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We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard
model by mean-field calculations. The focus falls on Van Hove filling and the hopping amplitude t ′/t = 0.341.
The fRG data suggest a quantum critical point (QCP) in this region and in its vicinity a singular fermionic
self-energy Im �(ω)/ω ∼ −|ω|−γ with γ ≈ 0.26 [K-U. Giering and M. Salmhofer, Self-energy flows in the
two-dimensional repulsive Hubbard model, Phys. Rev. B 86, 245122 (2012)]. Here we start a more detailed
investigation of this QCP using a bosonic formulation for the effective action, where the bosons couple to
the order parameter fields. To this end, we use the channel decomposition of the fermionic effective action
developed in C. Husemann and M. Salmhofer, Efficient Parametrization of the Vertex Function, Omega-Scheme,
and the (t, t’)-Hubbard Model at Van Hove Filling, Phys. Rev. B 79, 195125 (2009), which allows us to perform
Hubbard-Stratonovich transformations for all relevant order parameter fields at any given energy scale �. We
stop the flow at a scale � where the correlations of the order parameter field are already pronounced, but the
flow is still regular, and derive the effective boson theory. It contains d-wave superconducting, magnetic, and
density-density interactions. We analyze the resulting phase diagram in the mean-field approximation. We show
that the singular fermionic self-energy suppresses gap formation both in the superconducting and magnetic
channel already at the mean-field level, thus rounding a first-order transition (without self-energy) to a quantum
phase transition (with self-energy). We give a simple effective model that shows the generality of this effect. In
the two-dimensional Hubbard model, the effective density-density interaction is peaked at a nonzero frequency,
so that solving the mean-field equations already involves a functional equation instead of simply a matrix
equation (on a technical level, similar to incommensurate phases). Within a certain approximation, we show that
such an interaction leads to a short quasiparticle lifetime.
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I. INTRODUCTION

The discovery of high-temperature superconductors and
other materials displaying anomalous properties at tempera-
tures above the transition to the symmetry-broken state started
a discussion about the breakdown of Landau’s Fermi liquid
(FL) theory [1]. A finer characterization of what is broadly
called a “non-Fermi-liquid” has been approached in various
ways. In cases where it still makes sense to define a fermionic
self-energy via a Dyson relation, the regularity properties of
the self-energy hold the key to essential properties of the
(quasi)particle excitations of the many-body system. Suffi-
cient regularity of the self-energy implies FL-like behavior
[2]. A singularity of the fermionic self-energy at zero fre-
quency implies deviations from the FL. Such singular self-
energies can arise near quantum critical points in fermionic
systems. A true singularity would occur only at zero tem-
perature, but it leaves its vestiges at positive temperature,
specifically by small-frequency asymptotics of the fermionic
self-energy of the type |ω|α sgn (ω) with α < 1 for ω → 0.
The exponent α determines the anomalous decay exponents
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of the single-quasiparticle excitations, hence provides specific
information about deviations from FL properties.

In this paper, we continue our investigations of lattice
fermion systems with band functions that have saddle points
or even degenerate critical points, Van Hove points, on the
Fermi surface, so that the latter becomes a singular Fermi
surface. At these points, the fermionic density of states di-
verges in one and two dimensions, and singularities appear in
the fermionic self-energy. A general mechanism for this was
identified in Ref. [3], where an asymmetry in the regularity
of the self-energy as a function of spatial momentum k
and Matsubara frequency k0 was shown to exist. For Fermi
surfaces containing Van Hove points, it was proven [3,4] to
all orders in renormalized perturbation theory that the self-
energy � is at least once continuously differentiable as a
function of k, and that in two dimensions, the k0 derivative
diverges at k0 = 0 already in second-order perturbation theory
at the Van Hove points. The asymmetry, i.e., the fact that this
divergence only arises in the frequency derivatives, but not in
the momentum derivatives, is of fundamental interest because
it is a feature not present in the one-dimensional Luttinger
liquid, where frequency and momentum derivatives have the
same singularities in perturbation theory. In a renormalization
group (RG) flow analysis [5,6], the corresponding flow of the
quasiparticle weight directly leads to the behavior |k0|α , α <

1, mentioned above, if the coupling function (the four-point
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function describing the effective two-particle interaction) re-
mains bounded.

The assumption that the coupling function remains
bounded is, however, in general unfounded. In the two-
dimensional case, there are several potential singularities in
the four-point function, which are all of the same order of
magnitude in perturbation theory, and which also have a non-
trivial interplay with the singular terms in the self-energy. We
would like to determine what really happens in this coupled
system, taking into account all competing terms and going
beyond perturbation theory. Our fermionic RG method allows
us to do exactly this for weakly coupled models.

Because of its role in modeling cuprate materials and
its intrinsic interest as a prototypical, hard, model case [7–
12], we focus on the two-dimensional Hubbard model at
Van Hove filling. Specifically, we consider the model with
nearest-neighbor hopping amplitude t > 0 and a next-to-
nearest neighbor hopping amplitude −t ′ < 0, and the usual
on-site repulsion U > 0. We vary θ = t ′/t , keeping the den-
sity fixed at Van Hove filling. The logarithmically divergent
density of states implies that at temperature β, in second-order
perturbation theory, the superconducting pairing term is of
order (U log β )2, the magnetic term is of order U log β, and
the frequency derivative of the fermionic self-energy also
grows like (U log β )2. Thus these terms can all compete with
each other, and varying θ changes their relative strength. At
small θ , the leading correlations are antiferromagnetic. When
θ gets larger, the Fermi surface is curved, hence non-nested,
away from the VH points. This weakens antiferromagnetic
correlations, and the superconducting correlations dominate.
At still larger θ , above 0.35, ferromagnetism dominates.

We first observed, using the temperature-flow RG [13,14],
that there is an effective cancellation of the ferromagnetic
and the superconducting singularities at θ ≈ 0.33. Close to
this value, the flow could be extended to very low scales,
with numerical accuracy to zero scale. In Refs. [13,14],
the self-energy was not taken into account; nevertheless, it
clearly indicated a quantum critical point separating a d-
wave superconducting and a ferromagnetic phase. In the light
of the above discussion, this point is of particular interest,
because it can be seen already in second-order perturbation
theory that two of the three competing terms cancel out. In
subsequent RG studies, we used the �-flow scheme and the
vertex parametrization introduced in Ref. [15] and included a
momentum- and frequency-dependent fermionic self-energy
in the flow. We confirmed [16–18] that the cancellation makes
the self-energy term dominate the flow and further suppress all
ordering tendencies, resulting in a quantum phase transition
point at θ∗ = 0.341, and a non-Fermi liquid exponent α =
0.74 in the frequency dependence of the self-energy.

In this paper we complement the RG studies by an analysis
of the order parameters, based on the results obtained by
the RG. Because we have used a parametrization of the
effective action suitable for the symmetric phase, the results
of Refs. [13–15,17] do not include the symmetry-broken
phases. However, the RG flow can be stopped at any scale,
yielding an effective action for the low-energy degrees of
freedom, which we can use to study order parameters and
low-temperature phases. Because there are several competing
terms, the interaction term has no simple factorization prop-

erties, but as shown in Ref. [15], it can be approximated well
by a sum of boson exchange interactions, which correspond
to density-density, spin-spin, and Cooper pair interactions.
The parametrization of this effective action in Ref. [15] is
designed so that a Hubbard-Stratonovich transformation can
be applied to it directly, leaving a coupled system of bosonic
order parameter fields. The channel-decoupling ansatz has
been refined and developed further and applied to multiband
systems; see Ref. [19] and references therein.

Here, we start our analysis of the effective bosonic sys-
tem at the QCP by studying the order parameters in mean-
field theory. This is only a first step in understanding the
low-energy phases, but, due to its simplicity, the method
brings out an interesting aspect very clearly: The singular
fermionic self-energy causes a rounding of the phase tran-
sition already in mean-field theory. This effect is explained
in Sec. II. In Sec. III, we first give details on how we use
the one-particle irreducible effective action at a scale � > 0
to define the low-energy theory and then do the Hubbard-
Stratonovich transformation and study the mean-field theory
for this low-energy theory. A particular, important feature of
the effective action in the Hubbard model is that it does not
just contain magnetic and superconducting terms but also a
density-density interaction. The latter has a rather nontrivial
frequency dependence which leads to effects reminiscent of
noncommensurate phases, in that the mean-field equations do
not close in a subspace of small dimension. We calculate the
effect of these interactions approximately in Sec. V.

