
PHYSICAL REVIEW B 98, 235135 (2018)

Correlated electronic structure with uncorrelated disorder

A. Östlin,1 L. Vitos,2,3,4 and L. Chioncel5,1

1Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics,
University of Augsburg, D-86135 Augsburg, Germany

2Department of Materials Science and Engineering, Applied Materials Physics,
KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden

3Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
4Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary

5Augsburg Center for Innovative Technologies, University of Augsburg, D-86135 Augsburg, Germany

(Received 23 July 2018; revised manuscript received 11 October 2018; published 17 December 2018)

We introduce a computational scheme for calculating the electronic structure of random alloys that includes
electronic correlations within the framework of the combined density functional and dynamical mean-field
theory. By making use of the particularly simple parametrization of the electron Green’s function within the
linearized muffin-tin orbitals method, we show that it is possible to greatly simplify the embedding of the
self-energy. This in turn facilitates the implementation of the coherent potential approximation, which is used to
model the substitutional disorder. The computational technique is tested on the Cu-Pd binary alloy system, and
for disordered Mn-Ni interchange in the half-metallic NiMnSb.
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I. INTRODUCTION

Disordered metallic alloys find applications in a large
number of areas of materials science. Designing alloys with
specific thermal, electrical, and mechanical properties such
as conductivity, ductility, and strength, nowadays commonly
starts at the microscopic level [1–3]. First-principles cal-
culations of the electronic structure offer a parameter-free
framework to meet specific engineering demands for materials
prediction. Advances in the atomistic simulation of physical
properties should to a large extent be attributed to the devel-
opment of density functional theory (DFT) [4,5] within the
local density approximation (LDA) or beyond-LDA schemes.

In solids exhibiting disorder the calculation of any physical
property involves configurational averaging over all realiza-
tions of the random variables characterizing the disorder. In
the case of substitutional disorder the symmetry of the lattice
is kept, but the type of atoms in the basis is randomly dis-
tributed. This causes the crystal to lose translational symme-
try, making the Bloch theorem inapplicable. Perhaps the most
successful approach to solve the problems associated with
substitutional disorder is the coherent potential approximation
[6] (CPA). The presence of random atomic substitution gen-
erates a fluctuating external potential which within the CPA is
substituted by an effective medium. This effective medium is
energy dependent and is determined self-consistently through
the condition that the impurity scattering should vanish on av-
erage. The CPA is a single-site approximation, which becomes
exact in certain limiting cases [7]. The explanation for the
good accuracy of the CPA can be traced back to the fact that
it becomes exact in the limit of infinite lattice coordination
number, Z → ∞ [8].

The CPA was initially applied to tight-binding Hamilto-
nians [7], where for binary alloys the CPA equations take a

complex polynomial form that can be solved directly. Later
Győrffy [9] formulated the CPA equations for the muffin-
tin potentials within the multiple-scattering Korringa-Kohn-
Rostocker (KKR) method [10,11]. Consequently, the con-
figurational average could be performed over the scattering
path operator, instead of the Green’s function, simplifying the
implementation of the CPA for materials calculations [12].
Later the CPA was also implemented within the linearized
muffin-tin orbitals [13] (LMTO) basis set [14–17]. With
the advent of the third-generation exact muffin-tin orbitals
[18–20] (EMTO) method, and the full-charge density [21]
technique, it was possible to go beyond the atomic-sphere
approximation (ASA) with CPA calculations [22], and in-
vestigate the energetics of anisotropic lattice distortions. For
interacting model Hamiltonians, dynamical mean-field theory
[23–25] (DMFT) was also combined with the CPA [26–28].
Later on the methodology was extended to study realistic
materials containing significant electronic correlations within
the framework of a combined DFT+DMFT method [29,30].
To treat weak disorder within the framework of charge self-
consistent LDA+DMFT, the CPA has been implemented
within the KKR method [31]. In an alternative approach, the
band structures computed from DFT were mapped to tight-
binding model Hamiltonians where the disorder was treated
within the CPA [32–35].

In this paper, we introduce a method that can treat sub-
stitutional disorder effects through the CPA, and electronic
correlation effects through DMFT, on an equal footing for
real materials. The method is based on the LDA+DMFT
method, zMTO+DMFT, which was recently introduced by us
[36]. By making use of the particularly simple parametrized
form of the electron Green’s function in a linearized ba-
sis set, we show that the self-energy can be incorporated
naturally within the LMTO formalism as a modification
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of a single, self-consistently determined parameter. Due to
this straightforward inclusion of the many-body effects, the
CPA within the LMTO method retains its general form,
and can be used almost unaltered for the LDA+DMFT
approach.

The paper is organized as follows: Section II briefly re-
views the muffin-tin basis sets used in this work. A short
overview of the LMTO method is given in Sec. II, with
additional formulas given in Appendix A, in order to introduce
the most important quantities needed for the CPA+DMFT
implementation. A review of the EMTO method, which is the
second basis set used in this paper, is given in Appendix B.
In Sec. III we present the most important development in
this paper, a combination of the CPA and the LDA+DMFT
method. First, in Sec. III A we discuss the principles behind
the configuration average used for the CPA. Section III B
shows how the electronic self-energy can be incorporated into
the LMTO potential functions, while Sec. III C demonstrates
how the potential functions are used as an effective medium
within the CPA. The section ends with an outline of the full
computational scheme. In Sec. IV we present the results of
the method applied to the binary copper-palladium system,
treating the d electrons of palladium as correlated. The half-
metallic semi-Heusler compound NiMnSb with disorder is
also investigated. Section V provides a conclusion of our
paper.

II. ELECTRONIC STRUCTURE WITH
MUFFIN-TIN ORBITALS

The standard approach adopted in first-principles elec-
tronic structure calculations is the mapping to an effective
single-particle equation. The Hohenberg-Kohn-Sham density
functional formalism [4,5] provides a self-consistent descrip-
tion for the effective one-particle potential Veff (r). Within
the muffin-tin orbital methods, the effective potential in the
Kohn-Sham equations,

[∇2 − Veff (r)]�j (r) = εj�j (r), (1)

is approximated by spherical potential wells VR (rR ) − V0

centered on lattice sites R, and a constant interstitial potential
V0, viz.,

Veff (r) ≈ Vmt (rR ) ≡ V0 +
∑
R

[VR (rR ) − V0], (2)

where we introduced the notation rR ≡ rRr̂R = r − R. We
will in the following omit the vector notation for simplic-
ity. This form of the potential makes it possible to divide
the Kohn-Sham equation (1) into radial Schrödinger-like
equations within the muffin-tin spheres, and wave equations
in the interstitial region, which can be solved separately.
The computational scheme that we present in this paper
is based on the muffin-tin theories developed by Ander-
sen and co-workers, namely, the LMTO [37–40] and the
EMTO [18–20,41,42] methods. In the following, we briefly
review the main ideas and notations behind the LMTO-ASA
method.

