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Designing multidirectional energy splitters and topological valley supernetworks
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Using group theoretic and topological concepts, together with tunneling phenomena, we geometrically design
interfacial wave networks that contain splitters which partition energy in two, three, four, or five directions. This
enriches the valleytronics literature that has, so far, been limited to two-directional splitters. Additionally, we
describe a design paradigm that gives greater detail about the relative transmission along outgoing leads, away
from a junction; previously, only the negligible transmission leads were predictable. We utilize semianalytic
numerical simulations, as opposed to finite element methods, to clearly illustrate all of these features with highly
resolved edge states. As a consequence of this theory, networks, with directionality tunable by geometry, ideal
for applications such as beam-splitters, switches, and filters are created. Coupling these networks that contain
multidirectional energy-splitters culminates in the realization of a topological supernetwork.
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I. INTRODUCTION

A fundamental understanding of the manipulation and
channeling of wave energy underpins advances in electronic
properties, acoustic switches, optical devices, vibration con-
trol, and electromagnetism. Guiding waves, splitting, and
redirecting them between channels, and steering waves around
sharp bends in a robust and lossless manner is of interest
across many areas of engineering and physics [1–7]. Recent
advances based upon ideas originating from topological in-
sulators [8–11], translated to Newtonian wave systems, have
inspired great interest. In particular, geometrically engineer-
ing topological photonic and phononic crystals [11,12] to
direct waves along interfaces in a robust tuneable manner has
shown much potential. In this paper, we leverage the efforts
by the topological valleytronics community [13–28] to design
a range of interfacial wave networks. These extend the inter-
facial network designs prevalent in the current literature by al-
lowing for more than a two-way splitting of energy away from
a nodal region. For hexagonal structures, there are three dis-
tinct edges which yield up to three sets of edge states [12,29];
the current literature has concentrated upon only one of these.
Here we analyze the remaining two, one of which is topo-
logical, while the other is not. Despite that latter state being
nontopological, the large separation in Fourier space between
opposite propagating modes results in an interfacial wave that
is relatively robust to sharp disorders. To elucidate our princi-
ples with clarity, we outline a comprehensive design paradigm
which is in turn utilized to build networks, see Fig. 1.

Recent attempts to leverage the properties of quantum
topological effects to design so-called topological power-
splitters for continuous Newtonian systems [30–33] would
benefit from a clear design paradigm explaining how to parti-
tion the energy of topological modes. Splitters and efficient
transport around sharp bends are often achieved using a
different mechanism, that of cavity waveguides in photonic
crystals [1–3,6]. Given that we are dealing with interfacial

waves, the power-splitting mechanism espoused herein is an
alternative means to split energy to those found in Refs. [2,6].

By focusing upon the underlying concepts of time-reversal
symmetric (TRS) valley-Hall insulators [19,32,34–38] that do
not break TRS, our system is ultimately topologically trivial.
Despite this, valley-Hall insulators do have advantages; they
are relatively straightforward to design as we only need to
break spatial inversion and/or a reflection symmetry, together
with proactively suppressing backscattering between modes
of opposite group velocity.

The group theoretic and topological concepts founda-
tional to our approach hold irrespective of any specific two-
dimensional scalar wave system. We illustrate these concepts
using a single system; specifically, a structured thin elastic
Kirchhoff-Love (K-L) plate [39] for which many results for
point scatterers are explicitly available [40]; the ideas them-
selves carry across to photonics, phononics, and plasmonics.

A particularly pleasant feature of the K-L model is that the
fundamental Green’s function is, unlike acoustics and elec-
tromagnetism, nonsingular and bounded thereby simplifying
simulations.

We begin by briefly formulating the Bloch eigenstate and
scattering problems in the context of the K-L elastic plate,
Sec. I A, and then move on, Sec. I B, to describe the construc-
tion, origin and classification of the three canonical edge states
that are possible. Section II introduces the design paradigm for
creating networks and we elucidate the critical points required
in building or interpreting networks: sharp modal shapes, fil-
tering, Fourier space separation between opposite propagating
modes, chirality and the suppression of intervalley scattering,
tunneling of energy, and the effect of the nodal region at the
junction between interfaces. Given the paradigm developed,
we move on to Sec. III, where we construct such interfacial
wave networks; we demonstrate the collective strength of
the design principles in Sec. III D by building a large-scale
topological supernetwork. Finally, in Sec. IV, we pull together
concluding remarks.
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FIG. 1. Intelligently constructed domain comprised of geomet-
rically distinct regions; mass-loaded structured elastic plate is the
model chosen. Source is placed at the start of the interface 3.
Arrangement of masses for blue and orange cells are shown in panels
(a) and (b); specific system parameters are detailed in captions of
Figs. 3 and 7. Panels (a) and (b) are associated with the (c) and
(d) scattered field panels. Panel (c) shows typical two-way energy-
splitting [30]; an alternative geometrically engineered interfacial
wave network with more than two-way splitting is shown in (d).
(c) Conventional two-way energy-splitter. (d) Geometrically engi-
neered three-way energy-splitter

A. Formulation

Displacement Bloch eigenstates ψnκ (x) satisfy the (nondi-
mensionalized) K-L equation

[∇4
x − ω2

κ

]
ψjκ = F (x), (1)

for Bloch-wavevector κ , j labeling the eigenmodes and ωκ

the frequency; reaction forces at the point constraints, F (x),
introduce dependence upon the direct lattice.

