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Emergent D6 symmetry in fully relaxed magic-angle twisted bilayer graphene
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We present a tight-binding calculation of a twisted bilayer graphene at magic angle θ ∼ 1.08◦, allowing for
full, in- and out-of-plane, relaxation of the atomic positions. The resulting band structure displays, as usual, four
narrow minibands around the neutrality point, well separated from all other bands after the lattice relaxation.
A thorough analysis of the miniband Bloch functions reveals an emergent D6 symmetry, despite the lack of
any manifest point-group symmetry in the relaxed lattice. The Bloch functions at the � point are degenerate in
pairs, reflecting the so-called valley degeneracy. Moreover, each of them is invariant under C3z, i.e., transforming
like a one-dimensional, in-plane symmetric irreducible representation of an “emergent” D6 group. Out of plane,
the lower doublet is even under C2x , while the upper doublet is odd, which implies that at least eight Wannier
orbitals, two s-like and two pz-like ones for each of the supercell sublattices AB and BA, are necessary but
probably not sufficient to describe the four minibands. This unexpected one-electron complexity is likely to play
an important role in the still unexplained metal-insulator-superconductor phenomenology of this system.

DOI: 10.1103/PhysRevB.98.235137

I. INTRODUCTION

The discovery of the insulating behavior in small-angle
twisted bilayer graphene (tBLG) [1,2] and the appearance of
superconducting domes upon slight hole or electron doping
of those insulating phases [2,3] have stimulated an intense
theoretical effort to understand this phenomenon. At small
“magic” angles θ ≈ 1.1◦, the electronic structure of tBLG
is characterized by four extremely narrow bands, with a
bandwidth of ≈10 meV, which lie around the charge neutrality
point in the reduced Brillouin zone of the emergent moiré
superlattice [4]. Specifically, at charge neutrality these bands
are half filled, and thus, one would expect an insulating
behavior upon adding either four holes or four electrons per
moiré unit cell, as indeed observed experimentally. In reality,
tight-binding calculations [5–7], as well as more reliable
electronic structure approaches based on density functional
theory [8–10], show that when the graphene layers are kept
rigid the minibands around the magic angles are not always
separated from other bands at the � point, in contrast to
experiments. However, once the tBLG lattice is allowed to
relax [11,12], even the simple tight-binding scheme shows a
relatively large gap opening, which separates the flat mini-
bands from all others. Experimentally, there is additional
evidence [2] of an insulating behavior also when one or
three holes/electrons are injected with respect to neutrality.
Because of that and of the very nondispersive character of
the minibands, it is tempting to invoke an important role of
strong electronic correlations [1]. The common approach for
dealing with strong correlations is to add electron-electron
repulsion on top of a tight-binding lattice model. However,
the large number of atoms contained in the unit cell (up to

≈11 000 at θ ≈ 1.1) makes it challenging, if not impossible,
to carry out a straight many-body calculation even in the
already simplified lattice model. A further approximation may
consist of focusing just on the four minibands, an approach
which requires first identifying their corresponding Wannier
functions. Surprisingly, even such a preliminary step turns
out to be rather difficult and, to some extent, controversial
[10,13–17]. The scope of the present work is to shed light on
this debated issue.

II. PRELIMINARY DEFINITIONS AND RESULTS

In Fig. 1(a) we show two graphene layers rotated with
respect to each other by a small angle. Due to the small mis-
alignment between the graphene layers, a moiré pattern forms
where regions characterized by local realizations of different
stacking modes appear periodically within the bilayer. Bernal-
stacked regions (AB or BA) form a honeycomb lattice (black
circles in Fig. 1), while AA-stacked regions in the hexagon
centers form a triangular lattice (black triangles in Fig. 1).
If the twisted bilayer is obtained from AA stacking upon
rotation around the center of two overlapping basic graphene
hexagons, the point-group symmetry of the superlattice is D6,
which reduces to D3 if, as we shall assume in the following,
the rotation center is around a vertical C-C bond [13,16].
However, irrespective of the actual structural symmetry group,
there is wide consensus [10,13,14,16] that a proper description
of the band structure can be obtained by just assuming that
the Wannier orbitals of the minibands are centered on the
AB and BA sites of the honeycomb moiré superlattice, even
though their actual weight is mostly localized on the AA
regions. For this reason we parametrize the Wannier orbitals
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FIG. 1. (a) Two graphene sheets rotated by a small angle (shown
here for θ ≈ 3.89◦, while remaining calculations will be for θ =
1.08◦) with respect to each other. The emerging moiré pattern is
highlighted by a gray shaded line, and the predominant characters
of the stacking between the two layers, AA and AB (or BA), are
indicated by black triangles and circles, respectively. The triangular
superlattice vectors L1 and L2 connect different AA zones. (b) Mini
Brillouin zone of tBLG. The high-symmetry points �, K1, K2, M are
shown together with the reciprocal lattice vectors G1 and G2.

