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We investigate the use of variational wave functions that mimic stochastic recurrent neural networks,
specifically, unrestricted Boltzmann machines, as guiding functions in projective quantum Monte Carlo (PQMC)
simulations of quantum spin models. As a preliminary step, we investigate the accuracy of such unrestricted
neural network states as variational Ansätze for the ground state of the ferromagnetic quantum Ising chain. We
find that by optimizing just three variational parameters, independently on the system size, accurate ground-state
energies are obtained, comparable to those previously obtained using restricted Boltzmann machines with few
variational parameters per spin. Chiefly, we show that if one uses optimized unrestricted neural network states
as guiding functions for importance sampling, the efficiency of the PQMC algorithms is greatly enhanced,
drastically reducing the most relevant systematic bias, namely, the one due to the finite random-walker
population. The scaling of the computational cost with the system size changes from the exponential scaling
characteristic of PQMC simulations performed without importance sampling, to a polynomial scaling, apparently
even at the ferromagnetic quantum critical point. The important role of the protocol chosen to sample hidden-spin
configurations, in particular at the critical point, is analyzed. We discuss the implications of these findings for
what concerns the problem of simulating adiabatic quantum optimization using stochastic algorithms on classical
computers.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) algorithms are generally
believed to be capable of predicting equilibrium properties of
quantum many-body systems at an affordable computational
cost, even for relatively large system sizes, at least when the
sign problem does not occur. However, it has recently been
shown that the computational cost to simulate the ground state
of a quantum Ising model with a simple projective QMC
(PQMC) algorithm that does not exploit importance sam-
pling techniques scales exponentially with the system size,
making large-scale simulations unfeasible [1]. This happens
in spite of the fact that the Hamiltonian is sign-problem
free.

PQMC methods have found vast use in condensed matter
physics, in chemistry, and beyond (see, e.g., Refs. [2–5]).
Shedding light on their computational complexity, and pos-
sibly improving it by using importance sampling techniques
based on novel variational wave functions, are therefore very
important tasks. We address them in this paper.

PQMC algorithms have recently emerged as useful com-
putational tools also to investigate the potential efficiency of
adiabatic quantum computers in solving large-scale optimiza-
tion problems via quantum annealing [6–10].

In particular, it has been shown that the (stochastic) dy-
namics of simple PQMC simulations allows to tunnel through

tall barriers of (effectively) double-well models even more
efficiently than an adiabatic quantum computer, which ex-
ploits incoherent quantum tunneling [1,11–13]. This result
seems to suggest that there might be no systematic quantum
speed-up in using a quantum annealing device to solve an op-
timization problem, compared to a stochastic QMC simulation
performed on a classical computer [11].

Remarkably, this computational advantage of the PQMC
simulations with respect to the expected behavior of a quan-
tum annealing device occurs also in more challenging models
with frustrated couplings [1], as in the recently introduced
Shamrock model, where QMC algorithms based on the (fi-
nite temperature) path-integral formalism display instead an
exponential slowdown of the tunneling dynamics [14].

This result further stresses the importance of shedding light
on the computational complexity of PQMC algorithms: if
these computational techniques allowed one to simulate, with
a polynomially scaling computational cost, both the ground-
state properties of a model Hamiltonian, and also the tunnel-
ing dynamics of a quantum annealing device described by
such Hamiltonian [1], then the quantum speedup mentioned
above would be very unlikely to be achieved. We focus in
this paper on the first of the two aspects, specifically, on
analyzing and improving the scaling of the computational
cost to simulate the ground-state properties of quantum Ising
models.
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FIG. 1. Structure of the unrestricted Boltzmann machine. The
lower (yellow) nodes depict visible spins, the upper (magenta) nodes
depict the hidden spins. The horizontal segments indicate intralayer
visible-visible and hidden-hidden correlations. The vertical (blue)
segments represent the interlayer correlations between the corre-
sponding visible and hidden spins. The green lines allude to a
possible extension to deep layers architectures.

It is well known that the efficiency of PQMC algorithms
can be enhanced by implementing importance sampling tech-
niques using as guiding functions accurate variational Ansätze
[4]. However, building accurate variational wave functions
for generic many-body systems is a highly nontrivial task.
Recently, variational wave functions that mimic the structure
of neural networks have been shown to accurately describe
ground-state properties of quantum spin and lattice models
[15–17]. The representational power and the entanglement
content of such variational states, now referred to as neural
network states, have been investigated [18–22], showing,
among other properties, that they are capable of describing
volume-law entanglement.

The authors of Ref. [15] considered neural network states
that mimic restricted Boltzmann machines (RBM), i.e., such
that no interaction among hidden spins is allowed. One very
appealing feature of such restricted neural network states is
that the role of the hidden spins can be accounted for analyt-
ically, without the need of Monte Carlo sampling over hid-
den variables. Furthermore, such states provide very accurate
ground-state energy predictions, which can be systematically
improved by increasing the number of hidden spins per visible
spin (later on referred to as hidden-spin density). However,
this high accuracy is obtained at the cost of optimizing a num-
ber of variational parameters that increases with the system
size. This optimization task can be tackled using powerful
optimization algorithms such as the stochastic reconfiguration
method (see, e.g., Ref. [23]). Yet, having to optimize a large
number of variational parameters is not desirable in the con-
text of quantum annealing simulations, since one would be
dealing with a variational optimization problem, potentially
even more difficult than the original classical optimization
problem.