Linear muffin-tin orbitals

The energy-independent linearized muffin-tin orbitals
χα

RL(rR ), centered at the lattice site R, are given as

χα
RL(rR ) = φRL(rR ) +

∑
R′L′

φ̇α
R′L′ (rR )hα

RLR′L′ , (3)

φ̇α
RL(rR ) = φ̇RL(rR ) + φRL(rR )oα

RL, (4)

φRL(rR ) = φRL(rR )YL(r̂R ). (5)

φRL(rR ) is the solution of the radial Schrödinger equation at
an arbitrary energy εν , usually taken to be the center of gravity
of the occupied part of the band, and oα

RL = 〈φRL|φ̇α
RL〉 is an

overlap integral. L ≡ (l, m) denotes the orbital and azimuthal
quantum numbers, respectively. The superscript α denotes
the screening representation used in the tight-binding LMTO
theory. The expansion coefficients hα are determined from the
condition that the wave function is continuous and differen-
tiable at the sphere boundary at each sphere: hα

RLR′L′ (k) =
(cα

RL − εν )δRR′δLL′ + √
dα

RlS
α
RLR′L′ (k)

√
dα

R′l′ . Note that we
are now assuming a translationally invariant lattice system,
so that the Bloch wave vector k is well defined. From now
on, R will denote the atoms in the unit cell only. The co-
efficient hα

RLR′L′ is parametrized by the center of the band,
cα
RL = εν − P α

RL(εν )[Ṗ α
RL(εν )]−1, and the bandwidth parame-

ter dα
RL = [Ṗ α

RL(εν )]−1, both expressed in terms of the poten-
tial function P α

RL and its energy derivative Ṗ α
RL evaluated at εν .

The potential function P α and the structure constant Sα are
expressed using the conventional potential function P 0 and
the conventional structure constant matrix S0 [39]:

P α
RL = [P 0(1 − αP 0)−1]RL,

Sα
RLR′L′ = [S0(1 − αS0)−1]RLR′L′ . (6)

P 0
RL is proportional to the cotangent of the phase shift cre-

ated by the potential centered at the sphere at R. Thus, the
potential parameters P characterize the scattering properties
of the atoms placed at the lattice sites. The geometry of the
lattice enters through the structure constants S0, which is
independent of the type of atoms occupying the sites. S0 has
a long-range behavior in real space, but is decaying nearly
exponentially in the tight-binding β representation [38]. The
so-called band distortion parameter α = (P 0)−1 − (P α )−1 =
(S0)−1 − (Sα )−1, which is also used to denote the screening
representation, gives a relation between the α representation
and the unscreened representation. In the nearly orthogonal γ

representation, α = γ , and o
γ

RL = 0, hence the Hamiltonian
H

γ

RLR′L′ is given by

H
γ

RLR′L′ (k) = CRl +
√

�RlS
γ

RLR′L′ (k)
√

�R′l′ , (7)

where CRl , �Rl , and γRl are the representation-independent
band center, width, and distortion potential parameters, re-
spectively [39,40]. The corresponding Green’s function in the
γ representation is given by

G
γ

RLR′L′ (k, z) = {[z − Hγ (k)]}−1
RLR′L′, (8)

where z is an arbitrary complex energy. Further important
relations among the LMTO representations can be found in
Appendix A.
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III. ELECTRONIC CORRELATIONS AND DISORDER:
THE SINGLE-SITE APPROXIMATION

In this section we present an LMTO-CPA scheme that
allows one to include local self-energies, on the level of
DMFT, for the alloy components. The scheme is implemented
within the Matsubara representation, and is combined with the
zMTO+DMFT method [36]. Section III A briefly discusses
the configurational averaging and the CPA, while in Sec. III B
we show how DMFT through the Dyson equation leads to
a renormalization of the parameters of the LMTO-ASA for-
malism. Section III C combines the ideas of the previous two
sections, and proposes a combined CPA and DMFT loop.

A. Configuration averaging and the CPA

In disordered systems the configurational degrees of free-
dom characterizing the composition are described by a ran-
dom variable. Consequently, the potentials at sites are random
in space as in quenched disordered solids. A particular real-
ization of the random variable constitutes a configuration of
the system in discussion. According to Anderson [43] only
physically measurable quantities such as diffusion probabil-
ities, response functions, and densities of states should be
configurationally averaged. As these quantities are themselves
Green’s functions, electronic structure methods using Green’s
functions are favored for the study of disordered systems.

A major development of the theory of disordered electronic
systems was achieved using the CPA. The CPA belongs to the
class of mean-field theories according to which the properties
of the entire material are determined from the average behav-
ior at a subsystem, usually taken to be a single site (cell) in the
material. In the multiple scattering description of a disordered
system, one considers the propagation of an electron through a
disordered medium as a succession of elementary scatterings
at the random atomic point scatterers. In the single-site ap-
proximation one considers only the independent scattering off
different sites and finally takes the average over all configura-
tions of the disordered system consisting of these scatterers.
One may then consider any single site in a specific configura-
tion and replace the surrounding material by a translationally
invariant medium, constructed to reflect the ensemble average
over all configurations. In the CPA this medium is chosen
in a self-consistent way. One assumes that averages over the
occupation of a site embedded in the effective medium yield
quantities indistinguishable from those associated with a site
of the medium itself.

In view of the great progress achieved through the previous
implementations of the CPA within muffin-tin orbital methods
[9,12,14–17] we present here in detail a novel combination
of CPA+DMFT in the recently developed zMTO+DMFT
method [36].

B. Self-energy-modified effective potential parameters

To deal with the important question concerning the effect
of interaction, we start by observing that within the DMFT
the self-energy is local and primarily modifies the local pa-
rameters of the model that describes disorder. In this section,
we show that the presence of a local self-energy, �RLRL′ (z),

modifies the potential function P entering in the expression of
the Green’s function in the LMTO-ASA formalism.

We start from the Dyson equation used to construct the
LDA+DMFT Green’s function:[

GDMFT
RLR′L′ (k, z)

]−1 = [
GLDA

RLR′L′ (k, z)
]−1 − �RLRL′ (z), (9)

where G
DMFT/LDA
RLR′L′ denotes the LDA+DMFT/LDA-level

Green’s function and �(z) the self-energy. It is useful to define
an auxiliary Green’s function, the path operator gα

RLR′L′ , as

gα
RLR′L′ (k, z) = [

P α
Rl (z) − Sα

RLR′L′ (k)
]−1

, (10)

which is valid for a general representation α. In Appendix A
we present explicit expressions for the potential functions
and auxiliary Green’s functions in different representations,
as well as their connection to the physical Green’s function.
As is apparent in Eq. (10), the full energy and k dependence
of the path operator is contained in the potential function
and the structure constants, respectively. Furthermore, the
potential function is fully local, i.e., it is diagonal in site index.
In the following, it will prove convenient to first work in
the γ representation, since here the Green’s function takes a
particularly simple form [see Eq. (A2)]:

G
γ,LDA
RLR′L′ (k, z) = �

−1/2
Rl g

γ

RLR′L′ (k, z)�−1/2
R′l′ , (11)

i.e., it is the path operator normalized by the potential param-
eter �Rl . Using Eqs. (11) and (A1), the LDA Green’s function
can be evaluated as follows:[

G
γ,LDA
RLR′L′ (k, z)

]−1 = �
1/2
Rl

[
P

γ,LDA
Rl (z) − S

γ

RLR′L′ (k)
]
�

1/2
R′l′

= z − CRl − �
1/2
Rl S

γ

RLR′L′ (k)�1/2
R′l′ . (12)

Hence, the LDA+DMFT Green’s function (9) can be
written as[

G
γ,DMFT
RLR′L′ (k, z)