�AB (r − rAB ) and �BA(r − rBA) centered around the AB
and BA sites with coordinates rAB and rBA, respectively,
through the functions ψAB

i (r − Ri ) and ψBA
i (r − R′

i ), i =
1, 2, 3, centered instead around the neighboring AA sites with
coordinates Ri and R′

i that are actually lattice sites of the
triangular supercell (see Fig. 2).

In particular we shall assume that ψAB
1 and ψBA

3 are
centered at the origin, taken to coincide with AA cen-
ter R1 = R′

3 = 0, so that R2 = −L1, R′
2 = L2, R3 = R′

1 =
L1 − L2, rAB = (L1 − 2L2)/3, and rBA = (2L1 − L2)/3,
where L1 and L2 are the lattice vectors shown in Fig. 1(a).

It follows that the most general Bloch function �k(r) can
be written as

�k(r) = 1√
V

∑
R

[uk e−ik·(R+rAB ) �AB (r − rAB − R)

+ vk e−ik·(R+rBA ) �BA(r − rBA − R)]

= 1√
V

∑
R

e−ik·R[
uk ψAB

k (r − R) + vk ψBA
k (r − R)

]

≡ 1√
V

∑
R

e−ik·R φk(r − R), (1)

FIG. 2. Pictorial view of the Wannier functions �AB (r − rAB )
and �BA(r − rBA) centered at AB and BA sites, respectively. The tri-
angles represent wave function components centered around the AA
regions, while the combination of the three triangles defines the
Wannier orbital, centered instead around AB (left) or BA (right).

where |uk|2 + |vk|2 = 1, V is the area, and

ψAB
k (r) = ψAB

1 (r) e−ik·(L1−2L2 )/3 + ψAB
2 (r) e−ik·(L1+L2 )/3

+ψAB
3 (r) e−ik·(−2L1+L2 )/3 , (2)

ψBA
k (r) = ψBA

1 (r) e−ik·(−L1+2L2 )/3 + ψBA
2 (r) e−ik·(−L1−L2 )/3

+ψBA
3 (r) e−ik·(2L1−L2 )/3 . (3)

We note that, even though φk(r − R) might be confused with
the Wannier function centered in the triangular site R, it is
not because of the explicit dependence upon momentum k.
In particular, under a symmetry transformation G, such that
r → rG and k → kG,

G(�k(r)) = 1√
V

∑
R

e−ikG·R φk(rG − R), (4)

the outcome simplifies only at the high-symmetry k points,
i.e., when kG ≡ k apart from a reciprocal lattice vector, in
which case

G(�k(r)) = �k(rG) . (5)

In Fig. 1(b) we show the first Brillouin zone, the reciprocal
lattice vectors G1 and G2, and the high-symmetry k points
�, K1 = (G1 + 2G2)/3, K2 = −K1, and M = (G1 + G2)/2.
The symmetry group G = D6 is generated by C3z, C2z, and
C2x , while G = D3 only by C3z and C2y = C2zC2x . The little
group L at � coincides with the full G, thus either D6 or D3,
while, at K1 or K2, L is generated only by C3z for both G =
D6 and G = D3. It follows that the symmetry properties of the
Bloch wave functions at � can discriminate between G = D6

and G = D3, as we shall indeed show.
Going back to the definitions (2) and (3), we find for the

high-symmetry points shown in Fig. 1(b)

