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We study high-temperature spin transport through an anisotropic spin—% Heisenberg chain in which integra-
bility is broken by a single impurity close to the center of the chain. For a finite impurity strength, the level
spacing statistics of this model is known to be Wigner-Dyson. Our aim is to understand if this integrability
breaking is manifested in the high-temperature spin transport. We focus first on the nonequilibrium steady state
(NESS), where the chain is connected to spin baths that act as sources and sinks for spin excitations at the
boundaries. Using a combination of open quantum system theory and matrix product operators techniques, we
extract the transport properties by means of a finite-size scaling of the spin current in the NESS. Our results
indicate that, despite the formation of a partial domain wall in the steady state magnetization (and despite the
Wigner-Dyson level spacing distribution of the model), transport remains ballistic. We contrast this behavior
with the one produced by a staggered magnetic field in the XXZ chain, for which it is known that transport is
diffusive. By performing a numerical computation of the real part of the spin conductivity, we show that our
findings are consistent with linear response theory. We discuss subtleties associated with the apparent vanishing

of the Drude in the presence of an impurity.
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I. INTRODUCTION

A recurring question in the theory of dynamical systems
and nonequilibrium statistical mechanics is: How does macro-
scopic hydrodynamic behavior emerge from the underlying
microscopic physics? Even in the classical domain recovering
macroscopic linear phenomenology such as Fick’s law for
the particle current and Fourier’s law for the heat current is
highly nontrivial. It is known that there are systems for which
Hamiltonian dynamics do not lead to this macroscopic phe-
nomenology, particularly when conservation laws are at play
[1,2]. The consensus is that one needs nonlinear interactions,
which lead to chaos and, hence, to incoherent transport [3-5].

In quantum systems, understanding how this complexity
emerges brings us to the domain of quantum chaos [6,7]. In
the past two decades, interest in quantum chaotic behavior of
many-body quantum systems has seen an unprecedented re-
vival [8—15]. Strides in experimental ultracold atomic physics
[16-20] have lead to new lines of research and have high-
lighted the role of integrability and its breaking in thermal-
ization (or lack thereof) [21,22] and transport [23].

The connection between thermalization and integrabil-
ity breaking has been extensively studied theoretically
[8-15] and, recently, a beautiful experiment was performed
in which it was possible to tune the integrability breaking of
a low-dimensional gas of dipolar atoms [20] and, that way,
tune the relaxation rates to thermal equilibrium values. In
terms of transport, the emergence of hydrodynamics due to
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integrability breaking in quantum many-body systems is far
less understood.

From the theoretical perspective, studying transport in
nonintegrable models represents a significant computational
challenge, as both large system sizes and long-time limits are
required [24]. This requirement is even more prevalent at high
energies where effective low-energy field theories fail [25].
A relatively modern approach for extracting high-temperature
transport properties of nonintegrable one-dimensional quan-
tum systems is known as boundary driving [26-36]. Boundary
driving is a setup which stems from the theory of open quan-
tum systems, in which Lindblad jump operators are applied at
the boundaries of the chain in order to model spin sources and
sinks that drive the chain into a nonequilibrium steady state
(NESS). In some cases, it may be combined with the power
of matrix product operator techniques [37] to reach system
sizes beyond those accessible via full exact diagonalization
or Lanczos based techniques. Transport properties can be
determined by means of finite-size scaling of the current
operator in the NESS. This approach has been successful in
providing an accurate numerical characterization of high tem-
perature transport properties of the XXZ model [29,32] and
of the ergodic regime of spin chains that exhibit many-body
localization [38—41]. These works have shown that strong
integrability breaking need not result in diffusive transport in
the steady state and that anomalous diffusion is ubiquitous.

Here, we focus on high-temperature transport in the spin—%
XXZ chain in the presence of integrability breaking in the
form of a single (static) magnetic defect. This model is known
in the literature to lead to quantum chaos [42—-45]. We contrast
the results for that model with those from a model in which
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the (global) integrability breaking perturbation applied to the
XXZ chain is a staggered magnetic field. The latter perturba-
tion is known to render transport fully diffusive [27,46—48].

Our paper is structured as follows: In Sec. II, we intro-
duce the models and discuss their level spacing statistics.
In Sec. III, we review the boundary driving protocol, the
basic ingredients of the theory of spin transport and finite-size
scaling, and briefly describe the techniques used to obtain
the solution to the steady state. The open system results are
reported in Sec. IV. In Sec. V, we present a closed system
analysis based on Kubo’s linear response theory. A summary
of our results and an outlook are provided in Sec. VI.

II. XXZ MODEL WITH INTEGRABILITY BREAKING

Our unperturbed Hamiltonian is the anisotropic spin-%

Heisenberg chain, also known as the Spin-% XXZ chain, which
can be written as (& = 1):

Hxxz = Z [@(676%, +6/67 ) +A6765,], (D
1

where 6, v = x, y, z correspond to Pauli matrices in the v
direction at site i in a one-dimensional lattice with N sites.
Boundary conditions are specified as open if the sum in Eq. (1)
includes all the sites but the last one (N — 1) and periodic if
it includes all the sites (N). A is known as the anisotropy pa-
rameter [for A = 1, Hamiltonian (1) is the Hamiltonian of the
spin-% Heisenberg chain]. The spin-% XXZ chain is integrable
and exactly solvable via Bethe ansatz [49,50]. In what follows,
we only consider « = 1 and 0 < A < 1. In order to break
integrability, we use the following modifications to Hxxz in

Eq. (1):

Hs; = Hxxz + h &N/ s 2)
Asr = Axxz+b Y 67 . A3)
i odd

In Eq. (2), we introduce a single magnetic impurity in one
of the sites about the center of the chain. We consider cases
in which N is even and introduce the defect at site i = N /2.
In Eq. (3), we introduce a global staggered transverse field
(see Fig. 2). We refer to the former as the single impurity
model and to the latter as the staggered field model. These
models commute with the total magnetization operator in
the z direction, [Hg;, > 6= [Agr, >°.671=0. Only the
magnitude of & and b matter for the results we discuss in what
follows.

A. Level spacing statistics

The distribution P(s,) of spacings s, of neighboring en-
ergy levels shows different behavior depending on whether a
quantum system is chaotic or integrable, and they are often
employed as a diagnostic tool [15]. For an integrable system,
energy levels are expected to be independent from each other
and crossings are not prohibited from occurring. Therefore,
the statistics of the levels in this case is Poissonian,

P(s)=e"". @)
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FIG. 1. Level spacing distribution P(s) for the anisotropic
Heisenberg model (top) in the presence of a single magnetic impurity
[see Eq. (2)] and (bottom) in the presence of a staggered magnetic
field [see Eq. (3)]. The red line corresponds to a Poisson distribution
[Eq. (4)], while the blue line depicts a Wigner-Dyson distribution
[Eq. (5)]. The results shown are for chains with open boundary
conditions, N = 16, A = 0.5, Zjv:l (6}7) =0, and two values of &
and b.

