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Anderson localization of classical waves in weakly scattering one-dimensional Levy lattices is studied
analytically and numerically. The disordered medium is composed of layers with alternating refractive indices
and with thickness disorder distributed according to the Pareto distribution ∼1/x (α+1). In Levy lattices the
variance (or both variance and mean) of a random parameter does not exist, which leads to a different functional
form for the localization length. In this study an equation for the localization length is obtained, and it is found
to be in excellent agreement with the numerical calculations throughout the spectrum. The explicit asymptotic
equations for the localization lengths for both short and long wavelengths have been deduced. It is shown that
the localization length tends to a constant at short wavelengths and it is determined by the layer interface Fresnel
coefficient. At the long wavelengths the localization length is proportional to the power of the wavelength � ∼ λα

for 1 < α < 2, and it has a transcendental behavior � ∼ λ2/ ln λ for α = 2. For α > 2, where the variance of the
random distribution exists, the localization length attains its classical long-wavelength asymptotic form � ∼ λ2.
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I. INTRODUCTION

The subject of wave propagation in disordered media con-
tinues to attract substantial interest. This is not surprising
given its considerable importance for applications. This in-
terest has been further spurred by the discovery of Anderson
localization, which was established first for electronic waves
[1] and later extended to waves of a general nature [2–7].

Anderson localization is a fascinating phenomenon in
which the interference of multiply scattered waves in disor-
dered media can lead to the localization of all states, which
prohibits the wave’s propagation and leads to the inhibition
of wave transport. In such situations the amplitude of the
incident wave decays exponentially. The scale on which this
decay takes place is called the localization length �, which
also describes the spatial spread of the modes of the system.
It has been established for a while that in one-dimensional
systems [3,5,8,9] under quite general conditions all states
become localized in the limit of infinite media [8], while the
problem of the Anderson localization for higher-dimensional
systems d > 1 still remains unresolved [10].

Despite the number of rigorous results obtained for one-
dimensional systems [8,9], these systems still continue to
attract researchers, partly because of a desire to better under-
stand different aspects of localization and partly to consider
the effects on localization of different properties of random
media. For example, the effects of absorption on Anderson
localization have been considered in [11,12], while the ef-
fects of gain have been considered in [13,14]. The properties
of Anderson localization have been considered in different
media as well, such as disordered periodic media [15,16],
metamaterials [17,18], graphene [19], and gyrotropic media
[20]. It has been established that metamaterials can suppress
Anderson localization. In this case, in contrast to the conven-
tional asymptotic behavior of the localization length at long
wavelengths [21] l ∼ λ2, it was shown that the localization
length is proportional to l ∼ λ8 in [22–24].

The effects of the type of random distribution on Anderson
localization have been considered also. An interesting case
here is to consider the disorder with heavy-tail distributions.
Such distributions may not have a second or even a first
moment. Note that for one-dimensional systems the localiza-
tion length at long wavelengths is inversely proportional to
the variance of disorder, and it is clear that the functional
form of the localization length � will be different for Levy
distributions where the variance does not exist. Note that here
we will loosely refer to “Levy distribution” as any distribution
with heavy tails which does not have a variance or mean. A
particular example of this class of distributions is the Levy
distribution [25].

The effects of Cauchy distribution on Anderson localiza-
tion were studied in [26,27], while the conductance proper-
ties through quantum wires were considered in [28,29]. The
effects of the long-range correlated potential on Anderson
localization were considered in [30–34], while the effects of
the Brewster anomaly were investigated numerically in [35].

A closely related question of photon propagation in Levy
glasses was considered in [36]. Levy glasses are artificial
materials in which scattering centers are Levy distributed.
These materials have very interesting light propagation prop-
erties, where the transport can be superdiffusive. This can
substantially influence the properties of Anderson localization
in such materials. The question of Anderson localization for
one-dimensional chains with heavy-tail disorder distribution
is considered in [37].