]−1 = z − CRl − �
1/2
Rl S

γ

RLR′L′ (k)�1/2
R′l′

−�RLRL′ (z), (13)

i.e., as the resolvent of the Hamiltonian (7) with an embedded
self-energy. From Eq. (13), it is obvious that the same result
will follow if the potential parameter CRl is replaced by an
effective parameter, in which the self-energy is embedded,
viz.,

CDMFT
RLRL′ (z) ≡ CRl + �RLRL′ (z). (14)

Hence the effective potential parameter CDMFT
RLRL′ will now in

general be complex, energy-dependent, and have off-diagonal
elements. However, CDMFT

RLRL′ is still local. With this effective
potential parameter, the LDA+DMFT level Green’s function
can be expressed in a similar form as the LDA-level Green’s
function, viz.,

[
G

γ,DMFT
RLR′L′ (k, z)

]−1 = �
1/2
Rl

[
P

γ,DMFT
RLRL′ (z) − S

γ

RLR′L′ (k)
]
�

1/2
R′l′ ,

(15)

where

P
γ,DMFT
RLRL′ (z) ≡ P

γ,LDA
Rl (z) − �

−1/2
Rl �RLRL′ (z)�−1/2

R′l′

= �
−1/2
Rl [z − CRl − �RLRL′ (z)]�−1/2

R′l′

= �
−1/2
Rl

[
z − CDMFT

RLRL′ (z)
]
�

−1/2
R′l′ . (16)
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Note that due to the self-energy, the effective potential func-
tion now has off-diagonal elements.

C. The combined CPA and DMFT loop

For disorder calculations using the CPA, it is more con-
venient to use the tight-binding β representation, since in
this case only the potential functions (and not the structure
constants) are random [15–17,44] (see also Appendix A). In
this case, the representation-dependent potential parameter
V β [Eq. (A5)] will be modified accordingly:

V
β,DMFT
RLRL′ (z) ≡ CRl + �RLRL′ (z) − �Rl

γRl − βl

. (17)

For LDA+DMFT calculations, this form of V
β,DMFT
RLRL′ should

be used for the potential function (A4), the path operator
g

β,DMFT
RLR′L′ , and the Green’s function (A7), in order for the Dyson

equation (9) to be fulfilled. Note that the transformations in
Eqs. (A6) and (A7) are now no longer simply scaled as in the
LDA case, but are matrix multiplications due to the presence
of off-diagonal terms in the self-energy.

In the following, all quantities will be on the dynamical
mean-field level, and we suppress the common superscript
“DMFT” for the coherent medium path operators g̃, the alloy
component path operators gi , the coherent potential functions
P̃ , and the alloy component potential functions P i , which
will be defined below. The representation superscript β is
kept. An additional superscript n appears to represent the
iterative nature of the equations. The superscript i refers to
the index enumerating the alloy components at a certain site.
We also introduce the concentration of the respective alloy
components i, at a site R, as ci

R (0 � ci
R � 1,

∑
i c

i
R = 1). In

this paper, the DMFT impurity problem is solved within the
imaginary-axis Matsubara frequency representation, where
the Matsubara frequencies are defined as iωξ = (2ξ + 1)iπT ,
where ξ = 0,±1, . . ., and T is the temperature. In the fol-
lowing, we use the shorthand iω = {iω0, . . . , iωξ , . . .} to
represent the set of all Matsubara frequencies. Note that the
DMFT impurity problem in principle also can be solved on
the real axis, depending on which numerical solver is used.
The corresponding CPA equations will also hold for the real
energy axis.

The CPA self-consistency condition requires that the se-
quential substitution by an impurity atom into an effective,
translationally invariant, coherent medium should produce no
further electron scattering, on average. In Appendix C we
briefly review the CPA+DMFT algorithm for the case of a
one-band model system. In the model Hamiltonian formalism
[6,7] the ensemble average (coherent) Green’s function (Gc)
is constructed from the on-site restricted averages of the
component Green’s function (Gi), according to the formula
Gc = ∑

i c
i
RGi . A similar formula can be written for muffin-

tin potentials in the multiple-scattering formalism, following
Győrffy [9], and the averaging of the Green’s function can be
transferred to the path operator:

g̃
β

RLRL′ (iω) =
∑

i

ci
Rg

i,β

RLRL′ (iω). (18)

The coherent path operator in the β representation,

g̃
β

RLRL′ (iω) =
∫

[P̃ β (iω) − Sβ (k)]−1
RLRL′ dk, (19)

has been integrated over the Brillouin zone (BZ). In Eq. (19),
the coherent potential function P̃ β (iω) has been introduced.
The alloy component path operators in Eq. (18) are found
through a Dyson equation,

g
i,β

RLRL′ (iω) = g̃
β

RLRL′ (iω) +
∑
L′′L′′′

g̃
β

RLRL′′ (iω)

× [
P

i,β

RL′′RL′′′ (iω) − P̃
β

RL′′RL′′′ (iω)
]
g

i,β

RL′′′RL′ (iω).

(20)

Here the potential functions P i,β (iω) are computed according
to Eq. (A4), for each type, respectively. In order to close
the CPA equations self-consistently, a new coherent potential
function has to be determined at each iteration. This is done by
taking the difference between the inverses of the coherent path
operators from the present iteration n + 1 and the previous
iteration n, as follows:

P̃ β,n+1(iω) = P̃ β,n(iω) − [g̃β,n+1(iω)]−1 + [g̃β,n(iω)]−1.

(21)
The new coherent potential function can be inserted into
Eq. (19), and the cycle can be repeated until self-consistency
has been reached. This is performed for each Matsubara
frequency iω. Once self-consistency in the CPA equations has
been achieved, the Green’s functions for each alloy compo-
nent can be obtained by normalizing the alloy component path
operators in Eq. (20), using the transformation in Eq. (A7).
These (local) Green’s functions are then used as input for the
DMFT impurity problem, with a separate impurity problem
for each alloy component. For a given interaction strength
Umm′m′′m′′′ (defined below) on a particularly chosen alloy
component (i.e., an atomic impurity embedded in the CPA
coherent medium), we solve the interacting problem and alloy
component self-energies are produced. The average over the
disorder corresponds in this case to applying the CPA as
described above in Eqs. (18)–(21). The coherent self-energy
is an implicit quantity; in the self-consistency loops the alloy
component self-energies and the path operators are used.

The scheme presented above can easily be incorporated
within the formalism of the zMTO+DMFT method [36].
Here, the EMTO method (see Appendix B for a brief review)
is employed to solve the Kohn-Sham equations for random
alloys self-consistently, within the CPA, on the level of the
LDA. The DMFT impurity problem is then solved in the
Matsubara representation, using linearization techniques to
evaluate the alloy components Green’s functions, as presented
above. This can be done both on the LDA level (setting
� = 0) and on the DMFT level (using the self-energy from
the DMFT impurity problem). The charge self-consistency is
achieved similarly as in Ref. [36], by computing moments
of the alloy component Green’s function at LDA and DMFT
levels. The difference between the charge densities computed
in this way can then be added as a correction on the LDA-level
charge computed within the EMTO method. In Fig. 1, we
present a schematic picture of the self-consistent loops.
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FIG. 1. Schematic flow diagram of the main DMFT-CPA loop, as implemented within the zMTO+DMFT formalism [36]. Inputs are the
alloy component–dependent potential parameters Ci, �i , and γ i , taken from a LDA-level self-consistent EMTO-CPA calculation. For each
Matsubara frequency along the imaginary energy axis, the CPA equations are solved self-consistently. The alloy impurity Green’s functions are
supplied to the DMFT impurity problem, which is solved self-consistently, giving alloy component self-energies as output. These self-energies
in turn modify the potential parameters which is the key for the combined self-consistency of CPA and DMFT equations. To make the scheme
charge self-consistent, the change in the density due to correlation, �n(r), can be added to the EMTO-CPA charge density n(r), and then the
Kohn-Sham equations are iterated until convergence.