In this paper, we consider instead neural network states that
mimic unrestricted Boltzmann machines (uRBMs), allowing
intralayer correlations among hidden spins, beyond the in-
terlayer hidden-visible correlations and the intralayer visible-
visible correlations (see Fig. 1). The structure of these states
resembles the one of the shadow wave functions originally
introduced to describe quantum fluids and solids [24,25]. We

test their representational power considering as a testbed the
ferromagnetic quantum Ising chain. We find that by optimiz-
ing just three variational parameters, independently of the
system size, very accurate ground-state energies are obtained,
comparable to the case of restricted neural network states with
one hidden spin per visible spin. Such a small number of
variational parameters is a particularly appealing feature in the
context of quantum annealing problems. However, it comes at
the prize of having to perform Monte Carlo sampling over
hidden-spin configurations.

The main goal of this paper is to show that the above-
mentioned unrestricted neural network states can be used as
a guide for importance sampling in PQMC simulations. This
also implies that the development of neural network states can
be limited to obtaining reasonably accurate, but not neces-
sarily exact, variational Ansätze, since the residual error can
be eliminated within the PQMC simulation. In particular, we
provide numerical evidence that the major source of system-
atic bias of the PQMC algorithms, namely the bias originating
from the finite size of the random-walker population which
has to be stochastically evolved in any PQMC simulation,
can be drastically reduced using optimized unrestricted neural
network states, even at the point of changing the scaling of
the required population size from exponential (corresponding
to the case without importance sampling) to polynomial in
the system size. This also implies a change of computational
complexity from exponential to polynomial. For comparison,
we show that a conventional variational wave function of
the Boltzmann type (with no hidden spins), instead, does not
determine a comparable efficiency improvement.

The rest of the paper is organized as follows. In Sec. II,
we define the conventional Boltzmann-type variational wave
functions and the unrestricted neural network states, and we
then analyze how accurately they predict the ground-state
energy of the quantum Ising chain via optimization of, respec-
tively one and three, variational parameters. Section III deals
with the continuous-time PQMC algorithm and with the im-
plementation of importance sampling using both Boltzmann-
type wave functions and, chiefly, unrestricted neural network
states, showing how the systematic bias due to the finite
random-walker population is affected, both at and away from
the quantum critical point. The important effect of choosing
different sampling protocols for the hidden spins is also
analyzed. Our conclusions and the outlook are reported in Sec.
IV.

II. UNRESTRICTED NEURAL NETWORK STATES FOR
QUANTUM ISING MODELS

In this paper, we consider as a test bed the one-dimensional
ferromagnetic quantum Ising Hamiltonian:

Ĥ = Ĥcl + Ĥkin, (1)

where Ĥcl = −J
∑N

i=1 σ z
i σ z

i+1 and Ĥkin = −�
∑N

i=1 σx
i .

σx
i , σ

y

i , and σ z
i indicate Pauli matrices acting on spins at

the lattice site i. N is the total number of spins, and we
adopt periodic boundary conditions, i.e., σα

N+1 = σα
1 , with

α = x, y, z. The parameter J > 0 fixes the strength of the
ferromagnetic interactions among nearest-neighbor spins. In
the following, we set J = 1. All energy scales are henceforth
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expressed in units of J . The parameter � fixes the intensity
of a transverse magnetic field. Given |xi〉 an eigenstate of
the Pauli matrix σ z

i with eigenvalue xi = 1 when |x〉 = |↑〉
and xi = −1 when |x〉 = |↓〉, the quantum state of N spins
is indicated by |x〉 = |x1x2 . . . xN 〉. Notice that the function
Ecl(x) = 〈x|Ĥcl|x〉 [with x = (x1, x2, . . . , xN )] corresponds
to the Hamiltonian function of a classical Ising model, while
the operator Ĥkin introduces quantum (kinetic) fluctuations.

Our first goal is to develop trial wave functions that closely
approximate the ground-state wave function �0(x) = 〈x|�0〉
of the Hamiltonian (1). A simple Ansatz can be defined as

�κ (x) = e−βEcl (x) = e−K1
∑N

i=1 xixi+1 . (2)

κ is here a set of real variational parameters to be optimized.
Their values are obtained by minimizing the average of the
energy, as in standard variational quantum Monte Carlo ap-
proaches. In this case, only one parameter K1 = β is present,
κ = {K1}. This choice is inspired by the classical Boltzmann
distribution where β would play the role of a fictitious in-
verse temperature. The above Ansatz will be referred to as
Boltzmann-type wave function.