In these studies only the general functional form of the
localization length at long wavelengths was deduced for the
long-wavelength limit or the localization length calculated
numerically using Monte Carlo averaging.

The main aim of this paper is to obtain an equation for
the localization length which is applicable for all wavelengths
for a Levy-type disorder distribution and to present explicit
asymptotic expressions for the localization length for both
short and long wavelengths.
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Here, we study the properties of the photon localization
in one-dimensional Levy disordered lattices. We assume that
the Fresnel reflection coefficient ρj between the adjacent
layers is small |ρj | � 1 and derive a general equation for
the localization length. All theoretical results are confirmed
by Monte Carlo numerical simulations and are shown to
be in excellent agreement. The short- and long-wavelength
asymptotic equations for the localization length have been
deduced.

In what follows, Sec. II presents the description of the
model and its analytical solution. The derivations of the short-
and long-wavelength asymptotic expressions for the localiza-
tion length are presented in Sec. II C. The results of numerical
calculations and the verification of the obtained analytical
equations are presented in Sec. III.

II. THEORETICAL CONSIDERATION

A. Description of the model

One of the key characteristics of Anderson localization is
the localization length �, which for one-dimensional problems
can be calculated using the relation

� = − lim
N→∞

2L

ln |TN |2 , (1)

where TN is the transmission coefficient of a stack of N

disordered layers and L is the length of the overall stack. This
quantity characterizes the “depth” of the propagation in which
the wave’s amplitude is exponentially reduced due to disorder.
The localization length also characterizes the spatial spread of
the modes of the corresponding random system. It has been
proven that under quite general conditions the localization
length is a self-averaging quantity, and as the stack length
L → ∞, the localization length is not random.

The self-averaging property of the localization length al-
lows its numerical calculation using the transmission length
defined by the relation

lN = − 2L

〈ln |TN |2〉 , (2)

where L is the length of the finite stack and TN is its transmis-
sion coefficient and the brackets 〈· · · 〉 denote the averaging
over the disorder. In the limit as the stack length N → ∞, the
transmission length coincides with the localization length,

lim
N→∞

lN = l. (3)

The stack length should be sufficiently long that the transmis-
sion length lN < L and it is independent of L.

In what follows, we consider weakly scattering stacks in
which the Fresnel reflection coefficient at each interface is
small, |ρj | � 1. This translates to a requirement that the
refractive index contrast between the layers is small.

As a model of a disordered medium, we consider a stack
composed of N alternating nonmagnetic layers of two types
with the refractive index νA and the refractive index νB (see
Fig. 1). We will assume that N is an even number, although
this is not necessary. The layer thicknesses dA and dB and
their refractive indices νA and νB can be random. However, we
will consider here only the layer thickness disorder, and we

FIG. 1. The geometry of the problem.

will assume that the probability density distribution of layer
thickness dj = x is given by a Pareto distribution

f (x) = αxα
m

xα+1
, (4)

where x � xm and f (x) = 0 for x < xm and the parameter
α > 0. This distribution belongs to the class of heavy-tail dis-
tributions. Furthermore, for the values 0 < α � 2 the variance
of the distribution is infinite, and for the values 0 < α � 1 the
mean of the distribution is also infinite. Following Ref. [37],
we will restrict our consideration to values 1 < α � 2, in
which there exists the mean of the thickness distribution (4)
given by

〈d〉 = αxm

α − 1
. (5)

We will also consider values for α > 2, where the variance of
the distribution (4) exists and it is given by

Var(d ) = αx2
m

(α − 1)2(α − 2)
. (6)

For the set of values 0 < α � 1, where the mean of a layer
thickness is infinite, the law of large numbers does not hold,
and this requires a separate consideration.