On the other hand, a hallmark of quantum chaos is that
energy levels repel each other and become correlated. As
obtained from random matrix theory, the level spacings of
quantum chaotic systems with time-reversal invariance exhibit
a Wigner-Dyson distribution given by

Pis)= 2o )
2

In Fig. 1, we show the behavior of the distribution P(s,)
for both the Hg; model in Eq. (2), for different strengths of
the impurity, and for the HAsr model in Eq. (3), for different
strengths of the staggered field. The calculations were done
in the zero magnetization sector, Z?’zl(éf) =0, in chains
with N = 16 sites and open boundary conditions. Our results
confirm that, as previously observed for Hg; [42-45] and for
Hgp [46,47], the level spacing distribution becomes Wigner-
Dyson as one increases the magnitude of / and b, respectively,
without changing A and N. For the single impurity model, at
fixed A and N, the probability distribution of energy spacings
was shown in Ref. [45] to be of the Wigner-Dyson type for
a wide range of values of A. It was also shown there that
increasing N at fixed A increases the range of values of A
for which quantum chaotic behavior occurs. As for systems in
which integrability is broken by means of global perturbations
[51,52], for A # 0 in the thermodynamic limit one expects
quantum chaotic behavior to occur whenever & % 0 and
h # oo.

In order to obtain the correct level spacing distribution, an
unfolding procedure of the spectrum needs to be used in which
one locally rescales the energies, so that the local density
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of states (LDOS) is normalized to 1. The symmetries of the
model have to be taken into account as well, given that energy
levels from different symmetry subsectors (subspaces of the
Hilbert space) are independent from each other and therefore
uncorrelated [51,52]. For I:ISI, the reflection symmetry of the
XXZ model is broken by the impurity, while for Hsp there
is a related remaining symmetry that needs to be resolved.
The key point to be emphasized here is that both integrability
breaking perturbations, a local one in Hs; and a global one in
Hsr, lead to the same quantum chaotic behavior of the level
spacing distributions. In the rest of the paper, we focus on the
transport properties of those quantum chaotic models.

III. NONEQUILIBRIUM CONFIGURATION
FOR SPIN TRANSPORT

In order to study transport in a genuinely nonequilibrium
steady state in a long chain, we couple the latter to two
Markovian baths that create and remove excitations at the
boundaries. The dynamics of such a setup can be analyzed
by means of the Lindblad master equation

dp
dt

—i[H, p1+ L{p}
= —i[H, pl+ LA} + L, (P}, ©)

where p is the density matrix of the system and L£;, are
dissipative superoperators that act on p inducing excitations
in terms of spin creation and annihilation operators given by

=(6; + i?rjy )/2 for site at position j. Specifically, we
have

La(p) = ZszpL Ll Lomi B, (D

where m = [, r and {-, -} is the anticommutator. The operators
in Eq. (7) are defined as follows:

Loy=yU+wel, Loi=JyA-wéy,
Lo, =VyA—wéy, L_,=y0+wéy, ®

where y is the bath coupling parameter and p is a parameter
that dictates the strength of the boundary driving. A dia-
grammatic depiction of the nonequilibrium configuration is
presented in Fig. 2. The Lindblad master equation [Eq. (6)]
can be obtained from a microscopic derivation, such as the
one used in the repeated interactions scheme, which allows
one to obtain expressions for thermodynamic quantities such
as heat and work [53,54].

A. Spin current and steady state

The configuration described previously drives the system
towards a nonequilibrium steady state, denoted by Pngss,
given by

Wipness) = —i[H, press] + Lifpness) + L, {pness) = 0,
)

which implies that the steady state is the one that spans the
null space of the superoperator W. It can be proven that this
state exists and is unique if and only if the set of operators
{I:I , ﬁﬂ, £+,,, I 1, L_ .} generate, under multiplication and
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FIG. 2. Diagrammatic depiction of the nonequilibrium config-
uration used to study transport in the boundary-driven scheme.
Excitations induced by the baths can propagate through the system
because of the first two terms in Eq. (1), top red arrows, while
interactions occur because of the third term in Eq. (1), bottom green
arrows. The system-bath coupling strength is given by y, while u
represents the driving strength. A sufficiently strong (but finite) field
in either configuration (a single magnetic impurity of strength /4 or a
staggered field of strength b) renders the system nonintegrable.

addition, the entire Pauli algebra. This condition is fulfilled
in our case [55]. Another property of the NESS is related
to the time evolution of the system. Given the mathematical
existence and uniqueness of this particular state, any initial
state will converge to the NESS in the long time limit

lim p(7) = PnEss- (10)
—>00

Since, by construction, we introduce an imbalance in the
strength of the boundary driving ., the NESS is characterized
by a constant flow of magnetization from one boundary to
the other. The boundary driving parameter establishes the
degree of imbalance between the Markovian baths and thus
affects transport in the bulk of the spin chain. We focus on
the regime 0 < p < 1. For u = 0 there is no imbalance and
the state in the bulk is given by an infinite temperature steady
state, p = 1/ 2N For any nonzero i, effective spin excitations
are introduced and removed from the system. For u = 1 the
system is at maximum driving, i.e., maximum bias.

We can determine the flux of magnetization by means of
the equation dictating the dynamics of the expectation value
of 6. We then turn to Eq. (6) to obtain, in the bulk of the chain

Aaz . dp R
= tT (,00 ) = Tr(crfz> = — Tr(af[H, p])

=iTe([H,67]p); Vi=2,---,N—1. (D)
Using Pauli matrix commutation relations, one obtains for

Eq. (11):

des) .
—— = (i) = (i) Yi=2,---,N—1, (12)
dt
where
Ji =20 (6767, — 6767,). (13)

We call this object the spin current operator. Up to this
point, Eq. (12) is ill defined for the leftmost and the rightmost
sites of the chain. However, we can obtain the dynamics of the
magnetization in these sites by interpreting u as the average
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magnetization of the Markovian baths, where we therefore
identify

d(6¢ R R
(d“;) = (Ji) — (i) (14)
d(6% o n
(;t” = (fn-1) — (o) (15)

with the corresponding values of the current on the boundaries
given by

(1) = Tr(67Lip}) = 4y (1 —(67)), (16)

