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Materials with non-Kramers doublet ground states naturally manifest the two-channel Kondo effect, as the
valence fluctuations are from a non-Kramers doublet ground state to an excited Kramers doublet. Here, the
development of a heavy Fermi liquid requires a channel-symmetry-breaking spinorial hybridization that breaks
both single and double time-reversal symmetry, and is known as hastatic order. Motivated by cubic Pr-based
materials with �3 non-Kramers ground state doublets, this paper provides a survey of cubic hastatic order using
the simple two-channel Kondo-Heisenberg model. Hastatic order necessarily breaks time-reversal symmetry,
but the spatial arrangement of the hybridization spinor can be either uniform (ferrohastatic) or break additional
lattice symmetries (antiferrohastatic). The experimental signatures of both orders are presented in detail, and
include tiny conduction electron magnetic moments. Interestingly, there can be several distinct antiferrohastatic
orders with the same moment pattern that break different lattice symmetries, revealing a potential experimental
route to detect the spinorial nature of the hybridization. We employ an SU(N ) fermionic mean-field treatment on
square and simple cubic lattices, and examine how the nature and stability of hastatic order varies as we vary the
Heisenberg coupling, conduction electron density, band degeneracies, and apply both channel and spin symmetry
breaking fields. We find that both ferrohastatic and several types of antiferrohastatic orders are stabilized in
different regions of the mean-field phase diagram, and evolve differently in strain and magnetic fields.
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I. INTRODUCTION

Kondo physics in heavy-fermion materials yields the par-
ticularly rich Doniach phase diagram [1], where the compe-
tition between heavy Fermi liquid formation and magnetism
leads to quantum criticality [2,3] and unconventional super-
conductivity [4], as well as topological Kondo insulators [5]
and exotic magnetism [6–9]. However, this single-channel
Kondo physics applies only to Kramers ions, those with an
odd number of f electrons, such as Ce and Yb. Non-Kramers
ions, with an even number of f electrons, like U, Pr, and Tb,
can have non-Kramers doublet ground states [10]. These non-
Kramers doublets always manifest the two-channel Kondo
effect, since virtual valence fluctuations must involve an ex-
cited Kramers doublet [11]. This two-channel Kondo physics
was originally and extensively explored by Cox [10,12–16]
as a potential origin of unconventional superconductivity in
UBe13 [17]. Recently, interest in this physics has been re-
vived, due to new Pr-based materials with non-Kramers dou-
blets, signs of Kondo physics [18,19] and quantum criticality
[20–26], and the proposal that the hidden order in URu2Si2

might be hastatic order, originating from two-channel Kondo
physics in tetragonal symmetry [27]. Hastatic order is a spino-
rial hybridization that breaks both single and double time-
reversal symmetry; the root “hasta” means spear in Latin,
and was introduced to emphasize the novel spinorial nature of
the order; elsewhere this has been termed diagonal composite
order [28].

These non-Kramers doublets require a new non-Kramers
Doniach phase diagram, with novel Kondo phases. As the
two-channel Kondo impurity is quantum critical, with a
1
2R ln 2 zero point entropy [29,30], no conventional heavy

Fermi liquids can emerge from a non-Kramers doublet ground
state. Instead, the usual heavy Fermi liquid is replaced by the
channel-symmetry-breaking hastatic heavy Fermi liquid. This
spinorial hybridization can lead to a number of exotic effects,
including electronic nematicity and unusual and subtle forms
of time-reversal-symmetry breaking. Of course, non-Kramers
doublet materials can also simply order magnetically or via
a cooperative Jahn-Teller distortion, depending on the type
of doublet, and so the non-Kramers Doniach phase diagram
will also manifest the competition between heavy Fermi liquid
formation and magnetism, now with the twist that the heavy
Fermi liquid must break channel symmetry. The goal of this
paper is to explore the generic features of this hastatic order
in a simple Kondo-Heisenberg model.

Non-Kramers materials with cubic symmetry provide the
most straightforward realization of hastatic order, as these can
have a nonmagnetic doublet ground state, �3, with quadrupo-
lar degrees of freedom. In a metallic material, these doublets
realize the quadrupolar Kondo effect, in which the con-
duction electrons’ quadrupolar moments screen the local �3

quadrupolar moment in two different spin channels [10,12].
The pseudospin and channel degrees of freedom are de-
scribed by two independent SU(2) symmetries, in contrast
to the tetragonal non-Kramers doublet, �5, where these are
entangled [27]. In this paper, we explore the generic real-
izations of hastatic order in cubic systems via a simple two-
channel Kondo-Heisenberg model whose symmetry proper-
ties are derived from the �3 doublet. We study both ferro-
and antiferrohastatic phases, finding multiple antiferrohastatic
phases with the same pattern of magnetic moments, but that
break double-time-reversal symmetry in different ways. In
this simplified model, we explore the global phase diagram
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as the relative strengths of Kondo and quadrupolar couplings
are varied, as well as the conduction electron density, and
magnetic (channel symmetry breaking) and strain (pseudospin
symmetry breaking) fields. We also discuss the experimental
signatures of hastatic order and the potential relevance to the
Pr “1-2-20” materials.

The structure of this paper is as follows. In the rest of this
section, we give a brief introduction to non-Kramers doublets
and the relevant Pr-based materials. In Sec. II, we describe our
simple two-channel Kondo-Heisenberg model, the effect of
magnetic field on realistic systems, and the symmetries of the
model. We motivate our choice of mean-field ansatzes with a
strong coupling analysis in Sec. III, and discuss the definitions
and band structures of the ansatzes in Sec. IV. In Sec. V, we
discuss the symmetry-breaking moments and susceptibilities.
Next, we present the phase diagram at zero temperature,
finite temperature, and in applied magnetic field and strain
in Sec. VI to Sec. IX. In Sec. X we consider higher-order
fluctuation corrections to the mean-field theory. Finally, we
discuss experimental signatures of hastatic order (Sec. XI), the
connection to previous theoretical results (Sec. XII), qualita-
tively suggest a generic non-Kramers Doniach phase diagram
(Sec. XIII), and summarize our conclusions (Sec. XIV).

A. Introduction to the �3 non-Kramers doublet

Rare-earth and actinide ions have extremely strong spin-
orbit coupling, making the total angular momentum, J =
L + S, the relevant quantum number; this 2J + 1 degeneracy
is then split by the crystalline electric fields into crystal field
multiplets. Ions with odd and even numbers of f electrons
therefore have half-integer and integer J , respectively. These
two classes behave quite differently under the time-reversal
operation θ , as integer J states are left invariant under double-
time-reversal symmetry, θ2 = +1, while half-integer J states
invert, θ2 = −1. This difference manifests most clearly in the
Kramers theorem, which guarantees that half-integer J states
split at most to doublets under any time-reversal symmetry
preserving perturbation; such ions are called Kramers ions and
their states Kramers doublets [31]. Integer J states, however,
may be split down to time-reversal-invariant singlets, and
these ions are called non-Kramers ions. If the crystal sym-
metry is sufficiently high, their states may still form doublets
and triplets. Non-Kramers doublets can be split by lowering
the point group symmetry.

There are two types of non-Kramers doublets: Ising dou-
blets that are magnetic along the local ẑ axis and nonmag-
netic in the basal plane (tetragonal, hexagonal, or trigonal
symmetries), and essentially nonmagnetic doublets (cubic
symmetry). Here, we focus on the cubic case. The cubic �3

doublet for J = 4, which is relevant for Pr3+ and U4+, can be
written as [32]

|�3+〉 =
√

7

24
(|4〉 + | − 4〉) −

√
5

12
|0〉,

|�3−〉 =
√

1

2
(|2〉 + | − 2〉), (1)

in terms of the |Jz〉 eigenstates. This doublet is nonmagnetic,
with 〈 �J 〉 = 0, but has a pseudospin- 1

2 degree of freedom that

FIG. 1. Atomic levels of Pr and the two-channel quadrupolar
Kondo effect. In Pr3+, valence fluctuations from a 4f 2 �3 non-
Kramers doublet ground state into a 4f 1 �7 Kramers doublet excited
state via �8 conduction electrons generate a two-channel Kondo
effect. In this figure, σ (red and blue arrows) is the physical spin
(channel) index and α (light red and light green) is the quadrupolar
(pseudospin) index. The charge densities of the �3 (red/green), �8

(red/green), and �7 (golden) orbitals are also depicted.

we describe with the Pauli matrices, �α. α1 and α3 respectively
correspond to the quadrupolar moments Qx2−y2 ∝ 〈J 2

x − J 2
y 〉

and Q3z2−r2 ∝ 〈3J 2
z − J (J + 1)〉, while α2 corresponds to the

octupolar moment Txyz ∝ 〈JxJyJz〉; the overline indicates a
sum over symmetric permutation of indices. α1 and α3 couple
to strains with the same symmetry, and their quadrupolar
ordering is a cooperative Jahn-Teller distortion that lowers the
point group symmetry. α2 couples to a linear combination of
strain and magnetic field both along the [111] direction [10];
these octupolar moments can also order, as proposed for
PrV2Al20 [33].

Pr3+ ions can fluctuate from 4f 2 to either 4f 1 or 4f 3, both
of which are Kramers configurations with only doublet and
quartet states. Here, for simplicity, we take the 4f 1 �7 excited
doublet to be the relevant excited state,

|�7±〉 =
√

1

6
|±5/2〉 −

√
5

6
|∓3/2〉, (2)

although the 4f 3 excited �6 is perhaps more likely [34]; the
physics is the same. These valence fluctuations involve con-
duction electrons in the �8 symmetry, due to group-theoretic
selection rules [10,35]. �8 is a quartet with both quadrupolar
(�3) and dipolar (�7) degrees of freedom,

|�8a±〉 =
√

5

6
|±5/2〉 +

√
1

6
|∓3/2〉,

|�8b±〉 = |±1/2〉. (3)

The atomic level diagram is shown in Fig. 1.
Cubic symmetry renders the valence fluctuation Hamilto-

nian particularly simple [10]:

HV F (j ) = V
∑
kαμ

[μ̃|�3α〉〈�7 − μ|ψj8αμ + H.c.], (4)

where μ and α label the magnetic and quadrupolar indices,
respectively. The factor μ̃ = sgn(μ) ensures that the �3 dou-
blet hybridizes with the two-particle states composed of a
conduction and �7 f electron; the latter two states form a
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singlet in magnetic (μ) space and a doublet in quadrupolar
(α) space.

The conduction electrons that directly hybridize with the
Pr3+ ion are �8 Wannier functions, ψj8αμ, which possess the
symmetries of a �8 f electron on the f site. These may be
constructed from any type of conduction electron that overlaps
with the f -electron site, including simple plane waves. For
simplicity, we consider a quartet of conduction electrons with
�8 symmetry. These could be a quartet of eg ⊗ 1

2 d electrons,
which have �8 symmetry. These have even parity in contrast
to the odd-parity f electrons, and so must be overlapping
from neighboring sites; see extensive recent work on this
model for SmB6, which has this conduction electron band
structure [36,37]. In this paper, we neglect the details of the
overlap, which will generically be a complicated momentum-
dependent, spin-orbit-coupled matrix, and consider only an
on-site hybridization that leads to a momentum-independent
Kondo coupling.

A Schrieffer-Wolff transformation takes the valence fluc-
tuation term, along with appropriate atomic and conduction
terms, into a two-channel Kondo model [10],

H =
∑
kασ

εkαc
†
kασ ckασ + JK

∑
jσαβ

ψ
†
jασ �ααβψjβσ · �αfj , (5)

where σ represents the eg conduction electron spin. As the
Kondo couplings obey JKσ = JK , this is a completely de-
generate two-channel Kondo lattice model. If the conduction
bands are not degenerate everywhere in momentum space, the
quadrupolar Kondo couplings J x

K and J z
K may differ from the

octupolar Kondo coupling J
y

K ; note that this anisotropy does
not break cubic symmetry. The anisotropy is irrelevant, in
the renormalization group sense, for the two-channel Kondo
impurity [38], and so we choose to neglect it here. The
two-channel Kondo model will give rise to RKKY coupling
between the f -electron quadrupole and octupole moments,
also generically with J

y

RKKY �= J x
RKKY = J z

RKKY [33]. Again,
we neglect this potential anisotropy.

B. Relevant Pr-based materials

Praseodymium is the simplest non-Kramers ion, as its 4f 2

configuration has the lowest allowed J = 4, and in cubic
symmetry, the �3 doublet is the ground state doublet in
about half of parameter space [32]. There are several Pr-
based intermetallic materials where the ground state has been
identified as �3 by inelastic neutron scattering. Two-channel
Kondo impurity physics has been observed in dilute versions
of these materials [39–43]. The most promising dense Kondo
materials are the “1-2-20” cage compounds PrT2X20, where
T is a transition metal and X = Al or Zn; these cubic (Fd3̄m)
materials have particularly strong Kondo coupling, as the Pr
sit within Frank-Kasper cages of 16 Al or Zn atoms, allowing
for strong c-f hybridization [18,19]. The Pr ions are then
arranged on a diamond lattice. Considerable evidence exists
for Kondo physics in these materials. At high temperatures,
there is only partial quenching of the R ln 2 entropy [18],
logarithmic scattering in the resistivity [26], relatively large
hyperfine coupling [19], enhanced effective masses [44],
and a Kondo resonance in photoemission [34]. At low tem-
peratures, most of these materials order, and then become

superconducting at even lower temperatures. PrTi2Al20 and
PrIr2Zn20 order ferro- and antiferro-quadrupolarly at TQ =
2 K [18,22,45,46] and 0.11 K [21,47], respectively, while
the ordering in PrV2Al20 [18,45] and PrRh2Zn20 [23] is still
undetermined. PrNb2Al20 does not order to the lowest temper-
atures, instead exhibiting non-Fermi-liquid behavior [48,49].
The quadrupolar order can be suppressed both with pressure
(PrTi2Al20 [50]) and magnetic field (Pr(Ir,Rh)2Zn20 [21,23]
and PrV2Al20 [18]), leading to extended non-Fermi-liquid re-
gions. Pressure enhances the superconductivity [50], which is
almost certainly unconventional. The in-field phase diagrams
are even more interesting, as there is an intermediate heavy
Fermi liquid region in all three materials, sandwiched between
the zero-field order and a fully polarized high-field state where
all Kondo physics is lost [51,52].

PrPb3 is another �3 material with quadrupolar density
wave ordering (Tc = 0.35 K) that shows signs of heavy-
fermion behavior within the ordered phase at high fields,
making it a candidate for hastatic order [43,53–55]. The
�3 Heusler materials PrInAg2 [56] and PrMg3 [57] exhibit
non-Fermi-liquid behavior, with extremely large Sommerfeld
coefficients, but no clear phase transitions.

II. A SIMPLE MODEL FOR HASTATIC ORDER

While we are motivated by the rich physics of the �3

doublet, in this paper, we consider a simpler model that
captures much of the same physics. This simpler model allows
us to fully explore the fundamental properties of hastatic order
before looking at more complicated, realistic models in the
future.