A more sophisticated Ansatz can be constructed by using
a generative stochastic artificial neural network, namely an
uRBM (see Fig. 1). Beyond the visible spin variables x =
(x1, x2, . . . , xN ), one introduces N hidden spin variables h =
(h1, h2, . . . , hN ), taking values hi = ±1 (with i = 1, . . . , N ).
Periodic boundary conditions within the layers are also in-
corporated, i.e., xN+1 = x1 and hN+1 = h1. The trial wave
function is thus written in the following integral form:

�κ (x) =
∑

h

φκ (x, h) , (3)

where

φκ (x, h) = e− ∑N
i=1 (K1xixi+1+K2hihi+1+K3xihi ) . (4)

Notice that the architecture of this uRBM includes cor-
relations between nearest-neighbor visible spins, between
nearest-neighbor hidden spins, as well as between pairs of
visible and hidden spins with the same index i. These three
correlations are parametrized by the three constants K1, K2,
and K3, respectively. With this uRBM trial Ansatz, the set of
variational parameters is κ = {K1,K2,K3}. It is straightfor-
ward to generalize the uRBM Ansatz including more layers
of hidden spins. Every additional hidden-spin layer adds two
more variational parameters, and it effectively represents the
application of an imaginary-time Suzuki-Trotter step e−�τĤ

for a certain time step �τ . Thus a deep neural network state
with many hidden layers can represent a long imaginary-time
dynamics, which projects out the ground state provided that
the initial state is not orthogonal to it. In fact, the mapping
between deep neural networks and the imaginary time pro-
jection has been exploited in Refs. [22,26] to construct more
complex neural network states. In this article, we consider
only the single hidden-spin layer uRBM, since this Ansatz
turns out to be adequate for the ferromagnetic quantum Ising
chain. The multi hidden-spin layer Ansatz might be useful to
address more complex models as, e.g., frustrated Ising spin
glasses. Extensions along these lines are left as future work.

In a recent work [15], Carleo and Troyer considered a re-
stricted Boltzmann machine (RBM), where direct correlations
among hidden spins were not allowed. Their Ansatz included
a larger number of hidden spins, as well as more connections
between visible and hidden spins, leading to an extensive
number of variational parameter proportional to αN , where
α = 1, 2, . . . . One advantage of the RBM, due to the absence
of hidden-hidden correlations, is that the role of hidden spins
can be analytically traced out. The uRBM we employ, which
is analogous to the shadow wave functions used to describe
quantum fluids and solids, includes only three variational
parameters, independently of the system size. However, their
effect has to be addressed by performing sampling of hidden
spins configurations, as described below [27].

It is worth pointing out that correlations beyond nearest-
neighbor spins could also be included in the uRBM Ansatz,
with straightforward modifications in the sampling algorithms
described below. We mention here also that, as shown in
Ref. [21], neural network states with intralayer correlations
can be mapped to deep neural networks with more hidden
layers, but no intralayer correlations.

For what concerns the previously mentioned Boltzmann-
type trial wave function, one can show that it can be mapped to
an RBM [28,29] where each hidden spin is connected only to
two visible spins; thus, it provides less representational power
compared with standard RBMs, and the results shown below
indeed confirm its limited accuracy.

In the case of an uRBM variational wave function, the
average value of the energy E = 〈Ĥ 〉 is computed as follows:

〈Ĥ 〉 = 〈�κ |Ĥ |�κ〉
〈�κ |�κ 〉 =

∑
x,x′ �κ (x)Hx,x′�κ (x′)∑

x �κ (x)�κ (x)

=
∑

x,x′
[∑

ha
φκ (x, ha )

]
Hx,x′

[∑
hb

φκ (x′, hb)
]

∑
x

[∑
ha

φκ (x, ha )
][∑

hb
φκ (x, hb)

]
= 〈〈Eloc(x, hb)〉〉 , (5)

where the local energy Eloc(x, h) is defined as

Eloc(x, h) =
∑

x′ Hx,x′φκ (x′, h)

φκ (x, h)
, (6)

with Hx,x′ = 〈x|Ĥ |x′〉. ha and hb indicate two hidden spin
configurations. Notice that the formula for the local energy
can be symmetrized with respect to the two sets of hidden
spins ha and hb, providing results with slightly reduced
statistical fluctuations. The double brackets 〈〈· · · 〉〉 indicate the
expectation value over the visible-spin configurations x and
two sets of hidden spins configurations ha and hb, sampled
from the following normalized probability distribution:

p(x, ha, hb) = φκ (x, ha )φκ (x, hb)∑
x,ha,hb

φκ (x, ha )φκ (x, hb)
. (7)

As in standard Monte Carlo approaches, this expectation
value is estimated as the average of Eloc(x, h) over a (large)
set of uncorrelated configurations, sampled according to
p(x, ha, hb). The statistical uncertainty can be reduced at
will by increasing the number of sampled configurations. The
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FIG. 2. Relative error erel in the variational estimates of the
ground-state energy, see Eq. (8), as a function of the transverse field
�, obtained using the simple Boltzmann wave function and for the
unrestricted Boltzmann machine (uRBM) Ansatz. The system size is
N = 80. For comparison, we also show the data corresponding to the
restricted Boltzmann machine (RBM) obtained using the code from
Ref. [15], where α indicates the hidden-spin density. The thin lines
are guides to the eyes.

optimal variational parameters κopt that minimize the energy
expectation value can be found using a stochastic optimization
method. We adopt a relatively simple yet quite efficient one,
namely the stochastic gradient descent algorithm (see, e.g.,
Ref. [30]). While more sophisticated algorithms exist as, e.g.,
the stochastic reconfiguration method [23], such methods are
not necessary here since the Ansätze that we consider include
a very small number of variational parameters, one or three.
In fact, in these cases, the optimal variational parameters can
be obtained also by performing a scan on a fine grid. By doing
so, we obtain essentially the same results provided by the
stochastic gradient descent algorithm.