IV. RESULTS

In order to demonstrate the feasibility of our proposed
method, we apply it to investigate the electronic structure of
the binary Cu1−xPdx alloy and the semi-Heusler compound
NiMnSb, with partially exchanged Ni and Mn components.

A. Computational details

In all calculations, the kink cancellation condition was
set up for 16 energy points distributed around a semicircu-
lar contour with a diameter of 1 Ry, enclosing the valence
band. The BZ integrations were carried out on an equidistant
13 × 13 × 13 k-point mesh in the fcc BZ. For the exchange-
correlation potential the local spin density approximation with
the Perdew-Wang parametrization [45] was used. For the
studied alloys a spd basis was used. For the Cu-Pd system,
the Cu 4s and 3d states, and for Pd the 5s and 4d states,
were treated as valence. For the case of NiMnSb, the Ni and
Mn 4s and 3d states, and for Sb the 5s and 5p states, were
treated as valence. The core electron levels were computed
within the frozen-core approximation, and were treated fully
relativistically. The valence electrons were treated within the
scalar-relativistic approximation. After self-consistency was
achieved for NiMnSb, the density of states (DOS) was eval-
uated with a 21 × 21 × 21 k-point mesh, in order to get an
accurate band gap.

To solve the DMFT equations, we used the spin-polarized
T -matrix fluctuation-exchange (SPTFLEX) solver [46–50].
In this solver, the electron-electron interaction term can
be considered in a full spin and orbital rotationally in-
variant form, viz., 1

2

∑
i{m,σ } Umm′m′′m′′′c

†
imσ c

†
im′σ ′cim′′′σ ′cim′′σ .

Here, cimσ (c†imσ ) annihilates (creates) an electron with spin
σ on the orbital m at the lattice site i. The Coulomb ma-
trix elements Umm′m′′m′′′ are expressed in the usual way [51]

in terms of Slater integrals. In moderately correlated sys-
tems as studied here the modified multiorbital fluctuation
exchange (FLEX) approximation of Bickers and Scalapino
[46] proved to be one of the most efficient approaches
[47–49,52]. The simplifications of the computational pro-
cedure in reformulating the FLEX as a DMFT impurity
solver consists in neglecting dynamical interactions in the
particle-particle channel, considering only static (of T -matrix
type) renormalization of the effective interactions. The fluc-
tuating potential Wσ,−σ (iω) is a complex energy-dependent
matrix in spin space with off-diagonal elements Wσ,−σ (iω) =
Um̃[χσ,−σ (iω) − χ

σ,−σ
0 (iω)]Um̃, where Um̃ represents the

bare vertex matrix corresponding to the transverse magnetic
channel, χσ,−σ (iω) is an effective transverse susceptibility
matrix, and χ

σ,−σ
0 (iω) is the bare transverse susceptibil-

ity. The fermionic Matsubara frequencies iω were defined
above and m̃ corresponds to the magnetic interaction channel
[47,48]. In this approximation the electronic self-energy is
calculated in terms of the effective interactions in various
channels. The particle-particle contribution to the self-energy
was combined with the Hartree-Fock and the second-order
contributions [47,48], which adds to the particle-hole con-
tribution �

(ph)
12σ = W

σ,σ ′
1342(iω)Gσ ′

34(iω). The local Green’s func-
tions as well as the electronic self-energies are spin diagonal
for collinear magnetic configurations. Their pole structure,
when analytically continued to the real energy axis, produce
the appearance of the peaks located at specific energies deter-
mined by the materials characteristics and the symmetries of
the orbitals.

Since specific correlation effects are already included in the
exchange-correlation functional, so-called “double counted”
terms must be subtracted. To achieve this, we replace �σ (E)
with �σ (E) − �σ (0) [53] in all equations of the DMFT pro-
cedure [29]. Physically, this is related to the fact that DMFT
only adds dynamical correlations to the DFT result [54].
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The Matsubara frequencies were truncated after ξ = 1024
frequencies, and the temperature was set to T = 400 K.
The values for the average Coulomb U and the exchange J

parameters are discussed in connection with the presentation
of the results in each case. The densities of state were com-
puted along a horizontal contour shifted away from the real
energy axis. At the end of the self-consistent calculations, to
obtain the self-energy on the horizontal contour, �(iω) was
analytically continued by a Padé approximant [55,56].

B. Spectral functions and the Fermi surface of Cu1−xPdx

random alloys

We have previously investigated the electronic structure
of fcc-Pd [57], within the framework of the LDA+DMFT
method using the perturbative FLEX impurity solver [58].
Recently, the properties of fcc-Pd were revisited using a lattice
(nonlocal) FLEX solver [59]. These recent calculations [59]
support our results using the local approximation of the self-
energy. Consequently, we study the electronic correlations in
the CuPd alloys using the same local DMFT technique as we
used before. In particular, we consider modeling correlations
only for the Pd alloy component.

Discrepancies between the measured photoemission spec-
tra [60] and the KKR-CPA spectral functions [61,62] for
various Cu-Pd alloys were often discussed in the literature.
In particular, LDA-CPA results for the Pd partial DOS of
the Cu0.75Pd0.25 alloy reveal a three-peak structure [black
line, Fig. 2(a), peaks marked by A, B, and C], similar to
the DOS of pure fcc-Pd [57]. Experimental data [61] on the
other hand [see also inset of Fig. 2(a)], show a contracted
bandwidth for the partial DOS and do not resolve the peak
at the bottom of the band (marked by C). A detailed dis-
cussion concerning these discrepancies can be found in Ref.
[60]. We note that the frequently discussed reasons for these
discrepancies are connected to matrix element effects [63],
broadening by electronic self-energy [63], and local lattice
distortions [64–66], that go beyond the capabilities of standard
CPA. Although it is not our intention to address all of the
above inconsistencies, our current implementation allows us

to address the possible source of discrepancy in connection
with the combined disorder and correlation effects.

In Fig. 2(a) we present the spectral function (DOS) for the
Cu0.75Pd0.25 alloy, as a function of the Coulomb parameter
U . All curves were evaluated at the lattice constant given by
a linear interpolation between that of pure Cu and pure Pd
(Vegard’s law), which in this case corresponds to a = 3.68 Å.
Vegard’s law has previously been shown to hold in a large
range of concentrations for Cu-Pd within KKR-CPA [67]. As
the Coulomb interaction is increased, the peak close to the
bottom of the band (C) shifts toward the Fermi energy, while
the major peak close to EF (A) remains unchanged. The high
binding energy peak (C) loses intensity with increasing U , and
the spectral weight is shifted to higher binding energy, where
it builds up a satellite structure. A similar behavior in the spec-
tral weight shift was also found for pure Pd [57]. In Fig. 2(b)
we show the Pd self-energies along the real-energy axis for the
interaction strength of U = 3 eV and J = 0.9 eV. Note that
for different values of these parameters a qualitatively similar
behavior of the self-energy is obtained. This behavior is that
of a typical Fermi liquid frequently encountered in transition
metals [68]: a real part (solid lines) that shows a negative slope
at EF and the corresponding imaginary parts with parabolic
energy dependence around EF . For the entire concentration
range, the Cu-Pd alloys therefore exhibit a Fermi-liquid be-
havior, as seen in the insets of Fig. 2(b). In these calcula-
tions we kept the lattice constant fixed for all concentrations
to demonstrate genuine disorder effects, while disregarding
volume effects. Within the normal Fermi-liquid assumption,
the renormalization constant that measures the discontinuity
of the momentum distribution at k = kF can be computed
as Z−1 = 1 − ∂ Re�(E)/∂E|E=EF

= m∗/mLDA. We see that
by decreasing Pd concentration (color shifts from blue to
orange), the absolute value of the slope of the real part of
the self-energy decreases monotonically and the electronic
effective mass decreases. The effective masses are of a similar
magnitude as in previous studies on Pd [57,59].