ψAB
� (r) = ψAB

1 (r) + ψAB
2 (r) + ψAB

3 (r),

ψBA
� (r) = ψBA

1 (r) + ψBA
2 (r) + ψBA

3 (r) (6)

at �, while at K1,

ψAB
K1

(r) = ω
[
ψAB

1 (r) + ω ψAB
2 (r) + ω∗ ψAB

3 (r)
]
,

ψBA
K1

(r) = ω∗ [
ψBA

1 (r) + ω∗ ψBA
2 (r) + ω ψBA

3 (r)
]
, (7)

and finally at K2,

ψAB
K2

(r) = ω∗ [
ψAB

1 (r) + ω∗ ψAB
2 (r) + ω ψAB

3 (r)
]
,

ψBA
K2

(r) = ω
[
ψBA

1 (r) + ω ψBA
2 (r) + ω∗ ψBA

3 (r)
]
, (8)

where ω = ei2π/3.
For later convenience, we recall how the different sym-

metry operations act in tBLG. We write the coordinate of a
carbon atom as r = (x, y, z) ≡ (r||, z), where z = −1 indi-
cates the bottom layer (layer 1), while z = +1 indicates the
upper one (layer 2). The planar coordinate r|| may belong to
sublattice A or B of each graphene layer, as well as to the AB
or BA sublattice regions of the superlattice. It follows that C3z

changes neither z nor the sublattice index, both of the original
lattice (A or B) and of the superlattice (AB or BA). On the
contrary, under C2z, z ↔ z, A ↔ B, and AB ↔ BA. Finally,
under C2x , z ↔ −z, A ↔ B, while AB and BA are invariant.
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III. LATTICE RELAXATION AND TIGHT-BINDING
CALCULATION OF THE tBLG BAND STRUCTURE

A. Model and simulation protocol

The above symmetry analysis strictly holds only for an
idealized tBLG obtained by a rigid rotation of the layers with-
out atomic relaxation. However, there is strong evidence of a
substantial lattice relaxation, especially at small twist angles
[18,19], which needs to be accounted for to get physically
reliable results.

We thus performed lattice relaxations via classical molec-
ular dynamics simulations using state-of-the-art force fields.
We select a few angles in the range of θ ≈ 1◦–1.5◦, in which
perfectly periodic (commensurate) structures can be built

[20]. We consider an aligned bilayer (θ = 0◦) in the AA stack-
ing configuration and rotate the upper layer around a carbon
atom, which corresponds to a type-II structure [16] with only
D3 symmetry. The carbon-carbon intralayer interactions are
modeled via the second-generation reactive empirical bond-
order (REBO) potential [21]. The interlayer interactions are
instead modeled via the Kolmogorov-Crespi (KC) potential
[22], using the recent parametrization of Ref. [23]. The start-
ing intralayer carbon-carbon distance is set equal to a0 =
1.3978 Å, corresponding to the equilibrium bond length of
the adopted REBO potential, giving a lattice parameter of
a ≈ 2.42 Å. Geometric optimizations are performed using
the fast inertial relaxation engine (FIRE) algorithm [24]. The
atomic positions are relaxed toward equilibrium until total

FIG. 3. (a) The supercell of a tBLG at θ ≈ 1.08◦ used in simulations, obtained upon rotating a bilayer initially in the AA stacking
configuration around a vertical C-C bond (D3 structure). Arrows show the primitive lattice vectors, of length LM , of the triangular moiré
superstructure. Green, gray, red, and blue circles mark the regions of AA, SP, AB, and BA stacking, respectively. (b) Local structure before and
after relaxation around the center of the AA, SP, and AB regions. (c) Displacement field showing the in-plane deformations of the upper layer.
The displacement vectors {ui} go from the equilibrium position of the carbon atoms in the nonrelaxed configuration to the corresponding
position in the fully relaxed structure. Only a few vectors are shown for clarity, magnified by a factor of 10. (d) Colored map showing the local
interlayer distance. The colored circles reported in (c) and (d) correspond to the samples in (b).
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TABLE I. The equilibrium interlayer distance and the corre-
sponding total energy of aligned (θ = 0◦) graphene bilayers in
various stacking modes, specified in the first column. Energies are
measured relative to that of the optimal AB stacking. Results were
obtained by initially shifting the relative (x, y ) centers of mass of
the two layers and then relaxing. For the case of AB stacking, a
full relaxation of the bilayer was performed. For the case of AA or
SP stacking, only the z coordinate of all atoms was relaxed, while
the in-plane (x, y) coordinates were held fixed. This prevented the
bilayer from falling into the AB global minimum, thus preserving
the initial stacking.