We assess the accuracy of the optimized variational wave
functions by calculating the relative error

erel = |E − EJW|
|EJW| , (8)

in the obtained variational estimate E of the ground-state
energy of the Hamiltonian in Eq. (1). EJW is the exact finite
size ground-state energy of the quantum Ising chain. It is
obtained by performing the Jordan-Wigner transformation,
followed by a Fourier and the Bogoliubov transformations.

Figure 2 displays the relative error erel in Eq. (8) corre-
sponding to the variational wave functions introduced above,
as a function of the transverse field �. The system size is
N = 80, which is here representative of the thermodynamic
limit. The Boltzmann-type Ansatz does not provide particu-
larly accurate predictions. In the ferromagnetic phase � < 1,
the relative error is up to 10%. The uRBM, instead, provides
very accurate predictions. The relative error is always below
0.1%. The largest discrepancy occurs at the quantum critical
point � = 1. Such high accuracy is remarkable, considering
that the uRBM Ansatz involves only 3 variational parame-
ters. It is also worth mentioning that very similar accuracies

are obtained also for different system sizes. Therefore the
uRBM Ansatz represents a promising guiding function for
simulations of quantum annealing optimization of disordered
models. As a term of comparison, we show in Fig. 2 the
results obtained in Ref. [15] using the RBM Ansatz. The
relative errors corresponding to the RBM with hidden-unit
density α = 1 are larger than those corresponding to the
uRBM, despite the fact that the RBM Ansatz involves a
larger number of variational parameters. However, it is worth
stressing that the RBM results can be systematically improved
by increasing α. For example, with α = 2, the RBM relative
errors are approximately an order of magnitude smaller than
those corresponding to the uRBM Ansatz.

III. IMPORTANCE SAMPLING GUIDED BY
UNRESTRICTED NEURAL NETWORK STATES

In this section, we discuss how optimized variational wave
functions can be utilized to boost the performance of PQMC
simulations. First, we consider the implementation of the
PQMC algorithm without guiding functions. PQMC meth-
ods allow one to extract ground-state properties of quantum
many-body systems [31,32] by stochastically simulating the
Schrödinger equation in imaginary time τ = it . In the Dirac
notation, this equation is written as

− ∂

∂τ
|�(τ )〉 = (Ĥ − Eref )|�(τ )〉. (9)

The reduced Planck constant is set to h̄ = 1 throughout
this paper. Eref is a reference energy introduced to stabi-
lize the simulation, as discussed later. Equation (9) is sim-
ulated by iteratively applying the equation �(x, τ + �τ ) =∑

x′ G(x, x′,�τ )�(x′, τ ). �τ is a (short) time step and
G(x, x′,�τ ) = 〈x|e−�τ (Ĥ−Eref )|x′〉 is the Green’s function
of Eq. (9). Below, it is discussed how one can write a
suitable explicit expression. Long propagation times τ are
achieved by iterating many (small) time steps �τ , allowing
one to sample, in the τ → ∞ limit, spin configurations with
a probability density proportional to the ground-state wave
function �0(x) (assumed to be real and non negative). One
should notice that the Green’s function G(x, x′,�τ ) does not
define a stochastic matrix; while its elements are nonnega-
tive, one has

∑
x G(x, x′,�τ ) 	= 1, in general. Therefore it

cannot be utilized to define the transition matrix of a con-
ventional Markov chain Monte Carlo simulation. This prob-
lem can be circumvented by rewriting the Green’s function
as G(x, x′,�τ ) = GT(x, x′,�τ )bx′ , where GT(x, x′,�τ )
is by definition stochastic, and the normalization factor is
bx′ = ∑

x G(x, x′,�τ ). A stochastic process can then be
implemented, where a large population of equivalent copies
of the system, in jargon called walkers, is evolved. Each
walker represents one possible spin configuration x′

n (the
index n labels different walkers), and is gradually modi-
fied by performing spin-configuration updates according to
GT(xn, x′

n,�τ ). Thereafter, their (relative) weights wn are
accumulated according to the rule wn → wnbx′

n
, starting with

equal initial weights wn = 1 for all the walkers in the initial
population. While this implementation is, in principle, correct,
it is known to lead to an exponentially fast signal loss as the
number of Monte Carlo steps increases. This is due to the fact
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that the relative weight of few walkers quickly becomes dom-
inant, while most other walkers give a negligible contribution
to the signal. An effective remedy consists in introducing a
branching process, where each walker is replicated (or anni-
hilated) a number of times corresponding, on average, to the
weight wn. The simplest correct rule consists in generating,
for each walker in the population at a certain imaginary time
τ , a number of descendants nd in the population at imaginary
time τ + �τ . nd is defined as int[wn + η], where η ∈ [0, 1]
is a uniform random number, and the function int[] gives the
integer part of the argument [33]. Clearly, after branching has
been performed, all walkers have the same weight wn = 1.
Therefore the number of walkers in the population fluctuates
at each PQMC iteration and can be kept close to a target
value by adjusting the reference energy Eref . Introducing
the branching process provides one with a feasible, possibly
efficient algorithm. However, such as process might actually
introduce a systematic bias if the average population size
Nw is not large enough. The bias originates from the spu-
rious correlations among walkers generated from the same
ancestor [30]. This effect becomes negligible in the Nw → ∞
limit, but might be sizable for finite Nw. It is known to be
the most relevant and subtle possible source of systematic
errors in PQMC algorithms [34–36]. In fact, it was shown
in Ref. [1] that in order to determine with a fixed target
relative error, the ground-state energy of the ferromagnetic
quantum Ising chain with the (simple) diffusion Monte Carlo
algorithm (which belongs to the category of PQMC methods),
the walker-population size Nw has to exponentially increase
with the system size N . This implies an exponentially scaling
computational cost.