In two-dimensional systems, there are only three symmetry
sets that yield Dirac cones [12,29] of which we use two.
The gapping of these Dirac cones is done via two distinct
symmetry-breaking mechanisms; for point scatterers, this en-
tails varying their masses or positions. The simplest model to
use is that of the mass-loaded elastic plate where the reaction
forces are proportional to the displacement and hence,

F (x) = ω2
κ

∑
n

P∑
p=1

M (p)
n ψjκ (x)δ

(
x − x(p)

n

)
. (2)

Here n labels each elementary cell containing p = 1...P

constraints that repeats periodically. Equation (1) is solved
to obtain the eigenstates using plane wave expansions [41],
modified for elastic plates [42], and when forcing is applied
we utilize a Green’s function approach [43] where the total
wavefield is given for N scatterers by

ψjκ (x) = ψi (x) +
∑

n

P∑
p=1

F (p)
n g

(
ωκ ,

∣∣x − x(p)
n

∣∣), (3)

where ψi is the incident field. Using the well-known Green’s
function [40], g(ωκ , ρ) = (i/8ω2

κ )[H0(ωκρ) − H0(iωκρ)],
the unknown reaction terms F

(p)
n come from the linear system

F (p)
n = M (p)

n ω2
κ

⎡
⎣ψi

(
x(p)

n

) +
∑

m

P∑
q=1

F (q )
m g

(
ωκ ,

∣∣x(q )
m −x(p)

n

∣∣)
⎤
⎦.

(4)

This model has considerable advantages in terms of being
almost completely explicit, and additionally the Green’s func-
tion is nonsingular; this leads to highly resolved solutions and
edge states that enable us to interpret the results accurately.
The numerical schemes that emerge from this approach are
efficient, thereby allowing us to concentrate on the design
process itself.

B. Three distinct edges: Topology, symmetry,
and the cellular structure

We demonstrate three distinct edge states that are intelli-
gently constructed; two of these are topologically nontrivial
while one is topologically trivial. Despite the latter case being
trivial, it will be shown in Sec. II C that it is still relatively
robust to backscattering due to the Fourier space separation
between the forward and backward propagating modes; typi-
cally the well-studied topological trivial interfacial and cavity
guide states effectively rely solely upon this separation. A
summary of the three types is shown in Table I and their
geometrical origins are visually demonstrated in Fig. 2.

Turning our attention toward the topological nontrivial
states, the valley Hall effect originates from the gapping of
Dirac cones, resulting in nontrivial band gaps where broad-
band edge states are guaranteed to reside; simply placing two
media that share a band gap as neighbors does not guarantee
an interfacial mode [44]. The topological invariant that dic-
tates the construction of our neighboring media is the valley
Chern number; this takes nonzero values locally at the KK ′
valleys. By attaching two media with opposite valley Chern
numbers, broadband chiral edge states arise; these interface
states are commonly known as topological confinement states,
kink states, zero modes, or zero-line modes (ZLMs). From
hereon in, we use the term ZLM to refer to these topologically
nontrivial states; the etymology of this term arises from the
adjoining media, either side of the interface, having opposing
valley Chern numbers.

We generate ZLMs (and incidentally also the topologically
nontrivial modes) by placing one gapped medium above an-
other; this second medium could either be a reflection and/or
π/3 rotation of the first. The simplicity of this construction,
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TABLE I. Summary of the three edge types leading to Figs. 3, 4, and 7. In the C6v case, M1 and M2 denote alternating mass values within
a hexagon (see Fig. 3); M0 denotes the unperturbed mass value and β the perturbation. For the C3v cases, θ represents the angular perturbation,
α, away from the reflection line σv (see Fig. 2). Topological protection follows when the valley Chern numbers are opposite for adjoining
media. Abbreviations are adopted to concisely distinguish between the three systems referenced throughout this paper.

Edge Type Point Group Symmetries preperturbation Medium 1 Medium 2 Topological System
→ G�, GK,K ′ postperturbation postperturbation Protection abbreviation

Type 1 C6v, C3v M1 = M0, M1 = M0 + β, Yes C6v nontrivial
M2 = M0 + β M2 = M0

concave and convex curves C3v, C3v θ = +α θ = −α –
Type 2
one convex curve C3v, C3v θ = +α θ = +α + π/3 Yes C3v nontrivial
Type 3
two convex curves C3v, C3v θ = +α θ = −α + π/3 No C3v trivial

and the a priori knowledge of how to tessellate the two media,
to produce these broadband edge states, is the main benefit
of these geometrically engineered modes. A benefit of the
topologically nontrivial valley modes is that the opposing
valley Chern numbers imbue the edge states with an addi-
tional protective property (Sec. II D); despite the type-3 edge
(Table I) yielding topologically trivial states, it ultimately
shares many of the same features as its topological counterpart
in a practical setting due to the Fourier space separation of the
counterpropagating modes (Sec. II C).