II. ROUNDING OF PHASE TRANSITIONS BY SINGULAR
FERMIONIC SELF-ENERGIES

In this section, we show in a model case that a singular
self-energy can suppress order parameters already on the
mean-field level, so that the transition from one to the other
becomes continuous. The idea behind this is very simple:
Symmetry breaking at low temperatures and at arbitrarily low
coupling strength can occur because the standard free-fermion
propagator is not square integrable at zero temperature (in
fermionic models, the L2 norm of the propagator is identical
to the ‘particle-particle bubble,’ that is, value of the lowest-
order Cooper pairing process between particles with momenta
k and −k). If, however, the denominator of the propagator
contains a self-energy that vanishes like a power less than 1
as the frequency goes to zero, this term dominates the low-
energy behavior of the propagator. It makes the propagator
less singular, so that the latter becomes square integrable, and
then mean-field equations no longer have solutions below a
certain threshold for the coupling constant.

In our analysis of the two-dimensional Hubbard model
done in later sections of this paper, we have isolated the
fermionic self-energy as the main ingredient responsible for
the quantum critical behavior. At Van Hove filling and in
the vicinity of the hopping parameter t ′/t = θ� = 0.341, the
fRG studies of Refs. [16,17] predict a self-energy of the form
∝−i sgn(ω)|ω|α with an exponent α ≈ 0.74. The dominant
instability for t ′/t < θ is in the Cooper and for t ′/t > θ

in the ferromagnetic channel. We will show that mean-field
calculations based on the critical self-energy correctly classify
this boundary as a quantum critical point. In a nutshell, we
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FIG. 1. The qualitative behavior of the free energy as a function
of the gap parameters �dSC and �FM, in the vicinity of the second
order quantum phase transition (t ′/t = θ�). Both order parameters
vanish at the QCP due to self-energy effects.

will show that there is a strong connection between quantum
fluctuations at the phase transition between the superconduct-
ing and the ferromagnetic phase and the dependence of the
critical self-energy as a fractional power law of the frequency,
as discussed above. The shape of the free energy is depicted
in Fig. 1 as a function of one of the order parameters �FM/dSC

when the other is zero. We note that coexistence of singlet
superconductivity and ferromagnetism is excluded at mean-
field level because the corresponding stationary point is a
maximum of the free energy. Triplet pairing is suppressed in
the Hubbard model at Van Hove filling because the form factor
of the gap must be odd, which implies that it also vanishes at
the boundary of the first Brillouin zone, hence at the saddle
points of the dispersion relation. In the second order quantum
phase transition, both order parameters vanish in the vicinity
of the critical point. In the following we will demonstrate that
the critical exponent of the self-energy is crucial for second
order quantum phase transition.

Consider the mean-field action

S = −
∑

σ

∫
d3k

(2π )3
(ik0 − εk − �(k0))ψk,σψk,σ

+�x · Ôx + βV
|�x|2
Ux

, (1)

where k = (k0, k1, k2) = (k0, k) contains the Matsubara fre-
quency variable k0 and spatial momentum k = (k1, k2). εk is
the dispersion relation

εk = −2t (cos k1 + cos k2) + 4t ′(cos k1 cos k2 + 1) (2)

of the two-dimensional Hubbard model at Van Hove filling. �
is the self-energy and

ÔFM =
∑

σ

∫
d3k

(2π )3
σ ψk,σψk,σ , (3)

ÔdSC = 1

2

∑
σ

∫
d3k

(2π )3
σ f2(k)ψk,σψ−k,−σ (4)

are operators quadratic in the fields ψ,ψ whose expectation
values Ox = 〈Ôx〉, x ∈ {FM, dSC} are the order parameter of
the ferromagnetic and superconducting states. We will use a
self-energy of the form

�(ω) ∝ −i sgn(ω)|ω|1−γ , γ = 0.26 (5)

motivated by fRG calculations [17]. More precisely we re-
strict this self-energy to the vicinity of the critical hopping

θ� = 0.341 through

�(ω) = −isgn(ω)[(ω2 + (t ′/t − θ�)2)
1−γ

2

− |t ′/t − θ�|1−γ ] . (6)

The gap parameters �X arise as the zero modes of
Hubbard-Stratonovich fields. UX > 0 denotes the correspond-
ing effective interaction strength. Note that UdSC > 0 corre-
sponds to an attractive effective interaction which gets gener-
ated during the fRG flow.

Define F� by

F� (ξ ) =
∫

dω

2π

1

i(ω − Im �(ω)) − ξ
. (7)

The self-consistency equations for the gap parameters, mini-
mizing the free energy, are given by

1 = UFM

2

∫
d2k

(2π )2

σ F� (εk − σ�FM)

�FM
, (8a)

1 = UdSC

2

∫
d2k

(2π )2

f 2
2 (k)

Ek
σF� (−σEk ) , (8b)

with

Ek =
√

ε2
k + f 2

2 (k)|�dSC|2 , (9)

and the order parameters are given by OX = 2�X/UX.
We denote the smallest interaction UX from where on the

corresponding self-consistency equation has a solution (�X �=
0) with Umin

X ,

Umin
FM /t =

(
−
∫

d2k
(2π )2

F ′
� (εk )

)−1

,

Umin
dSC/t =

(
1

2

∫
d2k

(2π )2

f 2
2 (k)

|εk| (F� (−|εk|) − F� (|εk|))
)−1

.

(10)

If we neglect the self-energy then, at Van Hove filling, Umin
FM =

Umin
dSC = 0. That is, there is no threshold below which either

of the two orderings becomes impossible. Depending on the
free energy, the ground state will either be superconducting
or ferromagnetic, and the transition from one to the other
is discontinuous. Including the self-energy Eq. (5) changes
this picture drastically: In this case, Umin

FM , Umin
dSC > 0, so that a

quantum critical regime becomes possible. The phase diagram
for t ′/t = θ� is shown in Fig. 2. For small enough effective
interaction the system will be in a quantum critical regime.

Finally in Fig. 3 we show the order parameters as a
function of the hopping amplitude with and without the self-
energy. With the self-energy we see a quantum critical region.
Close to the QCP the free energy as a function of �FM and
�dSC has only a trivial minimum at �FM = �dSC = 0. In our
convention, in such a case FFM = FdSc = 0. Neglecting the
self-energy results in nonvanishing order parameters. Each
one corresponds to a nontrivial minimum of the free energy.
The deepest minimum determines the state. At θ� there is a
first order transition from a superconductor to a ferromagnet
since FFM becomes smaller than FdSC as we move from the
left to the right along the t ′/t axis.
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FIG. 2. Zero temperature phase diagram at t ′/t = θ�. Due to the
critical self-energy there is no symmetry breaking in the unshaded
region UFM/t < 5, UdSC/t < 0.9.

The numerical values for the parameters that we have
used in this model case serve the purpose of demonstrating
the basic effects of the self-energy on gap formation. While
qualitatively similar, the full model contains nontrivial depen-
dencies of all parameters on the hopping amplitude and scale.
Furthermore, not only the self-energy, but also the interac-
tion depends on momenta and frequencies. Nevertheless, the
frequency dependence of the self-energy remains the driving
force suppressing the gap formation in the vicinity of the
transition point. In the next section we will show this using
our quantitative calculations for the two-dimensional Hubbard
model. We discuss the low energy obtained from the RG when
the flow is stopped at a certain scale and then evaluate the
remaining functional integral for the partition function in a
saddle-point approximation.

III. THE LOW-ENERGY EFFECTIVE THEORY OBTAINED
FROM THE RENORMALIZATION GROUP

An essential feature of the RG approach [5,6] is that the
scale parameter, which in our case is an energy scale �,
not only determines how degrees of freedom are successively
integrated over but also allows us to use the effective action
obtained at a certain energy scale � to define the low-energy
theory. In this way, one can then use a variety of methods at
lower scales. This is in many cases of great practical interest
because the continuation of a flow with several competing
order parameters into symmetry-broken phases is involved,
and it is useful to get information by simplified means before
embarking on a full analysis.