Interlayer distance (Å) �ε (meV/atom)

AB 3.39 0
SP 3.42 0.74
AA 3.61 4.70

force acting on each atom, Fi = | − ∇ri
(V KC

inter + V REBO
intra )|,

becomes less than 10−6 eV/atom. It is important to stress that
during the relaxation the system is not constrained to preserve
any particular symmetry.

B. Results: Optimized geometry of magic angle tBLG

Figure 3(a) shows the supercell of tBLG at θ ≈ 1.08◦,
before relaxation, corresponding to a triangular superlattice
of period [7] LM = |L1| = |L2| = a

2 sin(θ/2) ≈ 13 nm and, as
mentioned before, D3 symmetry. Examining different di-
rections, areas of energetically least favorable AA stacking
(see Table I) gradually turn into energetically more favorable
saddle point (SP) regions or most favorable AB and BA
stacking regions. As previously reported [11,18,19,25–28],
after full relaxation the AA regions shrink, while the area
of the Bernal-stacked regions expands [see Fig. 3(b)]. This
is achieved via small in-plane deformations characterized by
a displacement field that rotates around the center of the AA
domains [see Fig. 3(c)] counterclockwise and clockwise in the
upper and lower layers, respectively. We note that such distor-
tions lead to negligible local lattice compressions/expansions,
corresponding to variations <0.03% of the stiff carbon-carbon
bond length relative to the equilibrium value. On the other
hand, the large difference between the equilibrium interlayer
distances of the AA and AB stacking (see Table I) leads to sig-
nificant out-of-plane buckling deformations, genuine “corru-
gations” of the graphene layers, that form protruding bubbles
in correspondence of the AA regions. This is clearly shown in
Fig. 3(d), where the color map of the local interlayer distance
shows an overall increase of ∼0.2 Å from Bernal AB (blue
circle) to the AA region (green circle). We end by emphasiz-
ing that the relaxed structure does not exhibit any manifest
point-group symmetry, despite its initial D3 symmetry before
relaxation. Naïvely, one should then conclude that all the
symmetry analysis in the previous section is unjustified and
meaningless. We shall show below that this is not the case.

C. Tight-binding electronic structure calculations

While the above discussion focused on a specific supercell
at θ ≈ 1.08◦, qualitatively similar results were obtained for
other angles, too. We emphasize that out-of-plane deforma-
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FIG. 4. Band structure at twist angle 1.08◦ of the relaxed tBLG.
(a) A close-up of the band structure showing only the four minibands,
where labels indicate their degeneracy at the high-symmetry points.
(b) The full band structure. The two circles indicate the s (bottom)
and pz (top) doublets used to construct the Wannier orbitals. (c) Level
spectrum and degeneracy at the � point. The labels s and pz refer to
the symmetry under C2x (see the text).

tions, significant at small magic angles, have important effects
on the electronic structure of the system. Indeed, as can be
seen from Fig. 4(b), where the tight-binding band structure
is calculated for the fully relaxed structure, the flat bands
are now well separated from the rest by an ≈45–50 meV
gap, consistent with experiment [1–3], and larger than the gap
obtained allowing only in-plane displacements [11].

Tight-binding calculation details are standard. Denoting
the position within the unit cell of atom i as ri , we can write
the tight-binding Hamiltonian as

Ĥ =
∑
i,j

[t (ri − rj ) | i〉〈j | + H.c.], (9)

where t (ri − rj ) is the hopping amplitude which is computed
using the Slater-Koster formalism [29]:

t (d) = Vppσ (d )

[
d · ez

d

]2

+ Vppπ (d )

[
1 −

(
d · ez

d

)2]
, (10)

where d = ri − rj , d = |d|, and ez is the unit vector in the
direction perpendicular to the graphene planes. The out-of-
plane (σ ) and in-plane (π ) transfer integrals are