A promising strategy to circumvent the aforementioned
problem is to introduce the so-called importance sampling
technique. This is, indeed, a well established approach to
boost the efficiency of PQMC simulations (see, e.g., Ref. [4])
because it has the potential to reduce the number of walk-
ers needed to attain a given accuracy [30]. It consists in
evolving a function f (x, τ ) = �(x, τ )ψT (x) via a modified
imaginary-time Schrödinger equation. ψT (x) is a guiding
function designed to accurately approximate the ground-state
wave function. Its role is to favor the sampling of configura-
tions with high probability amplitude. The obtained modified
imaginary-time Schrödinger equation is solved via a Markov
process defined by the following equation:

f (x, τ + �τ ) =
∑

x′
G̃(x, x′,�τ )f (x′, τ ), (10)

where the modified Green’s function is given by
G̃(x, x′,�τ ) = G(x, x′,�τ ) ψT (x)

ψT (x′ ) . A suitable approxi-
mation for the modified Green’s function can be obtained
by dividing the time step �τ into M shorter time
steps δτ = �τ/M . If δτ is sufficiently short, one can
employ a Taylor expansion truncated at the linear term,
G̃(x, x′,�τ ) ∼= [g̃(x, x′, δτ )]M , where

g̃(x, x′, δτ ) =
[
δx,x′ − δτ (Hx,x′ − Erefδx,x′ )

ψT (x)

ψT (x′)

]
.

(11)

With this approximation, Eq. (10) defines a stochastic imple-
mentation of the power method of linear algebra. Convergence
to the exact ground state is guaranteed as long as δτ is
smaller than a finite value, sufficiently small to ensure that all
matrix elements of g̃(x, x′, δτ ) are not negative [37]. As the
system size increases, shorter and shorter time steps δτ are
required. This leads to pathologically inefficient simulations,
since in this regime the identity operator dominates, resulting
in extremely long autocorrelation times. This problem can
be solved by adopting the continuous-time Green’s function
Monte Carlo (CTGFMC) algorithm. The derivation and the
details of this algorithm are given in Refs. [30,38], and so
we only sketch it here. The idea is to formally take the
M → ∞ limit, and determine the (stochastic) time interval
δτ ′ that passes before the next configuration update occurs.
It is convenient to bookkeep the remaining time δτt left to
complete a total interval of time �τ . This is to ensure that
each iteration of the PQMC simulation corresponds to a time
step of duration �τ . The time interval δτ ′ is sampled using the
formula δτ ′ = Min(δτt ,

ln(1−ξ )
Eloc (x′ )−Ecl (x′ ) ) with ξ ∈ (0, 1) being a

uniform random number. The spin-configuration update x′ →
x (with x′ 	= x) is randomly selected from the probability
distribution

tx,x′ = px,x′∑
x 	=x′ px,x′

,

(12)

px,x′ = g̃(x, x′, δτ ′)∑
x g̃(x, x′, δτ ′)

.

Notice that, with the Hamiltonian (1), x differs from x′ only
for one spin flip. The weight-update factor for the branching
process takes the exponential form bx′ = e−δτ ′[Eloc (x′ )−Eref ],
where the local energy is now Eloc(x′) = ∑

x Hx,x′ ψT (x)
ψT (x′ ) .

In summary, the CTGFMC algorithm requires to perform,
for each walker n in the population, the following steps: (i)
initialize the time interval δτt = �τ , and the weight factor
wn = 1; (ii) sample the time δτ ′ at which the configuration
update x′ → x might occur; (iii) if δτ ′ < δτt , update x′ with
a transition probability tx,x′ in Eq. (12), else set δτ ′ = δτt ;
(iv) accumulate the weight factor according to the rule wn →
wnbx′ and set δτt → δτt − δτ ′; (v) Go back to step (ii) until
δτt = 0; and (vi) finally, perform branching according to the
total accumulated weight factor wn. This continuous-time
algorithm implicitly implements the exact imaginary-time
modified Green’s function G̃(x, x′,�τ ).

In the long imaginary-time limit, the walkers sample spin
configurations with a probability distribution proportional to
f (x, τ → ∞) = �0(x)ψT (x). If ψT (x) is a good approx-
imation of the ground-state wave function, this distribution
closely approximates the quantum-mechanical probability of
finding the system in the spin configuration x. It is important
to notice that if our guiding wave function was exact, i.e.,
if ψT (x) = �0(x), then the local energy Eloc(x) would be a
constant function. This would completely suppress the fluctu-
ations of the number of walkers, therefore eliminating the bias
due to the finite walkers population Nw. If ψT (x) is, albeit
not exact, a good approximation of �0(x), the fluctuations
of the number of walkers are still reduced compared to the
case of the simple CTGFMC algorithm [which corresponds
to setting ψT (x) = 1] giving a faster convergence to the exact
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Nw → ∞ limit. Below we consider the use of the variational
wave functions �κ (x) described in Sec. II as guiding wave
functions for the PQMC algorithm, setting the variational
parameters κ at their optimal values.