(Ur) = Te(63.L.4pY) = 4y (n + (65). a7

With these definitions, the continuity equation of the mag-
netization in the z direction is consistent. In the NESS, the
relation d(6;)/dt = 0 holds for all sites, which means that
the spin current is homogeneous across the chain (in one
dimension):

Gy=0G ==~ =)= (18)

B. Scaling theory

The behavior of (/) changes depending on the transport
regime of the system and can be analyzed using scaling theory.
From basic microscopic transport theory, the variance of a
local inhomogeneity (Ax2) grows in space as a function of
time ¢ as

(Ax?) =2D %, (19)

where 6 (0 < § < 1) is the transport coefficient, and D is the
diffusion coefficient. The value of § is set by how perturba-
tions propagate across the system. This parameter can also
be extracted by studying the scaling of the expectation value
of the current in the NESS (from here on, unless otherwise
specified, all expectation values are taken in the NESS) as a
function of chain size as

A 1
() o 55 (20)
where v > 0 is the transport exponent. The parameters § and
v are related by 6 = 1/(1 4+ v) [56].

Different transport regimes are identified based on the
value of v as follows: v = 0 implies no dependence on system
size and occurs when excitations in the system propagate
without scattering, i.e., the system behaves as a perfect con-
ductor and transport is ballistic (also known as coherent).
This regime is expected for integrable systems [57]. A known
exception is the XXZ model for A > 1, which is integrable
yet exhibits nonballistic spin transport [32]. v = 1 implies a
regular diffusive regime and spin transport in the system obeys
Fick’s law, so the current across the system is proportional
to the gradient of the driving field. The cases 0 < v < 1 and
v > 1 are referred to as anomalous diffusion, specifically,
superdiffusion and subdiffusion, respectively. In these cases,
the constant of proportionality (the diffusion coefficient D) in
Eq. (20) picks up a dependence on the system size given by
D o« N7V [57].

In this work, we use finite-size scaling of the expectation
values of the current in the NESS to probe the effect of

integrability breaking in Egs. (2) and (3). Next, we describe
the numerical methods used in our calculations.

C. Solution to the NESS

Mathematical properties of the NESS can be obtained from
properties of the Liouville superoperator. In order to visualize
them, it is convenient to use a vectorization procedure on
the density matrix [58,59]. The procedure consists in con-
catenating the columns of the density matrix onto a vector.
This allows us to factorize a Liouville superoperator in matrix
form that acts on a vector form of the density matrix. Using a
matrix representation of the superoperator allows the Lindblad
master equation to be written as

d|p)
dt

where |-)) is a vectorized matrix built by concatenating its
columns, and W is the matrix representation of the superoper-
ator in Eq. (9). The master equation [Eq. (6)] can be expressed
in such a way because the vectorization procedure is a linear
operation, and all the terms in Eq. (7) are of the form ABC,
where A, 13’, and C are matrices. In light of this, the following
relation can be used to obtain Eq. (21) [58]:

|ABC) = (CT ® A)|B). (22)

= WIp)), 1)

From Eq. (7), this relation is the only one needed to reduce the
Lindblad master equation to Eq. (21) in terms of the density
matrix and the Pauli spin matrices. We use two methods to
solve for the NESS. In the first one, we solve a system of linear
equations using a matrix representation of the superoperator
W from Eq. (9), limited only by the accessible system sizes;
while the second one is based on time-dependent matrix prod-
uct states (tMPS) [37,60] in combination with a fourth-order
Suzuki-Trotter decomposition of the Liouville propagator. We
provide a brief description of both methods in Appendices A 1
and A 2.

IV. NUMERICAL RESULTS FOR THE NESS

Here we report the results obtained within the open sys-
tem’s framework reviewed in the previous section, using the
methods described in Appendices A1 and A2. We focus
on the expectation values of the magnetization, and on the
expectation values of the current operator as functions of
system size (to extract the transport exponent), in both the Hg;
and Hsp models.

A. Transport in the single-impurity model Ay

In Sec. IT A, we showed that a sufficiently strong (but finite)
impurity field is able to break the integrability of the XXZ
model as seen from the behavior of the level spacing statistics,
regardless of the O(1) nature of the perturbation [42-45]. In
this section, we investigate the transport of spin excitations in
this setup.

It is enlightening to first look at the magnetization profile
across the chain in the NESS in the presence of the impu-
rity perturbation. In fact, the profile itself is determined by
the transport regime of the system. In Fig. 3, we show the
expectation value of &, in the NESS, as a function of site
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FIG. 3. Magnetization profile in the nonequilibrium steady state
of the anisotropic Heisenberg model in the presence of a single
magnetic impurity with different values of & [see Eq. (2)]. The
profiles were obtained for chains with N = 100, A = 0.5, y = 1.0,
and u = 0.005.

positions, for different values of the impurity strength h. The
profiles reveal strong boundary effects induced by the driving
at the edges of the chain and are nearly flat in the bulk of
the chain, with the exception of the site where the impurity is
located. The “kink” at the latter point is larger the stronger the
impurity field. The flat profiles in Fig. 3 are a first indicator
that transport is ballistic, as seen in integrable models such as
the unperturbed XXZ chain [27].

Next, we quantify how the current in the NESS scales
with increasing system size. In Fig. 4, we plot (j) vs N for
A = 0.5 and different values of A. Transport in the XXZ
model is ballistic for any 0 < A < 1, a regime that is ex-
pected to change to incoherent, either diffusive or anomalous,
when integrability is broken. We chose A = 0.5 because the
system is in the strongly-interacting regime, and obtaining the
NESS numerically is not as difficult as for A & 1. The main

h=02 X h=05 O h=1.0
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FIG. 4. Scaling of the expectation value of the current operator
in the nonequilibrium steady state of the anisotropic Heisenberg
model in the presence of a single magnetic impurity [see Eq. (2)],
plotted as a function of system size (N =4, ..., 100), for A = 0.5
and different values of h. The driving parameters are y = 1.0 and
u = 0.005.

observation in Fig. 4 is that, for sufficiently large system sizes,
(j) becomes independent of N, a property of systems that
exhibit coherent/ballistic transport.

Our high-temperature nonequilibrium calculations indicate
that, even though a single magnetic impurity breaks the inte-
grability of the XXZ chain as seen from the probability dis-
tribution of energy level spacings (Fig. 1), transport remains
ballistic and the system behaves as a perfect conductor. This
becomes apparent in the scaling of the spin current only for
sufficiently large system sizes, see Fig. 4, in analogy with
the integrable XXZ case [32]. We stress that this behavior
persists for all the values of & studied and that we expect it to
persist for any finite nonvanishing magnetic impurity strength
(for h = 0 one has an integrable XXZ chain, and for 2 = oo
one has two disconnected integrable XXZ chains). This is the
first example known to us in which a quantum many-body
system exhibits a Wigner-Dyson level spacing distribution and
displays coherent transport. The latter can be understood to
be the result of excitations traveling in a ballistic fashion on
either side of the integrability breaking defect and scattering
only at the impurity site.