We begin with the two-channel Kondo model, Eq. (5).
While the Kondo term itself generates an RKKY coupling,
we will use the SU(N ) large-N limit, where the RKKY
effect only appears at order 1/N2 [58]. In order to treat
the RKKY-driven quadrupolar moment coupling on the same
footing as the Kondo physics in the large-N limit, we add a
nearest-neighbor Heisenberg term [59,60], yielding the total
Hamiltonian

H =
∑
kασ

εkαc
†
kασ ckασ + JK

∑
jσαβ

c
†
jασ �ααβcjβσ · �αfj

+ JH

∑
〈ij〉

�αf i · �αfj . (6)

This model is valid in any dimension, but it is only connected
to the �3 Anderson lattice model in three dimensions (3D).
Nevertheless, the physics is often more transparent in the
two-dimensional (2D) model, and so we will treat both 2D
and 3D. While the 2D system cannot order at any finite
temperature, as both hastatic and quadrupolar orders break
continuous symmetries, our mean-field picture neglects those
fluctuations, and the main difference between our 2D and 3D
models is the conduction electron density of states and the
complexity of the calculations. We present both results, but
focus on the simpler 2D case.

A. Conduction electron Hamiltonian

While in realistic materials the c and f electrons are
often on distinct sites, yielding a momentum-dependent
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hybridization, here we assume that the c electrons are s

electrons hybridizing with local moments at the same site,
cjασ = ∑

k ckασ e−ik·Rj . The conduction electron Hamiltonian
is generically a matrix in channel (σ ) and pseudospin (α)
space, spanned by the Pauli matrices, �σ and �α, respectively.
Previous two-channel Kondo calculations have taken exactly
degenerate conduction bands [10,15,28,61,62], making this
matrix proportional to α0σ0. This degeneracy is not required,
nor particularly likely in real materials. We partially relax this
condition to consider conduction electrons coming from two
bands that are locally spin degenerate, but are not degenerate
everywhere in k space. In a 2D model with square symmetry,
for instance, this could arise from px and py orbitals, which
generically have different hopping parallel and perpendicular
to the orbital orientation. The resulting conduction electron
dispersion is,

ε
(2D)
k = −t[(1 + η)(cx + cy )α0 + (1 − η)(cx − cy )α3], (7)

with cx,y,z = cos kx,y,za, and a is the lattice constant. η = 1
recovers fully degenerate conduction electron bands. For a
3D model, we consider the eg doublet, dx2−y2 , dz2 ; here the
cubic symmetry of eg is a more natural match for the �3

doublet. For nearest-neighbor hopping, we consider hopping
between different orbitals on different sites, and obtain the
dispersion [37]

ε
(3D)
k = −t

[
(1+ η)(cx + cy + cz)α0 +

√
3(η − 1)

2
(cx − cy )α1

+ η − 1

2
(cx + cy − 2cz)α3

]
. (8)

For η = 1, we again recover fully degenerate conduction
electron bands that are diagonal in this basis.

The full conduction electron band structure is then
ε

(2D,3D)
k σ0 − μα0σ0. We work in the canonical ensemble,

where μ is adjusted to keep the total number of conduction
electrons fixed,

nc =
∑
ασ

∫
ddkf (εkα − μ). (9)

Here f (x) is the Fermi function.
Our conduction electrons couple both to channel-

symmetry-breaking magnetic fields (σ ), Hc → Hc − gμB
�B ·

(�σ/2)α0, and pseudospin-symmetry-breaking strain fields (α),
Hc → Hc − κ�ε · �ασ0, where �ε is a vector of strains with
the appropriate symmetries and κ is the materials-dependent
coupling coefficient. If desired, the orbital degeneracy of
the conduction electron bands can be broken by shifting the
two bands by different chemical potentials, �μα3, which
effectively acts as a conduction electron strain term. This
splitting will eventually destroy the quadrupolar Kondo effect,
just as magnetic field destroys the usual Kondo effect. In
a more realistic model, the Wannier functions screening the
local moments are constructed out of partial wave expansions
of both conduction electron orbitals and both spins at other
sites, and so full screening can still occur even with a single
conduction electron band [27].

B. Effect of magnetic field on realistic systems

An isolated �3 doublet does not couple to magnetic field;
however, virtual fluctuations to excited crystal field states
induce a B2 coupling. As the crystal field splitting is typically
on the order of 50 K, relatively small magnetic fields will
already mix in excited states, and for any realistic model we
must consider their effect. Here, we take the excited state
to be the �4 triplet as in PrTi2Al20 [22] at energy �. For
simplicity, we neglect higher excited states and keep μBB <

�. Including all excited states yields similar effects. The �4

triplet for J = 4 is

|�4, a/b〉 =
√

7

8
|±1〉 +

√
1

8
|∓3〉,

|�4, c〉 = 1√
2

(|4〉 − |−4〉), (10)

and so mixes with the �3 doublet in fields both along and
perpendicular to the quantization axis.

With these crystal fields the �3 doublet is split approxi-
mately quadratically in parallel magnetic field,

�3 = 6
(μBB )2

�
+ O(B4/�3), (11)

where � is in units of energy and B||[001]; see Fig. 2(a).
For fields along [110] and [111], the splitting is two and ten
times smaller, respectively. This splitting competes with the
Kondo effect and eventually destroys hastatic order. Here,
|�3+〉 mixes with the excited �4 triplet, while |�3−〉 mixes
only with the excited �5 triplet. Therefore, |�3+〉 is repelled
by the excited states, and |�3−〉 remains at zero. Similarly,
|�3+〉 acquires a magnetic dipolar component along the field
direction, while |�3−〉 remains nonmagnetic. While the B =
0 doublet has two nonzero quadrupolar moments, O3z2−r2

and Ox2−y2 , and one nonzero octupolar moment, Txyz, the
B > 0 pseudodoublet, for B||[001], acquires Jz dipolar and
Oxy quadrupole moments that grow linearly in field, for small
B/�. The pseudospin moments then correspond to α3 ∼
O3z2−r2 + Jz, α1 ∼ Ox2−y2 and α2 ∼ Txyz + Oxy . The in-field
behavior of the dipolar and quadrupolar moments is shown in
Fig. 2(b); the octupolar moment does not vary with field. Note
that we plot the 〈Jz〉 associated with |�3±〉 independently.
More realistic crystal field schemes give slightly different co-
efficients, but the same nonzero quantities and functional de-
pendencies. These field-induced dipolar moments are already
well known, as they can be measured via neutron scattering to
resolve quadrupolar order [22,47]. Indeed, the magnetic field
considered here could be external, or the internal exchange
field; either one induces dipolar moments parallel to the local
field.

C. Large-N mean-field treatment

In order to solve this model in a controlled mean-field
theory, we introduce a fermionic representation for the pseu-
dospins, �αj = 1

2

∑
αβ f

†
jα �ααβfjβ . �α also represents the SU(2)

pseudospin of the �3 doublet, as it obeys the same sym-
metries as the conduction electron �α. In this representation,
both Kondo and Heisenberg terms become four-fermion in-
teractions. As these f “electrons” are really neutral spinons
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FIG. 2. (a) Splitting of the �3 doublet in magnetic field (Bz), and
its mixing with the excited �4 triplet. (b) Single-ion �3 moments
in field. This plot shows the magnitude of the �3 moments as
functions of the magnetic field along the z direction. Note that
these moments are the expectation values of the given multipo-
lar operator within the appropriate components of the doublet.
For example, 〈O3z2−r2 〉z = 1

2 [〈�3 + |3J 2
z − J (J + 1)|�3+〉 − 〈�3 −

|3J 2
z − J (J + 1)|�3−〉], where |�3±〉 are the new ground (+) and

first excited (−) singlet states. Aside from Txyz, which is constant
in field, these are the only nonzero moments. Here, 〈Jz〉± = 〈�3 ±
|Jz|�3±〉, where 〈Jz〉− = 0 due to the absence of the excited �5

triplet.

representing the local moments, we must also implement the
constraint that each site is half filled, nfj = 1. We next take
the SU(N ) limit, where the ground state multiplet has N

components, α = ± 1
2 , . . . ,±N

2 , but remains half filled [58].
In this limit,

H =
∑

k

εkαc
†
kασ ckασ − JK

N

∑
j

(f †
jβcjβσ )(c†jασ fjα )

− JH

N

∑
〈ij〉

(f †
jβfiβ )(f †

iαfjα ) +
∑

j

λj

(
f

†
jαfjα − N

2

)

−μ
∑

k

(
c
†
kασ ckασ − N

2
nc

)
. (12)

We have introduced Einstein summation notation for σ and
α and rescaled JK and JH such that the entire Hamilto-
nian scales as N . The first line reproduces the two-channel
Coqblin-Schrieffer model [63], while the first term on the
second line gives the usual SU(N ) fermionic representation
of an antiferromagnetic interaction [64]. The second term on
the second line is the half-filling constraint for the f ’s, which

must be enforced locally on each site. The final line imple-
ments the global fixing of the conduction electron density,
nc. Note that this particular large-N theory does not capture
superconductivity, either composite pair [65–70] or quadrupo-
larly mediated [71–74]. Superconductivity is always a poten-
tial coexisting or competing ground state that we neglect here
in order to focus on the stability and nature of hastatic order.
A more complicated symplectic-N large-N calculation would
incorporate both types of superconductivity [68,69], and will
be considered in the future.

We next decouple the quartic terms with Hubbard-
Stratonovich fields and take the saddle-point approximation
in real space,

Vjσ = JK

N
〈f †

jαcjασ 〉, χHij = JH

N
〈f †

iαfjα〉. (13)

Vjσ describes the local hybridization between conduction
electrons and local moments at site j in channel σ . χHij

describes “antiferromagnetic” correlations between local mo-
ment sites; for �3, these are actually antiferroquadrupolar cor-
relations, but we loosely use the term “magnetic” to generally
represent the local-moment multipolar order here. Note that
the choice of fermionic spin representation means that we can-
not capture long-range magnetic or quadrupolar order in the
large-N limit. Instead, in the absence of hybridization, χHij

describes a spin, or really quadrupolar, liquid with f spinons
hopping from site to site with amplitude and phase given by
χHij . In the N = 2 limit, we expect that this quadrupolar
liquid is unstable to quadrupolar order at lower temperatures,
and take the quadrupole liquid as a proxy for the quadrupolar
order that we cannot capture. At high temperatures above
the development of Vjσ , this spinon hopping term describes
f -electron hopping generated by hybridization fluctuations
that otherwise would be beyond our mean-field picture.

The resulting mean-field Hamiltonian is

H =
∑

k

εkαc
†
kασ ckασ +

∑
j

[Vjσ c
†
jασ fjα + V ∗

jσ f
†
jαcjασ ]

+
∑

j

λj

(
f

†
jαfjα − N

2

)

−
∑
〈ij〉

[χHijf
†
iαfjα + χ∗

Hijf
†
jαfiα]

+
∑
jσ

N |Vjσ |2
JK

+
∑
〈ij〉

N |χHij |2
JH

+
∑

j

N

2
μnc. (14)

The mean-field solution is given by the saddle-point val-
ues of all of the Vjσ , χHij , λj , and μ; in principle, this
problem is arbitrarily complicated. We simplify the problem
by considering a set of possible mean-field ansatzes moti-
vated by the strong-coupling analysis in Sec. III. In general,
we assume that χHij = χH takes real, uniform values on
nearest-neighbor bonds, and similarly that λj = λ is uni-
form and real. All of our hybridization ansatzes have a uni-
form amplitude

∑
σ |Vjσ |2 = |V |2. We consider both uniform,

〈Vjσ 〉 = Vσ , and various Néel-type staggered, 〈V †
j 〉�σ 〈Vj 〉 =

(−1)jx+jy |V |2, hybridization ansatzes; any other spatial ar-
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rangements are less likely to occur on the hypercubic lattices
we consider.

D. Symmetries of the model

After the Hubbard-Stratonovich transformation, but prior
to the saddle-point approximation, our model has a number of
symmetries that may be broken in any particular mean-field
ansatz:

(1) Translation and other lattice symmetries for the square
or cubic lattice. Any nonuniform hybridization ansatz will
break some of these symmetries.

(2) Particle-hole symmetry, as we consider nearest-
neighbor hopping on a hypercubic lattice; this symmetry will
be broken by further neighbor-hopping terms. Particle-hole
symmetry implies that the physics is invariant under nc →
4 − nc or μ → −μ.

(3) SU(2) pseudospin symmetry (�α), which protects the
non-Kramers doublet degeneracy. Physically, this symmetry is
the cubic crystal symmetry, and can be broken by coupling to
stresses or external fields, which will eventually kill the Kondo
effect.

(4) SU(2) channel symmetry (�σ ), which protects the de-
generacy of the conduction electron bands. Physically, spin is
the channel index, so this is the spin rotational symmetry. The
hybridization, V †

jσ = (V ∗
j↑, V ∗

j↓), is an SU(2) spinor. Condens-
ing this spinor into a mean-field ansatz automatically breaks
this SU(2) symmetry.

(5) Time-reversal symmetry, which affects the conduction
electrons and f spinons differently. Our f spinons here are
spinless fermions from the point of view of time reversal
θ , transforming as fα → fα , with θ2 = 1. By contrast, our
conduction electrons are Kramers degenerate, and transform
as cjασ → −sgn(σ )cjα,−σ , with θ2 = −1. As the hybridiza-
tion Vjσ connects non-Kramers f spinons and Kramers
c electrons, it is itself Kramers-like, and transforms as
Vjσ → −sgn(σ )Vj,−σ , with θ2 = −1. The resulting compos-
ite fermions, f̃σα ∼ Vσfσ , now behave like Kramers elec-
trons. However, once we condense Vjσ , they are no longer
operators, and instead transform as complex numbers, Vjσ →
V ∗

jσ , due to the complex conjugation in the definition of time
reversal. Therefore, any mean-field ansatz for Vjσ breaks
time-reversal symmetry, although time-reversal plus a lattice
symmetry may restore it, as in traditional antiferromagnets.

(6) Gauge symmetries, of which there are two in the
problem: the original electromagnetic gauge symmetry, cj →
cj e

iφj , and an emergent gauge symmetry, Vj → Vje
iβj , fj →

fje
−iβj , and χHij → χHij e

i(βi−βj ). The development of hy-
bridization locks together the two gauge fields, which couples
the neutral f spinons to the external field and thus turns them
into charge-e heavy electrons [75]. For the rest of the paper,
we will call these spinons f electrons, in anticipation of this
gauge field locking.

Any mean-field ansatz with nonzero hybridization nec-
essarily breaks some of the above symmetries. The chan-
nel symmetry is always broken, one way or another, which
reflects the essential nature of hastatic order as a channel-
symmetry-breaking heavy Fermi liquid. The two types of
mean-field ansatzes with zero hybridization, the quadrupolar

TABLE I. Table of conduction electron dipole and quadrupole
moments, as well as the two octupoles relevant to our discussions.
Here, the symmetries and physical conjugate fields of each moment
are also given, where u/g refers to odd/even under time-reversal
symmetry, not the usual parity.