In order to employ the unrestricted neural-network states as
guiding functions, the PQMC algorithm has to be modified.
One has to implement a combined dynamics of the visible-
spin configurations x and of the hidden-spin configurations h.
We will indicate the global configuration as y = (x, h). The
goal is to sample global configurations with the (normalized)
probability distribution

p( y) = �0(x)φκ (x, h)∑
x,h �0(x)φκ (x, h)

. (13)

This allows one to compute the ground-state energy as E =
limNc→∞

∑Nc

i=1 Eloc(xi , hi )/Nc, where Nc is a number of
uncorrelated configurations { yi} sampled from p( y). The
local energy Eloc(x, h) is defined as in Eq. (6). A suit-
able algorithm was implemented in Ref. [39] in the case
of the continuous-space Green’s function Monte Carlo algo-
rithm, where importance sampling was implemented using
shadow wave functions. Here we modify the approach of
Ref. [39] to address quantum spin models. The visible-spin
configurations x are evolved according to the CTGFMC
described above, keeping the hidden-spin configuration h′

fixed. The modified imaginary-time Green’s function is now
G̃(x, x′,�τ |h′) = G(x, x′,�τ ) φκ (x,h′ )

φκ (x′,h′ ) . As discussed above,
this has to be rewritten as the product of a stochastic matrix,
which defines how the visible-spin configurations updates
are selected, and a weight term, which is taken into account
with the branching process. The weight-update factor is b y′ =∑

x G̃(x, x′,�τ |h′). The dynamics of the hidden-spins con-
figurations is dictated by a (classical) Markov chain Monte
Carlo algorithm. Considering φκ (x, h) as an unnormalized
probability distribution allows one to write—for any fixed
visible-spin configuration x—the Master equation:

φκ (x, h) =
∑

h′
T (h, h′|x)φκ (x, h′), (14)

where T (h, h′|x) is the transition matrix that defines the
Markov process. Clearly, the following condition must be
fulfilled

∑
h T (h, h′|x) = 1, for any x.

Our choice is a single spin flip METROPOLIS algorithm,
where the flip of a randomly selected spin is proposed, and
accepted with the probability

A(h′ → h|x) = Min

{
1,

φκ (x, h)

φκ (x, h′)

}
. (15)

Here, h differs from h′ only for the (randomly selected)
flipped spin. One could perform a certain number, call it k,
of METROPOLIS updates, without modifying the formalism.
In fact, this turns out to be useful, as discussed below. The
combined dynamics of the visible and the hidden spins is
driven by the following equation:

f ( y, τ + �τ ) =
∑

y′
G( y, y′,�τ )f ( y′, τ ), (16)

with G( y, y′,�τ ) = T (h, h′|x)G̃(x, x′,�τ |h′). It can be
shown [39] that the equilibrium probability distribution of
this equation is the desired joint probability distribution p( y)
in Eq. (13). The stochastic process corresponding to this
equation can be implemented with the following steps: (i) per-
form the visible-spin configuration update x′ → x, keeping h′

fixed, according to the CTGFMC algorithm described above
(including accumulation of the weight factor); (ii) perform k

single-spin METROPOLIS updates of the hidden-spin configu-
ration h′, keeping x fixed; and (iii) perform branching of the
global configuration. It is easily shown that the hidden-spin
dynamics does not directly affect the weight factor since
the normalization of the Green function of the combined
dynamics is set by b y′ .

Since the optimized uRBM describes the ground-state
wave function with high accuracy, one expects that its use as a
guiding function leads to a drastic reduction of the systematic
errors due to the finite random walker population. However,
one should take into account that there might be statistical cor-
relations among subsequent hidden-spin configurations along
the Markov chain. This might in turn affect the systematic
error. Clearly, increasing the number of Metropolis steps k

per CTGFMC visible-spin configuration update allows one to
suppress such correlations, possibly reducing the systematic
error. This will indeed turn out to be important, in particular at
the quantum critical point where statistical correlations along
the Markov chain are more significant.

Following Ref. [1], we analyze the computational com-
plexity of the PQMC algorithm by determining the number
of walkers Nw needed to determine the ground-state energy
of the Hamiltonian (1) with a prescribed accuracy. All data
described below have been obtained with a time step �τ =
0.1, and all simulations have been run for a long enough total
imaginary time to ensure equilibration.

First, we consider the simple PQMC algorithm, i.e., per-
formed without importance sampling. Figure 3 displays the

1000

104

105

 30  40  50  60  70  80  90  100  110

N w

N

PQMC: No importance sampling

erel = 5.0%, Γ = 0.6
erel = 1.0%, Γ = 1.0
erel = 0.1%, Γ = 1.4

FIG. 3. Number of random walkers Nw required to determine,
using the PQMC algorithm without importance sampling, the
ground-state energy with a relative error erel, see Eq. (8), as a function
of the system size N . Different data sets correspond to different
transverse field intensities � and different relative errors. The lines
represent exponential fitting functions.