Vppσ (x) = V 0
ppσ e

− x−d0
r0 , Vppπ (x) = V 0

ppπe
− x−a0

r0 , (11)

where V 0
ppσ = 0.48 eV and V 0

ppπ = −2.7 eV are values cho-
sen to reproduce ab initio dispersion curves in AA- and
AB-stacked bilayer graphene, d0 = 3.344 Å is the starting
interlayer distance, a0 = 1.3978 Å is the intralayer carbon-
carbon distance, as previously defined, and r0 = 0.184a is
the decay length, in units of the lattice parameter [8,11].
Although the hopping amplitude decreases exponentially with
distance, we found that upon setting even a fairly large cutoff
rc, important features of the band structure are spoiled. An
example is the degeneracy at the K1(2) points, which we find to
be fourfold, up to our numerical accuracy, keeping all hopping
amplitudes that are nonzero within machine precision, while
it is fully lifted using a cutoff as large as rc ≈ 4a0.
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FIG. 5. Layer (1 and 2) and sublattice (A and B) components
of one state within the lowest-energy doublet at � in the flat bands.
The color of each point indicates its complex phase, while its size
is a measure of its square modulus. Each unit cell (black dashed
line in the top left panel) has been replicated three times to improve
visibility. This eigenstate is invariant under C3z, even with respect to
C2x , and odd under C2z.

In addition, we assumed the carbon π orbitals to be ori-
ented along ez, while in reality they are oriented along the
direction locally perpendicular to the relaxed graphene sheet,
no longer flat. However, since the out-of-plane distortions
vary smoothly along the moiré pattern, we checked that the
misorientation of the orbitals with respect to the z axis is
lower than ≈0.1–0.01◦ and has no noticeable effect on the
band structure.

IV. SYMMETRY ANALYSIS OF THE BLOCH FUNCTIONS

In Fig. 4 we show the band structure around the neutrality
point. In Fig. 4(a), we plot just the four minibands, which are
well separated from the others [see Fig. 4(b)]. We also indicate
the degeneracy at the high-symmetry points. In particular, at
K1 and K2 we find that all four bands are degenerate within
our numerical accuracy, while they are split into two doublets
at � and M. In Fig. 4(c), we show the level spectrum at the �

point, including the degeneracy of each level.
Even though the relaxed lattice has no manifest point

symmetry, we shall still assume, arbitrarily for now, either
D3 or D6 symmetry, retaining the formalism of Sec. II.
The comparison with the tight-binding results will reveal the
validity of that assumption.

Since the Wannier functions are centered at the vertices of
the hexagons, where the symmetry is C3 irrespective of the
global symmetry being D6 or D3, one could be tempted to
rationalize [13,14] the miniband �-point double degeneracy
as being due to two different �AB , as well as �BA (see Fig. 2),
which transform as the two-dimensional irreducible represen-
tation of C3. We find that this assumption is not correct in
our case. In Fig. 5 we show the wave function of one of the
two states within the lower doublet at �. It is visually evident,
and also confirmed numerically, that a miniband Bloch wave

function at � is instead invariant under C3z, which implies that
the Wannier functions must transform as one of the singlet
irreducible representations of C3. The same is true for all the
other three Bloch functions, which we do not show. Assuming
therefore that all the Wannier functions are invariant under
C3z, we can parametrize the functions ψAB

i (r), i = 1, 2, 3, of
Fig. 2 as follows:

ψAB
1 (r) = A(r) + E+1(r) + E−1(r),

ψAB
2 (r) = A(r) + ω E+1(r) + ω∗ E−1(r),

ψAB
3 (r) = A(r) + ω∗ E+1(r) + ω E−1(r), (12)

where A(r) is invariant under C3, while E±1(r) transforms
with eigenvalue ω±1 = e±i2π/3. Recalling that ψAB

n+1(r −
L2) = C3[ψAB

n (r − 0)] (n = 1, 2, 3 and n + 3 = n), one can
readily show that the Wannier function �AB (r) shown in
Fig. 2 is indeed invariant under C3z. Similarly, for ψBA

i (r)
we introduce the functions A′(r) and E′

±1(r). It follows that
Eqs. (6) and (7) simplify to

ψAB
� (r) = 3A(r), ψAB

K1
(r) = 3ω E−1(r),

ψAB
K2

(r) = 3ω∗ E+1(r) (13)

for AB and

ψBA
� (r) = 3A′(r), ψBA

K1
(r) = 3ω∗ E′

+1(r),

ψBA
K2

(r) = 3ω E′
−1(r) (14)

for BA. Therefore, studying the Bloch functions at the differ-
ent high-symmetry points gives direct access to A(r) as well
as E±1(r), as we show in what follows.