Operator Moment Conjugate field Symmetry

α0σ1 Sx Bx �4u = T1u

α0σ2 Sy By

α0σ3 Sz Bz

α1σ0 Ox2−y2 εxx−yy �3g = Eg

α3σ0 O3z2−r2 εzz

α2σ1 Oyz εyz �5g = T2g

α2σ2 Oxz εxz

α2σ3 Oxy εxy

α2σ0 Txyz B[111]ε[111] �2u = A2u

α3σ3 T α
z εzzBz �4u

liquid (χH �= 0) and paramagnetic (χH = Vσ = 0) phases,
break no symmetries.

E. Moments and coupling to external fields

Both the conduction and f electrons can develop moments
corresponding to certain broken symmetries. The conduction
electrons have both spin (�σ ) and quadrupolar moments (�α),
and in fact form a �8 quartet. The generic conduction electron
moment is

mc,j,a,s = 〈c†jαaσscj 〉, (15)

where there are fifteen total moments: three dipoles, five
quadrupoles, and seven octupoles [76]. The irreducible rep-
resentations and conjugate fields of each of the dipolar and
quadrupolar moments are listed in Table I.

The f electron has three possible moments, �mf,j =
〈f †

j �αfj 〉, which we take to be the quadrupolar and octupolar
moments of the �3 doublet. These moments couple linearly to
the appropriate strains, εxx−yy to mf,1 and εzz to mf,3, while
the octupolar moment, mf,2, couples to the product of strain
and magnetic field along [111] [10]. If we include excited
crystal field levels, magnetic fields along the z axis couple
as −∑

j 6(μBBz)2/� f
†
j+fj+. For the induced moments, see

Sec. II B.

III. STRONG-COUPLING LIMIT OF THE TWO-CHANNEL
KONDO MODEL

Before going in depth into the large-N (mean-field) anal-
ysis, let us motivate our different hastatic orders by reex-
amining the strong-coupling limit of the two-channel Kondo
lattice model for N = 2 [10,62]. In this limit, we drop the
Heisenberg term, as it is a small perturbation. As JK/t → ∞,
the Kondo singlet becomes completely local and is essentially
an on-site valence bond between the local moment and a
conduction electron on site. If we start from the nc = 0 limit,
each conduction electron we add immediately forms a Kondo
singlet, until we reach quarter filling (nc = 1), where every
local moment is bound up into a singlet. Below quarter filling,
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FIG. 3. One-dimensional cartoons of the strong-coupling limit at
several values of the conduction electron density. The spins here
are the quadrupolar moments of the local moments (orange) and
conduction electrons (blue). Blue (green) ovals represent Kondo
singlets that carry channel σ = ↑ (σ = ↓). (a) At small nc, kinetic
energy favors ferroquadrupolar order of the unbound local moments.
(b) At nc = 1, superexchange between the Kondo singlets leads to
antiferrohastatic order. (c) Just above nc = 1, adding a single conduc-
tion electron makes the Kondo singlets ferrohastatic to maximize the
kinetic energy. (d) At half filling, again ferrohastatic order maximizes
the kinetic energy.

we have excess local moments, while above quarter filling
we have excess conduction electrons on the background of
a lattice of spinful Kondo singlets. Below quarter filling,
the local moment behavior is largely the same as in the
single-channel Kondo lattice [77]. The phase diagram will be
symmetric above and below half filling due to the particle-hole
symmetry.

First, we consider the relative stability of hastatic order
and quadrupolar order in this strong-coupling limit. The local
(single-site) energy difference is sufficient: the Kondo singlet
is essentially a valence bond between local moment and
conduction electron, 1√

2
[|c†σ+f

†
−〉 − |c†σ−f

†
+〉], with energy

−JKS(S + 1) = −3JK/4. Here, ± represent the pseudospin
(α) degrees of freedom. The local quadrupolar state consists
of the local moment antiparallel to any conduction electrons
on site; importantly, unlike the Kondo singlet, the local mo-
ment is f rozen. The lowest energy occurs when there are
two conduction electrons on site, both antiparallel to the
local moment, |c†↑−f

†
+c

†
↓−〉, with energy −2JKS2 = −JK/2.

Thus, hastatic order is always favored for sufficiently strong
coupling.

Now we turn to the nature of the hastatic order. A few limits
of the lattice behavior are well understood [10,62], as shown
in Fig. 3:

(1) Small nc. For nc � 1, the Kondo singlets form a
dilute gas of spinful bosons. The remaining local moments
order ferroquadrupolarly to maximize the kinetic energy of
the bosons; this behavior is identical to the single-channel

Kondo model [62,77]. Two neighboring Kondo singlets gain
superexchange energy, O(t2/JK ), if they are antiparallel, so
this region is likely to be antiferrohastatic, in addition to
the ferroquadrupolar order of the unscreened local moments.
Note that this competing state is absent from our mean-field
treatment.

(2) Quarter filling. With a Kondo singlet at each site, this
state is a Kondo insulator, with a remaining channel degree
of freedom. As in the infinite-U Hubbard model, the 2Ns

degeneracy is broken by channel superexchange O(t2/JK ),
leading to a channel Heisenberg model. For our hypercubic
lattices, the ground state will be a Néel-type antiferrohastatic
ground state.

(3) Near quarter filling. Adding a single conduction elec-
tron to the quarter-filled state immediately turns it ferro-
hastatic in order to maximize the kinetic energy of the elec-
tron, as a variant of the Nagaoka ferromagnetism in the
Hubbard model [78]. As t increases, we expect the antifer-
rohastatic state to extend for nc > 1, by analogy with the
Hubbard model. However, the behavior here is not sym-
metric about quarter filling. Removing a single conduction
electron leaves a single unbound local moment. This local
moment moves by conduction electron hopping that moves
the Kondo singlets; this process is not affected by the nature
of the hastatic order, and superexchange will continue to favor
antiferrohastatic order.

(4) Half filling. Exactly at half filling, we have a full
complement of Kondo singlets, and exactly half a band of
conduction electrons. While superexchange (∼t2/JK ) favors
the antiferrohastatic state, the kinetic energy (∼t) will be
maximized in the fully decoupled ferrohastatic state, and so
we expect ferrohastatic order here.

In the end, we can assemble a simple picture of the hastatic
behavior motivated by these limits. In this paper, we neglect
nonhastatic behavior, like the small-nc ferroquadrupolar or-
der and potential superconductivity at intermediate coupling.
We expect a Néel-like antiferrohastatic phase below quarter
filling, and extending above it for a finite range, followed by
a transition to ferrohastatic order, which is stable out to half
filling. In the hypercubic models studied here, these are likely
to occupy most of the phase space. One could study more
complicated orders by adding further neighbor hoppings, or
by studying frustrated lattices like the triangular lattice. We
focus on the ferrohastatic and Néel-like antiferrohastatic or-
ders in this paper, and indeed the above picture mostly agrees
with our mean-field phase diagrams, with small differences at
low filling.

IV. MEAN-FIELD ANSATZES

Here we describe several simple mean-field ansatzes for
hastatic order (see Fig. 4), leaving the detailed description of
their physical properties for later sections.

A. Ferrohastatic order

The most straightforward ansatz is to assume that the hy-
bridization is spatially uniform, Vjσ = Vσ . The hybridization
does not break any lattice symmetries, but does break both
single and double time-reversal symmetries, as well as the
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FIG. 4. One-dimensional cartoons of the mean-field ansatzes
considered for this model. The upper and lower lines represent
the spin-up and spin-down conduction electrons, while the middle
line represents the local moments. The arrows represent the free
quadrupolar moments, while the orange ovals represent quadrupolar
valence bonds between local moments. There are four classes of
states: (a) a completely disordered paraquadrupolar state; (b) a
quadrupolar liquid state, with f -electron hopping between near-
est neighbors; (c) a ferrohastatic order in which f moments only
hybridize with spin-up conduction electrons—this hybridization is
represented by the blue ovals; (d) an antiferrohastatic order, in which
the hybridizations between f moments and conduction electrons on
different sublattices (A/B = blue/green ovals) are related by time
reversal, i.e., VB = θVA.

SU(2) channel symmetry (spin-rotational symmetry), as it
couples f electrons with conduction electrons of only one
spin polarization. If this spin polarization is “up,” only the
spin-up conduction electrons hybridize, and we obtain two
bands of heavy up electrons and one band of light down
electrons (see Fig. 5).

In this ansatz, the Hamiltonian in Eq. (14) becomes

H = 1

Ns

∑
k

(c†kα↑, c
†
kα↓, f

†
kα )

⎛
⎝εkα 0 V↑

0 εkα V↓
V ∗

↑ V ∗
↓ εf k

⎞
⎠

⎛
⎝ckα↑

ckα↓
fkα

⎞
⎠

+ N

JK

∑
σ

|Vσ |2 + zN

2JH

|χH |2 − λ
N

2
+ N

2
μnc, (16)

FIG. 5. Left: A simple one-dimensional cartoon of ferrohastatic
order, where the top and bottom rows represent spin-up and spin-
down conduction electrons, and the middle row represents the
quadrupolar local moments. In ferrohastatic order, only one spin
species of conduction electrons hybridize (blue ovals), while both the
c and f electrons can disperse within their row, with the f -electron
dispersion generated by the Heisenberg coupling (orange ovals).
Right: The hybridization is a spinor that can point anywhere in SU(2)
space. For this ansatz, it points to the north pole of the Bloch sphere.

FIG. 6. Band structure along high-symmetry lines in ferro-
hastatic order. Before hybridization, the four bare conduction elec-
tron bands (orange dashed lines) have twofold spin degeneracy and
twofold pseudospin degeneracy, while the bare f -electron bands
(green dotted line) have only twofold pseudospin degeneracy. After
hybridization, there are six bands (blue) with two unhybridized. This
plot is for V↑ = 1, V↓ = 0, λ = 0.3, χ = 0, μ = 1, η = 1. The right
part of the figure shows the first Brillouin zone and high-symmetry
points.

where we have divided the Hamiltonian by the total number of
sites, Ns ,

1
Ns

∑
k = ∫

ddk
(2π )d , and z is the coordination number

of the lattice: z = 4, 6 in 2D and 3D, respectively. The “bare”
f -electron dispersion is εf k ≡ λ − 2χH

∑
η cos(k · �η), where

�η are the z/2 nearest-neighbor locations with positive coor-
dinates. In the 2D model, the two α states do not mix and
the Hamiltonian matrix is block diagonal, allowing for the
representation in Eq. (16). In 3D, with nondegenerate conduc-
tion electron bands (η �= 1), the Hamiltonian is slightly more
complicated, but the physics is the same. This Hamiltonian
can be diagonalized to give the one light and two heavy doubly
degenerate bands [61],

ωkα = εkα,
εkα + εf k

2
±

√(εkα − εf k

2

)2
+

∑
σ

|Vσ |2. (17)

The band structure is SU(2) invariant and thus independent
of the direction of Vσ , while the eigenvectors, which capture
the spin structure of the bands, clearly depend on Vσ . As one
conduction band always remains unhybridized, if the original
conduction electron band structure is metallic, ferrohastatic
order will be too. An example band structure is shown in
Fig. 6.

Aside from the breaking of channel symmetry, ferro-
hastatic order behaves identically to the usual Kondo effect,
and will have similar signatures. In particular, the interac-
tion between the Kondo effect and quadrupolarly mediated
superconductivity should be identical. In Sec. V, we discuss
the moments and susceptibilities associated with the broken
channel symmetry, while Sec. XI summarizes the experimen-
tal signatures.

B. Antiferrohastatic order

While the ferrohastatic ansatz breaks time-reversal but no
lattice symmetries, we also want to consider hybridization
ansatzes that break lattice symmetries. In particular, we are in-
terested in antiferromagnetic versions of hastatic order, where
time-reversal symmetry is broken, but the ground state returns
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FIG. 7. A one-dimensional cartoon of (a) two-sublattice (2SL)
antiferrohastatic order, where the hybridization on sublattice B is
the time reverse of that on sublattice A; (b) four-sublattice (4SL)
antiferrohastatic order where the hybridizations on the four sublat-
tices are related by time-reversal symmetry as VB = θVA, VC = θVB ,
and VD = θVC . (c) Schematic illustration of the spin-flip hopping of
conduction electrons moving from a site in sublattice A to a site in
sublattice B. At A, a spin-up conduction electron hybridizes with the
local f moment. It then hops as an f electron to B, where it converts
back to a spin-down conduction electron.

to itself under time-reversal followed by a lattice symmetry
operation.

One might naively expect that we can produce a Néel-like
staggered hybridization by separating our lattice into two
sublattices, defining the hybridization on sublattice A as VA,
and the hybridization on sublattice B as the time-reversed
object, VB = θVA, as in Fig. 7(a), where θ = iσ2K is the
time-reversal operator and K denotes the complex conjugate
operator. However, the spinorial nature of the hastatic order
parameter plays an essential role, and our intuition from vec-
tor antiferromagnets fails. A second time-reversal operation
takes θ2VA = −VA. Indeed, it is only after four time-reversal
operations that we recover θ4VA = VA. In order to write
down an ansatz invariant under a combination of time-reversal
(θ ) and a lattice symmetry (S), P = Sθ , we require a four-
sublattice ansatz, as in Fig. 7(b),

VB = θVA, VC = θ2VA = −VA, VD = θ3VA = −VB.

(18)

We can, of course, remove the extra sign in VC and VD by
performing a gauge transformation on C and D sites. If there
is no f -electron hopping between sublattices (χH = 0), the
mean-field Hamiltonian is invariant under this transformation,
and we can consider a two-sublattice ansatz where time-
reversal symmetry is represented by the usual time rever-
sal, θ , followed by a staggered gauge transformation. The
requirement to combine symmetry and gauge operations to
reveal the true symmetry of the ground state is analogous to
the use of projective symmetry groups in spin liquids [79].
However, f -electron hopping between sublattices (χH �= 0)

causes the two-sublattice ansatz to truly break time-reversal
symmetry, albeit subtly via the signs of the hybridization
spinors. While no single-site observables break time-reversal
symmetry, the band structure must do so through an emergent
spin-flip hopping. If a conduction electron hybridizes at a
site on sublattice A, hops as an f electron to site B, and
turns back into a conduction electron via hybridization at
site B, it will flip its spin; see Fig. 7(c). As all of the four
sublattice cases break additional lattice symmetries if χH = 0,
and the two-sublattice case breaks time reversal, when there is
f -electron hopping, an extra symmetry beyond translation
must be broken. We consider both two- (2SL) and four-
sublattice (4SL) ansatzes, and both generically are found in
the phase diagrams.