For values 1 < α � 2 this disordered structure represents a
one-dimensional Levy glass [37] where there is an interesting
interplay between the Anderson localization and an analog
of Levy flights in one dimension. This inevitably leads to a
different functional law of the localization length as a function
of the wavelength. Indeed, at long wavelengths in the classical
case the localization length is inversely proportional to the
variance of disorder � ∼ Var−1(d ), which is no longer valid
for 1 < α � 2.

To characterize the localization properties in such disor-
dered lattices we first consider the numerical calculation of the
transmission using a recursive procedure [22]. We calculate
the total amplitude transmission and reflection coefficients of
the stack in terms of the recurrence relations

Tn = Tn−1tn

1 − Rn−1rn

, (7)

Rn = rn + Rn−1t
2
n

1 − Rn−1rn

(8)

for n = 2, . . . , N , in which both the input and output media
are uniform media with the refractive index νb and with layers
that are enumerated from n = 1 at the rear of the stack through
n = N at the front. The initial values for the reflection and the
transmission coefficients are R0 = 0 and T0 = 1.
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The single-layer amplitude transmission tj and reflection
rj coefficients are given by

rj = ρj (1 − e2iβj )

1 − ρ2
j e

2iβj
, (9)

tj =
(
1 − ρ2

j

)
eiβj

1 − ρ2
j e

2iβj
. (10)

Here, βj = kdjνj , νj = √
εj is a refractive index of the layers,

and k = 2π/λ, where λ denotes the free-space wavelength.
The Fresnel interface coefficient ρj is given by

ρj = νj − νb

νj + νb

. (11)

Given that our stack is composed of alternating layers, an odd
j subscript in tj and rj refers to layer type A, and an even
value j refers to layer type B. Equations (7)–(11) provide an
exact description of the structure transmission and reflection
for a given realization. They will be used for direct numerical
calculations of the stack transmission logarithm and its mean
using the Monte Carlo approach. The localization length does
not depend on the background refractive index νb, and it is
assumed to be unity (νb = 1) for the numerical calculations. In
contrast the transmission length �N can depend on νb outside
of the localized regime.

B. Analytical treatment

In the theoretical consideration we assume that the re-
fractive index contrast between the layers is small |ρj | � 1;
therefore the scattering is weak. The localization length of a
random stack is an internal property of the stack and cannot
depend on the refractive index of the medium where the stack
is embedded (usually, free space νb = 1) [38]. Therefore in
the analytical approach we assume νb = νB . To derive the
expression for the localization length we adopt an approach
similar to that in [22]. First, we linearize the recurrence
relations

ln Tn = ln Tn−1 + ln tn + Rn−1rn, (12)

Rn = rn + Rn−1t
2
n . (13)

To obtain Eq. (12) we take the logarithm of the relation (7)
and expand the logarithm of its denominator, while Eq. (13)
is obtained by dropping the second term in the denominator
of Eq. (8). In this approximation, we omit the terms which
are proportional to the third-order products of the reflection
coefficients rj rprq and higher, given we consider weak scat-
tering. Note that the expansion of the stack reflection Rn

in terms of the layer reflection coefficients rj contains only
an odd number rj products, while the stack transmission Tn

contains only an even number of rj products. Therefore in this
second-order approximation we include all terms of the rj rp

products and omit all higher-order even products.
Then, by summing the logarithmic transmission terms (12)

in this approximation we obtain

ln TN =
N/2∑
j=1

ln t2j−1 +
N/2∑
j=2

r2j−1R̃2j−2, (14)

FIG. 2. Diagrammatic representation of the multiple scattering
considered in (14) and (15). The first term in the diagram represents
the logarithm of the direct transmission, while the second-order
contribution is given by the sum of all “rainbow”-type diagrams (see
the second line).

where R̃2j−2 is given by

R̃2j−2 =
2j−3∑
m=1

rm

2j−2∏
p=m+1

t2
p. (15)

Note that the direct expansion of the Dyson equation over
the potential correlation functions is not applicable to the dis-
order distribution considered here. Also, even though the lo-
calization length is given by the stack transmittance, the
localization length can be calculated by the logarithm of the
stack transmission, which is a much simpler proposition.