235145-6



PROJECTIVE QUANTUM MONTE CARLO SIMULATIONS … PHYSICAL REVIEW B 98, 235145 (2018)

100

1000

104

105

106

80 120 160 200 240 280 320

N w

N

PQMC: Boltzmann

erel = 0.01%, Γ = 0.6
erel = 0.01%, Γ = 1.0
erel = 0.01%, Γ = 1.4

FIG. 4. Number of random walkers Nw required to determine,
using the optimized Boltzmann-type wave function to guide impor-
tance sampling in the PQMC simulation, the ground-state energy
with a relative error erel, see Eq. (8), as a function of the system
size N . Different data sets correspond to different transverse field
intensities �. The (red) dotted and (blue) dot-dashed lines represent
exponential fitting functions, while the (green) dashed line represents
a power-law fit with power b = 0.54(5).

scaling with the system size N of the number of walkers Nw

required to keep the relative error erel, defined in Eq. (8), at the
chosen threshold. This scaling is evidently exponential, below,
above, and also at the quantum critical point. The most severe
scaling comes from the ordered phase and could be attributed
to the fact that the simple PQMC is formally equivalent to
PQMC with a constant ψT (x) for importance sampling. This
turns out to be a very poor choice of the guiding function in
the ordered regime given that it treats all configurations on
an equal footing. Analogous results have been obtained in
Ref. [1] using the diffusion Monte Carlo algorithm. This is
another PQMC method—in fact very similar to the CTGFMC
algorithm employed here—whose transition matrix is defined
from the imaginary-time Green’s function derived within the
symmetrized Trotter decomposition. Introducing importance
sampling using the optimized Boltzmann-type Ansatz as a
guiding function significantly reduces the systematic error
due to the finite random walker population, allowing one to
reach quite small relative errors. In particular, in the para-
magnetic phase at � = 1.4, the scaling of Nw versus N is
quite flat (see Fig. 4); it appears to be well described by
the power-law Nw ∼ Nb with the small power b = 0.54(5),
rather than by an exponential. However, in the ferromagnetic
phase at � = 0.6 and at the quantum critical point � = 1
the scaling is still clearly exponential. This means that the
simple Boltzmann-type Ansatz is, in general, insufficient to
ameliorate the exponentially scaling computational cost of the
PQMC algorithm. Figure 5 shows the scaling of Nw obtained
using the optimized uRBM Ansatz as the guiding function.
The number of hidden-spin Metropolis steps per visible-spin
update is set to a (small) fraction of the system size N , namely
to k = 0.1N . At � = 0.6, the required walker population size
Nw turns out to be essentially independent on the system size
N . It is worth noticing that the prescribed relative error is
here as small as erel = 10−6, and that this high accuracy is

100

1000

104

105

106

40 80 120 160 200 240 280 320

N w

N

PQMC: uRBM

erel = 10-4%, k = 0.1N, Γ = 0.6
erel = 0.1%,   k = 0.1N, Γ = 1.0

FIG. 5. Number of random walkers Nw required to determine,
using the optimized uRBM Ansatz to guide importance sampling in
the PQMC simulation, the ground-state energy with a relative error
erel, see Eq. (8), as a function of the system size N . The number
of single-spin Metropolis updates of the hidden spins per CTGFMC
hidden-spin update is k = 0.1N . The (red) dotted line represents
and exponential fit, while the (blue) dot-dashed line represents a
linear fit.

achieved with a rather small walkers population Nw � 1000.
However, at the quantum critical point, Nw still displays an
exponential scaling with system size. This effect can be traced
back to the diverging statistical correlations among subse-
quent hidden-spin configurations along the Markov chain, due
to quantum criticality. As anticipated above, these statistical
correlations can be suppressed by increasing the number of
hidden-spin updates k. Fig. 6 displays the scaling of Nw, at

100

1000

104

105

106

40 80 120 160 200 240 280 320

N w

N

PQMC: uRBM

Γ = 1

erel = 0.1%,  k = 0.1N
erel = 0.01%,     k = N
erel = 0.01%,   k = 2N
erel = 0.01%,   k = 4N
erel = 0.01%, k = 10N

FIG. 6. Number of random walkers Nw required to determine,
using the optimized uRBM to guide importance sampling in the
PQMC simulation, the ground-state energy with a relative error erel,
see Eq. (8), as a function of the system size N . The transverse field
intensity is set at the ferromagnetic quantum critical point � = 1.
Different data sets correspond to different values of the number of
single-spin Metropolis updates k. The (red) dotted line represents
an exponential fit, while the (black) dot-dashed line represents a
power-law fit, with power b = 0.55(1).
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the quantum critical point, for different k values. One observes
that the scaling substantially improves already for moderately
larger k values, leading to a crossover from the exponential
scaling obtained with k = 0.1N , to a scaling behavior that
is well described by a square-root function Nw ∼ N0.55(1)

when k = 10N . While it is, in principle, possible that, for
system sizes N � 300, Nw still approaches an exponential
scaling with a very small base, we argue that the data we
provide indicate that the scaling of Nw is not exponential,
even at the ferromagnetic critical point, provided that k is large
enough. It is important to point out that increasing k implies a
correspondingly increasing contribution to the global compu-
tational cost of the PQMC algorithm. However, since k is here
linear in the system size, this contribution does not modify,
to leading order, the scaling of the global computational cost.
Therefore one can conclude that the uRBM Ansatz is sufficient
to change the scaling of the computational cost of the PQMC
algorithm from exponential in the system size, to an amenable
polynomial scaling. In the simulations presented here, single-
spin flip METROPOLIS updates are employed for the hidden
variables. It is possible that cluster spin updates would lead to
an even faster convergence to the exact Nw → ∞ limit, due to
the more efficient sampling of the hidden-spin configurations.
However, such cluster updates cannot always be implemented,
in particular for frustrated disordered Hamiltonians relevant
for optimization problems; therefore, we do not consider
them here.