In 2D, there are two ways of arranging the four sublattices
(ABCD) such that the hybridization moments, V † �σV , form
the same Néel order, but the signs either alternate or form
uniform stripes along the x̂ direction. We discuss the 3D
cases in Sec. VI B. The first ansatz, which we call 4SL(1),
is shown in Fig. 8(b), with a unit cell that is quadrupled along
the x̂ direction. This ansatz breaks time-reversal and lattice
translation symmetry, but is invariant under time reversal
followed by translation by one site along x̂. The Bravais lattice
is rectangular, with a rotated and compressed Brillouin zone,
as shown in Fig. 8(b). The ansatz breaks inversion symmetry
subtly due to the relative signs of the hybridization spinors.
The second ansatz [4SL(2)] places ABCD around a single
plaquette, as shown in Fig. 8(c). The unit cell is doubled along
both x̂ and ŷ, and the Brillouin zone remains square, as shown
in Fig. 8(c). Here, the ansatz is invariant under time reversal
followed by a fourfold rotation, but breaks translation and
rotation symmetries, while preserving inversion.

1. Kramers degeneracy

Before hybridization, there are two Kramers degenerate
conduction electron bands (σ = ↑,↓, α = ±), and two non-
Kramers “singlet” f bands (α = ±). Hybridization mixes
these Kramers and non-Kramers bands; however, if time
reversal is preserved in some fashion, the total number of
Kramers-degenerate bands must be preserved. The 2SL ansatz
really does break time reversal, and thus for χH �= 0 the
Kramers degeneracy of the bands is lost, even at the � point.
The 4SL ansatzes preserve the Kramers degeneracy; however
the Kramers pairs are not colocated in momentum space.
While the 4SL ansatzes break time-reversal symmetry locally,
they preserve an antiunitary time-reversal-like symmetry, P =
Sθ , with S being a lattice transformation. By way of analogy,
in a simple square Néel antiferromagnet, S is a translation by
one site along x. The presence of corresponding P symmetries
for 4SL(1) and 4SL(2) imply Kramers-degenerate eigenstates
at time-reversal-invariant momenta like the � point. Away
from these special points, the Kramers pair of a state at k lies
at Sk, and so for generic momenta the degeneracy at fixed k is
lifted. A simple antiferromagnet has doubly degenerate bands
throughout the Brillouin zone as P k = −k, which is then
mapped back to k by inversion. For 4SL(1), the S operation
is again translation by one site along x, and so P k = −k; as
4SL(1) lacks inversion symmetry, there is no way to map this
state back to k, and so the bands are not doubly degenerate at
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FIG. 8. The lattice structure (left) and Brillouin zone (right) for
(a) two-sublattice (2SL) staggered ansatz, which breaks time-reversal
and lattice translation symmetry but preserves inversion and C4

rotation symmetry; (b) four-sublattice [4SL(1)] staggered ansatz,
which breaks time-reversal, lattice translation, rotation, and inversion
symmetries; (c) four-sublattice [4SL(2)] staggered ansatz, which
breaks time-reversal, lattice translation, and rotation symmetry, but
preserves inversion symmetry.

generic momenta. For 4SL(2), S is a C4 rotation about the
middle of a plaquette, which means P k = −Rπ/2k, where
Rπ/2 is a C4 rotation matrix. Therefore, while the 4SL(2)
ansatz has inversion symmetry, it still does not have a distinct
unitary operation that can map −Rπ/2k back to k, and thus
does not have Kramers-degenerate bands. Note that the above
discussion holds for generic χH �= 0, but for χH = 0 both
4SL ansatzes are equivalent to the two-sublattice one via
a gauge transformation. This version has inversion, and the
S operation is the same as in a simple antiferromagnet, so
the conduction-electron-like bands are Kramers degenerate
throughout the Brillouin zone.

2. Two-sublattice hastatic order (2SL)

The 2SL ansatz may be represented in real space, as dis-
cussed above, or in momentum space, where the hybridization
mixes bands with k and k + Q, where Q = (π, π ). If the

hybridization at site A is VAσ = (V↑, V↓)T , the real-space
hybridization is

Vjσ = V (1)
σ + V (2)

σ eiQ·Rj , V (1)
σ = 1

2 (Vσ − σ̃V ∗
−σ ),

V (2)
σ = 1

2 (Vσ + σ̃V ∗
−σ ), (19)

where σ̃ = sgn(σ ). The momentum-space Hamiltonian is

H = 1

Ns

∑
k

[
εkαc

†
kασ ckασ + εf kf

†
kαfkα

+ (
V (1)

σ c
†
kασ fkα + V (2)

σ c
†
k+Q,ασ fkα + H.c.

)]
+ N

JK

∑
σ

|Vσ |2 + zN

2JH

|χH |2 − N

2
λ + N

2
μnc, (20)

where the momentum sum is over the original Brillouin zone.
The calculation of the energy eigenvalues for the antiferro-
hastatic ansatzes proceeds by representing the correspond-
ing Hamiltonians in matrix form, with k ranging over the
appropriate reduced Brillouin zones. Since the ferrohastatic
ansatz contains six bands (four conduction, two f ), the 2SL
ansatz has twelve bands. In general, unless χH = λ = μ =
0, the antiferrohastatic Hamiltonians cannot be diagonalized
analytically, and we rely on numerical results. In general, we
solve the mean-field equations,

∂F

∂λ
= 0,

∂F

∂V
= 0,

∂F

∂χH

= 0,
∂F

∂μ
= 0, (21)

to find the mean-field parameters, λ, V, χH , and μ, for a
particular ansatz, where V is the overall magnitude of the
hybridization spinor; without loss of generality, we assume
VA = (V, 0), as we have SU(2) spin (channel) symmetry.
Note that if the f -electron hopping is zero, both of the four-
sublattice ansatzes reduce to this two-sublattice Hamiltonian.
Also note that since all the bands hybridize, there is a full
hybridization gap, and we find hastatic Kondo insulators when
nc = 1, 3 and the Fermi energy sits in the hybridization gap.
As the f -electron bands are doubled, these Kondo insulators
will always be trivial rather than topological insulators, as the
parity of doubled bands cannot change [5].

The band structure is invariant under SU(2) spin rotation
and gauge transformations of Vσ → Vσ eiφ . The eigenvectors,
however, are not invariant, which leads to the magnetic mo-
ments discussed in Sec. V.

The band structure for the 2SL ansatz with nonzero χH

is shown in Fig. 9, where the parameters are found self-
consistently for nc = 1.2 and JH /JK = 0.4, which is in a
region of the phase diagram where the 2SL ansatz has the
lowest energy. The key signature of time-reversal-symmetry
breaking in 2SL order is that all of the bands at the �

point are channel singlets. As we have twofold pseudospin
(α) degeneracy, each band is only twofold degenerate. The
splitting can be clearly seen in the lowest band; the highest
conduction band is also split, but as it is far from the Fermi
surface, the splitting is too small to resolve in the figure.

3. Type 1 four-sublattice hastatic order [4SL(1)]

The 4SL(1) staggered ansatz can be written in momentum
space as a hybridization between both states at k and at k ± Q,
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FIG. 9. Band structure along high-symmetry lines in the first
Brillouin zone for the 2D 2SL ansatz. Before hybridization, we
have a fourfold-degenerate conduction electron band (orange dashed
lines show bare conduction electron bands at k and k + Q), and
two doubly degenerate f -electron bands (green dotted lines show
the unhybridized f bands at k and k + Q). After hybridization, all
bands (blue) are hybridized and now doubly degenerate due to the α

pseudospin degeneracy; Kramers degeneracy is completely lost, even
at the � point. The parameters used were found self-consistently for
nc = 1.2, JK = 3t, JH /JK = 0.4, η = 1.

with Q = (π/2, π/2). The hybridization at site j is then

Vjσ = V (1)
σ e−iQ·Rj + V (2)

σ eiQ·Rj , (22)

where we define

V (1)
σ = 1

2 (Vσ − iσ̃V ∗
−σ ), V (2)

σ = 1
2 (Vσ + iσ̃V ∗

−σ ). (23)

The Hamiltonian in momentum space becomes

H = 1

Ns

∑
k

[
εkαc

†
kασ ckασ + εf kf

†
kαfkα

+ (
V (1)

σ c
†
k+Q,ασ fkα + V (2)

σ c
†
k−Q,ασ fkα + H.c.

)]
+ N

JK

∑
σ

|Vσ |2 + zN

2JH

|χH |2 − N

2
λ + N

2
μnc, (24)

where k ranges over the original unhybridized Brillouin zone.
This 4SL ansatz has 24 bands.

An example band structure for the 4SL(1) ansatz is shown
in Fig. 10. For simplicity, we use η = 1, which is always
doubly degenerate in α; the 4SL(1) ansatz does not appear
in the mean-field phase diagram for η = 1, although it does
for other values of η. We note a few important features.
Unlike the ferrohastatic case, all the conduction electron
bands hybridize at generic k points. Unlike the 2SL case,
the Kramers degeneracy is preserved at the � point, leaving
four fourfold-degenerate bands and four twofold-degenerate
bands. Away from the � point, the spin degeneracy is fully
broken, and there are 12 doubly degenerate bands, although
the splitting is difficult to resolve in the figure. Note that the
broken inversion symmetry is not immediately apparent in the
band structure, which is invariant under k → −k due to the
time-reversal symmetry. The lack of inversion symmetry is
responsible for the loss of spin-degenerate bands, as discussed
above. Furthermore, the band structure is invariant under
SU(2) spin rotations, although the eigenvectors do reflect

FIG. 10. Band structure along high-symmetry lines in the first
Brillouin zone for the 2D 4SL(1) ansatz. Before hybridization, we
have four fourfold-degenerate conduction electron bands (orange
dashed lines), and four doubly degenerate f -electron bands (green
dotted lines). After hybridization, all bands (blue lines) are hy-
bridized, and the Kramers degeneracy at the � point is preserved.
Plotted for V↑ = 1.5, V↓ = 0, λ = 0.3, χ = −0.3, μ = −1, η = 1.

the broken symmetry, ultimately leading to SU(2)-symmetry-
breaking staggered moments.

4. Type 2 four-sublattice hastatic order [4SL(2)]

The 4SL(2) ansatz can be written in momentum space
using hybridization between states at k and at k + Q1,2, where
Q1 = (π, 0) and Q2 = (0, π ). The hybridization on site j is

Vjσ = V (1)
σ e−iQ1·Rj + V (2)

σ e−iQ2·Rj , (25)

where we define

V (1)
σ ≡ 1

2 (Vσ + σ̃V ∗
−σ ), V (2)

σ ≡ 1
2 (Vσ − σ̃V ∗

−σ ). (26)

The Hamiltonian becomes

H = 1

Ns

∑
k

[
εkαc

†
kασ ckασ + εf kf

†
kαfkα

+(
V (1)

σ c
†
k+Q1,ασ fkα + V (2)

σ c
†
k+Q2,ασ fkα + H.c.

)]
+ N

JK

∑
σ

|Vσ |2 + zN

2JH

|χH |2 − N

2
λ + N

2
μnc, (27)

where k ranges over the original unhybridized Brillouin zone.
This 4SL ansatz also has 24 bands.

An example band structure for the 4SL(2) ansatz is shown
in Fig. 11, where the parameters are found self-consistently
for nc = 0.8 and JH /JK = 0.4, which is in a region of the
phase diagram where the 4SL(2) ansatz has the lowest energy.
Again, all conduction bands hybridize. Before hybridization,
at the � point there are two fourfold- and one eightfold-
degenerate conduction bands from k, k + Q1, k + Q2, and
k + Q1 + Q2, as well as two doubly degenerate and one
fourfold-degenerate f bands. After hybridization, the bands
originating from k and k + Q1 + Q2 remain fourfold degen-
erate, while the other two groups split into doublets, as Q1 and
Q2 are not invariant under the time-reversal-like symmetry,
P = Rπ/2θ . As before, the band structure is unchanged by
SU(2) spin rotations, with the eigenvectors reflecting the
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FIG. 11. Band structure along high-symmetry lines in the first
Brillouin zone for the 2D 4SL(2) ansatz. Before hybridization, we
have fourfold- and eightfold-degenerate conduction electron bands
(orange dashed lines), and twofold- and fourfold-degenerate f -
electron bands (green dotted lines). After hybridization, all the bands
(blue lines) are hybridized. At �, the highest and lowest bands that
originate from k and k + Q1 + Q2 are fourfold degenerate, while all
other bands are pseudospin doublets and spin singlets. Plotted for
the self-consistent solution with nc = 0.8, JK = 3t, JH /JK = 0.4,

η = 1.

broken symmetry and leading to SU(2)-symmetry-breaking
staggered moments.

C. Canted hastatic ansatz

In addition to the ferro- and antiferrohastatic phases, we
also consider a canted phase that combines features of both.
The hastatic spinor behaves like a tiny magnetic moment in
many ways, and so we expect it to cant in applied magnetic
field. As such, we consider a hastatic spinor with both uni-
form and staggered components that are perpendicular to one
another. This state both mimics a canted antiferromagnet and
preserves the translation symmetry for the magnitude of the
hybridization on each site, |Vj | = |V |. We take the uniform
component to be parallel to the external field, taken along ẑ,
and the staggered component along x̂. When the antiferro-
hastatic phases are placed in magnetic field, the canted phase
develops, although it is not present in zero field. We therefore
begin with any 4SL staggered phase and introduce a uniform
component δV as

VAσ =
(

V + δV

V

)
, VBσ =

(−V − δV

V

)
,

VCσ = −VAσ , VDσ = −VBσ . (28)

Here, V and δV are the staggered and uniform components,
respectively. When V → 0 with δV fixed, the uniform ansatz
is recovered, but with a staggered sign that may be removed
by a gauge transformation even in the presence of f hopping.
If we redefine V↑ ≡ V + δV, V↓ ≡ V , we can continue to use
the 4SL Hamiltonians, Eq. (24) or (27).

As the canted phase includes both uniform and stag-
gered hybridization, all conduction bands hybridize, albeit
unequally between the spin components, and the band struc-
ture qualitatively resembles the 4SL phase; an example canted
4SL(1) band structure is shown in Fig. 12.

FIG. 12. An example band structure for canted 4SL(1) hastatic
order with V↑ = 1.5, V↓ = 1, λ = 0.3, χ = −0.3, μ = −1.

D. Nonhastatic phases: Paraquadrupolar
and quadrupolar liquid

In addition to various hastatic ansatzes, we also con-
sider two different unhybridized states: the disordered high-
temperature “paraquadrupolar” state, and the quadrupolar liq-
uid phase favored by large JH . The paraquadrupolar state has
V = λ = χH = 0, and describes the Curie gas phase of the
quadrupoles. It cannot be the ground state in the absence of
field or strain due to its R ln 2 entropy per site. In field and
strain, the �3 doublet splits, and the paraquadrupolar phase
becomes partially or fully polarized, and can be the ground
state.