The used second-order multiple-scattering approximation
for the logarithm of the transmission can be represented by
diagrams (see Fig. 2). The calculation of the localization
length is given by the contribution of all “rainbow” diagrams
and by the logarithm of the straight transmission. In Fig. 2
the slab reflection and transmission scattering are represented
by crossed circles, propagation is represented by straight lines,
and the correlated averages are indicated by the wiggly curves.

After substituting (15) into (14) and averaging, we obtain

〈ln TN 〉 = N

2
〈ln tA〉 + 〈rA〉2〈t2

B

〉 N/2−1∑
m=1

(
N

2
− m

)
qm−1,

(16)

where q = 〈t2
A〉〈t2

B〉. The explicit forms of 〈rA〉, 〈t2
A〉, and

〈ln tA〉 are given by the relations (A1), (A5), and (A9), and
the equation for 〈t2

B〉 is obtained from (A5) by replacing νA

with νB .
The finite sum in (16) is an arithmetic-geometric pro-

gression which can be expressed in closed form. After the
summation the expression for 〈ln TN 〉 takes the form

〈ln TN 〉 = N

2
〈ln tA〉 +

〈
t2
B

〉〈rA〉2

2

×
[

N

1 − q
+ 2(qN/2 − 1)

(1 − q )2

]
. (17)

After the substitution of (17) into (2) and taking the limit (3)
the localization length in this weak-scattering limit takes the
form

−1

�
= Re

[
〈ln tA〉

2
+ 〈rA〉2

〈
t2
B

〉
2(1 − q )

]
, (18)

where the localization length � is scaled by the mean of a
layer thickness 〈d〉. The obtained equation for the localiza-
tion length (18) is verified numerically in Sec. III. In the
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next section we use Eq. (18) to deduce the explicit analytic
equations of the short- and long-wavelength asymptotes for
the localization length �.

C. Short- and long-wavelengths asymptotes
of the localization length

The obtained equation for the localization length (18) can
be used to deduce the short- and long-wavelength asymptotes
of the localization length. The explicit asymptotic forms of
the localization length can be deduced from the short- and
long-wavelength expansions of 〈ln tA〉, 〈t2

A〉, 〈t2
B〉, and 〈rA〉.

These expansions are derived in Appendixes A and B. In the
subsequent presentation we scale the localization length and
wavelength by the mean of a layer thickness 〈d〉 (5).

1. Short-wavelength asymptotes

To calculate the short-wavelength asymptote for the lo-
calization length � it is necessary to calculate the short-
wavelength asymptotes for the averages 〈ln tA〉, 〈rA〉, 〈tA〉,
and 〈tB〉. The details of these calculations are presented in
Appendix A.

Substituting the obtained asymptotic expansions (A4),
(A7), (A8), and (A11) into (18), the localization length at the
short-wavelength limit takes the form

� = 2

ρ2
A

. (19)

Therefore the localization length � scaled by the mean of the
layer thickness 〈d〉 at short wavelengths tends to a constant
which is defined by the square of the Fresnel interface coeffi-
cient ρA. This is typical behavior of the localization length at
short wavelengths, where the localization length is determined
by local scattering properties. In Sec. III the obtained short-
wavelength asymptotic (19) is verified numerically.

2. Long-wavelength asymptotes

Here we present the explicit asymptotes for the localization
length at the limit of long wavelengths. These asymptotes can
be deduced from the long-wavelength asymptotes of averages
〈ln tA〉, 〈rA〉, 〈tA〉, and 〈tB〉 derived in Appendix B. After
the substitution of the long-wavelength asymptotes (B2)–(B4)
into (18) the asymptotic expression for the localization length
for 1 < α < 2 normalized to the mean thickness of a layer 〈d〉
takes the form

� = − (α/2)α−1(νA + νB )2λα

[2π (α − 1)]α�(−α) cos(πα/2)ρ2
A

(
ν2

Aνα
B + ν2

Bνα
A

) ,

(20)

where �(x) is the gamma function. Thus the localization
length � is proportional to λα at long wavelengths. Either
this result has been established in the past numerically, or
its general functional form has been derived. Here, we have
presented the explicit expression for the localization length at
long wavelengths. This algebraic dependence on wavelength
� ∼ λα is in contrast to the classical case where � ∼ λ2. We
have verified the obtained long-wavelength asymptote (20)
numerically in Sec. III.