In this section, we show how to change from the fermionic
to the bosonic description, given a fermionic action in the
form of Ref. [15]. To be specific and concise, we do this for
our specific model, but the essential features used and steps
performed here are the same in a large class of models.

A. General structure

We briefly recapitulate how the effective action obtained at
a certain energy scale � from the fermionic renormalization
group flow is used to define a low-energy model. The gener-
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FIG. 3. Free energy and order parameters as functions of the
hopping amplitude t ′/t . (a) Without self-energy, UFM/t = 2.61
and UdSC/t = 0.42. (b) With critical self-energy, UFM/t = 4 and
UdSC/t = 0.42. Lighter color indicates that the order parameter
corresponds to the phase with the higher free energy. The inter-
actions are chosen such that the phase transition happens close
to t ′/t = θ�.

ating functional for the microscopic theory is given by

Z(η̄, η) = N
∫

dμC (φ̄, φ)e−I0 (φ̄,φ) e(η̄,φ)−(φ̄,η), (11)

where μC denotes the normalized Grassmann Gaussian
measure

dμC = det C
∏
k,σ

dψ̄k,σ dψk,σ e(ψ̄,C−1ψ ) (12)

and the bare propagator C is determined by the quadratic part
of the Hamiltonian and I0 by the interaction terms. The nor-
malization constant N is simply the partition function for free
fermions: N =∏σ,k βV (1 + e−βεk ) =∏σ

∏
k βV C(k0, k).

V = L2 is the surface area of the lattice and β is the inverse
temperature. Our results correspond to the limit V → ∞ and
β → ∞. In our fermionic model, we assume that I0 does
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not contain any terms with odd powers in the fields. The RG
method starts by decomposing C = C� + D�, where

C� = Cχ�, D� = C − C� = C(1 − χ�) . (13)

Here χ� is an infrared regulator that depends on the scale
parameter �. In our case,

C(k0, k) = 1

ip0 − ξ (k)
(14)

times δσ,σ ′ , where σ denotes the spin index, and we choose

χ�(k0, k) = k2
0

k2
0 + �2

(15)

independent of k. χ� is a regulator because the k2
0 in the

numerator cancels the singularity of C at k0 = 0. This soft
regulator is chosen [15] to avoid artificial suppression of fer-
romagnetism and other small-momentum correlations. More-
over, including the Fermi surface deformation does not require
any adaptive scale decomposition [20] with this regulator
because χ� is independent of k. The low-energy propagator

D�(k0, k) = �2

k2
0 + �2

1

ip0 − ξ (k)
(16)

has the same singularity at k0 = 0 as C�, but it decays as
|k0|−3 for |k0| → ∞.

The following considerations about the effective theory
below scale � apply in general and do not depend on our
particular choice of model and regulator. It follows by the
addition principle of Gaussian integration [21] that the inte-
gration field splits as φ = ψ + ϕ into a ‘high-energy’ field ϕ

and a ‘low-energy’ field ψ , and

Z(η̄, η) = N
∫

dμD�
(ψ̄, ψ )e(η̄,ψ )−(ψ̄,η)

N
∫

dμC�
(ϕ̄, ϕ)e−I0 (ψ̄+ϕ̄,ψ+ϕ)e(η̄,ϕ)−(ϕ̄,η).

(17)

If we are interested only in the correlations of the ψ and ψ̄

fields at low energy scales, we may choose the sources to
couple only to the low-energy fields ψ and ψ̄ [22] and get

Z(η̄, η) = N
∫

dμD�
(ψ̄, ψ )e(η̄,ψ )−(ψ̄,η) e−A�(ψ̄,ψ ) , (18)

where A�(ψ̄, ψ ) = −log (N
∫

dμC�
(ϕ̄, ϕ)e−I0 (ψ̄+ϕ̄,ψ+ϕ) ) is

Wilson’s effective interaction, namely the generating func-
tional of the connected, and C�-amputated, correlation func-
tions. Once A has been obtained, (18) is the definition of the
partition function of the ‘low-energy effective theory.’

In our RG flow, we calculate the one-particle irreducible
vertex functions. The interaction I� is given in terms of these
vertices in the following way. The quadratic part of A is
(ψ̄, A

(2)
� ψ ), where

A
(2)
� = C−1

� − C−1
� G�C−1

� , (19)

and G�, the full propagator above scale �, is related to the
self-energy �� by a Dyson relation

G� = (C−1
� − ��)−1 = χ�

C − χ���

(20)

in which the regulator function χ� multiplies the self-energy
in the denominator. The quartic and higher terms of A are
given by sums over tree diagrams, the lines of which carry
full propagators G�, and the vertices of which are given by
the 1PI vertices �(2m) with m � 2. It follows that external legs
carry a factor G times C−1 In particular,

A
(4)
� (K1, · · · ,K4) = �

(4)
� (K1, · · · ,K4)

4∏
i=1

G�(ki )

C�(ki )
, (21)

where Ki = ((k0)i , ki , σi ). This formula holds for the four-
point function because, by our assumption that the micro-
scopic interaction has no odd interaction terms, the connected
four-point function is obtained by attaching full propagators
to the irreducible four-point vertex. The denominators in this
formula reflect the amputation by C�. In the following we
drop all A

(2m)
� with m � 3.

The form of the interaction makes it natural to change
variables to the fields

(�k,σ ,�k,σ ) = G�(k)

C�(k)
(ψk,σ , ψk,σ ) , (22)

so that the generating functional Z(η̄, η) = N�Z̃(H̄ ,H ) with
N� = N det(1 − C���)−1 and

Z̃(H̄ ,H ) =
∫

dμT�
(�̄,�) e−�

(4)
� (�̄,�)+(H̄ ,�)−(�̄,H ) (23)

is a function of the rescaled source fields

H̄ = (1 − C���)−1η̄, H = (1 − C���)−1η . (24)

The propagator of the � fields is

T� = (1 − χ�) (C−1 − ��)−1(1 − C���)−1 . (25)

The first factor 1 − χ� in T� [in our case, �2/(�2 + k2
0 )]

now suppresses large energies, as is appropriate for a low-
energy theory. The factor in the middle is a full propagator,
in which the self energy of the fields that were integrated over
enters in the standard way, but, in contrast to (20), without
getting multiplied by a regulator function. The last factor is
there because the quadratic term of the effective action A is
reducible, hence may contain strings of self-energy insertions
from the integration of scales above �. The condition that
this factor is nonsingular poses a restriction on the size of the
effective interaction. Hence, in flows where the vertex func-
tions grow, it also provides a test whether the flow equation
still makes sense.

B. The effective interaction of the Hubbard model

The above setup does not allow us to continue the flow into
the symmetry-broken phase, mainly because we have made
a symmetric ansatz for the effective action. The fermionic
RG flow can be continued into symmetry-broken phases by
including a small symmetry-breaking field, so that nonvanish-
ing expectation values of order parameter fields can develop
and then turning the symmetry-breaking field to zero after
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the limit � → 0 has been taken [23–26]. One can also use
partial bosonization to follow the flow into the symmetry
broken phase [27,28]. With our symmetric ansatz, the flow
runs into a singularity at some positive �s , which implies that
we have to restrict the flow to scales above some �∗ > �s ,
where the coupling functions are still finite and not too large.
The scale �s gives an estimate for the critical temperature,
which is usually an overestimate, because the fluctuations
of the order parameter fields can further suppress the order
parameters. (In two dimensions, it is this suppression that
yields the Mermin-Wagner theorem.) At a ‘deconfined’ QCP
that is not shielded by some ordered phase, �s = 0, so that
the flow can be taken to zero. In principle, this provides a
way to test for the existence of such a deconfined QCP. In
our model, we can run the flow to scales as low as �/t ∼
10−5, but lower scales are hard to access because the accurate
evaluation of bubble integrals becomes challenging. Thus we
stop the flow at a low scale, bosonize the effective interaction
obtained from the RG flow, and study the remaining nontrivial
functional integration over the low-energy degrees of freedom
in a bosonic language. In this paper, we apply a saddle-point
approximation for the bosonic integration, which corresponds
to mean-field theory for the order parameters. This procedure
also gives information about the order parameters.