The inset in Fig. 4 shows the scaling of the steady-state
spin current, for N = 100, with the impurity strength. (j) vs
h can be well fitted with the function a/(1 4 bh?), an ansatz
that follows from results for the noninteracting case discussed
in Appendix C. The main effect of increasing the magnitude of
h is to decrease the magnitude of (), while transport remains
ballistic.

The results reported here suggest that a single impurity is
not sufficient to render transport incoherent, despite the fact
that it is enough to render the system quantum chaotic, as
indicated by the distribution of energy levels. In Sec. IV B,
we revisit spin transport in the XXZ model in the presence of
a staggered field to contrast the results with those obtained in
this section.

B. Transport in the staggered-field model Agy

While it is known that the gapless XXZ model (0 < A <
1) exhibits ballistic spin transport, and it is therefore an
ideal conductor [32,47], breaking integrability by means of a
staggered magnetic field renders the system chaotic and spin
transport becomes diffusive [27]. We revisit transport in the
I:ISF model [see Eq. (3)] to contrast it with that in the I:ISI
model [see Eq. (2)].

Figure 5(a) shows the magnetization profile in the NESS
of the I:Isp model for A = 0.5, b = 0.5, and different chain
sizes. Unlike the magnetization profile in the NESS for the Hg;
model, the staggered field induces a ramplike linear profile
in the magnetization across the chain. The small oscillations
of the magnetization are due to the presence of the staggered
field. In Fig. 5(b), we show the average

<6iz)ave = (<6-IZ> + (6iz+1>)/2' (23)

Figure 5(b) makes apparent that, aside from boundary effects,
the magnetization profile is linear.

Figure 6 shows results for the finite-size scaling of the spin
current in the NESS of the FISI model, for the same parameters
used in Fig. 5. We obtain the diffusion parameters, D = 19.3
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FIG. 5. Magnetization profile of the nonequilibrium steady state
of the anisotropic Heisenberg model in the presence of a staggered
magnetic field with b = 0.5. The results were obtained for A =
0.5, y =1.0, and p = 0.001. (a) Magnetization and (b) average
magnetization [see Eq. (23)].

(the diffusion coefficient) and v = 0.98, from

() __ D
2A67 (N —10)v"

ave

(24)

Our results show that the current obeys the diffusion equa-
tion (Fick’s law). They are in agreement with the results in
Ref. [27].

ave

Spin current (j)/2A0?

b=05, f(z)=19.3- N0

0.1

40

System size N

FIG. 6. Scaling of the spin current in the NESS of the staggered-
field model as a function of system size (N = 60, 70, 80, 90, 100),
for A = 0.5 and b = 0.5 (same parameters as in Fig. 5). The driving
parameters are y = 1.0 and . = 0.001. To reduce finite-size effects,
in our calculations we discard the five leftmost and the five rightmost
sites of the chains.

To check that we are working in the linear response regime,
for both the I:ISI and FISF models, we studied the spin cur-
rent as a function of the driving strength. As discussed in
Appendix B, in the regime of small values of u, the current
in our calculations depends linearly on the driving parameter.

V. KUBO LINEAR RESPONSE THEORY

In the previous section, we studied two nonintegrable
models [described by the Hamiltonians in Eqgs. (2) and (3)]
displaying contrasting transport properties. Specifically, the
single impurity model (with Hg;) displays coherent transport,
while the staggered field model (with Hsg) displays diffusive
transport, despite the fact that both exhibit quantum chaotic
energy spacing distributions as predicted by random matrix
theory. To understand whether the differences found are real
and not, e.g., an artifact of the microscopic details of the £; ,
dissipators in Eq. (8), we turn to Kubo linear response theory
for closed quantum systems.

Within linear response theory, the real part of the conduc-
tivity can be written as (7 = 1 and kg = 1) [61-64]

7 (1 —e P
Re[oy ()] =7 Dyd(w) + — ( ———
N w
X > Palduml*S(em —€n — @), (25)
€nFem

where Dy is known as the Drude weight or spin stiffness,
B is the inverse temperature, p, = e~ #¥ /Z is the Boltzmann
weight of eigenstate |n) with energy ¢,, and Z is the partition
function. J,,, are the matrix elements of the fotal spin current
operator in the energy eigenbasis

F=>"7 (26)

with the sum adjusted properly depending on whether the
system has periodic or open boundary conditions. Here, J; is
the local spin current operator from Eq. (13).

The Drude weight can be calculated using the expression

1

Dy =

- Pn — Pm
(=1 =3 ="l |, @D

€nFEm

where [' is the so-called stress tensor operator [65],
which is identical to the kinetic energy operator 7T =
Y« (6761, + 6; 6. ,)in the models we consider. In one di-
mension and for sufficiently high temperatures (in the absence
of superconductivity [63,64]), the Drude weight can also be
obtained using the expression [66]

_ B 2
Dy =52 paldunl® (28)

€n=€m

In the thermodynamic limit, Eq. (25) leads to the decom-
position Re[os(@)] = T Dood(@) + Oreg(w), where Dy, =
limy_ o Dy = limy_,oo Dy and oye(w) is the regular part
of the conductivity. A nonzero D, signals that transport
is ballistic; the current-current correlation function does not
vanish in the limit of infinite time. This is a property of
integrable systems. In systems that display diffusive transport,
expected for nonintegrable systems, Dy, = 0.
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Equations (25) through (28) are usually evaluated in sys-
tems with translation invariance. In systems with open bound-
ary conditions, such as the ones for which the NESS was
evaluated in the previous section, obtaining D, is subtle. In
such systems, the position operator

X = Z k&6, (29)
k

is well defined [65]. X can be used to define the total current
operator as J=i [)A( JH 1, where H is the Hamiltonian, and the
stress tensor operator as [=—i [)A( , J ] [64]. If one uses these
relations to evaluate the matrix elements of the total current
operator, one finds that J,,, =i m|XH|m) —i (n|AX|m) =
(€, — €,) (n|f(|m), which implies that Dy and Dy are ex-
actly zero [64]. This implies that, in systems with open bound-
ary conditions, limy_, o, Dy = limy_, o, Dy = O irrespective
of whether the system is integrable or not, in disagreement
with what is known for systems with periodic boundary condi-
tions. Such a disagreement may lead one to question whether
the Drude weight obtained from this picture [Egs. (25)—(28)]
is a meaningful thermodynamic quantity. The fact that it is
was argued for in Ref. [64].