A. Bloch functions at �

We start our analysis from the � point. Looking again at
Fig. 5, one notes that the Bloch functions have negligible
amplitude in the AA zones, being mostly localized in AB/BA
[30], and thus, the Wannier orbitals cannot be localized in
only AA. Most importantly, one finds that the Bloch function
not only is invariant under C3z but also possesses well-defined
symmetry properties under C2z and C2x ; specifically, it is odd
under the former (compare layer 1 A with layer 1 B) and even
under the latter (compare layer 1 A with layer 2 B). Similarly,
the other state within the lower doublet is still even under
C2x but also even under C2z. That doublet thus transforms
with respect to C2x as an s orbital. On the contrary, the upper
doublet is odd under C2x , thus transforming as a pz orbital,
with one state being even and the other being odd under C2z.
We thus conclude that close to the charge neutrality point the
effective symmetry group is actually D6 [10,16,17] and hence
contains also C2z, even if the relaxed structure lacks any point
symmetry.

We stress in addition that the double degeneracy of the
minibands at � is generically not to be expected even assum-
ing D6 symmetry. The accidental degeneracy is due to the fact
that the coupling between the Dirac points, which originally
belonged to different layers and correspond to the same mo-
mentum, K1 or K2, in the reduced Brillouin zone, effectively
vanishes at small twist angles [4], even though symmetry does
not prohibit this coupling from being finite. This phenomenon
corresponds to an additional emergent symmetry, dynamical
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in nature (some textbooks would call it accidental), often
referred to as valley charge conservation Uv (1) symmetry
[10,16].

If so, with AB and BA being equivalent, the function φk(r)
[see Eqs. (1), (6), (13), and (14)] at � can be written as

φ�(r) = 3A(r) ± 3A′(r), (15)

i.e., the sum or difference of the AB and BA components.
Since the two combinations cannot be degenerate, in order
to describe the band structure we need at least two different
s-like and two different pz-like orbitals for each sublattice
AB and BA. It thus follows that there must be two additional
doublets above or below the flat bands, one of the s type and
another of the pz type, both invariant under C3z. As can be
seen in Figs. 4(b) and 4(c), above the flat bands at � there
are two fourfold-degenerate levels that actually transform
as the two-dimensional irreducible representation and hence
are not invariant under C3z. The next two states (upper red
circle) have instead the right symmetry properties; that is, they
are invariant under threefold rotations and have well-defined
parity, which is actually odd, under C2x (one being even and
one being odd with respect to C2z). This doublet is therefore
the partner of the pz doublet in the miniband. The same holds
in the lower-energy bands (lower green circle). With the only
difference being that the doublet is now even under C2x , it
is the partner of the s doublet in the miniband. Let us focus,
for instance, on the two s orbitals and denote 3A(r) either
as s1(r) or s2(r) and, similarly, 3A′(r) as s ′

1(r) or s ′
2(r). We

assume that the s doublet below the minibands corresponds to
the AB+BA combination; hence, through Eqs. (13) and (14),

φ
(1+)
� (r) = s1(r) + s ′

1(r), φ
(2+)
� (r) = s2(r) + s ′

2(r). (16)

If φ
(1+)
� is chosen to be even under C2z so that φ

(2+)
� is odd,

then

s ′
1 = C2z(s1), s ′

2 = −C2z(s2). (17)

The s doublet within the minibands must therefore be the AB-
BA combination

φ
(1−)
� (r) = s1(r) − s ′

1(r), φ
(2−)
� (r) = s2(r) − s ′

2(r), (18)

so that φ
(1−)
� is odd under C2z while φ

(2−)
� even. It follows

that taking either the sum or the difference between two states
belonging to different s doublets with opposite parity under
C2z, we should find wave functions centered either in AB or
BA. This is indeed the case. In Fig. 6 we show the layer 1
sublattice components of s1(r) (left panels) and s2(r) (right
panels). The components in layer 2 can be obtained through
C2x , and the functions s ′

1(r) and s ′
2(r) on the sublattice BA

can be obtained through C2z. We can repeat a similar analysis
to find the two pz-type functions, p1(r) and p2(r), which are
shown in Fig. 7.