To deduce the asymptotic equation for the localization
length for α = 2 we substitute expansions (B7)–(B9) into
(18). The localization length for α = 2 at long wavelengths
takes the form

� = (νA + νB )2λ2

4π2ν2
Aν2

Bρ2
A[ln λ − ln(π

√
νAνBe(γ+1/2))]

, (21)

where γ = 0.517216 is the Euler constant. At very long
wavelengths expression (21) can be simplified

� = (νA + νB )2

4π2ν2
Aν2

Bρ2
A

λ2

ln λ
. (22)

The functional form of (22) was reported previously [31]
for systems with long-range correlation disorder. Note the
obtained explicit asymptotic form of the localization length
(22) is for the case in which the second moment does not exist.
In Sec. III we verify the obtained asymptotic equation (21)
numerically.

For the values α > 2 where the second moment for the
distribution exists, the localization length takes the form

� = (νA + νB )2λ2

8π2ν2
Aν2

Bρ2
AVar(d )

, (23)

where Var(d ) denotes the variance of the distribution scaled
by the squared mean of the layer thickness. Here we recover
the classical result in which the localization length is pro-
portional to λ2 and inversely proportional to the variance of
the disorder at long wavelengths. Equation (23) is deduced
by substituting the long-wavelength asymptotes (B2)–(B4)
into (18).

The obtained equations for the localization length can be
used to determine the stack length of finite stacks to achieve
localization.

III. NUMERICAL RESULTS

In this section we present numerical verification of the
theoretical results presented in Sec. II. Presented below are
the numerical Monte Carlo calculations in which we used 104

realizations and we considered a stack composed of N =
105 layers. We also considered a higher/lower number of
realizations and observed that fluctuations of the localization
length are markedly less pronounced with a larger number of
realizations. This is quite similar to cases where the second
moment of disorder exists. We also observe that the localiza-
tion length fluctuations are reduced with the increase of stack
length, which is a demonstration of the self-averaging prop-
erty of the localization length. This self-averaging requires
longer stacks to take place for Levy disorder than for disorder
distributions where the second moment exists. The refractive
indices of layers are νA = 1.4 and νB = 1.3 in the presented
calculations.

We use the exact recurrence relations (7) and (8) to calcu-
late the stack transmission composed of N layers for a single
realization. In the numerical calculations we assumed that the
stack is embedded in a uniform medium with the refractive
index νb = 1. The widths of the layers are generated using the
relation

dj = xm

u1/α
, (24)

235144-4



ANDERSON LOCALIZATION OF CLASSICAL WAVES IN … PHYSICAL REVIEW B 98, 235144 (2018)

1.0

10
3

105

107

λ

l

10
-2 10

2 10
4

FIG. 3. Localization length � as a function of wavelength λ for
a Levi stack with α = 1.5. The solid red curve is the analytical pre-
diction (18), while the dotted blue curve is the numerical simulation.
The horizontal dashed line is the derived short-wavelength asymptote
(19), while the slanted dashed straight line is the long-wavelength
asymptote (20).

where u is a random variable uniformly distributed on the
interval [0,1]. The obtained thickness values dj are distributed
according to a Pareto distribution [39] (4). In all plots we
scale the localization length and wavelength by the mean of
the layer thickness 〈d〉 (5).