A central finding of Ref. [64] is that, in order to obtain
D, # 0 in integrable systems with open boundary conditions
and conciliate the result with the one obtained in systems with
periodic boundary conditions, one needs to study the behavior
of the finite frequency part of the Kubo formula [the second
term in Eq. (25)]. In the thermodynamic limit, a peak develops
at zero frequency from the collapse of peaks located at finite
(size dependent) frequencies in finite-size systems.

Even in the presence of periodic boundary conditions, one
can see that a similar analysis is needed for Hg;. Having
an impurity with a very strong field (A — o0) is equivalent
to having open boundary conditions. Also, in the noninter-
acting limit (A = 0) for which transport must be ballistic,
the presence of the impurity breaks the k, —k degeneracy
in the single-particle spectrum resulting in Dy = Dy = 0.
The latter remains true for A # 0. Next, we study the finite-
frequency part of Eq. (25) in the single impurity model at high
temperature.

A. Numerical results

We compute the finite-frequency part of Eq. (25) within
the grand-canonical ensemble (at zero chemical potential), for
which finite-size effects are expected to be the smallest in
the presence of translational invariance [67]. We only study
chains with an even number of lattice sites given the known
presence of strong even-odd effects at high temperature [48].
Since we are interested in the high temperature regime (we
take f = 0.001 in all our calculations), the calculation re-
quires the evaluation of all the eigenenergies and eigenvectors
of the Hamiltonian. This is achieved using full exact diag-
onalization, for which the accessible system sizes with our
computational resources are N < 18.

In Fig. 7(a) and its inset, we show the finite-frequency part
of the conductivity for XXZ chains with open and periodic
boundary conditions, respectively. A binning procedure was
used in order to obtain smooth curves. The size of the fre-
quency bins is selected to be large enough so that the bins

0.9 ‘ ‘
E 03 T T
08 L I . N=12 —— ||
- (8) Hxxz N=14 ——
0.7+ IF 'A_or N=16 —— |1
oy 02 a=0s NI

0.6 2] i
L

Hyp, A= 0.5, h=0.5

PBCs

Conductivity Re[o(w)]/(7(=T)/N)

Frequency w

FIG. 7. Finite-frequency part of the spin conductivity [the second
term in Eq. (25)]. (a) Integrable Hyxz model in the gapless phase,
A = 0.5, in chains with (main panel) open boundary conditions and
(inset) periodic boundary conditions. (b) Single impurity model Hy,
for A = 0.5 and 2 = 0.5, in chains with (main panel) open bound-
ary conditions and (inset) periodic boundary conditions (linear-log
scale). The results were obtained at very high temperature f =
0.001. The straight lines in the main panels and in the inset in (b),
shown only for N = 18, are approximate delimiters for the bottom
of the large low-frequency peak as suggested by the smooth curves
in the inset in (a).

contain a large enough number of the discrete frequencies of
the system but small enough so that the results are robust
against changes of the bin size. In our simulations, we used
bin sizes of 0.001-0.1 depending on the dimension of the
Hilbert space for each magnetization subsector. The curves
are normalized to satisfy the sum rule

7 (=T)
2N

/OO Re[o(w)]dw =
0

= 2 [ Relo@ldo = 5. (0
= elo(w)ldow = -,

m(=T) Jo 2

so that the area under the curves is 1/2.

The main panel and the inset in Fig. 7(a) show that
there is a stark contrast between the finite-frequency part
of Re[oy(w)] in the integrable XXZ model depending on
whether the chains have open or periodic boundary conditions
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FIG. 8. Finite-size scaling analysis (up to N = 18) of (a) the
Drude weight for the ﬁxxz model and the weight of the lowest
frequency peak E for the Hg; model in chains with periodic boundary
conditions and (b) the weight of the lowest frequency peak E for the
FIXXZ and I:Is] models in chains with open boundary conditions. All
results were obtained at very high temperature g = 0.001.

(see also Fig. 1 in Ref. [64]). For periodic boundary condi-
tions, the finite-frequency part exhibits a smooth behavior that
is nearly size independent. The Drude weight in that case,
shown in Fig. 8(a), extrapolates to a nonzero value in the
thermodynamic limit.

For open boundary conditions, a large sharp peak can be
seen at low frequencies (smaller sharp peaks occur at higher
frequencies) on top of an otherwise smooth part that resembles
that of the system with periodic boundary conditions. This
sharp peak moves toward smaller frequencies with increasing
system size (wpeak & 1/N, see Appendix C and Ref. [64]), so
one expects it to be at zero frequency in the thermodynamic
limit. The area under this peak, and above the smooth
curve seen in the system with periodic boundary conditions,
extrapolates to a finite value in the thermodynamic limit. The
latter is shown in Fig. 8(b), where E is two times the area
under the peak and above of the straight line in Fig. 7(a).
The extrapolated value obtained for E in the thermodynamic
limit is smaller than the one obtained for D, in systems with
periodic boundary conditions in Fig. 8(a). The expectation
for systems with open boundary conditions is that other peaks
at higher frequencies, which are also o1/N, will collapse to

® = 0 in the thermodynamic limit, and their added weight
will be identical to the Drude weight obtained in systems with
periodic boundary conditions (see Appendix C and Ref. [64]).
This is how a nonvanishing Drude weight appears in systems
with open boundary conditions, for which Dy = Dy = 0 for
any N.

In the main panel in Fig. 7(b), we show the finite-frequency
part of Re[oy(w)] in the single-impurity model for chains
with open boundary conditions. The curves are very similar
to those obtained for the integrable XXZ model in Fig. 7(a).
Also, the extrapolation shown in Fig. 8(b) suggests that the
area under the large low-frequency peak is finite in the ther-
modynamic limit as for the integrable XXZ model. The inset
in Fig. 7(b) shows the results for the finite-frequency part of
Re[oy(w)] in the I:ISI model for chains with periodic boundary
conditions. They are in stark contrast to those for the XXZ
chain in systems with periodic boundary conditions and have
features present in the results for chains with open boundary
conditions. A smooth, nearly system-size independent, part is
seen at frequencies w > (.5, and a sharp peak is seen about
o = 0. The width of the sharp peak decreases with increasing
system size, while its area extrapolates to a finite value in the
thermodynamic limit. In Fig. 8(a) we show the extrapolation
of E, which gives a result in the thermodynamic limit that is
very close to the Drude weight obtained in systems with peri-
odic boundary conditions in the absence of the impurity. This
suggests that, in the thermodynamic limit, the low-frequency
peak collapses to w = 0 resulting in a nonzero Drude weight.
Our results for the Hg; model, both in systems with open and
periodic boundary conditions, indicate that transport in the
Hg; model is coherent, in agreement with our boundary-driven
calculations from Sec. IV A.