The results of the calculations including self-energy effects
shown in Fig. 2(a) bring the spectral function more in line with
experimental photoemission data [61] (see also inset). Since
we neglect matrix element effects due to the photoemission
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FIG. 2. (a) Partial density of states of Pd in the Cu0.75Pd0.25 alloy, as a function of Coulomb interaction U . Inset: Experimental
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FIG. 3. (a) Fermi surface (Bloch spectral function) for the
Cu0.60Pd0.40 alloy with U = 4 eV. (b) Difference of spectra between
U = 4 eV and U = 0. The color maps indicate the spectral weight in
arbitrary units.

process, as well as local lattice relaxations, we do not make
a quantitative statement concerning the differences between
theory and experiment. However, our calculation shows that
the proposed method which combines correlation and alloy
disorder effects, provides the correct trend in the spectral
function.

In the following we comment upon the disorder and corre-
lation induced modifications in the shape of the Fermi surface
of CuPd alloys. On the basis of KKR-CPA calculations,
Győrffy and Stocks [69] proposed an electronic mechanism
which determines short-range order effects experimentally
seen in CuPd alloys. The experimental observation, namely,
the dependence of the scattering intensities on concentration
in these alloys, was traced back to the flattening of the Fermi
surface sheets with increasing Pd concentration. According to
their results [69] the Fermi surface must change from a convex
shape in the Cu-rich alloy to a concave one for the Pd-rich
limit, in a continuous fashion. Consequently the Fermi surface
is forced to be almost flat for some concentration, giving rise
to nesting phenomena. This was later confirmed by further
experiments and CPA calculations [67,70].

According to previous calculations [69] a flattened Fermi
surface in the �XK plane was obtained for the Cu0.60Pd0.40

alloy. In Fig. 3(a) we plot our results for the Fermi surface of
the same alloy. In our calculations we used for the lattice con-
stant the value a = 3.72 Å (from Vegard’s law), and electronic
interactions on the Pd alloy component were parametrized by
U = 4 eV, and J = 1.2 eV. The Fermi surface is represented
in the (010) and (110) planes of the fcc BZ. The major part
of the Fermi surface consists of the electron sheet centered at
the � point. This sheet goes from convex to concave with Pd
alloying, forcing parts of the sheet to be nearly flat at 40% Pd.
Our result is in good agreement with previous KKR-CPA
calculations [67,70]. To quantify the effect of correlation,
we plot in Fig. 3(b) the difference between the correlated

(U = 4 eV) and the noncorrelated (U = 0) case. Note the
relatively small scale, which shows that the Fermi surface is
insensitive to correlation effects. This is expected due to the
Fermi-liquid behavior of the system.

The effective medium in the CPA theory is an auxiliary
quantity that plays a similar role as the effective potential in
the Kohn-Sham DFT. Contrary to the effective Kohn-Sham
DFT potential, the potential parameter P̃RLRL(E) represent-
ing the CPA effective medium is a local, complex, orbital, and
energy-dependent quantity. In the absence of electronic corre-
lations (U = 0) the potential parameter becomes diagonal in
the orbital index. In addition, in the absence of disorder the
orbital-resolved potential parameters reduce to the form seen
in Eq. (A4), and were shown to increase monotonically [44].
In Fig. 4(a) we plot its imaginary part ImP̃RLRL(E) for a given
concentration (the case of Cu0.3Pd0.7) and for different values
of the average Coulomb parameter U . We note that at the LDA
level in the presence of disorder (x = 0.3), ImP̃ (E) devel-
ops a similar structure to the density of states, which drops
at about −8 eV, corresponding to the bottom of the band.
The connection between the DOS and the effective medium
potential parameter is realized through the impurity Dyson
equation, Eq. (20). Increasing the U values in the range of
1–3 eV we see a structure at higher binding energies, related
to the appearance and development of the additional pole
structure of the fluctuating part of the dynamical self-energy
described in Sec. IV A. In Fig. 4(b) we study the concentration
dependence of ImP̃RLRL(E) for the t2g orbitals, obtained for
the fixed values of U = 3 eV and J = 0.9 eV. For the pure
case (x = 0) no electronic correlations are considered and
the energy dependence of the potential parameter follows the
LMTO description [13,44]. The many-body effects, similar as
seen in Fig. 4(a), gain in importance for larger concentrations
and ultimately gives rise to the satellite structure in the DOS
(see Fig. 2).

C. Interplay of correlation and disorder in Mn-Ni partially
interchanged NiMnSb

Half-metallic ferromagnets (HMFs) [52] are ferromagnetic
systems which are metallic in one spin channel, while for the
opposite spin direction the Fermi level is situated in a gap.
Such systems would therefore present a full spin polarization
at the Fermi level, and have consequently drawn considerable
interest due to their potential application in spintronics. One
of the first systems to be characterized as a HMF is the semi-
Heusler NiMnSb [71]. The crystal structure of the NiMnSb
compound is cubic with the space group F 4̄3m (No. 216). It
consists of four interpenetrating fcc sublattices equally spaced
along the [111] direction. The Ni lattice sites are situated at
(0, 0, 0), Mn sites are at (1/4, 1/4, 1/4), and Sb is situated at
(3/4, 3/4, 3/4). The position at (1/2, 1/2, 1/2) is unoccupied
in the ordered alloy. In experiment, contrary to the DFT
prediction, the measured spin polarization of NiMnSb is only
58% [72]. Several suggestions have been given to explain this
large reduction in spin polarization. Among them we mention
electronic correlation effects [52,73] and disorder [74–76].

Within the current implementation we have the opportu-
nity to study the combined effect at equal footing. In the
present calculations we use the experimental lattice constant,
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J = 0.9 eV. The concentration ranges from pure Cu (x = 0, orange line) to pure Pd (x = 1, blue line). Only the t2g orbital is shown.

a = 5.927 Å. To parametrize the Coulomb interaction the
values U = 3 eV and J = 0.8 eV were used, which are in
the range of previous studies [73,77,78]. Only the Mn d

states were treated as correlated. Because the Ni 3d bands
in NiMnSb are almost filled, these are subject to minor
correlation effects, as shown previously [78]. The effect of
electronic correlations is the appearance of nonquasiparticle
(NQP) states in the minority spin gap (spin-down channel) just
above the Fermi level. The origin of these many-body NQP
states is connected with “spin-polaron” processes: the spin-
down low-energy electron excitations, which are forbidden for
the HMF in the one-particle picture, turn out to be allowed
as superpositions of spin-up electron excitations and virtual
magnons [52,79]. By direct computation, spin-orbit effects
were found to be negligible [80] in NiMnSb. A partially
filled minority spin gap was obtained but the material remains
essentially half-metallic with a polarization of the DOS of
about 99% [80]. The interplay of spin-orbit induced states
and NQP states have been also discussed [81]. In contrast
with the spin-orbit coupling, correlation induced NQP states
have a large asymmetric spectral weight in the minority-spin

channel [82], leading to a peculiar finite-temperature spin-
depolarization effect. It has been shown that also disorder
induces minority-spin states in the energy gap of the ordered
material [74]. These states widen with increasing disorder.
This behavior leads to a reduced minority-spin band gap and
a shift of the Fermi energy within the original band gap.