For instance, for the C6v nontrivial case, from Ref. [29],
the effective bulk Hamiltonian takes the form

Heff = τzvD (σ̂z�κx − σ̂x�κy ) + τzMKσ̂y, (5)

where MK = ω2
K�M, vD is the system-dependent group ve-

locity, {σ̂i} are the Pauli matrices. The �M term is respon-
sible for gapping the Dirac point and differs depending upon

FIG. 2. The geometric creation of interfacial edge states relies
upon broken threefold symmetry; the stacked media are required
to share the same band gap, the latter arises from having the same
angular perturbation away from the reflection line, σv . The details of
the three edges are summarized in Table I. Perturbations shown in
(a) lead to a type-1 edge, resulting in similar edge modes to those of
Fig. 3; while the perturbations indicated by the right and left arrows,
for the lower cell in (b), pertain to the type-2 (Fig. 4) and type-3
(Fig. 7) edges, respectively.

the manner whereby inversion symmetry is broken; for the
canonical honeycomb case, �M = β/2. The presence of the
valley Pauli matrix, τz, relates the Dirac masses at the KK ′
valleys by MK = −MK ′ . The corresponding eigenvalues for
this effective Hamiltonian are

(
ω2

K − ω2
κ

) = ±
√

v2
D|�κ |2 + M2

K. (6)

This is the form of the eigenvalues for the massive Dirac
fermionic equation, albeit for a platonic crystal. Following
similar arguments to Ref. [45], we evaluate the Chern number
as C = CK + CK ′ where CK,K ′ = sgn(MK,K ′ )/2. The term
MK is responsible for gapping the Dirac cones by reducing
the symmetries of the cellular structures. The Dirac cone itself
is geometrically obtained in three distinct ways [29]; these are
described by the space group symmetries C6v, C3v, C6; how-
ever, for simplicity, in this paper we solely concentrate upon
the C6v, C3v cases. We could have used C3v case throughout,
i.e., for the type-1 edge, but we opted to include a C6v case
to illustrate the generality of our arguments. As we see from
Fig. 2, there are three possible edge types for the C3v case
(and for C6), while for the C6v case (due to the reflection
and rotation being equivalent) there is only a single edge type
which is topologically nontrivial.

The systematic reduction of these cellular structures takes
the space group symmetry down to C3 and consequently
reduces the point group symmetries at the KK ′ valleys to
C3; this reduction at the valleys gaps the Dirac cone. The
symmetry reduction down to threefold symmetry leads to
three symmetrically distinct edges for each cellular structure.

For the tight-binding model [46], ZLMs with distinguish-
able valley degrees of freedom exist for every propagation
angle except for the armchair; the armchair termination ex-
actly superposes the KK ′ valleys, thereby coupling them.
In principle, one could use other edge terminations for con-
tinua; however, it is impractical to use fractional cells, as
in Ref. [46], when partitioning the media. Therefore, the
topological networks that we create are based solely upon the
zigzag interface as they offer the greatest protection against
backscattering.

To summarize, we have identified the canonical three types
of edges that arise from breaking sixfold or threefold sym-
metry in hexagonal structures and the resulting edge states as
shown in Figs. 3, 4, and 7. We present a systematic breakdown
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FIG. 3. The gapped Dirac ZLM (related to type-1 edge of
Table I) with original space group symmetry C6v and alternating
the masses M1 = 1, M2 = 2, which have distance from centroid to
masses 0.5 (the pitch is 2). Right-hand circle on the concave curve at
ω = 15.11 corresponds to the ZLM (right). Left-hand circle on the
convex curve at ω = 15.67 to the ZLM (left). Note the detail of both
of the easily distinguishable edge states; hence we can easily attribute
a modal pattern to a specific ordering of the adjoining media.

of the different edge modes that may arise from breaking the
symmetry-induced Dirac cones occurring for the hexagonal
lattice and thence for all 2D media. Previously, the bulk of
the valleytronics literature [13–28] have exclusively only dealt
with the type-1 edge (in the notation of Table I). We now
utilize the unexplored type-2 and -3 edges to demonstrate
their properties for controlling and redirecting waves. Note
that the simplest C6v case is actually the honeycomb structure;
we have opted for hexagonal arrangement here because of its
parallels with continuous inclusions (see Fig. 8), the C3v ar-
rangements can also be mapped over to continuous inclusions.