We should mention that there is an earlier study of the
finite-frequency part of Re[oy(w)] in the I:ISI model for
chains with periodic boundary conditions [45]. The results
reported in that work are similar to those reported in the
inset in Fig. 7(b). However, the low-frequency peak whose
width vanishes with increasing system size was interpreted as
indicating incoherent transport with a relaxation time T o« N.
Similar results and conclusions to those in Ref. [45] were
reported in Refs. [68,69] for energy transport in the presence
of an impurity.

VI. SUMMARY AND OUTLOOK

Integrability is known to be fragile against perturbations.
It is still remarkable that a single impurity can break integra-
bility in an N — oo chain [42-45]. This can be understood
in view of the fact that an O(1) local integrability breaking
perturbation can mix exponentially many extended eigenstates
of an integrable model and produce a Wigner-Dyson level
spacing distribution typical of quantum chaotic models. Since
the quantum chaotic models studied to date exhibit incoherent
transport, a Wigner-Dyson level spacing distribution is usually
assumed to mean incoherent transport.

In this work we have studied a model, the first one known
to us, for which this intuition does not apply. We showed
that, while a single impurity in the XXZ model changes the
level spacing distribution from Poisson to Wigner-Dyson, it
does not change the nature of spin transport in the chain
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from coherent (for 0 < A < 1) to incoherent. We discussed
this both in the context of transport in nonequilibrium steady
states and in the context of Kubo linear response theory.
We argued that this conclusion applies to chains with open
and periodic boundary conditions. Our results hint that the
equilibration properties of the single impurity model should
be anomalous. The fact that models with single impurities can
display anomalies in their approach to equilibrium is a topic
that has started to be explored [70,71].

It would be interesting to understand the onset of diffusion
for systems in which integrability is broken not by a single
impurity but by an increasing number of impurities that, e.g.,
interpolate between the single impurity model and the stag-
gered field model also considered here. The latter was shown
to exhibit the expected incoherent transport for a quantum
chaotic model. Another interesting question is what happens
as one adds impurities in a sequence in which they occupy the
central site in empty sections of the chain. These are questions
we are currently exploring.
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APPENDIX A: NUMERICAL EVALUATION
OF NONEQUILIBRIUM STEADY STATES

1. Exact numerical approach to the solution
of the nonequilibrium steady state

Using the vectorized form of the density matrix described
in Sec. III C, one can write a matrix representation of the
Liouville superoperator and combine operations of the form
in Eq. (22) in order to factorize this operator from the density
matrix. In this picture, Eq. (9) transforms to

Wpness) =0, (ATD)
where W is a non-Hermitian matrix of dimension d%{ and
|OnEss)) 1s the vector form of the density matrix representing
the NESS, with the same dimension. At this point it is clear
that, given that the Hilbert space dimension is effectively
increased by a power of 2, the computational cost of studying
interacting open quantum systems is immensely higher than
in closed quantum systems.

The solution of Eq. (A1) is found by directly solving the
system of linear equations constrained to the trace preserving
property of the density matrix

(Lp)) =Tr(p) =1,

where |1)) is the vectorized identity. One can then define [59]

(A2)

W =W +[0) (1, (A3)
such that
W pness) = W dness) + 10) (1] Aness)
Wibness) = 10), = Ipness) = W'[0), (A4

where |0)) is the vectorized form of the first state in the
Hilbert space. The choice of the matrix |0)) (1] is in principle
arbitrary, with the only condition that the trace of the density
matrix is preserved. In the present case, |0) (1| is a matrix
of zeros, with ones only in the first row in the columns
corresponding to the diagonal elements of . -

It is imRractical to evaluate W~! given that, even if W
is sparse, W~! will not be sparse in general. Therefore, the
solution to the linear system is normally tackled by means
of direct or indirect methods. In general, direct methods are
more expensive in both computational and memory terms.
However, indirect methods such as Krylov subspace tech-
niques normally require preconditioning or other additional
techniques to attain acceptable numerical convergence with a
low number of operations.

The main drawback of the exact numerical approach is
intractability, in light of the d%l scaling of the Hilbert space.
In our work, we used this method only for small system sizes
N ~ 10. These system sizes are generally too small to identify
the transport regime in boundary driven spin chains. We resort
to the tMPS technique, briefly described in Appendix A 2, and
use the exact approach to evaluate the numerical fidelity of the
results obtained with tMPS.

2. Matrix product states operators approach to the solution
of the nonequilibrium steady state

In order to solve large system sizes, we use the time-
dependent matrix product states algorithm to study the evo-
lution of any initial state under Eq. (6). We start by writing the
density matrix of the system in the form

lo) = Z Copmay |01, -+, ON), (AS)
o] ON

where there are d" coefficients ¢,,..,, that describe the state
of the system, and o; is the local basis at site i. The Pauli basis
is a natural and commonly used choice to represent the local
basis, such that at site i the local basis is given by

11, 1.1,
foi) ={=1,-6% 267, 2671

1, A
2 2 2 2 (A46)

We use the vectorized form of this local basis, i.e., vec(6")
such that the density matrix operator can be represented as an
MPS in the extended Hilbert space. The power of the MPS
representation of the density matrix resides on the fact that
it provides a sense of locality to the state, while preserving
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the inherent quantum nonlocality features. To achieve this,
Eq. (AS5) has to be expressed in MPS form as

Z ATVA AN AN o, -, o),

01, ,ON

lo) = (AT)

where the A% are a collection of d matrices of dimension x X
x . This form can be generated from the sequential reshaping
and singular value decomposition (SVD) procedures of the
Coy-ay coefficients [37].

For the specific case at hand, one can use this representa-
tion in a tractable manner and keep the degree of correlations
(manifest in the bond dimension y of the matrices A°’) under
control by using an initial product state, say for instance,
the identity state, and evolving the system under dynamics
that keep the state close to an identity state throughout the
evolution as the NESS is reached. From Eq. (8), this can
be achieved for small values of p. Increasing this parameter
results in states of the system that are further away from
the identity in terms of quantum correlations, i.e., states that
require a large bond dimension to be represented with high
fidelity, particularly for large system sizes.