In Fig. 3 we present the localization length dependence on
wavelength for α = 1.5 and xm = 1/3. Both the localization
length � and the wavelength λ are scaled by the mean of the
layer thickness 〈d〉. The blue dotted curve is the numerical
calculation, while the red solid line is the theoretical descrip-
tion based on Eq. (18). There is excellent agreement between
the curves. The curves are practically indistinguishable for all
wavelengths.

At short wavelengths (see Fig. 3) the localization length
tends to a constant. The horizontal dashed line is based on the
short-wavelength asymptote (19). So at the short wavelength
the localization length depends on the Fresnel reflection co-
efficient and on the mean layer thickness. The sloped dashed
straight line in Fig. 3 is the long-wavelength asymptote based
on Eq. (20). Therefore at long wavelengths the localization
length is proportional to λα , and the localization length has
quite a complicated α dependence. The oscillatory behavior
of the localization length for wavelengths 0.3 < λ < 2 is as-
sociated with the band gap properties of the initial unperturbed
periodic stack. In particular the minimums of the localization
length are related to the band gaps, and maximum values are
associated with the pass bands. In Fig. 4 we present the de-
pendence of the localization length on wavelength for α = 2
and xm = 0.5. The solid red curve is the numerical calcula-
tion, while the blue dotted curve is the analytical description
based on (18). The curves are indistinguishable except at
very long wavelengths λ > 5000. In order to characterize the
localization length at such long wavelengths for this case
it is required to consider longer stacks. We confirm this by
numerical calculations.

The overall behavior of the localization length is similar
to the case considered above. At short wavelengths the lo-
calization length tends to a constant given by relation (19)

10
-2 1 10

2 104
10

2

10
4

10
6

10
8

λ

l

FIG. 4. Localization length � as a function of λ for a Levi stack
for a critical value α = 2. The solid red curve is the numerical
Monte Carlo calculation, while the dotted blue curve is the analytical
prediction (18). The horizontal dashed line is the derived short-
wavelength asymptote (19), while the green dashed curve is the
long-wavelength asymptote (21).

(see the horizontal straight dotted line in Fig. 4), while
the green dashed curve is the long-wavelength asymptote
given by relation (21). This relation is applicable for λ 	
π

√
νAνBe(γ+1/2). For the set of parameters used here this

requirement leads to the condition λ 	 25. The asymptotic
expression given by (21) can be considered an intermediate
asymptotic, while the long-wavelength asymptote is given
by (22). Perhaps for practical applications the intermediate
form of the long-wavelength asymptote given by (21) is more
useful.

In Fig. 5 we plot the localization length as a function of
wavelength for α = 3.5 and for xm = 5/7. For this set of
parameters the second moment for the random distribution
(4) exists, and we recover the classical behavior of the local-
ization length ∼λ2 at long wavelengths. The solid red curve
(see Fig. 5) is the numerical calculation, and the dotted blue

10-2 1.0 102

103

105

107

λ

l

FIG. 5. Localization length � as a function of wavelength λ for a
stack with α = 3.5. The solid red curve is the numerical simulation,
while the dotted blue curve is the analytical prediction (18). The
horizontal dotted line is the short-wavelength asymptote (19), while
the slanted solid straight line is the long-wavelength asymptote (23).
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curve is the localization length calculation based on (18).
We obtain excellent agreement between the curves except at
long wavelengths, where the stack length is not sufficient to
properly characterize the localization length. We confirm this
by considering longer stacks.

The horizontal straight dotted line is the short-wavelength
asymptotic description (19), while the slanted straight line is
the long-wavelength asymptote given by (23). Therefore for
α > 2 at long wavelengths the localization length is inversely
proportional to the variance of disorder and directly propor-
tional to λ2.