IV. CONCLUSIONS

The accuracy of variational wave functions that mimic
unrestricted Boltzmann machines, which we refer to as un-
restricted neural network states, has been analyzed using
the one-dimensional ferromagnetic Ising model as a testbed.
By optimizing just three variational parameters, ground-state
energies with a relative error smaller than 10−3 have been
obtained. The ferromagnetic quantum phase transition turns
out to be the point where the relative error is the largest. This
accuracy is comparable to the one previously obtained using
restricted neural network states with few hidden variables
per visible spin [15]. These restricted neural network states
involve a number of variational parameters proportional to the
system size, as opposed to the unrestricted neural network
states considered here, where the (small) number of varia-
tional parameters is fixed. This feature of the unrestricted
states makes them very suitable in the context of quantum
annealing simulations for Ising-type models (which are sign-
problem free). Indeed, it was shown in Ref. [40] that in order
to efficiently simulate quantum annealing via PQMC it is
essential to employ accurate variational Ansätze as guiding
functions. However, since one has to integrate over hidden-
spin configurations via Monte Carlo sampling, as opposed
to the case of the restricted neural network states [15]—for
which the hidden-spin configurations can be integrated out—
they represent a less promising approach to model ground
states of Hamiltonian where the negative sign problem occurs.
Indeed, in such case, an accurate variational Ansatz might
have to include also hidden-spin configurations with negative
wave-function amplitude, making Monte Carlo integration via
random sampling inapplicable.

The variational study summarized here represented a nec-
essary preliminary step to investigate the use of optimized
unrestricted neural network states as guiding functions for
importance sampling in PQMC simulations. We have found
that unrestricted neural network states allow one to drastically
reduce the systematic bias of the PQMC algorithm originating
from the finite size of the random-walker population. Specif-
ically, the scaling of the population size required to keep
a fixed relative error as the system size increases changes
from the exponential scaling characteristic of simple PQMC
simulations performed without guiding functions, to a poly-
nomial scaling. This also implies a corresponding change
in the scaling of the computational cost. This qualitative
scaling change occurs above, below, and apparently also at
the ferromagnetic quantum phase transition, at least for the
system sizes N � 300 considered in this article. While we
cannot strictly rule out a weak exponential scaling for N �
300, the numerical data we provide suggest that this is an
unlikely scenario. Instead, a conventional variational Ansatz
of the Boltzmann type was found to provide a significant
improvement of the computational cost only above the crit-
ical point (in the paramagnetic phase), but to provide only
a marginal improvement at and below the transition. It is
worth emphasizing that the use of unrestricted neural network
states as guiding functions in PQMC simulations requires
the sampling of both the visible and the hidden spins, using
the combined algorithm described in Sec. III (more efficient
variants might be possible). The role of the statistical correla-
tions among hidden-spin configurations shows up in particular
at the ferromagnetic quantum critical point. We found that
these correlations can be eliminated by performing several
single-spin updates, still without affecting, to leading order,
the global computational complexity of the simulation.

In Ref. [41], it was proven that it is possible to devise
polynomially-scaling numerical algorithms to determine the
ground-state energy, with a small additive error, of various
ferromagnetic spin models, including the ferromagnetic Ising
chain considered here. However, practical implementations
have not been provided. The numerical data we have reported
in this manuscript indicate that the PQMC algorithm guided
by an optimized unrestricted neural network state represents
a practical algorithm with polynomial computational com-
plexity for the ferromagnetic quantum Ising chain. More in
general, it was shown in Ref. [42] that the problem of esti-
mating the ground-state energy of a generic sign-problem free
Hamiltonian with a small additive error is at least NP-hard. In-
deed, this task encompasses hard optimization problems such
as k-SAT and MAX-CUT. This suggests that there might be
relevant models where the unrestricted neural network states
discussed here are not sufficient to make the computational
cost of the PQMC simulations affordable. Relevant candidates
are Ising spin-glass models with frustrated couplings. Such
systems might require more sophisticated guiding functions
possibly obtained by using the same couplings of the classi-
cal Ising-glass Hamiltonian in the intralayer coupling of the
uRBM with a global multiplicative variational parameter (one
for each layer). More hidden layers may be added in a similar
fashion in order to represent a path integral as previously
discussed in Sec. II. This would result in a deep neural
network with a number of variational parameters that is still
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size independent. However, it is possible that in the disordered
case a more sophisticated Ansatz with an extensive number
of variational parameters is needed to reach an accuracy
comparable to the one obtained here for the ferromagnetic
system. In future work, we plan to search for models that
make PQMC simulations problematic. We argue that this will
help us in understanding if and for which models a systematic
quantum speed-up in solving optimization problems using
quantum annealing devices, instead of PQMC simulations
performed on classical computer, could be achieved.
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