II. NETWORK DESIGN PARADIGM

We outline the design principles that will be used in the
subsequent section for creating topological networks. The
two nontrivial modes that we are studying are characterized
as weak topological states protected solely by symmetry,
hence care must be taken to prohibit backscattering. A set of
principles regarding the optimization of these valley modes
was given in Ref. [47]. To clarify, the protection arises both
from the opposite chirality of opposite propagating modes and
the intervalley Fourier separation between these two states.
Only the former is a topological effect, while the latter also
occurs for topologically trivial interfacial and cavity waveg-
uide modes. Hence, for the C6v and C3v nontrivial systems we
have both of these protective mechanisms; however, for the
C3v trivial case we solely rely on the latter; despite this, in
Sec. II C we demonstrate how these modes still appear robust
against sharp disorder (i.e., the turning point at the junction)
for a broadband range of frequencies. Another benefit of these

FIG. 4. The gapped Dirac ZLM with original space group sym-
metry C3v emerges from the type-2 edge (Table I). The cellular
structure for the upper medium is shown; the lower medium is a
π/3 rotation of this (see Fig. 5). This case has the distance from
centroid to vertices of triangle = 0.85 unit masses (the pitch is 2) and
a perturbation of 0.05. The circled point at ω = 19.13 corresponds to
the ZLM shown. In contrast to Fig. 3, we have a broad frequency
range for which there is a nonsimultaneous edge mode. The interface
for the broadband edge mode is explicitly shown in Fig. 5(a), the
narrowband zigzag edge is shown in Fig. 5(b). The lack of overlap
between the states will be utilized in Secs. II B, III A when we
wish to preferentiate the energy propagation along particular leads
within a network. For a type-2 edge, you are not guaranteed a
nonsimultaneous edge mode. It is imperative to analyze the three
distinct types of edges (see Fig. 2 and Table I) to discern whether they
produce different edge states and hence different scattering behavior
within a network. The colorbar is shown to emphasize that a graded
color scheme is used for all displacements within this paper; often an
ungraded scheme is used within the valleytronics community, which
can be visually misleading.

trivial interfacial modes is that they afford unrestricted direc-
tional splitting as compared with their nontrivial counterparts
(Sec. II D).

Our design paradigm is similar to Ref. [47], albeit our
application is slightly different; our aim is to build robust
networks comprised of trivial or nontrivial interfacial modes,
not just to characterize the robustness of nontrivial ZLMs.
Therefore, in addition to the robustness of the modes, we
require additional features to aid the tunability of energy as
it propagates within an interfacial wave network. An outline
of the six principles is given below, before we embark upon
more detailed numerical explanations, in the subsequent sub-
sections:

(1) Different modal shapes.—Our semianalytic expressions
allow us to obtain precise and sharp modes where the distinct
modal patterns are easily seen. We distinguish the modes
present, those related to medium 1 over medium 2 and its re-
verse, by solving the linear system Eq. (4) we easily visualize
which edge state, and therefore which edge has been excited.
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FIG. 5. The zigzag edges for orange medium over blue and vice
versa for the structure used in Fig. 4 and associated with the type-2
edge of Table I.

(2) Filtering.—If there is only a single curve within a
frequency range, then a mode exists for medium 1 over
medium 2 but not for its reverse. The nonsimultaneous edge
modes present in the C3v nontrivial case, Fig. 4, provide an
example. These types of systems are utilized for filtering (see
Sec. II B).

(3) Fourier space separation.—This property has been
alluded to countless times with regard to interfacial and cavity
guide modes. When a source is placed at the start of a waveg-
uide, the backscatter is inversely related to the wavelength
of the energy-carrying envelope [48]. Therefore, a larger
wavevector is less prone to backscattering and hence less
prone to coupling with its opposite propagating counterpart.

(4) Chirality of valley states and suppressing interval-
ley scattering.—Unique to topological valley modes is pres-
ence of a favored chirality for edge modes [10,47,49]. The
lack of coupling of modes with opposite chirality has been
shown in Refs. [31,32]. Therefore, for a network, if a
mode on a prenodal lead is of a particular chirality it will
not easily couple to its counterpart of opposite chirality.
This is also true for a mode with a particular wave vec-
tor or K/K ′ valley index, pre and post the nodal region.
Hence, the chirality and wave vector matching properties are
significant for determining the coupling between modes, pre
and post the nodal region. The mechanism in which cou-

FIG. 6. The zigzag edges for orange medium over blue and vice
versa used in Fig. 7 and associated with the type-3 edge of Table I.
The zigzag edges in panels (a) and (b) are nearly identical, which
gives the almost overlapping edge modes shown in Fig. 7.

FIG. 7. The gapped Dirac topologically trivial edge state with
original space group symmetry C3v , arises from the type-3 edge
(Table I). The trivial nature is due to the Chern numbers at the KK ′

valleys being identical; despite this, the simultaneous bulk band-gap,
for the two media, and their relative difference in orientation results
in broadband edge states. Distance from centroid to vertices of
triangle = 0.85 and unit masses (the pitch is 2). Similar to Fig. 3, we
obtain simultaneous edge states, albeit for the type-3 edge we have
two convex curves as opposed to a convex and a concave. Left-hand
circle at ω = 18.95 corresponds to the interfacial mode on the left
while the right-hand circle, ω = 17.95, to the right-hand mode.

pling between the two valleys is restricted is more com-
monly referred to as suppressing intervalley scattering. Due to
the nearly identical edges, see Fig. 6, for the blue over orange
medium, and vice-versa, the type-3 edge offers an alternative
route for phase and group velocity matching pre and post
the nodal region and hence can lead to more than two-way
energy splitting.