IV. CONCLUSION

Properties of the Anderson localization of classical waves
in weakly scattering one-dimensional Levy glasses have been
studied. In such media the variance of disorder does not
exist, which strongly affects the localization properties in such
systems. A general equation for the localization length (18)
which is applicable for all wavelengths has been derived.
The derived equation has been verified numerically, and it
is in excellent agreement with the numerical Monte Carlo
calculations. The explicit asymptotic expressions for the lo-
calization length for both short [Eq. (19)] and long [(20)–(23)]
wavelengths have been deduced. These asymptotic expres-
sions have been verified numerically. At short wavelengths the
localization length tends to a constant defined by the Fresnel
interface reflection coefficient and by the mean of the layer
thickness. In this respect the localization length is not affected
by the absence of the variance of the disorder distribution.
This can be attributed to the fact that at such short wavelengths
the localization length is determined by the local distribution
of the parameters.

This is in stark contrast at long wavelengths, where for 1 <

α < 2 the localization length has an algebraic dependence,
� ∼ λα , and for α = 2 it has a transcendental behavior, � ∼
λ2/ ln λ. Such a functional form of the localization length
was predicted first in [31] for a different system with a long
correlation disorder. It would be interesting to know if this
transcendental behavior takes place for other systems as well.

Although here we have confined ourselves to the case
of only layer thickness disorder, the derived equation (18)
can be applied to systems with refractive index disorder or
systems with both refractive index and thickness disorders
simultaneously. The obtained equation is applicable for off-
axis incidence as well. The presented results could be useful
for electronic systems with a power law decaying impurity
potential also.
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APPENDIX A: DETAILS OF AVERAGING
AT THE SHORT-WAVELENGTH LIMIT

In this appendix we present the short-wavelength asymp-
totic expansion calculations for averages 〈ln tA〉, 〈rA〉, 〈tA〉,

and 〈tB〉. At the short-wavelength limit k → ∞ these averages
can be calculated by the repeated application of integration by
parts. The average of 〈rA〉 can be written as

〈rA〉 =
∫ ∞

xm

ρA

(
1 − ei2kνax

)
1 − ρ2

Aei2kνax

αxα
m

xα+1
dx. (A1)

After changing the integration variable x = xmt , expanding
the denominator into a geometric series, and changing the
order of summation and integration, we obtain

〈rA〉 = ρA + α

∞∑
n=1

(
ρ2n+1

A − ρ2n−1
A

) ∫ ∞

1

eiant

tα+1
dt, (A2)

where a = 2kνAxm. The repeated application of integration
by parts to the integral in (A2) leads to the expansion∫ ∞

1

eiant

tα+1
dt = −eian

ina
− (α + 1)

eian

(ina)2

+ (α + 1)(α + 2)

(ian)2

∫ ∞

1

eiant

tα+3
dt. (A3)

The first term in this expansion is the dominant term at the
short-wavelength limit a → ∞. Therefore we deduce

rA ≈ ρA. (A4)

The mean for 〈t2
A〉 is given by

〈
t2
A

〉 =
∫ ∞

xm

(
1 − ρ2

A

)
eikνax

1 − ρ2
Aei2kνax

αxα
m

xα+1
dx. (A5)

After the expansion of the fraction in (A5) into a geometric
series we obtain

〈
t2
A

〉 = α
(
1 − ρ2

A

)2
∞∑

n=1

nρ2n−2
A

∫ ∞

1

ei2knνAxmt

tα+1
dt. (A6)

Taking into account the asymptotic expansion (A3), the dom-
inant term of 〈t2

A〉 at short wavelengths is

〈
t2
A

〉 ≈ −α
(
1 − ρ2

A

)2

ia

eia

1 − ρ2
Aeia

. (A7)

The short-wavelength asymptote for 〈t2
B〉 can be deduced from

(A7) by replacing ρA with zero and νA with νB ,

〈
t2
B

〉 ≈ −αeib

ib
, (A8)

where b = 2kxmνB .
The short-wavelength expansion for 〈ln tA〉 can be obtained

in a similar way. The average of 〈ln tA〉 takes the form

〈ln tA〉 = ln
(
1 − ρ2

A

) + ikνAd − α

∫ ∞

1
ln

(
1 − ρ2

Aeiat
) dt

tα+1
.

