hamiltonian Eq. (H4)
with x =9/7 and x = 15/7 are

2Ac—0/7) = |A%) + 3|AG) and |2A._i5/7) = |A®) (HI18)

with s =0, k=7 and energies
E,_15/7 = 12/5, respectively.

As expected, in both the Hamiltonians H,_g/7 and H,_15/7,
we do not find an exact state analogous to the Arovas B state
or a tower of states. It is likely that the Arovas A state can be
generalized for a spin-S Hamiltonian of the form of Eq. (68)
by enforcing consistency conditions similar to Egs. (H10) and
(H15) on the coefficients {«;} in Eq. (68).

EX:9/7 = 72/35 and

(1AGu-1) +|AGut1)) +

+ =06+ 15)

(I1BGy) + [BGpy1)) +

(IA 1+ A5)

+(1=x)(|gd,)+ !E“m))- (HI1)

(

APPENDIX I: REPRESENTING MAJUMDAR-GHOSH
EXACT STATES IN TERMS OF DIMERS

Reference [48] introduces the Majumdar-Ghosh model in
terms of the basic unit of a cell, a set of neighboring sites
(Fig. 24). Since each site has a spin-1/2, each cell can either
be a singlet or a triplet. The ground state is the state where
all the cells are singlets. The two equivalent choices of cells,
shown in Fig. 24(a) and Fig. 24(b), accounts for its doubly
degenerate ground state Eq. (89). We label the cells from 1 to
N and the sites from 1 to L. Thus, the cell p comprises sites
2p — 1 and 2p.

A singlet exact state |¢) was first introduced in Eq. (9) in
Ref. [48]. If N is the number of cells (L = 2N number of
sites), the exact state is defined as

lp) = fZ( D?100),, 41, (I1)

where [00), ,,; is a state with total spin 0 formed by the spin
triplets of neighboring cells p and p +1.100),, ,,, is defined
as

), i), g =l t0) ) i
1= ;
Py A
12)

100)

where |2, 1), , 41 18 the state where the cells p and p + 1 are
composed of spin triplet configurations with S, = a and S, =
b and the rest of the cells are spin singlets. Thus,

), = a}, a3, 0).

(a2p lb2p +b2p laZp)
V2
lt_1), = bb,_1b},10),,

Ito),» 16),, (13)

where |0) , is the local vacuum of the cell p (sites 2p — 1 and
2p), al16); = |1);, and b|6); = |{);. Expanding Eq. (I2) in
terms of spin-1/2’s using Eq. (I3), we obtain

|x2,) — IMG*™)
p.p+l = Ty
where |x,) and |[MG®Y) are defined in Eqs. (99) and (89),

respectively. Note that a momentum 7 over the cells in
Eq. (I1) corresponds to a momentum /2 or 3w /2 over

|0 0) 14)
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o e s

n+1 n+2

n-2 n-1 n

29
n-2 n-1 n n+l1 n+2

n-2 n-1 n n+l1 n+2

n n+1 n+2

n+1 n+2

FIG. 22. Symmetric scattering configurations that appear in the
scattering equations of the S =2 Arovas configurations. All these
configurations are obtained gluing two S =1 Arovas scattering
configurations, shown in Figs. 4 and 5.

n+1 n+2

FIG. 23. Nonsymmetric scattering configurations that appear in
the scattering equation of the S = 2 Arovas configurations.

the sites. Thus, up to an overall normalization factor, the
singlet exact state |¢) of Eq. (I1) can be written as |X;) of
Eq. (98) as

M=

1Xi) =) e*(|x,) — [MGPY™))
n=1
L
ikn T 3
= 3 k=_7_5 15
> e x,) -5 (15)

I
=

n

where L = 2N. In the last equality we have used the fact
that the sum over ground states vanishes with momentum
k=m/2,3m/2.

(a) |o—o o o o 0

(b) —El o O o o) o—o0 E—

FIG. 24. Cells in the Majumdar-Ghosh model. (a) “Even” ground
state. (b) “Odd” ground state.
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$ 6000960 ~Cd

FIG. 25. Triplet ground state |G°) with open boundary condi-
tions. The spins at the edge represent the two dangling spin-1/2’s
with §;, = 1/2 each.

Similarly, a triplet exact state | ,,) was first introduced in
Eq. (8) of Ref. [48] as

Il/flM)=ﬁ 2

where |®,(M)) is the configuration where the cell p com-
prises a spin triplet with S, = M whereas the other cells are
spin singlets. Using Eq. (I3) to express |®,(M)) in terms of
spin-1/2’s, we obtain

1 N
— Y (1Y@, (M), (16)
p=1

|®,(M = 1)) = |t2p—1). an

The exact state up to an overall normalization factor can be
written as

L

Te) =Y e*|ta) k=

n=1

where |1,,) is defined in Eq. (105).

3

o as)

SRS

APPENDIX J: EXACT EXCITED STATES WITH OPEN
BOUNDARY CONDITIONS

We briefly discuss the extension of some of the exact
states we have obtained to spin chains with open boundary
conditions (OBCs).