(5) Tunneling.—A route to partitioning energy away from
an interfacial waveguide is via the tunneling of energy through
the decaying tails of the edge state. The amount of energy
partitioned via tunneling is tuned by adjusting the band gap.

(6) Nodal region.—The nodal region becomes highly rele-
vant when the wavelength of the energy-carrying envelope is
comparable in size to the nodal region. In these instances, the

FIG. 8. Structural elements moving beyond point masses:
(a) continuous perturbed C6v case, (b) continuous perturbed C3v case.
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FIG. 9. The clarity of the “sawtooth” edge mode obtained for
parameter values from the convex curve (ω = 15.67) shown in Fig. 3,
is evident for this C6v nontrivial example.

design of the nodal region can preferentiate certain outgoing
leads over others.

A. Different modal shapes

The clarity of edge modes that we find numerically allows
us to easily, and rapidly, identify whether the edge state
corresponding to, say, the concave or convex curves of Fig. 3
is excited. The two edge modes shown in Figs. 3, 4, and 7
relate to either an edge state along medium 1 over medium 2
or its reverse. They are visualized by placing a source at the
far-left-hand side of the interface between the two media; the
resulting modal pattern clearly reflects the relative ordering of
the media, see Figs. 9 and 10. To see this more clearly one
needs to realize that the scatterer arrangement within each
medium is important and one cannot apply a π rotation of
Fig. 9 to obtain Fig. 10.

For the simpler cases, Figs. 9 and 10, the identity of the
edges is obvious; however, later using the highly resolved
edge modes to unpick which edge is responsible, and exactly
which mode is excited, is in practice very useful when con-
structing complex networks comprised of many geometrically
distinct regions. The underlying mathematics that underpins
the construction of interfacial wave networks does not rely
upon the physical model and so there is no need to use a more
complicated systems, i.e., Maxwell, acoustic, Navier elastic-
ity, than the K-L flexural plate equation. These effects are
geometrically induced, hence system independent, choosing

FIG. 10. Edge state for the same parameters as Fig. 9, but now
with the ordering of the media reversed to be associated with the
concave curve in Fig. 3. The modal pattern is clearly different from
the ZLM in Fig. 9.

FIG. 11. Source placed at the turning point, ω = 15.80. As ev-
ident from the modal shapes, the mode propagating upwards is the
“sawtooth” mode that lies on the convex curve while the leftward
propagating mode is on the concave curve as shown in Fig. 3.

more complicated models to explore them adds nothing more
than computation time and results in lower resolution edge
states, which obscure from the fundamental physics. By using
the K-L model as a vehicle, we are able to use the resulting
clarity of the modes to provide us with useful information in
a time-efficient manner.

A less trivial example than Figs. 9 and 10, touched upon
in Refs. [28,29], is that of a gentle waveguide bend where
the adjoining media undergoes a 2π/3 bend, see Fig. 11. A
source placed at the turning point between the two interfaces
excites either the mode belonging to the concave or convex
curves; the clarity of the modes shows clearly the origin of the
leftward and upward propagating modes.

B. Filtering

The C6v case, referenced in the previous section, has two
distinct broadband ZLMs, at overlapping frequencies, within
the nontrivial band gap (Fig. 3); the asymmetry of the edges
was reflected by the differences in the modal shapes. In
contrast, for the C3v case, Fig. 4, the ZLMs now have very
limited overlap with only one broadband mode. Physically,
this implies that, for the C3v case, a ZLM exists, over a wide
range of frequencies, for one of the orderings of the media but
not for its inverse. This allows us to restrict propagation along
one of two distinct interfaces; see Fig. 12.

C. Fourier space separation

It is perhaps surprising, given the emphasis in the topo-
logical literature on nontrivial edge states, to observe that
the trivial case demonstrates visually robust energy transport
around π/3 and 2π/3 bends (see Fig. 13). This is because
the transport around the bends is partly supported by the
separation in Fourier space between the forward and backward
propagating modes; this is also implicit in the successful guid-
ing of photonic crystal waveguides around bends [48] where
topological protection is also absent. An example showing the
importance of the separation, common in the valleytronics
literature, is the contrast between the armchair and zigzag
interfaces. This is further evidenced by the small Fourier
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FIG. 12. The importance of the relative ordering of the media
for filtering in the C3v nontrivial case; for both panels, an isotropic
source is placed at the leftmost edge at frequency ω = 19.13.

separation between modes of opposite group velocity, see
Ref. [46] for the armchair case relative to that of the zigzag;
the armchair termination is far more prone to backscatter than
the zigzag.

FIG. 13. Robustness of C3v trivial edge state demonstrated
against π/3 and 2π/3 bend. The source excitation is placed at the
leftmost edge. (a) ω = 18.25, (b) ω = 19.00.