To simplify notation, we drop the subscript � whenever
the scale dependence is clear from the definition of a quantity.
In particular, we denote the effective two-particle interaction
at scale �, �

(4)
� , by V in the following. The general SU (2) ×

U (1)-symmetric form of V is

V (ψ̄, ψ ) = 1

2

∫ 4∏
j=1

d3pj

(2π )3
δ(p2 + p2 − p3 − p4)

× v(p1, p2, p3)
∑
σ,τ

ψ̄σ p1ψ̄τ p2ψτ p3ψσ p4 . (26)

To capture the singular momentum dependence of the vertex
in an efficient parametrization the interaction vertex (26) is

decomposed into different channels [15],
V = VB + VK + VM + VD , (27)

as follows. VB is the bare Hubbard interaction,

VK (ψ,ψ ) = −1

4

∫
d3�

(2π )3

∞∑
m,n=1

Km,n(�) S (0)
m (�)S (0)

n (−�),

VM (ψ,ψ ) = −1

4

∫
d3�

(2π )3

∞∑
m,n=1

Mm,n(�)
3∑

j=1

S (j )
n (�)S (j )

m (−�),

VD (ψ,ψ ) = +
∫

d3�

(2π )3

∞∑
m,n=1

Dm,n(�)
3∑

j=0

C̄ (j )
m (�)C (j )

n (�),

(28)

and S
(j )
� , C

(j )
� , C̄

(j )
� denote the fermionic bilinears

S (j )
m (�) =

∫
d3q

(2π )3
fm(q) ψ

T

q σ (j )ψq+� ,

C̄ (j )
m (�) = i

2

∫
d3q

(2π )3
fm(q) ψ

T

q σ (j )ψ�−q ,

C (j )
m (�) = i

2

∫
d3q

(2π )3
fm(q) ψT

q σ (j )ψ�−q , (29)

where ψ (p) = (ψ+(p), ψ−(p))T , similarly for ψ (p), σ (j ) are
the Pauli matrices (σ (0) = 1) and fm are scale independent
form factors, in particular

f1(q) = 1 ,

f2(q) = cos(qx ) − cos(qy ) . (30)

In the case m = 1 we drop the subscript from the bilinear,
writing S (0) for S

(0)
1 . The full interaction vertex is then given

in terms of the bosonic propagators Km,n, Mm,n, Dm,n and the
form factors fn by

v(p1, p2, p3) = U +
∞∑

m,n=0

Vm,n(p1, p2, p3) (31)

with

Vm,n(p1, p2, p3)

= fm

(
p1 + p3 − p1

2

)
Mm,n(p3 − p1) fn(p2 − p3 − p1

2
) + 1

2
fm

(
p1 + p2 − p3

2

)
Mm,n(p2 − p3) fn

(
p2 − p2 − p3

2

)
− 1

2
fm

(
p1 + p2 − p3

2

)
Km,n(p2 − p3) fn

(
p2 − p2 − p3

2

)
− fm

(
p1 + p2

2
− p1

)
Dm,n(p1 + p2) fn

(
p1 + p2

2
− p3

)
.

(32)

In Eq. (27) we have kept the initial interaction separate so that
the exchange propagators are zero at the beginning of the flow.

This ansatz for the effective interaction has a straight-
forward interpretation: the composite operators given by the
fermionic bilinears, in our case density operators, Cooper
pair fields, and spin fields, have an interaction mediated by
coupling functions K , D, and M . Moreover, the low-energy
propagator (25) corresponds to a kinetic term of the low-
energy fermionic degrees of freedom, which, importantly,

contains the self-energy from the integration down to scale
�. In the general setup of Ref. [15], the indices m and n

in (28) label members of an orthonormal basis of functions
on momentum space, so that, in principle, every square-
integrable function can be represented this way. The main idea
of this decoupling is that singularities in v that develop during
the RG flow are captured by the functions Dm,n, Mm,n, and
Km,n, which can be thought of as boson exchange propagators,
while the form factors of the fermionic bilinears are regular
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functions, hence square integrable, so that the expansion in
m and n applies. Clearly, several remarks are in place here.
First, boson propagators need to have positivity properties
to preserve stability; this is not an issue in the fermionic
RG flow—rather, checking positivity of the real part can
be used as a test whether the effective action can really be
bosonized. Second, the occurrence of singularities only as
functions of p1 − p3, p2 − p3, and p1 + p2 can be strictly
proven for small coupling functions [2], but in later stages
of the flow it is an assumption. Third, when entering the
symmetry-broken phase, where some of Dm,n, Mm,n, and Km,n

develop singularities, the form factors themselves become
singular and this channel decomposition is no longer accurate
and must be refined [29]. We shall, however, use it only in
the symmetric phase; there it is well justified, and it has the
advantage of allowing us to switch to a description in terms of
bosonic order parameter fields by a straightforward Hubbard-
Stratonovich transformation (provided the above-mentioned
positivity holds).

In the general parametrization of Ref. [15], all functions
may depend both on the spatial momenta and on the Mat-
subara frequencies. We make the approximation that the form
factors are independent of the frequencies [see (30)], but we
keep the frequency dependence of the functions Dm,n, Mm,n,
and Km,n. In Refs. [15,18], we verified that this approxima-
tion, and keeping only K1,1, M1,1, D1,1, and D2,2, lead to
an accurate representation of the flow in the two-dimensional
square-lattice Hubbard model with a frequency-dependent
self-energy. Thus we drop all other pairs (m, n) from the sums
in (28).

The exchange propagators M1,1, D1,1, and D2,2 remain
positive during the flow. The function K1,1 is positive at zero
frequency, but it develops a pronounced negative minimum at
nonzero frequency. At a first glance, the positive static part
signals an attractive density-density interaction, but M1,1 also
contributes a term to this interaction channel. In particular we
can decompose a local interaction − 1

4M (0)
∫

S(�)S(−�)d�

into a magnetic interaction − 1
4M (0)

∫
S (3)(�)S (3)(−�)d� and

a density-density interaction − 1
2M (0)

∫
S (0)(�)S (0)(−�)d�.

For the bare model, this decomposition leads to the same
mean-field equations as the generalized Hartree-Fock the-
ory [7].

In Sec. V, we investigate the effects of the frequency-
dependent interaction K on the self-energy, which is of par-
ticular interest at the QCP. Elsewhere we assume an approxi-
mately static density.

C. The effective interaction in bosonic form

The decomposition (28) is made such that we can easily
bosonize the effective action. Assuming for the moment that
all functions M , D, and K define positive quadratic forms,
this is done by the following identities for the characteris-
tic functions of Gaussian measures: Let Q be a symmetric
N × N matrix, with positive definite real part Re Q, so
that (φ,Qφ) =∑N

i,j=1 φiQi,jφj has positive real part for all
real N vectors φ �= 0, denote R = Q−1, and let the normal-
ized Gaussian measure dγR (φ) = (det 2πR)−

1
2 e− 1

2 (φ,Qφ)dNφ,

then

e
1
2 (b,Rb) =

∫
RN

dγR (φ) e(b,φ) (33)

holds for any b ∈ CN (and therefore also for any b in the even
subalgebra of a Grassmann algebra). More generally, if H is a
complex matrix and its hermitian part 1

2 (H + H †) is positive
definite, so that for all complex N vectors φ �= 0, (φ̄, Hφ) =∑N

i,j=1 φiHi,jφj has a positive real part, let the normalized
complex Gaussian measure with covariance K = H−1 be
defined as dγK (φ̄, φ) = (det πK )−1e−(φ,Hφ) dNφ̄ dNφ, then

e(b̃,Kb) =
∫
CN

dγK (φ̄, φ) e(b,φ)+(b̃,φ̄) (34)

holds for all b, b̃ ∈ CN (and hence also for any N vectors b

and b̃ with components that are even elements of a Grassmann
algebra).