The quadrupolar liquid is a spin liquid phase of the local
moments (V = λ = 0, χH �= 0), totally decoupled from the
conduction electrons; as these are quadrupolar moments, we
call it a quadrupolar liquid. Our mean-field ansatz limits
us to neutral spinons hopping on the square lattice to form
a spinon Fermi surface. Of course, beyond the mean-field
limit, the quadrupole moments are much more likely to order
at low temperatures than to form a spin liquid state. Our
quadrupolar liquid phase captures the short-range quadrupolar
correlations at high temperatures, and acts as a proxy to
allow us to treat both f -electron hopping arising from beyond
mean-field effects and the competition between hastatic and
quadrupolar order. The quadrupolar liquid develops out of the
paraquadrupolar phase via a second-order phase transition at
TQL = JH

4 .

E. The Kondo temperature

Hastatic order develops out of the paraquadrupolar state
via a second-order phase transition at TK . This transition
temperature is independent of the nature of the hastatic order,
which can be seen straightforwardly by taking the action in
terms of fermions, cjσα and fjα , and Hubbard-Stratonovich
bosons, Vjσ , with the Hamiltonian given by Eq. (14), and
integrating out the fermions. Hastatic order develops when
the dispersion for the bosons becomes negative at some Q
value and the bosons condense. As the free bosons above
TK have no Q dependence, this dispersion can be found by
evaluating the boson self-energy, �V σ (iνn, Q), where we are
interested in ordering at high temperatures and so set iνn = 0.
As the vertex V c†f is of order unity, this calculation is in
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FIG. 13. Lowest-order Feynman diagram for calculating the
hastatic Kondo temperature for wave vector Q; this diagram is the
lowest-order hybridization self-energy. Solid (dashed) lines indicate
the bare c- and f -electron propagators, respectively. As the f -
electron propagator is k independent, the Q dependence of this
diagram can be removed.

principle extremely complicated. However, here we consider
χH = 0, such that the f electrons have no k dependence,
G−1

f 0 (iωn, k) = iωn. As the bosons also have no k dependence,
the lowest-order diagram shown in Fig. 13 can trivially have
its Q dependence removed by redefining k,

�V σ (0, Q) = T
∑
iωn

∑
k

Gc0,σ (iωn, k + Q)Gf 0(iωn). (29)

Any higher-order corrections can similarly have their Q de-
pendence removed. Interactions between the bosons are re-
quired to differentiate the types of hastatic order.

As the Kondo temperature is independent of Q, we can
explicitly calculate it from the ferrohastatic mean-field equa-
tions,

1

V

∂F

∂V

∣∣∣∣
V,λ,χ→0

= 0,
∂F

∂μ

∣∣∣∣
V,λ,χ→0

= 0, (30)

where the second equation fixes the conduction electron fill-
ing. The free energy is

F = −T
∑
ηα

∫
k

ln(1 + e−βωkαη ) + N

JK

(|V↑|2 + |V↓|2)

+ zN

2JH

|χH |2 − λN − N

2
μnc, (31)

where η labels the three energy branches in Eq. (17). As-
suming the conduction electron filling is fixed, the Kondo
temperature is thus determined by

∑
kα

tanh
(

εkα

2TK

)
εkα

= 2N

JK

. (32)

As can be seen in Fig. 14, TK is particle-hole symmetric and
vanishes smoothly for nc → 0, 4, where there are no conduc-
tion electrons, with a maximum at half filling. This scenario is
quite different from the development of itinerant magnetism,
where Fermi surface nesting enhances the ordering tempera-
ture at the ordering wave vector. Here, all hastatic orders have
the same transition temperature, and lower temperatures are
required to select one particular order. For larger JH , hastatic
order can emerge out of the quadrupolar liquid, where the
f -electron dispersion can lead to different TK (Q).

FIG. 14. Kondo temperature for hastatic order as a function of
conduction electron filling in 2D (blue) and 3D (red). TK is the same
for all hastatic orders. TK is normalized by the bandwidth of the bare
conduction electron bands for each case. Here, t = 1 and JK = 3.
Note that TK ∼ 0.05D, where D = 8t, 12t is the bandwidth for the
conduction electrons, which is significantly larger than in most rare-
earth materials, but leads to better numerical convergence.

V. MOMENTS, SUSCEPTIBILITIES, AND g FACTORS

As all hastatic orders break some symmetries, we expect
nonzero moments and symmetry-breaking susceptibilities.
While we can calculate these analytically for ferrohastatic
order, we cannot generically do so for the antiferrohastatic
cases. Therefore, we turn to numerical calculations. We can
calculate arbitrary moments and susceptibilities numerically
by introducing appropriate conjugate fields that couple only
to the moments of interest, and taking numerical derivatives
of the free energy. For instance, we calculate the staggered
conduction electron moment along ẑ with

H → H − Bz
cs

1

Ns

∑
kα

σ̃ c
†
kασ ck+Qασ + H.c.,

mz
cs = − ∂F

∂Bz
cs

∣∣∣∣
Bz

cs→0

. (33)

Such calculations were done for uniform and staggered fields
coupling to the magnetic and quadrupolar moments of the c

electrons and the quadrupolar moments of the f electrons.
Susceptibilities were calculated via second derivatives with
respect to the conjugate fields.

A. Multipolar moments

The ferrohastatic phase has a single nonzero moment:
the conduction electron moment parallel to the direction of
the hastatic spinor. This moment is plotted in Fig. 15 as a
function of temperature T and conduction electron filling nc.
As the order parameter is the hybridization spinor Vσ and the
moment m ∼ V 2

σ , the latter develops linearly in temperature.
It is particle-hole antisymmetric and vanishes at half filling,
as found previously [28]. The magnitude of these moments
is proportional to TK/D, where D is the conduction electron
bandwidth. This calculation was done self-consistently in the
ferrohastatic phase, where TK/D ∼ 0.05 and the maximum
moment is ∼0.2μB . Realistic Pr-based systems typically have
significantly smaller values of TK/D, and will have similarly
smaller hastatic moments.
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FIG. 15. Ferrohastatic order contains nonzero uniform conduc-
tion electron moments parallel to the hastatic spinor. Here, we show
the moment (a) as a function of temperature for nc = 1.5, JH /JK =
1/30; (b) as a function of conduction electron filling nc at low
temperature for JH /JK = 1/30. mc

U is linear in T around TK and
is particle-hole antisymmetric. Both figures assume two degenerate
conduction bands and are calculated self-consistently. Note that the
magnitude is proportional to TK/D, which we take to be quite large
here, and realistic systems will have moments several orders of
magnitude smaller. In our calculation, we fix JK = 3t .

In the four-sublattice antiferrohastatic phases, the only
nonzero moments are staggered conduction electron dipole
moments along the direction of the hastatic spinor, as ex-
pected. There are no nonzero quadrupolar moments of any
kind. The staggered moment, like the ferrohastatic moment,
develops linearly in temperature, and is particle-hole anti-
symmetric as shown in Fig. 16; again, the magnitude is
proportional to TK/D, with a maximum ∼0.4μB . None of
the moments or susceptibilities reflect the additional broken
symmetries of the four-sublattice phases, and there is no qual-
itative distinction between the 4SL(1) and 4SL(2) moments.

The two-sublattice phase requires more careful treatment,
as at first it appears to host both uniform and staggered mo-
ments. However, the uniform moments are gauge dependent,
in that they depend on the overall phase of Vσ . All other
quantities, including the staggered moments and the band
structure, are gauge independent. If Vσ ||ẑ, with the complex
phase φ, the uniform moments will be in the basal plane, with
φ dependence m⊥ ∝ (cos φ, sin φ). Any physical quantity
must be gauge independent, and indeed these moments vanish
once we average over the possible gauge choices. The gauge-

FIG. 16. Antiferrohastatic order has a nonzero staggered conduc-
tion electron moment, here shown (a) as a function of temperature
for nc = 1.5, JH /JK = 1/30; (b) as a function of conduction elec-
tron filling nc at low temperature for JH /JK = 1/30. Both figures
assume two degenerate conduction bands and are calculated self-
consistently. Note that the magnitude is proportional to TK/D, which
we take to be quite large here, and realistic systems will have
moments several orders of magnitude smaller. In our calculation, we
fix JK = 3t .

FIG. 17. Conduction electron magnetic susceptibility anisotropy
as a function of temperature for the ferrohastatic (solid red line)
and antiferrohastatic (dashed green line) orders. This figure is cal-
culated for nc = 1.5, JH /JK = 1/30 self-consistently, although the
antiferrohastatic state is only metastable here. We define the dimen-
sionless �χm

c ≡ (χzz
c − χxx

c )/(χxx
c + χzz

c ); both hastatic orders have
enhanced susceptibility along the direction of the hastatic spinor.

invariant staggered moments are qualitatively similar to the
4SL(1) and 4SL(2) staggered moments, and there is no way
to resolve between any of the antiferrohastatic phases based
on moments alone.

B. Susceptibility anisotropy

We are primarily interested in symmetry-breaking suscep-
tibilities that develop with the onset of hastatic order; these
include magnetic, strain, and magnetostrictive susceptibilities,
in principle. The susceptibilities are found by taking the
second derivative of F with respect to the appropriate combi-
nation of conjugate fields. The conduction electron magnetic
susceptibilities have a (gμB )2 constant of proportionality,
while the strain and magnetostrictive susceptibilities have
materials-dependent constants of proportionality. As we are
interested in the symmetry breaking rather than the absolute
magnitudes, we set these constants of proportionality to one.

The magnetic susceptibilities of ferrohastatic and antifer-
rohastatic phases behave similarly, with an enhancement of
the susceptibility χzz

c along the direction of the hastatic spinor
below TK , developing as (T − TK )2, as shown in Fig. 17.
Here, this symmetry breaking is simply a consequence of
the magnetic moments, and also occurs in a normal magnet.
The 2SL in-plane magnetic susceptibilities additionally have
a gauge-dependent contribution due to the gauge-dependent
moments; this contribution again vanishes after gauge
averaging.

We similarly calculate the strain and magnetostrictive sus-
ceptibilities, but find that these do not break any symmetries;
the strain susceptibility tensor has cubic symmetry, and the
magnetostrictive susceptibilities vanish uniformly. As there
is no spin-lattice coupling, this absence is not surprising,
but might change in a spin-orbit-coupled Anderson model
treatment. Both c and f electron strain susceptibilities behave
similarly.

C. Coupling to magnetic field: g factor

As the conduction electrons hybridize with nonmagnetic f

electrons, we might expect the g factor of the resulting heavy
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electrons to be much reduced from the high-temperature
g = 2; this reduced g factor would be a key indication that
the conduction electrons were hybridizing with a nonmagnetic
doublet [27]. The g factor in heavy-fermion materials can
be measured by looking at the Fermi surface magnetization
via de Haas–van Alphen (dHvA), where this magnetization is
a periodic function of the ratio of the Zeeman splitting and
cyclotron frequencies [80]. The Zeeman splitting, and thus
the g factor, can be very sensitively measured by looking
at the “spin zeros” where this magnetization passes through
zero. Measuring the g factor this way requires doubly de-
generate bands everywhere in the Brillouin zone in order to
define their splitting in magnetic field, and so we consider
only antiferrohastatic order with χH = 0, where all of our
bands are doubly degenerate. For any antiferrohastatic order
with nonzero f -electron hopping (χH �= 0), the bands are
no longer doubly degenerate, and the g factor is not well
defined. Instead of looking at the g factor, we can look at
how these bands move in magnetic field in order to see their
magnetic content; the bands shift primarily as B2, with a small
linear-in-B component proportional to TK/D. However, small
quadratic or constant-in-B splittings are unlikely to seriously
affect the measured spin zeros.

We calculate the g factor by introducing the cou-
pling −gμB

�B · ∑
kασ c

†
kασ (�σ/2)ckασ and examining how the

Kramers-degenerate hybridized bands split in field. For sim-
plicity, we take the hybridization VA to point along ẑ, and
define the magnetic field direction in terms of the angle
between the hybridization spinor and magnetic field, θ , and
the angle φ in the plane perpendicular to the hybridization
spinor. The hybridized bands (ωkησ ) split linearly, as �Ekη =
|ωkη↑ − ωkη↓| = gkη(θ, φ)B, with

gkη(θ, φ) =
∣∣∣∣d�Ekη

dB

∣∣∣∣
B→0

. (34)

We are interested in the Fermi surface average,

g(θ, φ) =
∑

kη gkη(θ, φ)δ(ωkη )∑
kη δ(ωkη )

. (35)

g(θ, φ) is independent of φ, but has a θ dependence that is
more pronounced for larger nc. The maximum g factor occurs
for fields aligned with the hybridization spinor, as seen in
Fig. 18. Note that we have fixed the hybridization spinor,
while in reality it will be weakly pinned and may well rotate
to follow the field, keeping this maximum value for all angles.
The overall magnitude of the g factor is suppressed from
g = 2 by approximately TK/D, although the details of the
anisotropy depend on the conduction electron filling nc.

VI. ZERO-TEMPERATURE PHASE DIAGRAM

To investigate the competition between ferro- and antifer-
rohastatic orders, and their competition or cooperation with
quadrupolar order, we examine the zero-temperature phase
diagram for three different models: the two-dimensional phase
diagram, both for perfectly degenerate conduction bands
and for nondegenerate, but symmetry-related, bands, and
the three-dimensional phase diagram for degenerate bands.
All three phase diagrams are qualitatively similar, with the

FIG. 18. Angle-dependent g factor calculated for doubly degen-
erate bands in the antiferrohastatic ansatz (JH /JK = 0, χ = 0), with
V ||ẑ. (a) A polar plot of the g factor for several nc within the
staggered phase. The overall magnitude of g(θ ) is proportional to
TK (nc )/D, while the anisotropy increases with increasing nc, up to
nc = 1. (b) A comparison of the g factor in two and three dimensions,
for nc = 0.8. The 3D g factor is similar, but slightly less anisotropic.

main difference being the relative stabilities of the different
antiferrohastatic phases. These phase diagrams were obtained
by finding saddle-point solutions for each ansatz, and taking
that with the lowest energy. Again, note that we neglect more
complicated hastatic orders, as well as superconductivity. The
phase diagrams are found in the (nc, JH /JK ) plane, where
nc ∈ (0, 4) is the conduction electron density. In each case,
we fix t = 1, JK = 3t , and vary JH . While this ratio JK/t

is much larger than in real materials, it gives us much better
numerical convergence than a smaller ratio; we have checked
that the structure of the phase diagrams is unchanged for more
realistic JK/t .