D. Chirality of valley states and suppressing
intervalley scattering

To ensure coupling between modes, pre and post the nodal
region, we must consider the relative group velocity and
wave vector of the incoming and outgoing waves. The time-
averaged energy flux for a structured elastic plate [52],

〈S〉 = ωκ

2
Im

(
ψjκ∇3

xψ∗
jκ − ∇2

xψ∗
jκ∇xψjκ

)
, (7)

provides the natural quantity that describes the energy trans-
fer. The topological protection of the edge states arises from
the orbital nature of their flux; there is a clear difference in the
fluxes between the topologically nontrivial and trivial edge
states as evidenced by Fig. 14. For the Dirac cone eigenso-
lutions, the singularity of the phases correspond to the high
symmetry points in Fourier space [37] where there is nonzero
Berry curvature; in physical space these are associated to
the points of zero displacement around which the vortices
of flux orbit. Similar vortices are shown in Fig. 14 for the
nontrivial edge state; notably these are absent from the trivial
case. These localized zero displacements along the interface
create a self-pinned linear array, similar to the pinned arrays in
Ref. [50], along which Rayleigh-Bloch modes propagate. The
relative difference in the robustness, between topologically
nontrivial and trivial modes, is explained more rigorously in
Refs. [49,51].

An additional impact of the orbital flux is that modes
of opposite chirality do not couple [31]; hence topological
networks have to be carefully designed to trigger the desired
excitations along outgoing leads. Another crucial condition
that dictates the coupling between pre- and postnodal region
modes is the K/K ′ valley index. Transmission across a nodal
region will be facilitated when the K/K ′ valley index of the
incoming and outgoing waves match.

Both the wave vector and energy flux of the postnodal
region modes must match the prenodal mode for the wave
to propagate through with limited scattering. Topologically
nontrivial systems that require matching of the wave vector
and chirality, between incoming and outgoing leads, are often
said to suppress intervalley scattering [53–56]. For the C6v

nontrivial case (and every other topological case [25,30,32]),
this restricts the systems to a two-way splitting of energy (if a
tunneling mechanism is not invoked, see Sec. II E).

A continuous spatial change of medium so the geometry
changes with distance can be used to illustrate many of
the features that are important, for instance the absence of
coupling, for the C6v nontrivial case, and coupling, for the C3v

trivial case, shown in Fig. 15. Figure 15(a) pictorially shows
the graded change from one media ordering to its reverse.
The masses for the upper medium (Fig. 15) in the C6v case
gradually vary from M1 = 1,M2 = 2 to M1 = 2,M2 = 1;
the lower medium variation is identical albeit from right to
left. The use of material grading allows us to explore and
demonstrate the coupling mechanism, the resulting scattered
field is shown in Fig. 15(b). Evidently the left-hand ZLM
is unable to couple into the right-hand ZLM; this is due to
the postgraded region mode being located at the opposite
valley, −κ , to the pregraded region mode +κ (see disper-
sion curves in Fig. 3), hence the absence of wave-vector
matching impedes the propagation through the graded region.
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FIG. 14. Close-ups of the interfaces for the C3v trivial and C6v nontrivial cases; (a,b) and (c,d), respectively. The (a,c) and (b,d) panels
represent negative and positive group velocity, vg , respectively. The arrows denote the energy flux, Eq. (7). There is a clear distinction between
the topologically nontrivial and trivial cases; the nontrivial flux has orbital motion induced from the stacked media having opposing valley
Chern numbers and hence opposite chirality at the KK ′ valleys; this property gives the valley modes their robustness [49,51]. (a) C3v trivial,
vg < 0. (b) C3v trivial, vg > 0. (c) C6v nontrivial, vg < 0. (d) C6v nontrivial, vg > 0.

In contrast, the C3v trivial case exhibits modes of identical
group and phase velocity for the pre- and postgraded region
leads (see dispersion curves in Fig. 7); this results in almost
unimpeded propagation through the graded region, Fig. 15(c).
The grading, for the upper medium in the C3v trivial case,
is from an angular perturbation, away from σv , of θ = 0.05
to θ = π/3 + 0.05; similar to the C6v nontrivial case, the
lower medium’s grading is the reverse of the upper medium’s.
The primary visual difference between the curves in Figs. 3
and 7 that results in this different propagative behavior is the
curvature of the pair of edge states; the two convex curves in
Fig. 7 ensure the matching of group velocities at a particular
κ while the concave and convex curves in Fig. 3 do not.

Despite the C3v case being trivial, its relative robustness
against sharp disorders (demonstrated by Fig. 13) and its
additional coupling capabilities, relative to its nontrivial coun-
terpart, allow for the construction of interfacial wave net-
works that differ from the topologically nontrivial examples
[25,30,32]; specifically, the ability to have more than two-way
energy splitters (Sec. III B). However, the negative of using
these trivial modes for networks is the prevalence of scattering
and hence lack of controllability compared with the nontrivial
cases; for the latter, the conservation of topological charge

post- the nodal region [57] leads to more robust edge states
along the outgoing leads and greater tunability in partitioning
energy. To construct topological networks, that contain more
than two-way energy-splitters, the tunneling mechanism must
be used as in Secs. II E and III C.