Some care is required when using complex integrals in
a truly infinite-dimensional setting of a functional integral,
because for complex measures the above conditions on the
real (or hermitian) part do not suffice to define a sigma-
additive measure. However, in the application to many-body
models, the functional integral always results as a limit of a
time discretization by a Trotter formula. Before the limit is
taken, all these manipulations make sense, and considering
normalized correlation functions allows us to bypass ques-
tions about the existence of measures.

In the representation (28) of the terms in the effective
action (27), the functions Km,n, Mm,n, and Dm,n play the role
of the covariance of the bosonic Gaussian measures. For the
density-density interaction K and the magnetic interaction M ,
the fields can be chosen real, since they couple the same type
of fermionic bilinears. The Cooper pair interaction D couples
a Cooper pair bilinear with its conjugate, so the corresponding
boson field must be chosen complex. Since the functions are
already given in diagonal representation in momentum space,
checking if their real (hermitian) part is positive amounts to
checking that the real part of the function is positive. This is
an issue for K , which is not always positive, but not for M

and D. We will discuss this further in Sec. V.
We note in passing that it is not necessary to choose the

covariance of the boson fields exactly equal to K , M , or D. If
convenient, we may also take only an approximation to these
functions, as a matter of convenience. If, say, we take only M0

instead of M , a fermionic four-point vertex with m = M −
M0 remains. If m is small enough, it can be taken into account
by perturbation theory.

We can write the effective interaction (28) as

VK = −1

4
(S (0), (K1,1 − 4U ) S (0) )

VM = −1

4

3∑
j=1

(S (j ), M1,1 S (j ) )

VD = (C̄ (2)
2 , D2,2 C

(2)
2

)
, (35)

where the bilinear form is now (f, g) = ∫ d3�
(2π )3 f (�)g(�).

Here we have already restricted to singlet d-wave Cooper
pairing by taking only C2 in the Cooper term because the
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triplet form factor vanishes at the Van Hove points, hence
is irrelevant at Van Hove filling, and because the s-wave
interaction is repulsive, hence will not lead to pairing.

The Hubbard-Stratonovich (HS) transformation is now a
straightforward application of (33) and (34) to the remaining
Grassmann integral (23). It introduces three types of fields,
corresponding to the density-density interaction VB + VK ,
the spin-spin interaction VM , and the singlet Cooper pair
interaction VD in (27). The HS field for the density interaction
is a real scalar, the one for the magnetic interaction is a three-
component vector field, and the one for the superconducting
interaction is a complex scalar. We write the normalized
expectation value with respect to the corresponding Gaussian
measures as

〈F 〉K,M,D =
∫

dγK11−4U (m0)
∫

dγM11 ( m)

×
∫

dγ−D22 (�̄,�) F (m0, m, �̄,�). (36)

Here we have assumed that the signs of D, M , and K − 4U

are such that the integrals converge. This is the case for
D and M . A more detailed discussion of K − 4U follows
below. This transformation makes the action quadratic in
the fermionic fields, so the integral over these fields can be
performed, resulting in a Pfaffian and the exponential of a
quadratic form in the fermionic source fields. After a few
transformations, one arrives at

Z̃(H̄ ,H ) =
〈
e

1
2 tr logQ e

1
2 (−H̄ ,T�H ) Q−1

(
T�H

H̄

)〉
K,M,D

(37)

with Q = I − L, where I is the identity operator,
Iα,α′ (k, k′) = δα,α′δ(k, k′), and L(k, k′) is given as the
product

L(k, k′) =
[
T�(k) 0

0 1

]
M(k, k′)

[
1 0
0 T�(k′)t

]
(38)

(where t denotes the transpose in the spin indices) and

M(k, k′)=
[

�m(k − k′) 2εf
(

k−k′
2

)
�(k + k′)

−2εf
(

k−k′
2

)
�(k + k′) (�m(k′ − k))t

]
(39)

with�m = m012 + m · σ and ε = iσ2.
The tr logQ contributes a term to the bosonic action which

can be expanded in the standard way as a sum over fermion
loops with external boson lines. Thus it contributes linear
terms in the boson fields, quadratic terms that modify the
boson propagators, and higher order interaction terms. In gen-
eral, these terms mix the different Bose fields, and this mixing
can be rather nontrivial if coexistence of different phases is
possible. The Q−1 in the quadratic exponent involving the
fermionic source fields has the interpretation of a fermion
propagator in the background of the Bose fields. General
fermionic 2n-point functions are then obtained as derivatives
with respect to the sources, hence as averages 〈·〉K,M,D of
Pfaffians of matrices with entries Q−1(ki, kj ).

The interacting bosonic field theory with the fields
m0, m,� is the low-energy theory for the Hubbard model
obtained from the RG flow at scale �. The model still has

the symmetries of the original action, but it is formulated in
terms of fields coupling to the natural order parameters.

IV. MAGNETISM AND SUPERCONDUCTIVITY

In the following, we specialize our analysis to mean-
field theory, by keeping only the simplest configurations in
the remaining functional integral. Proceeding in this way is
not the only way fRG and mean-field calculations can be
combined. In particular one can use the method proposed in
Ref. [30], which solves reduced models exactly. We choose
the method presented in this section as a first step towards
a more detailed analysis of the functional integral (37). It
allows us to continue previous fRG studies of Refs. [16,17]
in a straightforward manner and it also provides a simple
way of including the frequency dependent self-energy in the
mean-field calculations.

We start by investigating the ferromagnetic and supercon-
ducting order parameters close to the QCP. We will test for
gap formation in the vicinity of the critical hopping parameter
at Van Hove filling, taking into account only the dominant part
of the interaction, namely M1,1(0) responsible for a ferromag-
netic interaction and D2,2(0) defining Cooper pair attraction.
We drop the density-density term in the interaction before
performing the HS transformation. Thus the transformation
involves only m and � fields. The mean-field equations are
the saddle-point equations for the bosonic effective action.
For the order parameters we consider, the mean-field solution
can be assumed as constant in space and Euclidian time. Thus
the functional integral is reduced to an integral over the zero
modes of the two fields.

In this special case the Gaussian identities reduce to

ea2/4 = 1√
π

∫
R

e−φ2+φadφ , (40)

eab =
∫
C

e−|φ|2+aφ+bφ dφ∧dφ

2π i . (41)

After integrating out the fermions we obtain

Z ∝
∫

d�FMe−βVFFM . (42)

For the ferromagnetic ansatz

FFM = 1

M1,1(0)
�2

FM −
∑

σ∈{+,−}

∫
p

ln(1 + σ�FMT (p)) .

(43)

We proceed similarly in the Cooper channel. A complex HS
transformation yields

Z ∝
∫

d�dSC ∧ d�dSCe−βVFdSC , (44)

with

FdSC = 1

D2,2(0)
|�dSC|2 (45)

−
∫

p

ln(1 + |�dSC|2f 2
2 (k)T (p)T (−p)) . (46)

235131-8



LOW-ENERGY EFFECTIVE THEORY AT A QUANTUM … PHYSICAL REVIEW B 98, 235131 (2018)

FdSC and FFM play the role of the free energy per degree
of freedom relative to the free energy of the paramagnetic
phase. In the thermodynamic limit and at zero temperature
the saddle point with the dominant exponent (smallest free
energy) determines the phase of the system. As already men-
tioned, coexistence of the two orders has been ruled out in this
situation, as it corresponds to a maximum of the free energy.