(A9)

After the expansion of the integral in (A9) into a power series
we obtain

〈ln tA〉 = ln
(
1 − ρ2

A

) + ikνAd + α

∞∑
n=1

ρ2n
A

n

∫ ∞

1

eiantdt

tα+1
.

(A10)
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Therefore the real part of 〈ln tA〉 at short wavelengths can be
approximated by

Re〈ln tA〉 ≈ ln
(
1 − ρ2

A

) ≈= −ρ2
A. (A11)

After substitution of the obtained asymptotes (A4), (A7),
(A8), and (A11) into (18) we deduce the short-wavelength
asymptote for the localization length (19).

APPENDIX B: DETAILS OF AVERAGING
AT THE LONG-WAVELENGTH LIMIT k → 0

The long-wavelength asymptotes for the mean of 〈ln tA〉,
〈rA〉, and 〈t2

A,B〉 can be found using the following series
expansion [40] for integral (A3):∫ ∞

1

eiant

tα+1
dt = αaαnα�(−α)e−iπα/2 +

∞∑
m=0

(ian)m

m!(−m + α)
,

(B1)

where �(x) is the gamma function. This expansion is applica-
ble for only fractional α. After the substitution of (B1) into
(A2), (A6), and (A10) the long-wavelength asymptotes for
〈ln tA〉, 〈rA〉, and 〈t2

A,B〉 take the forms

〈ln tA〉 ≈ αaα�(−α)e−iαπ/2ρ2
A + iαaρ2

A

α − 1
+ αa2ρ2

A

2(2 − α)
,

(B2)

〈rA〉 ≈ −αaα�(−α)ρAe−iαπ/2 + iαaρA

α − 1
− αa2ρA

2(2 − α)
,

(B3)

〈
t2
A

〉 ≈ 1 + αaα�(−α)e−iαπ/2 + iαa

α − 1
+ αa2ρA

2(2 − α)
.

(B4)

The value 〈t2
B〉 can be deduced by substituting ρA = 0 and

replacing 〈t2
A〉 with 〈t2

B〉 and νA with νB in (B4).

For α = 2 the integral (B1) can be calculated in closed
form, ∫ ∞

1

eiant

t3
dt = 1

2
(1 + ian)eian − iπa2n2

4

+ a2n2

2
[Ci(an) + iSi(an)], (B5)

where Ci(x) and Si(x) are integral sine and cosine functions
given by

Si(x) =
∫ x

0

sin t

t
dt,

Ci(x) = −
∫ ∞

x

cos t

t
dt.

The short-wavelength asymptote for (B5) can be readily
deduced:∫ ∞

1

eiant

t3
dt ≈ 1

2
+ ian + a2n2

2

(
ln(an) + γ − 3

2
− iπ

2

)
,

(B6)

where γ ≈ 0.517216 is the Euler constant. The long-
wavelength asymptotes for 〈ln tA〉, 〈rA〉, and 〈t2

A,B〉 are then
expressed as

〈ln tA〉 ≈ ρ2
Aa2

(
ln a + γ − 3

2

)
, (B7)

〈rA〉 ≈ −ρA

(
a2

(
ln aγ − 3

2

)
+ 2ia − iπa2

2

)
, (B8)

〈
t2
A

〉 ≈ 1 + a2

(
ln aγ − 3

2

)
+ 2ia − iπa2

2
. (B9)

The value of 〈t2
B〉 can be deduced in a way similar to that

for 1 < α < 2. By using the obtained asymptotic expansions
(B2)–(B4) the long-wavelength asymptotes for the localiza-
tion length (20) are obtained from (18) for 1 < α < 2. Using
the expansions (B7)–(B9), the long-wavelength localization
length asymptote (21) for α = 2 is deduced from (18).
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