1. Spin-1 AKLT ground state

We start with the spin-1 AKLT chain. The spin-1 AKLT
Hamiltonian for open boundary conditions H¢ excludes the
term PL(?’ll) from the Hamiltonian H defined for periodic
boundary conditions in Eq. (1). H? then reads

L-1
HO =3 PG an

i=1

The symmetries of the Hamiltonian H© are the same as that
of H except for the momentum quantum number k since
translation symmetry is explicitly broken. As discussed in
Sec. II B, with open boundary conditions, the ground state
comprises dangling spin-1/2 degrees of freedom at the edge
(Fig. 25). There are four degenerate ground states: three with
s = 1, where the two dangling spin-1/2’s form a triplet state
with §; = 1,0, —1, and one with s = 0, where the dangling
spin-1/2’s form a singlet. The s =0 ground state is thus
identical to the ground state of the AKLT Hamiltonian with
PBCs, i.e., |G) of Eq. (9) (Fig. 2). In the Schwinger boson
notation, the S, = 1 (highest weight) state of the triplet ground
state is written as

GO) =ala} []cl,\110)- 12)

@) @ @Y @ooorbo-Ho0d
) @) dod @orto-0o-6h

FIG. 26. (a) Spin-2 magnon state |M{) for the chain with open
boundary conditions. (b) |[N), the only scattering state of |M§).

2. Spin-2 magnon

In an AKLT spin chain with OBCs, spin-2 magnons
|Mno) = (—Sn*z/2)|G0) [similar to |M,) in Eq. (28) for
PBCs] can be defined on all the spins except the two edge
spins. However, |[M?) = |[M?) = 0 since (S;")* annihilates
all states with S; # —1 on spinn and S; > 0 on the edge spins
in the ground state |G?) (see Fig. 25). Moreover, since the
projector Pi?’,” is absent in the Hamiltonian Hp Eq. (J1), from
Eq. (D23) we obtain that the configurations |M20 ) [Fig. 26(a)]
and [M?_,) scatter only to magnons |N{) [Fig. 26(b)] and
|N 572), respectively. The scattering equations of the spin-2
magnons [M?), 2 < n < L — 1 thus read

| |ND), ifn =2,
1 |M) = 2| M)+ | INE). itn=L -1,
(IN2 )+ |NP)), ifn#2,L—2.

a3)

The scattering equation of the state |S20) = Z,Ll:, (—=1)"| Mno)
is then given by

1
HO|$9) = 2| 87) + S[INF) + (1) [N
1 L-2
+5 2 GO INZ) + V7))
=2[8?). a4)

Thus, |520 ) is an exact excited state of the AKLT chain with
triplet open boundary conditions for all system sizes L. This
state has an energy E =2 and spin s = 3. The operator
expression for the state is given by

L
1S9) =N D (=1)81G2), as)

n=1

where N is a normalization constant.

FIG. 27. The ground state |2G?) of the spin-2 AKLT Hamilto-
nian with open boundary conditions. The two free spin-1/2’s at each
edge depict the dangling spin-1’s. The ground state of the spin-S
AKLT model would have S free Schwinger bosons on the edge spins,
equivalent to one spin-S/2.
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3. Spin-1 AKLT tower of states

A tower of states similar to the one discussed in Sec. VB
can be constructed from the OBC spin-2 magnons. The state
with N spin-2 magnons with triplet open boundary conditions
reads

[S5) = D0 (=D MR MY M) 6)

{1}

Here {/;} satisfies the constraints 1< j <N, [ >
l[j+1,1<l; <L because the spin-2 magnons vanish
on the edge spins with OBCs. As shown for PBCs in
Sec. VB, the -configurations |M10, ey Mlko, ey Mlg)
and |M?,...,Mqok,...,M12), where ¢, = [ £ 1, share a
unique scattering configuration |M,]0, R NIEZ, R MIZ>’
where py =1 — 1 or piy =1I;. In the case of OBCs, all
configurations that share a scattering configuration have
opposite signs in Eq. (J6). Thus, all the scattering terms of
|S20N> vanish. Moreover, unlike PBCs, there is no constraint
on the system size L in OBCs since configurations with
qr = I} = 1 do not share a scattering term with ¢ = Iy = L.
Thus for OBCs, |S§,) is an exact state for all L with
E=2N,s =2N+ 1. For odd L, |S1?71> is a state with no
dimers, and hence the highest excited ferromagnetic state
with E =L —1lands = L.

4. Spin-S AKLT ground state

Similar to the spin-1 AKLT Hamiltonian for OBCs in Eq. (J1),
the spin-S AKLT Hamiltonian for OBCs is defined as

o L-1 2§

N (J.$)

HOT =% 3" P amn
i=1 J=S+1

For OBCs, the ground state of the spin-S AKLT model has
S free Schwinger bosons on the edge spins, or, equivalently,
one dangling spin-S/2. The highest weight ground state with
s = § (shown for § = 2 in Fig. 27) can be written as

L—1
1SG) = (a))*@)) [ (e}, )%10). 3s)
i=1

5. Spin-S AKLT tower of states

For OBCs with the edge spins having s = S, the spin-2S
magnon [SM?) is proportional to (S;)*5|SG?), similarly to
the magnon |SM,,) defined for PBCs in Eq. (83). As discussed
in Sec. VII B, the scattering equation of the spin-2§ magnon
Eq. (84) is similar to that of the spin-2 magnon described in
Eq. (30). This similarity holds for OBCs too:

HSC|sMP)

|SNY), ifn =2,
=2|SM2)+ 1s{ |SN,). ifn="L—1,
(|SN2,)+ [SNP)), ifn#2,L -2,

J9

where Ag is the same proportionality constant defined in
Eq. (83). The generalization of the OBC spin-S tower of states
then follows by the same arguments as those in Appendix J 3.
The spin-S tower of states that thus exists for all L has a spin
s = (2N 4+ 1)S and energy E = 2N.
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