E. Tunneling

An alternative means to transmit energy along different
leads is via tunneling; the exponentially decaying tail of an
incoming mode being used to ignite an outgoing mode. This
allows for transmission of energy down leads that would not
be activated due to a mismatch in wave vector and/or chirality
(see Sec. II D). The benefit of utilizing tunneling to redirect
energy away from an incoming ZLM is that this enables
more than two-way energy-splitting (see Sec. III C) while still
preserving the topological charge, and hence the topological
protection, along the postnodal region leads.

The width of the band gap, as mentioned in Ref. [47],
plays a role: The band gap needs to be small enough to
preserve a strong Berry curvature in the vicinity of the valleys,
but large enough to enhance the localization of modes along
the interface. The former criterion is related to the chirality

FIG. 15. (a) Source placed at leftmost edge, we grade both C6v nontrivial and C3v trivial examples. The former is graded according
to the relative difference in value between alternate masses while the latter is graded according to the angular perturbation away from σv .
(b) Propagating modes lie within the graded region in the center. K/K ′ mismatch for modes of identical chirality leads to an absence of
coupling for the C6v case; (c) the matching phase and group velocity, for the C3v trivial case, leads to coupling between the pre- and postgraded
region modes. (b) Graded C6v nontrivial case. (c) Graded C3v trivial case.
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FIG. 16. Demonstration of tunneling for the C6v nontrivial case.
A source is placed along the upper interface where ω = 15.375; the
decaying tail of the triggered ZLM ignites the parallel ZLM.

of the edge modes, see Sec. II D, while the latter is related
to the decay perpendicular to the propagation direction. If
these criteria are balanced, then the topological protection of
nontrivial states and the localization of the states is optimized.
The latter is important for tuning the partitioning of energy
away from the nodal region.

A simple example of tunneling for the C6v case is shown
in Fig. 16; the ignited ZLM has the modal pattern shown
in Fig. 10, this mode tunnels to ignite the parallel ZLM
which has the sawtooth pattern shown in Fig. 9. The back
and forth coupling between two evanescently coupled parallel
modes is a well-known phenomenon for parallel wave guides
classically treated using coupled mode theory [58] and its
variants [59].

F. Nodal region

The design of the nodal region impacts upon the relative
transmission along active leads, where propagation is per-
mitted, and hence is an important property when designing
interfacial wave networks, particularly when wavelength and
nodal region are comparable in scale. These networks are
constructed upon a medium which contains an even number
of geometrically distinct portions; an interfacial mode is able
to propagate between each pair of distinct media. If we are
dealing with a nodal region that divides four media, for
example, there are a myriad of ways to design it; each of
which will partition energy differently, especially when the
wavelength of the incoming wave is comparable to the nodal
region. Figure 17 illustrates this clearly; the hexagonal cell
has one incoming edge and two outgoing edges (right panel
of Fig. 17) and yet we wish to partition energy in two or
three directions using nonfractional cell partitions between
the distinct media. For topological networks, the chirality
and wave vector matching arguments, readily used, determine
which leads energy can travel down but the relative transmis-
sion down those active leads remains unknown. This is seen
in the topological network designs of Refs. [30,32], where
there is a difference in transmission between the active leads;
additional information is garnered by considering the nodal
region. These particular examples are examined more closely
in Sec. III B.

FIG. 17. Incoming mode from the left lead, two right-sided out-
going leads. There are many ways to partition the right-sided medium
into an even number of regions. If wavelength is comparable to size
of the nodal region, the partitioning of energy will be sensitive to the
design of the nodal region.

III. BUILDING TOPOLOGICAL NETWORKS

The knowledge accrued in the previous section regarding
the transport of energy is essential for building complex
interfacial wave networks. In this section, we geometrically
engineer networks that have additional functionality as com-
pared to the current designs in the valleytronics literature. We
employ both the topologically nontrivial and trivial examples
to yield designs which go beyond two-way energy-splitting
(Secs. III B and III C). Section III D uses the building blocks
of the design paradigm, described in the previous section, to
produce the first realization of a topological supernetwork.

A. Filtering: Restricting propagation using C3v nontrivial modes

The C3v nontrivial case demonstrates the filtering proper-
ties, described earlier in Sec. II B, in Fig. 18. We place a dipole
between the two central blue cells, Fig. 18(a); each source
has the potential to trigger all of the ZLMs 1 − 4; for the
C3v nontrivial case, despite ZLMs 1,3, and 4 being triggered,
ZLM 2 is not directly excited, Fig. 18(b). This is due to the
interface of ZLM 2, closest to the dipole, being associated
to the narrowband mode and hence different from the other
three. The difference in interfaces is revealed by replacing
the C3v topologically nontrivial domains with those from the
C6v nontrivial case; from Fig. 18(c), the modal shape of ZLM
2 is clearly distinct from ZLMs 1, 3, and 4 (Sec. II A); this
difference visually validates the absence of ZLM 2 for the
C3v nontrivial case. The potential for geometrically induced
filtering enhances our design capability through tunability of
energy propagation that can be restricted to only propagate
along selected interfaces.