T (k) is given in Eq. (25). The self energy entering the equa-
tions is the self energy at scale � which in the vicinity of the
critical hopping and at Van Hove filling can be parametrized
as [31]

Im ��(ω)/ω = − a

(1 + b2ω2)γ /2
, (47)

where a, b, and γ depend on the hopping amplitudes and
the scale parameter [17]. The right-hand side approaches a
constant approximately as the frequencies drop below the
stopping scale. Within the static mean-field approximation
we cannot calculate the small frequency behavior of the self-
energy and incorporate it. To compensate for the loss we can
use the extrapolation of the fRG data. By assuming that the
extrapolation is the correct asymptotic behavior, we compute
the gaps also using

Im �ext.
� (ω)/ω = −a(b2ω2)−γ /2 . (48)

At small stopping scales the difference we see in the order
parameter using either version becomes negligible. If we
remove the regulator we recover the toy model of Sec. II [c.f.
Eq. (48) and Eq. (5)]. The saddle point conditions are

�FM = M1,1(0)

2

∑
σ

∫
d3k

(2π )3

σ

T −1(k) + σ�FM
, (49a)

1=D2,2(0)
∑

σ

∫
d3k

(2π )3

× f 2
2 (k)

T −1(k)T −1(−k) + f 2
2 (k)|�dSC|2 , (49b)

and the order parameters OdSC = 2�dSC/D2,2(0), OFM =
2�FM/M1,1(0) are the expectation values of the bilinears

ÔFM =
∑

σ

∫
d3k

(2π )3
σ �k,σ�k,σ , (50)

ÔdSC = 1

2

∑
σ

∫
d3k

(2π )3
σ f2(k)�k,σ�−k,−σ . (51)

For the numerical calculations we use the fRG data given in
Table I. The results are from previous studies in collaboration
with K. Giering and C. Husemann, see Refs. [16], [17],
and [18] and the table caption. We use the conventions of
Ref. [15], which differ by a factor of two in the definition
of the bosonic propagators from the other references, and
we have adapted the values in the table to this convention.
The corresponding order parameters are shown in Fig. 4.
In the range t ′/t ∈ (0.34, 0.38), where γ � 0.26, both order
parameters vanish within numerical tolerance which confirms
the existence of a QCP in this parameter region. The self-
energy suppresses order in two ways: In the RG flow, it pushes
the growth of the pairing interaction to very small scales, and

TABLE I. Compilation of fRG data. (K.U. Giering, Ref. [16]
and private communication. For definitions and details about the
exponents a, b, and γ , see also Ref. [17].) We have independently
recalculated the values of �∗, D2,2(0), and M1,1(0) at all given values
of t ′/t .

t ′/t log 10�
∗/t a log 10b γ D2,2(0)/t M1,1(0)/t

0.250 − 2.28 1.19 1.83 0.325 20.0 4.18
0.300 − 2.74 1.60 2.34 0.288 20.0 5.75
0.320 − 3.20 2.17 2.89 0.264 20.0 7.44
0.330 − 3.69 2.93 3.42 0.250 20.0 9.54
0.335 − 4.14 4.30 4.20 0.253 20.0 11.8
0.337 − 4.43 5.49 4.49 0.257 20.0 13.3
0.338 − 4.61 5.91 4.56 0.258 20.0 14.4
0.339 − 4.83 6.24 4.61 0.259 20.0 15.7
0.341 − 5 6.4 4.66 0.260 2.05 16.0
0.355 − 4.85 6.27 4.62 0.260 0.05 20.0
0.360 − 4.70 6.07 4.59 0.259 0.06 20.0
0.370 − 4.38 5.33 4.47 0.256 0.09 20.0
0.380 − 4.02 3.57 3.81 0.251 0.17 20.0
0.390 − 3.70 2.95 3.43 0.250 0.26 20.0
0.400 − 3.42 2.42 3.04 0.253 0.36 20.0
0.420 − 2.82 1.67 2.40 0.285 0.55 20.0
0.450 − 1.95 0.88 1.09 0.393 0.64 20.0

in the mean-field equation it prevents gap formation in the way
exemplified in the toy model of Sec. II.

Up to t ′/t ≈ 0.34 the superconducting phase is clearly
dominant. For t ′/t > 0.38 even though it was not evident
from fRG data, there is a strong competition between the
superconducting phase and the ferromagnetic one. Only in the
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ext.
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FIG. 4. The stopping scale �∗ (taken from Refs. [18] and [17]),
the anomalous exponent of the self-energy γ (K. Giering, private
communication) and the order parameters OdSC, OFM as functions of
hopping parameter t ′/t . In the range (0.34,0.38) the order parameters
vanish.
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FIG. 5. Effective interaction in magnetic and scattering channel
at the scale �/t = 3 × 10−5 for the bare interaction U/t = 3 at
Van Hove filling and the critical hopping amplitude. Combining
two channels, the overall density-density interaction U + (2M1,1 −
K1,1)(ω, 0, 0) is peaked at some nonzero frequency. In contrast to
the data used in the previous section, the ones shown here are from
calculations that take the momentum dependence of self-energy into
account.

calculations with the extrapolated self-energy, the free energy
of the ferromagnetic phase becomes significantly smaller and
settles the state.

V. MEAN-FIELD EFFECTS OF THE DENSITY-DENSITY
INTERACTION

In Sec. III we showed that in the vicinity of the QCP, mag-
netic ordering and Cooper pairing both become negligible. In
this section we assume that we are in this quantum critical
regime and investigate the effects of the density-density inter-
action on the propagator. As shown in Fig. 5, during the flow
the effective interaction develops a strong peak in the scatter-
ing channel at a nonzero frequency [15,17,32]. In the simplest
approximation we project the effective interaction to a sum
of delta distributions at zero frequency and at frequencies
±ω̃ �= 0. The zero frequency part will give rise to a Hartree
self-energy, which we compensate by appropriate choice of
the chemical potential to fix the density at Van Hove
filling.

A. Introduction

In the density-density channel, depending on the sign of
the interaction, the bosonic action obtained from a HST
according to Eq. (40) may not have a saddle point on the
real axis. Provided that the action is holomorphic in the HS
field we may be able to find a saddle point in the complex
plane and deform the integration contour to pass through the
saddle point without changing the result. If this deformation
is possible, the zero temperature asymptotics of the partition
and correlation functions would then contain an integral of the

type

F (λ) =
∫

γ

f (z)eλS(z)dz , (52)

where γ is the new contour. If S has a single simple saddle
point at an interior point z0 of the integration contour γ , then
the λ → ∞ asymptotic of F (λ) is given by

F (λ) =
√

2π

−S ′′(z0)
λ−1/2eλS(z0 )(f (z0) + O(λ−1)) . (53)

For our purpose a constant shift of the integration contour is
sufficient to make sure that the shifted contour contains the
saddle point of the exponent. In particular we can formulate
the HST (40) in the more general form

ea2/4 = 1√
π

∫
R

e−(φ+ic)2+(φ+ic)adφ , (54)

where c is an arbitrary real number.
In the case of a complex HST the generalization is as

follows,

eab =
∫
C

e−(φ+iψ )(φ+iψ )+a(φ+iψ )+b(φ+iψ ) dφ∧dφ

2π i , (55)

where ψ ∈ C is an arbitrary complex number. The proof is
simple, let φ = u + iv, ψ = x + iy with u, v, x, y ∈ R, then

I =
∫
C

e−(φ+iψ )(φ+iψ )+a(φ+iψ )+b(φ+iψ ) dφ∧dφ

2π i

=
∫
R2

e−(u+ix)2−(v+iy)2+(a+b)(u+ix)+i(a−b)(v+iy) du∧dv
π

, (56)

Eq. (55) now follows from Eq. (54),

I = e(a+b)2/4−(a+b)2/4 = eab . (57)

As long as the integrals in Eq. (54) and Eq. (55) are considered
exactly they are independent of c and ψ , but only for suitable
values of these quantities—let us denote them by c′ and ψ ′—
can the integrals be evaluated in saddle point approximation.
Through the analytic structure of the integrand, the integral
then depends on these specific values c′ and ψ ′.

B. Mean-field equation for a frequency- and
momentum-dependent density-density interaction

We consider a density-density interaction of the form [33]

S(ψ̃, ψ ) = −
∫

ωps

ψωps (iω − εp + μ)ψωps

+ 1

4

∫
p

K (p)S (0)(p)S (0)(−p) , (58)

which does not depend on the nontransfer frequencies and
momenta.

∫
ωps

represents a sum over Matsubara frequencies,
momenta, and spin with appropriate normalization,∫

ωps

• = 1

Vβ

∑
ω∈MF/MB

∑
p∈�∗

∑
s∈{+,−}

• (59)

such that in the thermodynamic limit,∫
ωps

→ 1

(2π )3

∑
s∈{+,−}

∫ ∞

−∞

∫
[−ππ )2

•dpdω, (60)
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�∗ = ( 2π
L
Z)2/(2πZ)2 is the momentum space and V =

L2. The discretized Euclidean time axis is given by Tn :=
{−β/2 + βk/n : k ∈ {0, . . . , n − 1}} and the corresponding
fermionic and bosonic Matsubara frequencies are

MF =
{

π

β
k : k ∈ (2Z − 1) ∩ [−n, n)

}
MB =

{
π

β
k : k ∈ (2Z) ∩ [−n, n)

}
. (61)

In the following it is clear from the context whether the sum
has to be taken over MF or over MB.