We consider the partial interchange of Ni and Mn,
(Ni1−xMnx )(Mn1−xNix)Sb, which leaves the overall stoi-
chiometry and number of electrons constant. In Fig. 5 we
show the total DOS around the Fermi level for different Mn-Ni
interchange configurations and different concentrations. For
the pure NiMnSb the LSDA minority occupied bonding states
are mainly of Ni-d character and are separated by a gap about
0.5 eV wide, while unoccupied antibonding states are mainly
of Mn-d character [52,71,83]. It was pointed out in Ref. [71]
that the opening of a gap is assisted by Sb through symmetry
lowering with the consequence that the distinction between
Mn-t2g and Sb-p character of the electrons is lost. In the ma-
jority spin channel (spin up), Ni-Mn covalency determines the
presence of states at EF with dominant d character. The pure
NiMnSb is ferromagnetic [52,71], with a total ferromagnetic
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FIG. 6. (a) Self-energy along the real axis for the d − t2g states of Mn, at a Mn-Ni interchange disorder of 5%. Dark-blue lines correspond
to Mn on the Mn site, and red lines correspond to Mn on the Ni site. Dashed lines with triangles pointing down correspond to the spin-down
channel, while solid lines with triangles pointing up correspond to the spin-up channel. The Mn self-energy for NiMnSb without disorder
(light blue) has been plotted for comparison. (b) Same as in (a), but for the Mn d − eg states. The inset in (b) shows the NQP states in the eg

spin-down channel for different disorder concentrations.

(integer) moment of 4μB , with the main contribution stem-
ming from the Mn site (∼3.8μB ). Upon interchange disor-
der the Mn moment at the Ni site is of opposite sign, ∼
−2μB , while the Mn moment at the Mn site remains positive
∼3.7μB . These values remain more or less unchanged by the
presence of electronic correlations. The ferromagnetic states
result from the exchange interaction of Mn spins which are
situated relatively far from each other [52,84]. The presence of
interchange disorder induces magnetic moments of opposite
sign on the neighboring (Ni1−xMnx) and (Mn1−xNix) sites,
as a consequence of magnetic couplings involving both di-
rect and mediated exchange through Ni and Sb atoms. The
larger the Mn-Ni interchange, the smaller the total magnetic
moment.

In Figs. 5(a) and 5(b) the LSDA(+DMFT) DOS for
smaller degrees of disorder x = 0.1, 0.5% and respectively
for larger disorder x = 1%, 5% is seen. The results for the
clean, x = 0% (ideal) case, NiMnSb, are presented with red
lines (noninteracting, U = 0), and light-blue lines (DMFT).
Already at 0.1% disorder (dark-blue dashed line) minority
states appear below EF . These states are generated by the
presence of Ni impurities at the Mn site, as previously shown
by Orgassa et al. [74]. Furthermore, the upper band edge is
shifted to higher energy. As the disorder is increased, the
width of the Ni impurity states is increased. With correla-
tion, minority spin states appear just above the Fermi level.
These NQP states arise from many-body electron-magnon
interactions [52]. At larger degrees of disorder [see Fig. 5(b)]
the impurity states and the NQP states overlap in energy,
removing the spin-down gap. Hence, the combination of
disorder due to the interchange between Ni and Mn sites and
electronic correlation effects remove the half-metallic gap in
NiMnSb.

Figures 6(a) and 6(b) display the self-energy along the
real-energy axis for the Mn t2g/eg states, respectively, for a
Mn-Ni interchange of 5%. The dark-blue lines correspond to
the Mn at the Mn site, and is similar to the self-energy for
pure NiMnSb (light-blue lines). The self-energy behaves as

in previous calculations [73], namely, the electrons within the
spin-down channel (blue down triangles) have a self-energy
that is fairly small below EF , but starts to increase above EF .
At around 0.5 eV above EF , the self-energy shows a hump,
which gives rise to the NQP peak in the spectral function. The
self-energy of spin-up electrons (blue up triangles) behaves
differently; it is relatively large below EF , while being small
in magnitude above EF . The self-energy for the impurity Mn,
situated at the Ni site, is marked by the red lines in Figs. 6(a)
and 6(b). For the spin-down electrons (red down triangle), the
self-energy is large below EF , while it is small above EF .
The trend is opposite for the spin-up channel electrons (red
up triangle). This opposite behavior of the manganese self-
energies at different sites reflects the antiparallel configuration
of the moments.

It is of interest to investigate how the effect of disorder,
i.e., the degree of Mn-Ni interchange, influences the formation
of NQP states. For this reason, in the inset of Fig. 6(b),
we plot the Mn-site self-energies of the eg orbitals for dif-
ferent disorder concentrations. For minor degrees of Mn-Ni
interchange (up to 5%), the sudden increase in Im �(E) just
above EF (dashed blue lines of Fig. 6), signaling the departure
from Fermi-liquid behavior, remains unaffected. It should
also be noted that the Mn self-energy at the Ni site (Fig. 6,
red lines), follows the Fermi-liquid (quasiparticle) behavior
Im �(E) ∝ (E − EF )2. The Ni d band in NiMnSb is almost
fully occupied, leaving little possibility for magnons to be
excited, therefore weak electron-magnon interaction exists in
the Ni sublattice and no NQP states above EF are visible in
the density of states.

V. CONCLUSION AND OUTLOOK

In this paper we developed a calculation scheme within
the framework of the density functional theory, which allows
one to study properties of disordered alloys including elec-
tronic correlation effects. We model disorder using the co-
herent potential approximation and include local but dynamic
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correlations through dynamical mean-field theory. Similar
to our previous implementation [36], the DFT-LDA Green’s
function is computed directly on the Matsubara contour.
Simultaneously the CPA is implemented within the LMTO
formalism also in the Matsubara representation. Within the
LMTO formalism the CPA effective medium is naturally
encoded in the potential function, which alone contains the
necessary information about the atomic configuration (assum-
ing that a suitable screening representation is chosen). As
shown in this paper, the simple parametrization of the poten-
tial function allows us to easily embed the self-energy into
the standard LMTO potential parameters. Accordingly, the
previously developed CPA schemes within the various muffin-
tin approximations can then be used with only minor changes.

We presented results of the electronic structure calculation
for two disordered alloys: the Cu1−xPdx system, and the half-
metallic NiMnSb semi-Heusler, in which correlations were
considered for Pd and Mn alloy components, respectively.
For the case of the binary CuPd system, we see that the
inclusion of electronic correlation improves the agreement
with the experimental spectral functions for x = 0.25. For a
Pd concentration of x = 0.4 the Fermi surface, which is well
captured already on the level of the LDA, remains more or less
unchanged as correlation effects are turned on. In the second
example, the partial exchange of Mn and Ni in NiMnSb was
investigated, simultaneously with correlation effects. Already
for low levels of disorder, impurity states appear below the
Fermi level, while many-body induced nonquasiparticle states
appear just above the Fermi level. For larger degree of inter-
change both these states contribute in closing the minority-
spin gap.