First, we discuss the 2D phase diagram for degenerate
bands, as shown in Fig. 19. As our conduction electron bands

FIG. 19. Low-temperature phase diagram for 2D in the
(nc, JH /JK ) plane, where the red region (U) indicates ferrohastatic
order, purple indicates 2SL staggered order, teal indicates 4SL(2)
staggered order, and blue represents the quadrupolar liquid (QL).
The solid (dashed) black lines indicate second (first) order transitions
between the phases.
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are particle-hole symmetric, so is our phase diagram. The
ferrohastatic phase is favored near half filling (nc = 2), where
it extends to JH /JK → ∞, and in very small pockets near
nc = 0, 4. Generically, for finite JH , the ferrohastatic phase
also has χH �= 0. The infinite extent of the ferrohastatic phase
at half filling is due to the perfect nesting of the conduc-
tion electron band structure. While the transition between
ferrohastatic order and the quadrupolar liquid is always first
order, we can see the expanded stability of the ferrohastatic
phase by following the line where d2F/dV 2|V =0 = 0. In the
quadrupolar liquid, V = 0, λ = 0, χH = 2JH/π2, and so,

∂2F

∂V 2

∣∣∣∣
V →0

= 2N

JK

−
∑
kα

tanh
( εf k

2T

) − tanh
(

εkα

2T

)
εf k − εkα

= 0. (36)

For μ = 0, the above integral is proportional to∫
k

1
| cos(kx )+cos(ky )| , which diverges logarithmically; therefore

for sufficiently small μ, V = 0 is not a stable minimum for
any JH . Note that the critical (JH/JK )c where d2F/dV 2|V =0

changes sign is not usually a second-order transition in
this case, as the quadrupolar liquid is already an excited
metastable state relative to ferrohastatic order by this
(JH/JK )c.

Away from half filling, the ferrohastatic region gives way
to a dome of antiferrohastatic order peaked around quarter
filling, again via a first-order phase transition. The 2SL phase
is stable for nc > 1, while the 4SL(2) phase is stable for
nc < 1, with χH �= 0 for all finite JH . Exactly at nc = 1, χH

vanishes smoothly and the two phases are equivalent. This
line is a second-order phase transition, and forms a Kondo
insulator in which the bands regain the full fourfold degener-
acy. Otherwise, these phases are generically metallic and lack
Kramers degeneracy.

A. Breaking conduction electron degeneracy

Next, we consider the effect of breaking the band degener-
acy. Recall that the two conduction electron bands are still
related by symmetry and are degenerate at the � point. In
Fig. 20, we present an example phase diagram for η = 1/3.
This phase diagram is qualitatively similar to the degenerate
case: it is particle-hole symmetric, with the ferrohastatic phase
favored at very low and half filling, and antiferrohastatic order
favored about the quarter-filling limit. Here, however, the band
structure is no longer perfectly nested at half filling, and so the
ferrohastatic phase extends up only to a finite (JH/JK )c, and
now peaks at quarter filling for both the ferro- and antiferro-
hastatic orders. The antiferrohastatic dome is more complex:
again the 2SL phase is stable for nc > 1, and the 4SL phases
are stable for nc < 1. However, about quarter filling there
is now a dome of χH = 0 staggered phase where the three
ansatzes are identical. Both 4SL(1) and 4SL(2) appear, with
the pocket of 4SL(1) closer to quarter filling. The ferrohastatic
pockets at low filling are also substantially larger.

In part, breaking the band degeneracy allows us to ex-
plore the effect of a different band structure; it clearly is
not detrimental to hastatic order, nor does it seriously affect
the competition between ferro- and antiferrohastatic order.
As η decreases from η = 1, the bands become more one-
dimensional, enhancing hastatic order, as shown in Fig. 21.

FIG. 20. Low-temperature phase diagram for 2D in the
(nc, JH /JK ) plane, for η = 1/3. The red region (U) indicates fer-
rohastatic order, purple indicates 2SL staggered order, teal indicates
4SL(2) staggered order, light green 4SL(1), and dark green (S) the
χH = 0 antiferrohastatic order, while blue represents the quadrupolar
liquid (QL). Dashed/solid black lines indicate first/second order
transitions, while the blue solid lines indicate Lifshitz transitions
within the antiferrohastatic order at the Kondo insulator lines for
nc = 1, 3.

Here, we plot the Kondo temperature as a function of nc for
several anisotropies, showing that as the anisotropy increases,
TK/D both increases in magnitude and flattens out more as nc

approaches half filling.
Broken band degeneracy implies that we generically have

two sets of doubly degenerate bare conduction bands in
addition to the doubly degenerate bare f bands. In ferro-
hastatic order, we now find two nondegenerate unhybridized
bands and four nondegenerate hybridized bands, as shown
in Fig. 22(a). Antiferrohastatic order shows few qualitative
changes; see Fig. 22(b). The signatures of hastatic order all
remain qualitatively the same, with only the relative stability
of the hastatic and quadrupolar liquid phases being modified
by the removal of the band degeneracy, likely due to the
enhanced density of states. For most of the paper, we consider

FIG. 21. Kondo temperature as a function of conduction filling
for different η. TK is renormalized by the bandwidth of bare conduc-
tion electron bands.
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FIG. 22. Band structures of hastatic order for nondegenerate
bands, with η = 1/3. (a) Band structure of ferrohastatic order (blue
lines) for nc = 2, JH /JK = 1. (b) Band structure of antiferrohastatic
order (blue lines) for nc = 1, JH /JK = 0.4, where the system is a
Kondo insulator and χH = 0. Here the orange dashed lines represent
free conduction electron bands and the green dashed lines are the free
f -electron bands. Parameters were obtained self-consistently, with
JK = 3t .

the simpler, completely degenerate case, and mention only the
key differences between the two cases.

B. Effect of dimensionality

We can also consider the effect of changing the dimen-
sionality from two to three dimensions. As we are strictly
in the mean-field limit, the difference here is not substan-
tial, since the fluctuations that typically destroy long-range
order in two dimensions are absent in our calculations. The
difference between 2D and 3D in our calculations is more
a difference of the details; the Van Hove singularity in the
conduction electron density of states is removed, as it is
in the nondegenerate band case, and the staggered unit cell
becomes significantly more complicated, as we now have to
consider the arrangements of ABCD in the ẑ direction as
well. In the following we consider 3D analogs of the 4SL(1)
and 4SL(2) phases. The inversion-symmetry-breaking 4SL(1)
ansatz is naturally generalized to a rhombohedral structure in
which planes of each sublattice are stacked along the [111]
direction of the underlying cubic crystal, with the wave vector
(π/2, π/2, π/2) [see Fig. 23(a)]. The 4SL(2) ansatz can be

FIG. 23. Illustrations of the crystal structures for the 3D
4SL ansatzes: (a) rhombohedral 4SL(1), with ordering vector
(π/2, π/2, π/2); (b) orthorhombic 4SL(2), with ordering vectors
(π, 0, 0), (0, π, 0), and (0, 0, π ).

generalized in a number of a different ways. Here we have
taken a 2D plane of ABCD sites arranged clockwise in square
plaquettes, and stacked it in the z direction with a second layer
having the plaquettes rotated by 90◦ [see Fig. 23(b)]. These
two types of layers are then repeated periodically along the z

direction; this pattern preserves inversion symmetry like the
2D 4SL(2) ansatz, but now requires eight sites per unit cell,
and thus has 48 total bands.

The phase diagram in the (nc, JH /JK ) plane is similar to
the 2D cases, with ferrohastatic order around half filling and
antiferrohastatic order moving away from this limit, as shown
in Fig. 24. We also find that both versions of the 4SL ansatz are
realized here, as in the band-nondegenerate 2D case. However,
the region with χH = 0 is confined to the nc = 1 line in the
3D phase diagram. From Fig. 14, one sees that the Kondo
temperature is suppressed for all conduction electron fillings
compared with 2D. In magnetic field, the g factor is still
independent of azimuthal angle but has smaller anisotropy
than in 2D (see Fig. 18).

VII. FINITE TEMPERATURE

In this section, we present representative finite-temperature
phase diagrams for the 2D model. We have seen that the
transition temperatures out of the paraquadrupolar state for all
hastatic phases are identical, with clear first-order transitions
between them at zero temperature. Here, we find that the
finite-temperature phase diagrams can be similarly complex,
with different types of hastatic order favored at different
temperatures. We pick four representative conduction electron
fillings: nc = 1, nc = 1.2, nc = 1.5, and nc = 2, which span
the ground states at small JH from the Kondo insulator
to 2SL antiferrohastatic to ferrohastatic order, and plot the
temperature-JH /JK phase diagrams in Fig. 25.
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FIG. 24. Low-temperature phase diagram for 3D in the
(nc, JH /JK ) plane, where the red region (U) indicates ferrohastatic
order, teal represents 4SL(2) antiferrohastatic order, light green
4SL(1) antiferrohastatic order, and blue the quadrupolar liquid (QL).
The dashed lines indicate first-order transitions, while the solid line
shows the second-order transition between the staggered ansatzes for
which χH = 0.

First we discuss the effect of increasing JH/JK on fer-
rohastatic order. For small JH/JK , the transition at TK into
hastatic order is generically second order, and independent
of JH /JK . The transition from paraquadrupolar order (PQ)
into the quadrupolar liquid (QL) occurs at TQ = JH /4. After
this line intersects TK , hastatic order develops out of the
quadrupolar liquid, typically still via a second-order transi-
tion that is initially enhanced by JH , but then suppressed.
Generically, we obtain reentrant phase transitions between
the ferrohastatic and quadrupole liquid phases, which we
believe to be an artifact of the mean-field theory. While slave
particle theories typically work quite well for capturing low-
temperature properties, they can fail at higher temperatures,

FIG. 25. Representative phase diagrams in the (JH /JK, T ) plane
for (a) nc = 2; (b) nc = 1.5; (c) nc = 1.2; (d) nc = 1. Solid (dashed)
lines represent second (first) order transitions. S indicates the antifer-
rohastatic phase with χH = 0.

particularly in capturing the nature of phase transitions [81].
In addition, we neglect superconductivity in this paper, but it is
well known that the single-channel Kondo-Heisenberg model
gives rise to a superconducting dome completely concealing
the phase transition between heavy Fermi liquid and mag-
netic order [59,82]. Here, the evolution of our ferrohastatic
phase should be identical to the one-channel model, and so
we expect a dome of quadrupolar resonating valence bond
superconductivity to conceal these phase transitions.

Increasing JH /JK clearly favors ferrohastatic order over
the antiferrohastatic orders. The first-order antiferrohastatic
transition temperature decreases monotonically, while the fer-
rohastatic temperature initially rises. This is true even when
ferrohastatic order is never the ground state for a particular
nc, as for nc = 1. Unsurprisingly, increasing JH increases
the transition temperature at which χH turns on inside the
antiferrohastatic phase, here the boundary between 2SL and
the χH = 0 antiferrohastatic phase for nc = 1.2. The antifer-
rohastatic case is also likely unstable to superconductivity.

VIII. CHANNEL SYMMETRY BREAKING:
EFFECT OF MAGNETIC FIELD

Magnetic field is a channel-symmetry-breaking field that,
in the isolated �3 limit, couples only to the conduction
electrons. In this artificial limit, �B only favors ferrohastatic
order, on account of its ferromagnetic moment, and disfavors
antiferrohastatic order. In this section, we consider the more
realistic case discussed in Sec. II B, where the f electrons
couple to B2, and all types of hastatic order are suppressed
for sufficiently large �B due to the suppression of the Kondo
effect. At intermediate fields, these two effects compete to
give ferrohastatic order a slight dome in field.

First, we discuss the effect of magnetic field on the com-
peting nonhastatic phases. As there is no coupling of the
moment direction to the lattice, we take �B||ẑ without loss of
generality. The f -electron dipole moments do couple more
weakly to fields along [110] or [111], which will cause some
quantitative but no qualitative differences. Magnetic field will
generically induce both c- and f -electron dipole moments. In
both the quadrupolar liquid and paraquadrupolar phases, the
conduction electron moment simply grows linearly in B, as
it would in a normal metal. The f -electron dipole moment
convolves two effects: the induced dipole content of the f -
electron doublet pseudospin, 〈Jz〉, and the polarization of the
pseudospin, 〈�α〉. In Fig. 26, we plot the conduction electron
moment and pseudospin polarization 〈αz〉 versus B. The f -
electron pseudospin moments are predominantly quadrupolar
at low fields, with a dipolar contribution growing linearly in
field, as shown in Fig. 2; these moments, 〈Jz〉, will continue
to evolve in field even after 〈αz〉 is fully polarized.

In the paraquadrupolar phase, 〈αz〉 follows a Brillouin
function, adjusted for the B2 nature of the coupling and
saturating to unity. Once the f electrons are polarized, this
phase is equivalent to ferroquadrupolar order, and will be a
polarized light Fermi liquid.

The quadrupolar liquid phase is suppressed by magnetic
field as the polarization of the local moments competes
with antiferroquadrupolar correlations, yielding the critical
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FIG. 26. Bare conduction electron moments (red) and f -electron
polarization 〈αz〉f (blue) for B||z in the (a) paraquadrupolar and (b)
quadrupolar liquid phases for nc = 1.2, JH /JK = 2/3 at low, but
nonzero, temperature; B is measured in units of t . In both phases,
the conduction electron moment grows linearly in B, while 〈αz〉f

increases as a modified Brillouin function in the paraquadrupolar
phase, and grows quadratically in the quadrupolar liquid phase
until the short-range quadrupolar correlations are destroyed and the
moments saturate. Note that we plot 〈αz〉f , which is predominantly a
quadrupolar moment for small fields, with a dipole moment growing
linearly in B.

temperature and critical field,

TQL = JH

4
sech2

(
3B2

2TQL�

)
, BQL = 1

3

√
2JH�

3
, (37)

where � is the splitting to �4, which we set equal to t

here. TQL is a second-order phase transition derived from
d2F/dχ2 = 0 without any solution beyond some finite BQL;
BQL therefore indicates a first-order phase transition. This
suppression is also shown by the gradually increasing 〈αz〉,
which grows much more slowly than in the paraquadrupolar
phase. Again, the f -electron pseudospin has both uniform
quadrupolar and dipolar components. Here, the staggered
pseudospin moments remain uniformly zero, although in true
antiferroquadrupolar order they would initially be large due to
the quadrupolar order, and gain dipolar components in field.

In this model, the hastatic spinor is not pinned to the lattice
at all, and so we assume that the ferrohastatic spinor immedi-
ately aligns with the external field, while the antiferrohastatic
spinor aligns in the perpendicular plane, so that it may cant
along the field direction. Even in more realistic Anderson
models, the pinning of the hastatic order remains extremely
weak.

To investigate how the hastatic phases respond to magnetic
field, we examine two representative phase diagrams in field
and temperature. For the first, we choose nc and JH/JK

such that in zero field, the quadrupolar liquid develops first,
followed by a transition to ferrohastatic order at a lower
temperature, as seen in Fig. 27(a). As magnetic field increases,
the quadrupolar liquid is suppressed and ferrohastatic order
is first enhanced and then suppressed, leading to a wedge of
quadrupolar liquid above ferrohastatic order, the ferrohastatic
order vanishing via a direct first-order transition to the polar-
ized paraquadrupolar order at larger fields. The uniform c- and
f -electron moments are shown in Fig. 27(b), where mc starts
at a finite value and grows gradually, while the f -electron
moment vanishes in zero field, but quickly surpasses mc.
Note that the polarization of the f level also induces small
quadrupolar moments.