In the following we assume K to be real and symmetric
with respect to ω → −ω. For the bare Hubbard model K

would be positive and constant. Next we write the interaction
term from Eq. (58) as

−1

4

∫
p

K (p)S (0)(p)S (0)(−p)

= −1

4

1

βV
K (0)S (0)(0)2−1

2

1

βV

∑
p>0

K (p)S (0)(p)S (0)(−p) ,

(62)

where “>” denotes lexicographical order on the product space
MB × �∗. Making the reflection symmetry explicit is not
strictly necessary but it reduces the number of HS fields we
need to define. Proceeding according to Eqs. (54) and (55) we
obtain the mixed action

SH.S. =− 1

βV

∑
ωps

ψ̃ωps (iω − εp+μ)ψωps + βV
�2

0

|K (0)|

− iIK (0)�0S
(0)(0) + 2βV

∑
p>0

�(p)�̃(p)

|K (p)|

− i
∑
p>0

(IK (p)S (0)(p)�(p)+IK (−p)S (0)(−p)�̃(p)),

(63)

where, for f (x) ∈ R, If (x) = 1 if f (x) � 0 and If (x) = i
otherwise.

The field � includes a possible shift of the integration con-
tour. To be precise �0 = φ0 + iψ0 with φ0, ψ0 ∈ R and for
p > 0, �(p) = φ(p) + iψ (p), �̃(p) = φ(p) + iψ (p) with
φ(p), ψ (p) ∈ C. φ is the HS field and the field ψ has to be
chosen such that the integration contours pass through saddle
points of the action. Integrating out the fermions leads to the
free energy

F = �2
0

|K (0)| + 2
∑
p>0

�(p)�̃(p)

|K (p)| − 2

βV
ln det[(ik0 − εp + μ

+ iIK (0)�0)δk,k′ − i(IK (p − p′)�(p − p′)

×�(p − p′ > 0) + IK (p′ − p)�̃(p′ − p)

×�(p′ − p > 0))]k,k′ + C, (64)

where C = 2
βV ln det[(ik0 − εp + μ)δk,k′]k,k′ is a normaliza-

tion constant.
In the general case a computation of the determinant is not

feasible. The usual ansatz is to keep only the static part of the

bosonic field. We will go a step further and take into account
the field at some nonzero frequency ω̃. The determinant can
then be computed efficiently using the lemma presented in the
appendix.

C. Numerical setup

We make the following ansatz for �,

�(p) = �ω̃δk0,ω̃δk,0 ,

�̃(p) = �̃ω̃δk0,ω̃δk,0 . (65)

So in addition to the static field �0 at zero frequency the
free energy depends on �ω̃ and �̃ω̃, which incorporates a
dependence on K at the nonzero frequency ω̃. The free
energy (64) now reads

F = �2
0

|K (0)| + 2
�ω̃�̃ω̃

|K (ω̃)|
− 2

βV

∑
k

ln det
[
(ik0 − εp + μ + iIK (0)�0)δk0,k

′
0

− iIK (ω̃)
(
�ω̃ δk0−k′

0,ω̃
+ �̃ω̃ δk′

0−k0,ω̃

)]
k0,k

′
0
+ C. (66)

Independent of whether K (0) is positive or negative we can
adjust the chemical potential to ensure Van Hove filling. Then
at the saddle point of �0 we have μ + iIK (0)�0 = 0. At fixed
density we only need to find the saddle point of F as a function
of �ω̃ and �̃ω̃. For fixed �0 and at Van Hove filling, F is then
up a constant given by the n → ∞ limit of

Fn = 2
�ω̃�̃ω̃

|K (ω̃)| − 2

β

∫
k

ln det[(iω̌k − εp)δk,k′

− iIK (ω̃)(�ω̃ δk−k′,m + �̃ω̃ δk′−k,m)]k,k′ (67)

where

ω̌k = −i
n

β
(1 − e−iπ (2k−1)/n) (68)

and ω̃ = 2π
β

m, for some fixed m ∈ {1, . . . , n − 1}.
Fn depends on the HS fields �ω̃ and �̃ω̃ only through their

product. For the determinant this follows from Eq. (A5). As a
result any nontrivial saddle point of F as a function of �ω̃ or
�̃ω̃ is a saddle point of F as a function of �ω̃�̃ω̃,

∂F

∂�ω̃

= �̃ω̃

∂F

∂ (�ω̃�̃ω̃ )
!= 0 . (69)

To summarize, we need to find the saddle point of
Fn(K (ω̃), z) as a function of z = �ω̃�̃ω̃ given through

Fn(K̃; z) = 2
z

|K (ω̃)| − f sgn(K̃)
n (z) ,

f ±
n (z) = 2

β

∫
dερ(ε) ln f ±

n (z, ε) ,

f ±
−1(z, ε) − 0, f ±

0 (ε) = 1 ,

f ±
m (z, ε) = f ±

m−1(z, ε) (70)

± z
δ|[i]n,k−[j ]n,k |,m f ±

m−2(z, ε)

(iω̌(2[i]n,k ) − ε)(iω̌(2[j ]n,k ) − ε)
, (71)

where ρ(e) = 1
(2π )2

∫
[−π,π )2 δ(ε(k) − e)d2k is the density of

states.
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FIG. 6. Saddle point position in terms of ξ = √|z| as a function
of interaction strength K (ω̃).

The following symmetry considerations can greatly reduce
the numerical effort.
First, since

f +
n (z) = f −

n (−z) , (72)

if z0 is a saddle point of Fn(K̃, z) then −z0 is a saddle
point of Fn(−K̃; z). So we may restrict ourselves to case
K̃ = K (ω̃) > 0 in the following.

Second, it is easy to show that

Fn(K̃, z) = Fn(K̃, z) . (73)

Thus, for fixed K̃ , if z ∈ R then Fn(K̃; z) is real.
Let z = x + iy and f : z �→ Fn(K̃; z) = u(x, y) +

iv(x, y) with x, y, u, v ∈ 1R. Let z0 = x0 + i 0 and f be
holomorphic at z0 then if ∂u

∂x
(x0, 0) = 0 since ∂v

∂x
(x0, 0) = 0

[because of Eq. (73)], it follows from Cauchy-Riemann
equations that f ′(z0) = 0, i.e., z0 is a saddle point of f if x0

is a saddle point of f |1R .

D. The quasiparticle lifetime

In the following we fix n = 104. We have verified numeri-
cally that our results are then stable and don’t change much if
n is chosen to be even larger.

For large enough K (ω̃) the free energy has nontrivial
saddle points. In particular when K (ω̃) > 0 there is exactly
one saddle point on an integration contour γ : R �→ C, t �→
t + ia, for a suitable value of a which we denote by a = ψ .
This saddle point lies on the imaginary axis. In our notation,
at the saddle point, the real part of � = φ + iψ is equal to
zero and z = ��̃ < 0. In the case K (ω̃) � 0 there is one
saddle point on the real axis and z = ��̃ � 0. Note that
all measurable quantities should be independent of the sign
of K (ω̃) for a nonzero frequency ω̃ because of translational
invariance along the Euclidean time axis and the periodicity of
the interaction. We denote the saddle point of the free energy
for a given K (ω̃) by ζ = √|z|. The correspondence is shown
in Fig. 6.