We conclude by stressing that the same symmetry partners
of the miniband levels at � are no less than 300 meV away
from them, and in between there are several states with
different symmetries. However, as soon as we move away
from �, all those states will be coupled to each other by the
Hamiltonian, and thus, a description in terms of only a few of
them is hardly possible.

−π

−π/2

0

π/2

π

−10

0

10

20 layer #1 A

R
y

[n
m

]

−10

0

10

20

−10 0 10

layer #1 B

R
y

[n
m

]

Rx [nm]
−10 0 10

Rx [nm]

layer #1 A

layer #1 B

AA AB BA

FIG. 6. Layer 1 and sublattice (A and B) components of s1(r)
(left) and s2(r) (right). The color of each point indicates its complex
phase, while its size is a measure of its square modulus. Each unit
cell (black dashed line in the top left panel) has been replicated three
times to improve visibility.

B. Bloch functions at K

At the high-symmetry points K1 and K2 = −K1 the AB
and BA Wannier functions are effectively decoupled and
degenerate. However, the outcome of numerical diagonaliza-
tion is a generic linear combination of the degenerate levels.
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times to improve visibility
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FIG. 8. Layer and sublattice components in the unit cell of one
of the two degenerate Bloch functions at K1 whose Wannier orbitals
are centered on AB.

Therefore, in order to identify AB and BA components, we
introduced a small perturbation in the Hamiltonian that makes
AB and BA inequivalent while preserving the C3z symmetry:

V (r) = −
3∑

j=1

2V0sin(gj · r), (19)

where g1 = G1, g2 = G2, g3 = −G1 − G2, and V0 ≈ 1 μeV.
This function is maximum in AB, minimum in BA, and zero
in AA. By doing so, the fourfold-degenerate states at K1/2

are split by a tiny gap (less than 0.2 μeV) in two doublets,
the lower (upper) one composed of Bloch states that are
a combination of only BA (AB) Wannier orbitals. In such
a way, we can directly obtain the proper lattice-symmetric
functions E±1(r) and E′

±1(r) through Eqs. (13) and (14).
Since there are four states at K1/2, there will be two different
E+1(r), with similar results and the same holds for all the
other components. In Fig. 8 we show the layer and sublattice
components of one of the two degenerate Bloch functions
at K1 centered on AB. We note that this Bloch function
transforms under C3z as the expected E−1(r) [see Eq. (13)].
We did check that all other Bloch functions at K1 and K2 are
compatible with Eqs. (13) and (14).

V. CONCLUSIONS

We presented a theoretical and numerical analysis of
the electronic structure associated with the fully relaxed

geometric structure of a twisted bilayer graphene at small
twist angles, which must be relevant for the intriguing be-
havior observed in recent experiments [1–3]. In particular,
with state-of-the-art techniques, we model both the in-plane
and out-of-plane atomic relaxations, and we show that they
play a crucial role in reproducing the experimentally observed
one-electron band gaps. By performing an extensive study of
the Bloch eigenfunctions at the high-symmetry points, we are
able to single out the symmetry properties and, in fact, the
rather subtle nature of the corresponding Wannier orbitals.
The results are consistent with a D6 symmetry, which emerges
despite the absence of an a priori lattice structure point-group
symmetry, as well as with a valley charge conservation Uv (1).
These emerging symmetries are robust features of small-angle
twisted bilayer graphene [16,31]. Moreover, even though the
flat bands are well separated from the rest, in order to simulta-
neously describe the physics at both the K and � points, one
necessarily has to consider an enlarged set of Wannier orbitals,
at least eight but most likely many more. The impact of these
results on our understanding of the observed phenomena in
twisted graphene bilayers will be the subject of a future work.

Note added. Recently, we became aware of a preprint [32]
which also reports a relaxed structure with some features
similar to those of the model shown here.
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