In the future, the present method will be extended to com-
pute total energies within the full-charge density technique
[21], making it possible to study the energetics of anisotropic
lattice distortions [22] in alloys. Since the present method is
implemented on the imaginary axis, one can also consider
changing the impurity solver to a continuous-time quantum
Monte Carlo [85] algorithm. This would allow one to compute
a disordered strongly correlated system without any bias.
Another interesting venue is to change the arithmetic con-
figuration average used in the CPA to the geometric average
used in typical medium methods [86,87]. This will allow one
to investigate the effects of Anderson localization [43] in
realistic materials.
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APPENDIX A: RELATIONS AND FORMULAS WITHIN
THE LMTO METHOD

Within the nearly-orthogonal γ representation, the poten-
tial function takes the simple form

P
γ

Rl (z) = z − CRl

�Rl

. (A1)

An insertion of this form into Eq. (10), and comparing with
Eq. (8), one sees that

g
γ

RL′RL′ (k, z) =
√

�RlG
γ

RLR′L′ (k, z)
√

�R′l′ , (A2)

i.e., the Green’s function is the normalized path operator.
In the case of a random alloy, the potential parameters

CRl , �Rl , and γRl will be site-dependent random parameters.
Hence, both the potential function P

γ

Rl (z), Eq. (A1), and the
structure constants Sγ , will be random within the γ represen-
tation. This can be seen from the transformation in Eq. (6) to
the γ representation,

S
γ

RLR′L′ = [S0(1 − γ S0)−1]RLR′L′ . (A3)

Since γ is (disorder) potential dependent, so is the structure
constants. To avoid this, it is useful to switch to the tight-
binding β representation [38], as has been pointed out previ-
ously [15–17,44]. Within the tight-binding β representation,
the potential function takes the form

P
β

Rl (z) = �
β

Rl

V
β

Rl − z
+ 1

γRl − βl

, (A4)

where here the representation-dependent potential parameters
V β and �β are given by

V
β

Rl = CRl − �Rl

γRl − βl

, �
β

Rl = �Rl

(γRl − βl )2
. (A5)

The βl parameters can be found tabulated in several sources
[38,88], and are independent of the (disorder) potential.
Therefore, the structure constants Sβ depend only on the
geometry of the underlying lattice, and only the potential
function P β is random. The path operator in the β repre-
sentation, g

β

RLR′L′ (k, z), is given similarly as in Eq. (10).
The following relation allows one to transform path operators
between different representations [38,89]:

gβ (z) = (β − γ )
P γ (z)

P β (z)
+ P γ (z)

P β (z)
gγ (z)

P γ (z)

P β (z)
, (A6)

where we have omitted the indices for simplicity. Using this
transformation, and Eqs. (A1), (A4), and (A2), the Green’s
function can be obtained from g

β

RLR′L′ (k, z) as [88]

G
γ

RLR′L′ (k, z) = 1

z − V
β

Rl

+
√

�Rl

z − V
β

Rl

g
β

RLR′L′ (k, z)

√
�R′l′

z − V
β

R′l′
. (A7)
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Note that the transformations in Eqs. (A6) and (A7) are simply
energy-dependent scalings of the path operator, since the
potential parameters and the potential functions are diagonal
matrices.

We here briefly mention the accuracy of the presented ex-
pressions. The formulas as written above give correct energies
up to second order in (ε − εν ). A way to improve on this is by
a variational procedure [90], which produces a new Hamil-
tonian, giving eigenvalues correct to third order. Correspond-
ingly, the substitution z → z + (z − εν )3p in Eq. (A7) gives a
third-order expression for the potential function [39,89]. Here,
p = 〈φ̇γ |φ̇γ 〉 is a (relatively small) potential parameter. In
order to compare the spectra arising from the different orders
of LMTOs, we investigated the DOS for various systems using
either second- or third-order potential functions, and compar-
ing the result with the DOS computed from the Hamiltonian
through the spectral representation. We found that while at
second order there was no difference between the DOS, for
third order there were clear differences between the spectra.
This can be attributed to the false poles present in the third-
order potential function [90], since the energy dependence is
now not linear, but cubic. In practice, we found that this led to
a loss of spectral weight in the Green’s function of Eq. (A7),
compared to the spectral representation. Hence, in this paper
we only consider second-order potential functions in Eq. (A7).

APPENDIX B: EXACT MUFFIN-TIN ORBITALS METHOD

One choice of basis for the solution of the Kohn-Sham
equation (1) is the energy-dependent exact muffin-tin orbitals
[18–20], ψ̄ . They are constructed as a sum of the so-called
partial waves, the solutions of the radial equations within the
spherical muffin tins, and of the solutions in the interstitial
region. Using this basis, the Kohn-Sham eigenfunctions can
be expressed as

�j (r) =
∑
RL

ψ̄a
RL(εj , rR )va

RL,j , (B1)

where the superscript a denotes the screening representation
used in the EMTO theory [18,19].

The expansion coefficients, va
RL,j , are determined so the

�j (r) is a continuous and differentiable solution of Eq. (1) in
all space. This leads to an energy-dependent secular equation,
Ka

RLR′L′ (εj )va
RL,j = 0, where Ka

RLR′L′ is the so-called kink
matrix, viz.,

Ka
RLR′L′ (k, z) ≡ aδRR′δLL′Da

RL(z) − aSa
RLR′L′ (k, z). (B2)

Da
RL(z) denotes the EMTO logarithmic derivative function

[19,42], and Sa
RLR′L′ (k, z) is the slope matrix [41]. The energy

dependence of the kink matrix and the secular equation poses
no difficulties, since the DFT problem can be solved by
Green’s function techniques (see, for example, Ref. [91]). By
defining the path operator ga

RLR′L′ (k, z) as the inverse of the
kink matrix,∑

R′′L′′
Ka

R′L′R′′L′′ (k, z)ga
R′′L′′RL(k, z) = δR′RδL′L, (B3)

the poles of the path operator in the complex energy plane
will correspond to the eigenvalues of the system. The energy
derivative of the kink matrix, K̇RLR′L′ (k, z), gives the overlap

matrix for the EMTO basis set [41], and hence it can be used
to normalize the path operator gR′′L′′RL(k, z), which gives the
EMTO Green’s function [19,42]

GRLR′L′ (k, z) =
∑
R′′L′′

gRLR′′L′′ (k, z)K̇R′′L′′R′L′ (k, z)

−δRR′δLL′IRL(z), (B4)

where IRL(z) accounts for the unphysical poles of K̇RLR′L′ (z)
[19,20]. The use of Green’s functions also facilitates the
implementation of the CPA; the reader is referred to
Refs. [19,20,22] for more detailed discussions.

APPENDIX C: ILLUSTRATIVE CPA+DMFT ALGORITHM
FOR MODEL CALCULATIONS

The algorithm presented in Sec. III C is formulated in
the language of multiple scattering for muffin-tin potentials.
It represents a generalization of the usual algorithm used
for model calculations. In what follows we illustrate the
CPA+DMFT self-consistency loop for the one-band Hub-
bard model with on-site disorder (or the so-called Anderson-
Hubbard Hamiltonian):

H = −
∑
ijσ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ +
∑
iσ

(εi − μσ )niσ .