In saddle point approximation the fermionic propagator is
then given by the diagonal of

G = [(ik0 − εp)δk,k′ + ζ
(
δk0−k′

0,ω̃
+ δk′

0−k0,ω̃

)]−1
k,k′

=
[
δk0,k

′
0
+ ζ

(
δk0−k′

0,ω̃
+ δk′

0−k0,ω̃

)√
ik0 − εp

√
ik′

0 − εk′
δk,k′

]−1

k,k′

×
[

δk,k′√
ik0 − εp

√
ik′

0 − εk′

]
k,k′

. (74)
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FIG. 7. Full propagator as a function of Euclidean time for ζ =
0.5, m = 8, n = 104. The periodic density-density interaction gener-
ated a pattern with m peaks in the correlation function. The upper
inset shows the imaginary part of the Dyson self-energy computed
with ζ = 0.5, m = 8, n = 104. The data points in the range ω̃ < ω <

2ω̃ define the most prominent structure in the self-energy. They can
be fitted well by a(ω − ω̃)α with an α ≈ −1 (blue curve). The lower
inset shows the Fourier transform of the self-energy at ε = 0.

As expected it does not depend on the sign of K (ω̃). If
we consider the propagator G as a function of the sum and
difference of the two involved frequencies, i.e., ω± = k0 ± k′

0,
i.e., Gk,k′ = δk,k′Gε(k)(ω−, ω+). Then Gε (ω−, ω+) is nonzero
only when ω− is a multiple of ω̃. For fixed ε and ω+,
Gε (ω−, ω+) decays as |ω−| grows.

In this notation the fermionic propagator g(k0) = gε(k)(k0)
is given by gε (ω) = Gε (0, 2ω). For finite values of ζ or equiv-
alently corresponding interaction strength K (ω̃) the propaga-
tor develops some nontrivial structure most prominent around
ω = ω̃. ω̃ is itself not on the frequency lattice as it is a bosonic
frequency. An example of the imaginary part of the Dyson
self-energy � = c−1 − g−1 with c = (iω̌ − ε)−1 is shown in
the upper inset of Fig. 7. The behavior of the self-energy
changes at multiples of ω̃. The strongest peak between ω̃ and
2ω̃ can be fitted well with a model a(ω − ω̃)α with α ≈ −1.
A pole at ω = ±ω̃ would translate to a discontinuity in time
domain,

F−1
ω

[
−i

(
1

ω − ω̃
+ 1

ω + ω̃

)]
(τ )

= −
√

(2π ) cos(ω̃τ )sgn(τ ) . (75)

The inverse Fourier transform of the free propagator to
Euclidean time in the limit ζ → 0 is given by

1

β

∑
n

e−iωnτ cε (ω)

=
{

e−ετ fβ (ε) if −β < τ � 0

−e−ετ (1 − fβ (ε)) if 0 < τ < β
. (76)
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In the interacting case with ζ = 0.5 and m = 8 (ω̃/t ≈ 0.5)
the result is shown in Fig. 7. The effect of the periodic density-
density interaction K (ω̃) is evident in the correlation function
which now shows m distinct peaks. The inverse Fourier trans-
form of the self-energy is shown in the lower inset of Fig. 7. It
is remarkably simple compared to the self-energy in frequency
space. Taking the limit n → ∞ numerically it has a single
discontinuity at τ = 0 in the interval [−β, β ).

For small frequencies the imaginary part of the self-energy
is approximately constant but discontinuous at the origin.
Close to the Fermi surface and for small frequencies the full
propagator behaves as

g ≈ 1

iω̌ − εk + isgn(ω)τ−1
L

, (77)

where τL can be interpreted as the quasiparticle lifetime. In
the limit ζ → 0 the quasiparticle lifetime diverges but as ζ or
equivalently the interaction strength grows the quasiparticle
lifetime becomes finite and drops rapidly. This is in full
agreement with the assumption of criticality in this parameter
regime.

VI. CONCLUSIONS

We have shown that in the repulsive two-dimensional
Hubbard model, gap formation is suppressed at Van Hove
filling in the vicinity of the critical hopping parameter ratio
θ� = 0.341. The quantum-critical behavior is tightly related
to the low-frequency asymptotics of the self-energy close
to the Van Hove points. Previous fRG studies suggest a
power-law behavior ∼sgn(ω)|ω|α with α ≈ 0.74 [16,17]. The
fRG result is based on the extrapolation of the self-energy
at some nonzero stopping scale. The absence of gaps in the
range t ′/t ∈ (0.34, 0.38), where the magnetic instability is
quite pronounced, may be a consequence of neglecting the
momentum dependence of the self-energy in the RG flow. We
also want to point out that chaining fRG and MF in the way we
did here may lead to an underestimation of the gap parameters.
However, by turning the self-energy on and off we can verify
that the gaps are suppressed due to the self-energy effects
rather than a low stopping scale of the flow. In further work,
one may take the RG flow to the symmetry broken phase or
perform mean-field calculations using the 2PI vertex extracted
from fRG results [30]. At this stage, besides quantitative
results, we are also interested in the phenomenology of the
physics in the vicinity of the QCP and the simplest methods
serve well in this regard.

We have also used the mean-field approximation to calcu-
late the influence of the frequency-dependent density-density
interaction on the low-frequency structure of the self-energy.
In general, the calculation of the fermion determinant is very
challenging, so we investigated a minimal model. In this
model we had a monofrequency density-density interaction
besides the static one. We found that such an interaction,
which mimics the actual density-density interaction at the crit-
ical point, suppresses the quasiparticle lifetime. Considering
how much more complicated the full interaction is, one should
suspect at least quantitative errors and treat these results with
reservation, but exploring the minimal model has given us

valuable information about the saddle-point structure of the
free energy which will be helpful for future analysis.
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APPENDIX: THE DETERMINANT OF A TRIDIAGONAL
MATRIX AND ITS GENERALIZATION

It is well known that the determinant fn = det Tn of a
tridiagonal matrix

Tn =

⎛⎜⎜⎜⎜⎜⎜⎝
a1 b1

c1 a2 b2

c2
. . .

. . .
. . .

. . . bn−1

cn−1 an

⎞⎟⎟⎟⎟⎟⎟⎠ (A1)

satisfied the recurrence relation

f−1 = 0 ,

f0 = 1 ,

fn = anfn−1 − cn−1bn−1fn−2. (A2)

This relation can be generalized as follows. Let Tn be a matrix
of order n × n of the form

(Tn)ij =

⎧⎪⎨⎪⎩
ai if i = j

bi if j = i + k

cj if i = j + k

0 otherwise

. (A3)

For each n let d = gcd(k, n), n′ = n/d, and k′ = k/d. The
map

[m]n,k :=
⌊m − 1

n′
⌋

+ (k(m − 1) mod n) + 1 (A4)

defines a permutation which can be used to transform Tn

into a tridiagonal matrix. This transformation can be used to
compute the determinant of Tn efficiently. In particular if

f−1 = 0 ,

f0 = 1 ,

fm = a[m]n,k
fm−1 − c[m−1]n,k

b[m−1]n,k
fm−2, (A5)

then det Tn = fn.
Proof. Every element m ∈ {1, 2, . . . , n} can be rep-

resented as m = �n′ + r + 1 where � = �m−1
n′ � and r =

((m − 1) mod n′). We define an isomorphism m �→ [m]n,k =
(� + kr mod n) + 1. The matrix elements of (T ′

n)i,j :=
(Tn)[i]n,k ,[j ]n,k

can only be nonzero if ((i − j ) mod n′) � 1.
Thus T ′

n = diag(A0, A1, . . . , Ad−1) is block diagonal and
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each block is of the form

A� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã
(�)
1 b̃

(�)
1 c̃

(�)
n′

c̃
(�)
1 ã

(�)
2 b̃

(�)
2

c̃
(�)
2

. . .
. . .

. . .
. . . b̃

(�)
n′−1

b̃
(�)
n′ c̃

(�)
n′−1 ã

(�)
n′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A6)

where

b̃
(�)
n′ = (Tn)[�n′+n′]n,k ,[�n′+1]n,k

= (Tn)�+n−k+1,�+1 ,

c̃
(�)
n′ = (Tn)[�n′+1]n,k ,[�n′+n′]n,k

= (Tn)�+1,�+n−k+1 . (A7)

Either n �= 2k, then both b̃
(�)
n′ and c̃

(�)
n′ are zero, or n = 2k, then

the blocks A� are 2 × 2 matrices. In both cases T ′
n is tridiag-

onal and its determinant which is equal to the determinant of
Tn is given by Eq. (A4).
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