FIG. 27. (a) Phase diagram in magnetic field for nc =
1.2, JH /JK = 2/3, with a wedge of quadrupolar liquid (QL) above
ferrohastatic order (U) at small fields, and a first-order transition to
a fully polarized light Fermi liquid (PQ) at higher fields. (b) The
dipole moments as a function of field at zero temperature, where mc

U

(red line) is the uniform conduction electron moment and m
f

U (blue
line) is the uniform f -electron moment. Note that the kink around
B = 0.1t is due to a nonuniversal Lifshitz transition of a hybridized
band.

In the second representative phase diagram, shown in
Fig. 28, we explore the competition between the ferrohastatic
and canted phases. We take quarter filling (nc = 1), where
the ground state is always antiferrohastatic, with a full Kondo
insulating gap, and no f -electron correlations (χH = 0), and
then take sufficiently large JH/JK such that the ferrohastatic
phase, which can coexist with short-range antiferroquadrupo-
lar correlations, is favored at higher temperatures. Magnetic
field will cause the antiferrohastatic moments to gradually
cant; if initially |V↑| = |V↓|, then V↓ vanishes at the first-order
transition to ferrohastatic order at large magnetic field. In
Fig. 28(b), both the staggered conduction and the uniform
conduction and f electron moments are shown in the canted
phase, with only the uniform moments appearing in the ferro-
hastatic phase, after the first-order transition. Both the uniform
f and c moments grow roughly linearly with field, while the
staggered c moment is slowly suppressed. There is never any
staggered f -electron moment.

Finally, we note that magnetic field breaks all of the sym-
metries broken in ferrohastatic order, and so in field, the fer-
rohastatic order actually develops as a crossover. Effectively,
the second-order transition is broadened in field; however,
as magnetic field couples to a tiny moment responsible for

FIG. 28. (a) Phase diagram in magnetic field for nc =
1, JH /JK = 1/3, which contains a low-temperature canted Kondo
insulator phase (C+I) uniformly suppressed in field, and a higher-
temperature region of ferrohastatic order (U) initially enhanced in
field before a first-order transition to a fully polarized light Fermi
liquid (PQ). (b) The magnetic moments at zero temperature, where
mc

S (orange line) is the staggered conduction electron moment,
and m

(c/f )
U (red/blue lines) are the uniform conduction/f -electron

moments.
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only ∼|V |2R ln 2 entropy, in contrast to the large entropy of
condensation, ∼R ln 2, the broadening will be significantly
less than for a purely ferromagnetic transition with the same
entropy.

IX. PSEUDOSPIN SYMMETRY BREAKING:
EFFECT OF STRAIN

Strain is the primary pseudospin-symmetry-breaking field
in the quadrupolar Kondo model, playing the role usually
played by magnetic field in the single-channel Kondo model.
Here we consider the strain components that couple linearly
to the quadrupolar moments of the �3 doublet: εzz, which
couples to αz for both conduction and f electrons, and εxx−yy ,
which couples to αx . These are related by cubic symmetry,
and so will behave identically. We neglect other strains, which
require more complicated couplings. Both conduction and
f electron quadrupolar moments couple to strain with sig-
nificantly different and materials-dependent constants. Typi-
cally, the conduction electron strain for d electrons is larger
than that for f electrons by one to two orders of magni-
tude [83,84]. In order to tease apart the two behaviors, we
consider the coupling to conduction and f electrons sepa-
rately, setting the coupling constant κ = 1 in each case, with
the understanding that real materials will interpolate between
the two.

A. Coupling to conduction electrons

First, we consider the coupling to conduction electrons,
where strain acts like a pseudomagnetic field and splits
the bands. For zero strain, the hastatic Kondo singlet is
an equal superposition of 〈c†1σ f1〉 and 〈c†2σ f2〉, forming a
quadrupolar particle-hole singlet that screens the f -electron
moments. Strain breaks this pseudospin symmetry, 〈c†1σ f1〉 �=
〈c†2σ f2〉, and reduces the screening. There is a region of
partial screening that persists until 〈c†2σ f2〉 = 0, after which
point the conduction electron sea is totally polarized, and
the Kondo effect is no longer relevant; this region is in-
dicated in Fig. 29 by hash marks, with the transition in-
dicating the development of the non-Kondo hybridization
of 〈c†1σ f1〉.

All hastatic orders are suppressed by conduction electron
strain, with ferrohastatic order suppressed more slowly. Ex-
ample phase diagrams in temperature and strain (ε) are shown
in Fig. 29, both with varying conduction electron density,
nc, and varying band anisotropy, η; the results are relatively
parameter independent. In our mean-field calculation, the f

level is always pinned to the Fermi level, and so at least one
(α) conduction band will always overlap the f level, even for
large strain. As these two bands have the same symmetry, they
can always hybridize, and so one of 〈c†ασ fα〉 with α = 1 or 2
will always be nonzero. This residual hybridization at large
strain is an artifact of the mean-field theory, as in the absence
of the Kondo effect, the f level will not be pinned near the
Fermi surface. Also note that, as we neglect the f -electron
strain coupling here, the paraquadrupolar and quadrupolar
liquid regions are unaffected.

FIG. 29. Four example phase diagrams in strain,
where strain couples only to the conduction electrons. (a)
nc = 1, JH /JK = 1/3, η = 1; (b) nc = 1.2, JH /JK = 2/3, η = 1;
(c) nc = 1, JH /JK = 1/3, η = 1/3; (d) nc = 1.2, JH /JK = 2/3,

η = 1/3. We see that both ferro- and antiferrohastatic order are
suppressed, with ferrohastatic order suppressed more slowly. The
dot-dashed line indicates the crossover to the fully polarized
conduction sea where the Kondo effect is absent.

B. Coupling to f electrons

Next we consider strain coupled only to the f electrons,
which again acts like the magnetic field in the single-channel
Kondo model and splits apart the f level. This splitting
suppresses hastatic order monotonically until the screening
is totally lost. The transition is generically first order, as the
paraquadrupolar phase is simultaneously enhanced by the f -
electron quadrupolar moment polarization. The quadrupolar
liquid is also suppressed, just as antiferroquadrupolar ordering
would be suppressed, with TQL = (JH/4)sech2[ε/(2TQL)].
Example phase diagrams are shown in Fig. 30. For per-
fectly degenerate conduction bands, both ferro- and antiferro-
hastatic orders are suppressed similarly, but for nondegenerate

FIG. 30. Four example phase diagrams in strain, where strain
couples only to the f electrons: (a) nc = 1, JH /JK = 1/3, η = 1;
(b) nc = 1.2, JH /JK = 2/3, η = 1; (c) nc = 1, JH /JK = 1/3, η =
1/3; (d) nc = 1.2, JH /JK = 2/3, η = 1/3. (a) shows that for degen-
erate conduction bands, ferro- and antiferrohastatic orders are sup-
pressed similarly; however, for nondegenerate conduction bands, an-
tiferrohastatic order is favored over ferrohastatic order, as seen in (c)
and (d).
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conduction bands, antiferrohastatic order is favored over fer-
rohastatic.

X. EFFECT OF FLUCTUATIONS

Our mean-field results are only valid in the large-N limit,
but in reality N = 2. The finite N introduces fluctuations
about the mean field similar to the one-channel Kondo fluc-
tuations. Here, we can think of the hastatic spinor has having
both an amplitude and a direction: the amplitude of the spinor
breaks no symmetries and behaves like the scalar hybridiza-
tion of the one-channel Kondo effect, while the direction of
the spinor breaks SU(2) and time-reversal symmetries; this
symmetry breaking introduces new features. In our mean-field
treatment, both develop simultaneously at a phase transition,
with the full S(TK ) = R ln 2 entropy at the transition. Fluc-
tuations will split these two features such that the amplitude
develops at a higher crossover temperature, T ∗, while the
symmetry-breaking phase transition occurs at a lower tem-
perature, TK . This behavior can be understood by thinking of
the hastatic spinor as a tiny magnetic moment in the excited
Kramers doublet. As the temperature decreases below T ∗,
the ground state quadrupole moment and its associated R ln 2
entropy is slowly quenched by Kondo screening. Simulta-
neously, the hastatic moment and its associated nV (T )R ln 2
entropy grow in amplitude, with the occupation of the excited
state nV (T ) ∝ |V |2. At TK , this small hastatic moment orders,
quenching its small entropy.

Aside from the split transition, the effects of 1/N cor-
rections are similar to the single-channel Kondo model. We
can show that Gaussian fluctuations give 1/N corrections
nearly identical to the single-channel Kondo case; in partic-
ular, ferrohastatic order is stable to 1/N corrections, and will
have identical Fermi liquid interactions, quadrupolar/charge
fluctuations, and collective modes as the single-channel case.
The two channels couple only at O(1/N2), and higher-order
corrections are also required to drive superconductivity, which
we do not consider here. In order to examine the Gaussian
fluctuations, we take the general free energy based on the
Hamiltonian,

H =
∑

k

εkαc
†
kασ ckασ +

∑
j

[Vjσ c
†
jασ fjα + V ∗

jσ f
†
jαcjασ ]

+
∑

j

[
λj

(
f

†
jαfjα − N

2

)
+

∑
σ

N |Vjσ |2
JK

+ N

2
μnc

]
,

(38)

where we neglect the Heisenberg term for simplicity. We
expand about the mean-field ansatz: λj → λ + δλj , Vj↑ →
V↑ + δVj↑, Vj↓ → δVj↓, V ∗

j↓ → δV ∗
j↓. Here, we use the U(1)

gauge symmetry,

Vj↑ → Vj↑eiχj (τ ), λj → λj + iχ̇j (τ ), (39)

to fix Vj↑ to be purely real at all orders; δλj now captures the
phase fluctuations [85]. Our fluctuating fields can be packaged
together as �j = (δλj , δVj↑, δVj↓, δV ∗

j↓). The first-order cor-
rections vanish, as our mean-field solution is a saddle point.
Upon Fourier transformation, the second-order corrections to

FIG. 31. All nonzero susceptibility diagrams for the Gaussian
fluctuations. (a) depicts the diagrams identical to those in the single-
channel Kondo effect, while (b) depicts the extra contributions from
the second channel. Solid (dashed) lines are the full conduction (f )
electron Green’s functions, while the half-solid-half-dashed lines are
the full cf Green’s functions. The N due to the sum over α has been
pulled out explicitly, such that �ab is O(1).

the free energy take the form

δF = −N

2

∑
q

�∗
qD

−1
q �q, (40)

where q = (q, iνn) and

−Dq =

⎛
⎜⎜⎜⎜⎝

�λλ �λV↑ 0 0

�V↑λ �V↑V↑ + 2
JK

0 0

0 0 �V ∗
↓ V↓ + 1

JK
0

0 0 0 �V↓V ∗
↓ + 1

JK

⎞
⎟⎟⎟⎟⎠.

(41)

Here, �ab are the bubble diagrams shown in Fig. 31, where
the N arising from

∑
α has been explicitly pulled out. The

dashed lines are the full f -electron Green’s functions, the
solid lines are the full conduction electron Green’s functions
(where Gc↓c↓ is the bare conduction electron Green’s function,
and Gc↑c↓ = 0), and the half-solid-half-dashed lines are the
full cf Green’s functions, Gc↑f . All other possible diagrams
are zero in this ansatz, as Gc↓f = 0. D(q ) is the propagator for
the fluctuations, and so the Gaussian fluctuations, 〈�a∗

q �b
q〉 =

−Dab(q ).
The propagator D has a block diagonal form, such that the

upper left block, D1, describing the fluctuations of λ and V↑,
is identical to the propagator for the single-channel Kondo
model. The block diagonal form means that the fluctuations
in λ, V↑ do not talk to the fluctuations in V↓ to O(1/N ), and
also that

det D = det D1 det

(
�V ∗

↓ V↓ + 1
JK

0

0 �V↓V ∗
↓ + 1

JK

)
> 0,

(42)

which implies that our mean-field solution remains a legiti-
mate saddle point. All of the typical physical consequences of
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fluctuations are dictated by D1 and thus remain the same as
the single-channel model to O(1/N ).

Beyond 1/N corrections, the two hybridization compo-
nents will couple and the corrections to hastatic order will
differ from those to the single-channel heavy Fermi liquid.
The key difference we expect is the splitting of the transition.
While the full problem cannot be tackled analytically, we can
compare to numerical solutions that find both ferrohastatic
and antiferrohastatic orders in both one and infinite dimen-
sions, as discussed in Sec. XII. Additionally, we expect fluctu-
ations to favor superconductivity, both composite pairing and
quadrupolar pairing via the RKKY interaction.

XI. EXPERIMENTAL SIGNATURES OF HASTATIC ORDER

Ultimately, hastatic order is a channel-symmetry-breaking
heavy Fermi liquid, and as such its key signatures fall into two
categories: heavy-fermion formation, including heavy masses
and hybridization gaps, and channel symmetry breaking, in-
cluding symmetry-breaking moments. In terms of the hastatic
spinor, we can associate these signatures with the develop-
ment of a nonzero amplitude and a symmetry-breaking direc-
tion, respectively. In our mean-field treatment, both of these
develop simultaneously at a phase transition, but fluctuations
will generically split these two features such that the non-
symmetry-breaking, heavy-fermion characteristics develop at
a higher crossover temperature, T ∗, with the symmetry-
breaking phase transition occurring at a lower temperature,
TK . Real systems will likely be somewhere in between.
TK/T ∗ is likely be suppressed by lower dimensionality and
frustration, as with any magnetic ordering.

The main point is that while heavy-fermion features are
a key signature of hastatic order, they may develop above
the phase transition. Symmetry-breaking signatures must, by
contrast, develop at the phase transition. For these, the key
difficulty is distinguishing hastatic order from the competing
quadrupolar order, especially as the associated zero-field mag-
netic moments of hastatic order are likely to be extremely
small in praseodymium-based systems, due to the small de-
grees of mixed valency; in-field measurements are then key to
distinguish these orders. As magnetic field destabilizes anti-
ferrohastatic order, such investigations will require relatively
low fields.

A. Ferrohastatic order

Ferrohastatic order is characterized by spin-polarized
bands, where one band has significantly heavier masses than
the other. These bands affect a number of experimental mea-
surements.

(1) Spin-polarized heavy effective masses. Spin up and
down bands will have significantly different effective masses,
m∗

↑ � m∗
↓. This splitting should be seen in quantum os-

cillations, although resolving the spin polarization of the
heavy/light bands would require a technique like spin-
resolved angle-resolved photoemission (ARPES) or spin-
resolved scanning tunneling microscopy (STM).