Just like states, operators can be written in MPS form in
a representation known as matrix product operators (MPOs).
Given that any quantum operator can be expressed as

0 = Z C(m,... xﬂN)s(‘TfV”s‘T{,\/)'U)(U,"

0,0’

(A8)

with ¢ := |oy, - -+, oN), One can decompose O the same way
as for an MPS with the double index 0,0/ taking the role of
the single index o; to give

O = Z VOO 0205 | Y ON-1.08 VUNsUI,v|o-><o~'|’ (A9)

0,0’

where we have omitted the sums over auxiliary indices as they
can be recognized as matrix multiplications. At this point we
note that, technically, a density matrix should be represented
as an MPO instead of an MPS. However, the vectorization
procedure allows the density matrix to be represented as an
MPS and, as we shall see, the Liouvillian propagator to be
represented as an MPO.

a. Real time evolution

To obtain the NESS, we target the solution of the master
equation numerically given by

1p(1)) = €771 p(0)), (A10)

in the limit T — 400, with |p(7)) being the density matrix of
the state at time ¢ = 7, |p(0)) describing the density matrix
of the initial state and W being a vectorized form of the
superoperator WV in Eq. (9). As mentioned before, in this form,
W corresponds to a square non-Hermitian matrix, while the

density operators correspond to vectors in an extended Hilbert
space.

The Liouville superoperator can be written as a sum of
terms involving only two sites

N—-1
W=3 Wi, (A1)
i=1

given that the Hamiltonian involves only two-site terms and
the Lindblad operators act locally. This structure allows one to
introduce the so-called Trotter decomposition of the Liouville
propagator.

The first-order decomposition can be written as

N-1
eV = 1_[ eWiin1T 4 (’)(rz).

i=1

(A12)

The error introduced in this decomposition is due to the fact
that nearest-neighbor Hamiltonian terms do not commute.
However, next nearest neighbor Hamiltonian terms do com-
mute, and this enables an even-odd decomposition of the
Liouville propagator that can be carried out at the same time.
In such a way, we can define

N

Oota =M @10 @1®- -, (A13)

Oeven =1® eW“r R1L® eW4'5r -, (A14)

such that Ougq and Oeyen can be applied at the same time 7.
One can notice that each of the e"i+17 acts on two sites so, in
this form, the MPO structure is no longer present. To recover
the MPO form, we need to decompose the operators in a way
that preserves the locality attributed to the MPS. To do that,
we can reshape the operators and apply SVD operations while
keeping the maximum y under control. To attain higher accu-
racy, instead of implementing the first-order decomposition as
described, we use a higher order approximation, namely, the
fourth-order Trotter-Suzuki decomposition given by

VT = AU (A (U (1) + O(%),  (AlS)
with
Z/Af(‘lf,‘) — ewnddfl/zewcvcnfieWnddTi/z’ (A16)
and
T
T =T2:m; T3=T—2T1 —2'52. (A]7)

Once these MPOs are operated in the sequence shown in
Eq. (A15) on an initial state [p(0)), the MPS for |p(7)) is
obtained. This procedure is done iteratively until the NESS
is reached in light of Eq. (10), evaluating expectation values
of observables after each time step. To contract the Liouville
propagator in MPO form and the MPS at time ¢, we combine
both methods presented in Ref. [37] to contract an MPS:
SVD truncation and the variational approach. We find that
convergence is achieved by providing the SVD-truncated state
as an initial guess for the variational algorithm with only
a few variational sweeps (=3-5). This approach provides
better numerical results than using one of the two contraction
methods on its own for a fixed value of y, albeit at a higher
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computational cost. We refer the reader to Refs. [37,60] for
details on both contraction techniques.

The method described has two main sources of error. The
first one is a truncation error due to the maximum value of the
bond dimension x used. In the specific case of simulations
to reach nonequilibrium steady states, this error strongly
depends on the system size N, the strength of the driving u,
and the interaction parameter A. The second source of error is
related to the Trotter-Suzuki decomposition from Eq. (A15),
which introduces an error of order O(Mt?) for the M-th time
step. This error has also been found to depend linearly on
the system size N [72]. In the case of NESS simulations, this
error is not as important as the truncation error, given that the
state does not change after the NESS is reached. In practice,
in light of Eq. (18), we apply enough time steps such that
the standard deviation of the expectation value of the current
operator averaged over all sites becomes very small (~0.5%).

APPENDIX B: LINEAR RESPONSE AND ERROR
ANALYSIS FROM BOUNDARY DRIVING
CONFIGURATIONS

We have compared transport properties of different mod-
els using nonequilibrium configurations and linear response
theory; in this section we demonstrate that the nonequilib-
rium transport calculations are within linear response regime.
Figure 9 shows that the magnitude of the spin current depends
linearly on the driving strength for values well above those
used in our simulations. This implies that the transport prop-
erties in our systems depend linearly on p, (j) o w, and can
be well captured by linear response theory. For i = 0, the fit
shown in Fig. 9 is very close to zero, as no boundary driving
implies no excitations propagating through the chain.

We analyzed the truncation error (induced by using a
finite value of x) by studying the expectation value of the
current operator [Eq. (13)] for the largest system size we
simulated at fixed u for different values of x. We then selected
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FIG. 9. Expectation value of the current in the NESS as a func-
tion of driving strength. (inset) Truncation error in the tMPS method
versus the bond dimension y for the largest system size we simulated
for the Hs; model with & = 0.5.

a value of y that introduces a small tolerable error in our
simulations. In the inset of Fig. 9, we show the error defined
as [(j(x)) — (j(00))/{j(00)) x 100, where (j(c0)) is an
extrapolated value of the current, as a function of the bond
dimension y. The scaling of the bond dimension suggests
convergence for x — 00, as expected. In our calculations, we
used ¥ = 100 which results in an error due to the truncation
that is <2%.

APPENDIX C: TRANSPORT IN THE
NONINTERACTING REGIME

1. NESS

Here we discuss the results when A =0 in the models
studied in the main text, i.e., in their noninteracting limit. In
this limit, all these models are (trivially) integrable, and one
can use the approach proposed in Ref. [73] to solve large sys-
tem sizes at a low computational cost. Within this approach,
a perturbative expansion is used to obtain the exact form of
the nonequilibrium steady state by solving an equation of the
Lyapunov type for any value of the boundary driving strength
® (we use u = 1). In the noninteracting limit, the dependence
of the expectation value of the local magnetization and the
spin current on p is always linear. This is in contrast with
the interacting case, which shows a nonlinear dependence for
sufficiently strong boundary driving [74].

In Fig. 10, we show the magnetization profile of the NESS
for the ﬁSI model with A =0 for different values of the
impurity strength. The magnetization profiles are qualitatively
similar to those in the interacting case depicted in Fig. 3, with
the exception of the magnetization in the close vicinity of the
impurity. For the interacting case, the magnetization profile in
the vicinity of the impurity is somewhat smoother, while the
noninteracting case exhibits an abrupt step.