(C1)
Here c

†
iσ (ciσ ) create (annihilate) a spin-σ electron on site i

with niσ = c
†
iσ ciσ and μσ is the chemical potential of the spin-

σ electrons. The on-site energies εi are chosen as random,
while the hopping elements tij are independent of random-
ness; thus, short-range order is neglected. The coherent and
alloy component Green’s functions, and the corresponding
self-energies, are complex functions of the real energy E. For
a multiband case these quantities are matrices in orbital space.
We start the self-consistency loop with a guess for the self-
energy �c, which includes disorder and correlation effects.
We emphasize that the combined disorder and correlation
effects enter in one single self-energy �c. The local Green’s
function Gc = ∑

k [E + μ − ε(k) − �c]−1 is computed from
the electronic dispersion ε(k) (eigenstate of the lattice Hamil-
tonian in the absence of disorder and electronic correlations)
and the initial guess for the self-energy �c. From the coherent
(local) Green’s function, alloy component (i = A,B, . . . )
Green’s functions are computed as

Gi = Gc

[
1 − (

Vi + �DMFT
i − �c

)
Gc

]−1
, (C2)

for a given (fixed) disorder realization. In the next step the
many-body problem is solved using the DMFT methodology:
the DMFT bath Green’s function is constructed as G−1

i =
G−1

i + �DMFT
i . Specific DMFT impurity solvers produce al-

loy component many-body self-energies �DMFT
i [Gi]. In the

next step we request that the alloy components should fulfill
the CPA equation: Gc = ∑

i ciGi . This corresponds to the
averaging over the disorder realizations. From the newly
computed Gc the coherent self-energy �c follows directly. To
close the self-consistency loop Gc and �c are returned into
Eq. (C2) to produce new alloy component Green’s functions.
On a more formal level this algorithm was presented in
Ref. [27].
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Finally, we mention here the formal equivalence between
the equations discussed in the present appendix with those
shown in Sec. III C. The CPA equation Gc = ∑

i ciGi and
Eq. (18) are equivalent. The local Green’s function formula
(Gc = ∑

k [E + μ − ε(k) − �c]−1) corresponds to Eq. (19)
in the language of multiple scattering. Finally, Eqs. (C2) and

(20) are equivalent as they provide the alloy components
computed using the Dyson equation. In our recent paper [86]
we have extensively discussed several self-consistent loop
algorithms for the disorder problem. These include cluster
extensions and alternative effective medium theories beyond
the CPA.

[1] G. B. Olson, Science 288, 993 (2000).
[2] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S.

Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A.
Persson, APL Mater. 1, 011002 (2013).

[3] L. Vitos, P. A. Korzhavyi, and B. Johansson, Nat. Mater. 2, 25
(2002).

[4] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[5] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[6] P. Soven, Phys. Rev. 156, 809 (1967).
[7] B. Velický, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175,

747 (1968).
[8] R. Vlaming and D. Vollhardt, Phys. Rev. B 45, 4637 (1992).
[9] B. L. Gyorffy, Phys. Rev. B 5, 2382 (1972).

[10] J. Korringa, Physica 13, 392 (1947).
[11] W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
[12] G. M. Stocks, R. W. Willams, and J. S. Faulkner, Phys. Rev. B

4, 4390 (1971).
[13] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
[14] J. Kudrnovský, V. Drchal, and J. Masek, Phys. Rev. B 35, 2487

(1987).
[15] J. Kudrnovský and V. Drchal, Phys. Rev. B 41, 7515 (1990).
[16] I. Abrikosov, Y. Vekilov, and A. Ruban, Phys. Lett. A 154, 407

(1991).
[17] I. A. Abrikosov and H. L. Skriver, Phys. Rev. B 47, 16532

(1993).
[18] O. K. Andersen, O. Jepsen, and G. Krier, Lectures on Methods of

Electronic Structure Calculation (World Scientific, Singapore,
1994).

[19] L. Vitos, Phys. Rev. B 64, 014107 (2001).
[20] L. Vitos, Computational Quantum Mechanics for Materials

Engineers (Springer, London, 2010).
[21] L. Vitos, J. Kollár, and H. L. Skriver, Phys. Rev. B 49, 16694

(1994).
[22] L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett.

87, 156401 (2001).
[23] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[24] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[25] G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).
[26] V. Janis and D. Vollhardt, Phys. Rev. B 46, 15712 (1992).
[27] M. Ulmke, V. Janis, and D. Vollhardt, Phys. Rev. B 51, 10411

(1995).
[28] Y. Kakehashi, Phys. Rev. B 66, 104428 (2002).
[29] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[30] K. Held, Adv. Phys. 56, 829 (2007).
[31] J. Minár, L. Chioncel, A. Perlov, H. Ebert, M. I. Katsnelson,

and A. I. Lichtenstein, Phys. Rev. B 72, 045125 (2005).
[32] P. Wissgott, A. Toschi, G. Sangiovanni, and K. Held, Phys. Rev.

B 84, 085129 (2011).

[33] M. A. Korotin, Z. V. Pchelkina, N. A. Skorikov, E. Z. Kurmaev,
and V. I. Anisimov, J. Phys.: Condens. Matter 26, 115501
(2014).

[34] A. S. Belozerov, A. I. Poteryaev, S. L. Skornyakov, and V. I.
Anisimov, J. Phys.: Condens. Matter 27, 465601 (2015).

[35] A. S. Belozerov and V. I. Anisimov, J. Phys.: Condens. Matter
28, 345601 (2016).

[36] A. Östlin, L. Vitos, and L. Chioncel, Phys. Rev. B 96, 125156
(2017).

[37] O. K. Andersen, Phys. Rev. B 2, 883 (1970).
[38] O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
[39] O. K. Andersen, O. Jepsen, and M. Sob, Electronic Band

Structure and Its Applications (Springer Verlag, Berlin, 1986).
[40] H. L. Skriver, The LMTO Method (Springer, Berlin, 1984).
[41] O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B 62,

R16219(R) (2000).
[42] L. Vitos, H. L. Skriver, B. Johansson, and J. Kollár, Comput.

Mater. Sci. 18, 24 (2000).
[43] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[44] O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B

27, 7144 (1983).
[45] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[46] N. E. Bickers and D. J. Scalapino, Ann. Phys. (NY) 193, 206

(1989).
[47] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884

(1998).
[48] M. I. Katsnelson and A. I. Lichtenstein, J. Phys.: Condens.

Matter 11, 1037 (1999).
[49] L. V. Pourovskii, M. I. Katsnelson, and A. I. Lichtenstein, Phys.

Rev. B 72, 115106 (2005).
[50] O. Grånäs, I. Di Marco, P. Thunström, L. Nordström, O.

Eriksson, T. Björkman, and J. M. Wills, Comput. Mater. Sci.
55, 295 (2012).

[51] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[52] M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichtenstein,
and R. A. de Groot, Rev. Mod. Phys. 80, 315 (2008).

[53] A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev.
Lett. 87, 067205 (2001).

[54] A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein,
Phys. Rev. B 67, 153106 (2003).

[55] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179
(1977).

[56] A. Östlin, L. Chioncel, and L. Vitos, Phys. Rev. B 86, 235107
(2012).

[57] A. Östlin, W. H. Appelt, I. Di Marco, W. Sun, M. Radonjić, M.
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