(2) Heavy Fermi liquid signatures. The heavy bands
strongly affect the thermodynamical properties, and ferro-
hastatic order should behave like a conventional heavy Fermi

FIG. 32. Optical conductivity of ferrohastatic order. This figure
is based on a simple Drude model for the unhybridized band,
combined with the optical conductivity for a simple heavy-fermion
band [86]. Inset: The integrated spectral weight n(ω) shows a kink
where n(ω) = ntot/2.

liquid, with enhanced Sommerfeld coefficient C/T , Pauli
susceptibility, and AT 2 coefficient in the resistivity, among
other signatures. There will be a jump in the Hall conductivity
across TK , as the Fermi surface volume jumps from nc to
nc + 1 [87,88], which could potentially be observed as TK is
suppressed in field.

(3) Half-hybridization gap. Half of the relevant high-
temperature bands develop a hybridization gap, leading to
additional structure in the optical conductivity. The optical
conductivity is the sum of a simple Drude model for the un-
hybridized band σ (ω + iδ) = ne2

m
1

�−iω
with a typical heavy-

fermion optical conductivity for the hybridized band [86],

σH (ω + iδ) = ne2

2m

1

−iω + �

[
1 + V 2

(ω + i�)(z+ − z−)

×
(

ln
z+ + ω

2

z+ − ω
2

− ln
z− + ω

2

z− − ω
2

)]
,

where z± = λ ±
√(ω

2

)2
+ V 2

ω

ω + i�
. (43)

We plot the real part, σ1(ω), in Fig. 32; there is a sum of
both light and heavy Drude peaks, plus an interband transition
from the heavy band. The integrated spectral weight, n(ω) =
2m
e2

∫ ω

0 dω′σ1(ω′), has structure at ntot/2.
(4) Magnetic moments in field. There are small conduction

electron moments, |mc| ∼ TK/D, in zero field; these are
weakly pinned, and so domains will align quickly and grow
in external field. f -electron dipole moments are generated
in field, and can become substantial. Ferrohastatic moments
should be contrasted with those present in ferroquadrupolar
order, where f -electron dipole moments are also induced in
field. Ferrohastatic moments are always parallel to the field
direction, while ferroquadrupolar moments induced in field
will have perpendicular components for some field direc-
tions [46,76]. While TK is a phase transition in zero field, it
will broaden out into a crossover in finite fields, as magnetic
field breaks the symmetries of ferrohastatic order. However,
as the field couples only to the small conduction electron
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moments, not the large hybridization, this broadening should
be smaller than for a comparable ferromagnet.

A number of Pr compounds with �3 doublets may develop
ferrohastatic order. PrTi2Al20 develops O0

2 ferroquadrupolar
order at ambient pressure, detected by induced dipole mo-
ments perpendicular to an applied field B||[111] [46,50].
Under pressure, TQ is suppressed, and hidden beneath a super-
conducting dome [50,89]. This pressure phase diagram is rem-
iniscent of the Doniach phase diagram for one-channel Kondo
materials [1], which leads us to expect that hastatic order will
be revealed at still higher pressures, as long as the pressure is
sufficiently hydrostatic to avoid splitting the �3 doublets.

In addition, several compounds, including PrV2Al20,
Pr(Ir,Rh)2Zn20, and PrPb3, contain new heavy Fermi liquid
regions in intermediate magnetic fields [51,52,55]. These
regions have enhanced Sommerfeld coefficients, C/T , and re-
sistivity AT 2 coefficients. This behavior is consistent with fer-
rohastatic order, as discussed above, and initially suggested in
Ref. [90]. Measurement of the in-field moments along differ-
ent field directions via neutron diffraction and NMR in these
intermediate phases could resolve whether these are hastatic
order or new multipolar phases. Spectroscopic measurements,
such as optical conductivity, ARPES, or STM, could provide
further evidence for hastatic order through the detection of
the half-hybridization gap and heavy-quasiparticle bands. Hall
conductivity measurements could detect changes in Fermi sur-
face volume as the f electrons hybridize with the conduction
bands and participate in the Fermi sea. Similarly, quantum
oscillations could see the spin splitting of effective masses,
as has already been seen in dHvA on PrPb3, whose high-field
phase shows a difference in effective mass for different spin
bands [91].

B. Antiferrohastatic order

Antiferrohastatic order is a fully hybridized phase, with
no net moments. In cubic systems, the conduction electrons
hybridize with nonmagnetic local moments, and so the hy-
bridized bands lose much of their sensitivity to magnetic field.
The key signatures are as follows:

(1) Full hybridization gap and heavy quasiparticles. As all
conduction electron bands hybridize, there will be a full hy-
bridization gap that could be measured in optical conductivity,
ARPES, or STM. Antiferrohastatic order should exhibit all the
usual thermodynamic signatures of heavy Fermi liquids.

(2) Band response to magnetic field. The heavy bands are
fairly insensitive to magnetic field, and will generically shift
linearly in B with a very small coefficient. If the f -electron
hopping is negligible, and the bands thus Kramers degenerate,
the g factor will be suppressed by a factor of TK/D. Unfortu-
nately, as antiferrohastatic order is quickly destroyed in field,
the quantum oscillations measurements that worked well for
URu2Si2 [80,92] will likely not work here; a measurement
like electron spin resonance (ESR) might be more successful,
although ESR can be difficult in heavy fermions [93].

(3) Phase evolution in magnetic field. Antiferrohastatic
order is destroyed by moderate magnetic fields, even as it
develops both uniform conduction and f electron moments
due to canting. These moments allow a clear distinction from
antiferroquadrupolar order, which develops both uniform and

staggered magnetic dipole moments in field. Antiferrohastatic
order develops no staggered f -electron dipolar moments.

Of the known Pr compounds with �3 doublets, the zero-
field phases of PrTi2Al20, PrPb3, and PrIr2Zn20 have been
positively identified as quadrupolar order via neutron diffrac-
tion [22,47,54] or NMR [46]. PrV2Al20 exhibits a double tran-
sition into two unknown phases, where no in-field moments
have been reported [26]. These have been proposed to be
quadrupolar and octupolar orders [33], but alternatively either
or both of the phases could be some form of hastatic order.
Similarly, no moments have yet been reported for PrRh2Zn20,
and it remains a potential candidate. Optical conductivity or
tunneling measurements of the hybridization gap could posi-
tively identify antiferrohastatic order. Differentiating between
different types of antiferrohastatic order, 2SL and 4SL, is
likely only possible by examining the splitting of different
bands at the � point with a measurement like quasiparticle
interference (QPI) in STM, although a more detailed micro-
scopic theory may make the additional symmetry breaking
manifest in other experimental quantities, like symmetry-
breaking hybridization gaps.

XII. CONNECTION TO PREVIOUS
THEORETICAL RESULTS

A. Hastatic order in URu2Si2

Hastatic order was initially introduced to explain the hid-
den order in the tetragonal compound URu2Si2 [27,94]. In this
section, we discuss the key differences between that model
and our current treatment.

The major physical difference is between cubic and tetrag-
onal non-Kramers doublets. The cubic (�3) non-Kramers dou-
blet is completely nonmagnetic, while the tetragonal (�5) one
is an Ising doublet: magnetic along ẑ and quadrupolar in the
plane. Thus in cubic systems, there are two independent SU(2)
symmetries: the �3 pseudospin, and the excited magnetic
doublet. In tetragonal symmetry, the symmetries protecting
the two doublets are not fully independent. The physical con-
sequences of hastatic order in cubic and tetragonal symmetries
are similar; the main distinction is that here our moments are
all parallel to the hastatic spinor and the susceptibility only
develops anisotropy along the hastatic spinor direction, while
in URu2Si2, there were moments perpendicular to the hastatic
spinor, and a symmetry-breaking magnetic susceptibility χxy .
These are a consequence of tetragonal symmetry, and the
entanglement of the excited and ground state pseudospin
symmetries.

There are several key differences in the theoretical treat-
ments as well. First, we consider a simplified Kondo-
Heisenberg model that ignores spin-orbit coupling and any
momentum dependence of the hybridization, as well as dis-
allowing nonintegral valence. This simplification means that
we miss some of the complicated band structure effects seen
in the URu2Si2 model, like symmetry-breaking hybridization
gaps. However, these features are restored in a more realistic
Anderson model treatment [95]. Second, we explicitly include
two (α) degenerate conduction bands, while the previous
model used a single conduction band that hybridized in two
distinct symmetries. Our Kondo model is nonsensical without
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two symmetry-related conduction bands, but an Anderson
model allowing for nonlocal hybridization could explore
the difference between symmetry-related and non-symmetry-
related bands.

Finally, hastatic order in URu2Si2 strictly considered an-
tiferrohastatic order with the hastatic spinor restricted to the
basal plane, and with f -electron hopping that in principle
breaks time-reversal symmetry. However, time-reversal sym-
metry can be restored, via a gauge transformation that absorbs
the spinor into the f -electron definition. In cubic symmetry,
no such generic gauge transformation exists, and the cubic
case is more similar to the tetragonal case with the hastatic
spinor along the ẑ direction.

B. Other results on channel-symmetry-breaking
heavy Fermi liquids

As our results hold strictly only in the large-N limit, it
is important to compare to other methods to see whether
or not hastatic order is a competitive ground state of the
two-channel N = 2 Kondo lattice model away from strong
coupling. Several studies, both in one and infinite dimensions,
do show channel symmetry breaking for some parts of the
phase space.

The one-dimensional two-channel Kondo lattice model
was treated with density matrix renormalization group meth-
ods, and algebraic antiferrohastatic order was found at quarter
filling for sufficiently strong JK/t [62,96]. Hastatic order was
not detected at other fillings, as JK/t was too weak, but further
studies would be valuable.

The infinite-dimensional two-channel Kondo lattice model
was studied with dynamical mean-field theory (DMFT) early
on by Cox, Jarrell, and collaborators, where they found non-
Fermi-liquid behavior at high temperatures [14,15], and both
odd-frequency superconducting and antiferromagnetic ground
states at low temperatures [16,97]; however, channel symme-
try breaking was not examined in these early studies. Re-
cently, Hoshino and collaborators have studied this problem
extensively in the infinite-dimensional limit using continuous-
time quantum Monte Carlo (CTQMC) and DMFT to treat
the hypercubic two-channel Kondo lattice [28,70,98,99]. They
found odd-frequency composite pair superconductivity over
much of the phase diagram, but also antiferromagnetism, and
both uniform and staggered channel orders, which they term
diagonal composite order [28]. The uniform diagonal com-
posite (ferrohastatic) order was found to be stable near half
filling and also characterized by a particle-hole antisymmetric
conduction electron magnetic moment; however it was hidden
by more stable antiferroquadrupolar order for the chosen pa-
rameters. A staggered diagonal composite (antiferrohastatic)
order was found to be stable near quarter filling [100]. These
infinite-dimensional results are consistent with our two- and
three-dimensional phase diagrams, and are promising for the
relevance of these types of novel Kondo orders in more
realistic models.

XIII. NON-KRAMERS DONIACH PHASE DIAGRAM

While our fermionic mean-field approach only partially
captures the competition between hastatic and quadrupolar

FIG. 33. Different possible manifestations of the non-Kramers
Doniach phase diagram. Here, g is a non-symmetry-breaking param-
eter, like pressure, that suppresses quadrupolar order (QO), shown
in red, and favors hastatic order (HO), shown in blue. Both of these
are symmetry-breaking phases. There are four distinct possibilities
for the transition between the two: (a) The two second-order phase
transitions can meet precisely at T = 0, either requiring extreme
fine-tuning or exhibiting some sort of deconfined criticality [101].
(b) The two end points can be separated in parameter space by a
region of non-Fermi-liquid behavior (shown in green). (c) The two
phases meet at a first-order phase transition, with no coexistence, or
(d) the two phases can coexist, giving rise to “small” and “large”
Fermi surface quadrupolar order [102,103].

orders, we can speculate about the generic non-Kramers
Doniach phase diagram. If quadrupolar order is the ground
state at ambient conditions, we can suppress it via some
non-symmetry-breaking parameter, g, like pressure. Note that
pressure does not break the channel symmetry, and will
enhance both channels identically. There are four distinct
ways to destroy the quadrupolar order, shown in Fig. 33. As
hastatic order always breaks symmetries, both quadrupolar
and hastatic lines are phase transitions, and no non-symmetry-
breaking Fermi liquids are allowed at T = 0; in other words,
the R ln 2 entropy of the local moments must be quenched
somehow, and this process must break some symmetries.

The conventional (single-channel) Doniach phase diagram
contains two main scenarios for antiferromagnetic quantum
criticality: conventional bosonic quantum criticality, where
the magnetic order is suppressed independently of the Kondo
physics [104–106], and the Kondo breakdown scenario, where
the Néel temperature and Kondo temperature go to zero at
the same quantum critical point (QCP) [87,107]. For non-
Kramers materials, the conventional bosonic criticality sce-
nario is no longer allowed, while the Kondo breakdown sce-
nario becomes similar to deconfined criticality [101], with two
second-order phase transitions driven to zero at the same point
[Fig. 33(a)]. The hastatic and quadrupolar order quantum
critical points can potentially be separated, but only by a
non-Fermi-liquid region, as in Fig. 33(b). Alternatively, the
two transitions can overlap, either leading to a first-order
phase transition between the two [Fig. 33(c)] or to coexistence
[Fig. 33(d)]. The phase diagram with coexistence contains two
types of quadrupolar order: one without hybridization, and
therefore containing a “small” Fermi surface, and one with
hybridization, and thus a “large” Fermi surface; this phase
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must break additional symmetries. In analogy with the small
and large Fermi surface antiferromagnetic phases discussed
for the single-channel case [102,103], we can call these QOS

and QOL. This scenario provides an alternative explanation
for the two phase transitions seen in PrV2Al20 [26].

XIV. CONCLUSIONS

In conclusion, we used an SU(N ) mean-field treatment
of the two-channel Kondo-Heisenberg model to explore the
properties and stability of hastatic order in cubic systems. We
studied both ferro- and antiferrohastatic orders, and showed
that antiferrohastatic orders with f -electron hopping neces-
sarily break additional symmetries. All hastatic phases have
distinct signatures including hybridization gaps, heavy Fermi
liquid behavior, and tiny conduction electron magnetic mo-
ments; the band structure proves particularly useful in distin-
guishing different antiferrohastatic orders.

We obtained the mean-field phase diagram in a few repre-
sentative cases, and found all of the above phases to be stabi-
lized in some region. We also explored the relative stability

of these phases in temperature, and both channel and spin
symmetry breaking fields. In particular, magnetic field favors
ferrohastatic order, which can explain the intermediate-field
heavy Fermi liquid regions seen in PrV2Al20, Pr(Ir,Rh)2Zn20,
and PrPb3 [95].

As the model considered here is particularly simple, fu-
ture work should incorporate the effect of strong spin-orbit
coupling on the hybridization, as has been done for the
ferrohastatic case in Ref. [95], as well as more complicated
hastatic spinor arrangements. We have additionally neglected
any competition or cooperation with superconductivity, which
is well known to be a competing ground state on the two-
channel Kondo lattice [16,68,70,108].
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