In Fig. 11 we show the expectation value of the spin current
operator in the NESS () as a function of the chain sizes. One
can see that, for sufficiently large system sizes, (j) becomes
independent on N, in analogy to the results for the interacting

;)

Site magnetization (

0 20 40 60 80

Site position ¢

FIG. 10. Magnetization profiles in the NESS of the noninter-
acting limit of the Hs; model (A = 0) in the presence of a single
magnetic impurity with different strengths 4. See Fig. 3 for results
when A # 0. The profiles were obtained with N = 80, y = 1.0, and
w=1.0.
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FIG. 11. Scaling of the expectation value of the current operator
in the nonequilibrium steady state of the I:ISI model with A =0 as a
function of system size (N =4, ..., 1000), for different values of /.
The driving parameters are y = 1.0 and u = 1.0.
case in Fig. 4. The absolute value of (j) decreases with
increasing the strength of the impurity as 1/(1 + ah?) (see
the inset in Fig. 11). This functional form is obtained from the
transmission probability of free particles through a barrier at
high temperatures [75]. This is the functional form used in the
fit reported in the inset in Fig. 4 for the interacting case.

In contrast to the results for the interacting and nonin-
teracting Hs; models, the results for the magnetization pro-
files of the interacting and noninteracting Hsr models are
fundamentally different. In Fig. 12(a), we show the magne-
tization profile of the noninteracting XX model (the XXZ
model for A = 0), to accentuate its similarity with the results
for the noninteracting Hsp model reported in Fig. 12(b),
which are in stark contrast to the profiles for the interacting
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FIG. 12. (a) Magnetization profile of the nonequilibrium steady
state for the noninteracting model and (b) for the noninteracting
model in the presence of a staggered magnetic field with different
values of b. The driving parameters are y = 1.0 and p = 1.0.
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FIG. 13. Scaling of the expectation value of the current operator
in the nonequilibrium steady state as a function of system size
(N =4,...,1000) for the noninteracting model in the presence of
a staggered magnetic field. The driving parameters are y = 1.0 and
n=1.0.

case reported in Fig. 5. In the noninteracting regime, the
characteristic linear ramplike profile observed for interacting
systems that display incoherent transport (Fig. 5) is no longer
present [Fig. 12(b)]. As expected for systems with coherent
transport, Fig. 13 shows that the expectation value of the spin
current operator () in the noninteracting Asr model becomes
independent of N for sufficiently large system sizes.

2. Linear response theory

For translational-invariant models in the noninteracting
regime, such as the I:IXX model, the properties of the total
current operator J [Eq. (26)] can be calculated analytically.
In the free-fermion representation [50], the eigenstates of the
single-particle Hamiltonian are plane waves

1 e
Im) = ﬁ;ekmfcj 0Y, (C1)

where |m) is the mth eigenstate, with energy ¢, =
—4a cos (kyy,), c']t is the fermionic creation operator on site
j, 10) is the vacuum state, and k,, =27xm/N with m =
—L/2+1,...,L/2. From this, the matrix elements of the
total current operator are given by |J,,,|> = [4a sin (ky,)]*8um»
i.e., the total current operator is diagonal in the energy eigen-
basis. This implies that the second term in Eq. (27) is zero,
and we obtain Dy /((—T)/N) = 1 for any value of N.

On the other hand, as discussed in Sec. V A, chains with
open boundary conditions have Dy = Dy = 0 irrespective
of the presence or absence of interactions [64]. Remark-
ably, Dy = Dy =0 for the single impurity model in the
noninteracting limit even in systems with periodic boundary
conditions. This is the case because the impurity breaks the
degeneracies between the single-particle k and —k eigenkets
present in the translationally invariant case. Since the nonin-
teracting limits of the XXZ and single impurity models are
trivially integrable and must exhibit coherent transport, it is
already apparent in this limit that the finite frequency part of
Eq. (25) needs to be studied to compute the Drude weight [64].
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FIG. 14. Finite frequency part of the conductivity Re[oy ()]
in noninteracting systems (A = 0). (a) Noninteracting limits of the
ﬁxxz and I:ISI models with open boundary conditions. The inset in
(a) shows the weight of the lowest frequency peak as a function of the
system size. (b) and its bottom inset: Noninteracting limit of the Hgy
model with periodic boundary conditions. The top inset in (b) shows
the weight of the lowest frequency peak as a function of the system
size. The results were obtained at very high temperature 8 = 0.001.

In Fig. 14(a), we show the finite-frequency part of the
conductivity in the noninteracting limit of the FIXXZ and FISI
models with open boundary conditions. Since Dy =0 in
both cases, the sum rule in Eq. (30) is fully accounted for
by the finite-frequency part of the conductivity. Figure 14(a)
shows that, with increasing system size in both models, the
peaks present at finite frequency move toward @ = 0 (their
frequency is w o 1/N [64]) and become sharper. The weight
of the peaks converge to a nonvanishing size-independent
value with increasing system size. The inset in Fig. 14(a)
shows the weight E of the lowest frequency peak (located
at w & 4w /N) as a function of system size (the weight is
two times the area under the peak). These results show that,
in the thermodynamic limit, the systems develop a peak at
o = 0 stemming from the collapse of peaks present at finite
frequencies in finite systems. The weight of such a zero-
frequency peak in systems with open boundary conditions is
exactly the Drude weight predicted in systems with periodic
boundary conditions [64].

Figure 14(b), and its bottom inset, show the finite-
frequency part of the conductivity in the noninteracting limit
of the Hs; model with periodic boundary conditions. The top
inset in Fig. 14(b) shows the scaling of the weight of the
lowest frequency peak as a function of system size. The same
conclusions drawn for chains with open boundary conditions
apply for chains with periodic boundary conditions. The low-
est frequency peak, however, is much closer to w = 0 and is
much sharper in chains with periodic boundary conditions.
Also, the weight of the lowest frequency peak is higher for
periodic boundary conditions [see the top inset in Fig. 14(b)
vs the inset in Fig. 14(a)]. In the thermodynamic limit, the
lowest frequency peak almost accounts for the Drude weight
in chains with periodic boundary conditions.

The results for noninteracting systems discussed here,
given the trivial nature of their coherent transport, highlight
the subtleties discussed in Sec. V A when dealing with Kubo’s
linear response theory in systems without translational invari-
ance. One needs to study the finite-frequency response in such
systems in order to be able to determine whether transport is
coherent or incoherent.
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