B. Using C3v trivial modes for three- and five-way splitting

Motivated by [30,32], that showed two-way energy-
splitters, we demonstrate how the C3v trivial case allows
for enhanced three-way splitting of energy for the same
arrangement of distinct media as Refs. [30,32] (Figs. 1 and
19). After these comparative set of examples, we push those
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FIG. 18. Filtering network: (a) schematic, (b) C3v nontrivial case where the edge state along interface 2 is not excited, ω = 18.93, and (c)
C6v where the “sawtooth” mode along interface 2 is clearly triggered, ω = 15.91. 1152 hexagonal cells are used for all the networks in this
section.

designs further by concluding this subsection with a five-way
energy-splitter, Fig. 20.

Reference [32] demonstrated an “X”-shaped design for a
topological energy-splitter, Fig. 19(a). Their results indicated
that the highest transmission occurred along ZLM 4, followed
closely by ZLM 2; in contrast to these two leads, negligible
transmission occurred along lead 3. These results can be
interpreted through the lens of the design paradigm (Sec. II)
and the use of the C6v nontrivial case. From Fig. 19(b), the
distinctive modal shapes, and hence the different interfaces,
are clearly evident (Sec. II A). The relatively higher transmis-
sion along lead 4 compared with 2 can be attributed to the
design of the nodal region (Sec. II F); when the wavelength
of the incoming ZLM is comparable to the cell, then the
two orange cells within the nodal region invariably form an
effective barrier which limits propagation along lead 2. The
absence of propagation along lead 3, as noted in Ref. [32], is
due to the mismatch in wave vector of the mode which has an
identical chirality to ZLM 1 (Sec. II D). The absence of wave
vector matching, between leads 1 and 3, can be rectified by
replacing the C6v topologically distinct regions with C3v topo-
logically trivial (albeit geometrically distinct) regions. The

resulting scattered field, Fig. 19(c), shows propagation along
lead 3 and, collectively, three-way energy-splitting, away from
the nodal region. Despite the topological charge not being
conserved [57], the Fourier space separation (Sec. II C) be-
tween modes of opposite group velocity ensures a degree of
robustness.

A similar example to Fig. 19 is the topological network
examined in Ref. [30]; Fig. 1(c) imitates their example using
the C6v nontrivial case. The relative transmission along active
leads, difference in modal shape, and absence of propagation
along lead 1 (Fig. 1) are all explained in a similar manner to
the earlier example. The trivial analog, Fig. 1(d), leverages the
wave vector and group velocity matching C3v counterexample
shown in Sec. II D, to allow for three-way energy-splitting.

An example that is independent of any preexisting tessella-
tions within the valleytronics literature, is the five-way splitter
shown in Fig. 20. Recall that we restrict ourselves to zigzag
interfaces because they afford the maximum Fourier sepa-
ration (see Sec. II C) between opposite propagating modes;
hence our tessellation can comprise of, at most, six geomet-
rically distinct regions. Therefore, the C3v trivial network,
Fig. 20, partitions energy away from the nodal region, the

FIG. 19. Tesselation used for three-way energy-splitting motivated by Ref. [32], panel (a); source is placed at the beginning of interface 1
and the resulting scattered fields for the C6v nontrivial and C3v trivial cases are shown in panels (b) and (c), respectively. Panel (b) resembles
the displacement in Ref. [32], frequency ω = 15.86; while panel (c) shows three-way splitting of energy at ω = 19.45. (a) Schematic.
(b) Topologically nontrivial two-way energy-splitter. (c) Topologically trivial three-way energy-splitter.
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FIG. 20. Five-way splitting of wave energy away from nodal
region. Blue and orange cells associated with geometrically distinct
cells (see Fig. 7 for cellular structures). Frequency ω = 18.85; de-
spite the bulk gap being {17.05, 19.90}, the five-way splitter was only
seen for a narrow band range of frequencies. This is in contrast to the
more broadband three-way energy-splitters, shown in Figs. 1 and 19.
Note the difference in the nodal region between this example and
Fig. 21.

maximum number of ways possible, given the zigzag interface
constraint.

C. Illustrating four-way splitting via tunneling using C6v

nontrivial modes

The topological network exemplar in this paper that con-
tains a more-than-two-way energy-splitter is shown in Fig. 21.
The tesselation is comprised of four (at first sight six, but note
the detail of the central nodal region) geometrically distinct
regions, formed from the C6v nontrivial case, and containing
a four-way energy-splitter. The excited ZLM 1 propagates
through the junction, and continues along the lead beyond
it; however, energy is shifted to ZLMs 2 − 5. This four-way
energy-splitting arises due to two sets of tunneling (Sec. II E)

FIG. 21. Four-way splitting of wave energy away from nodal
region, energy couples from one topological valley mode into four
others via tunneling. Blue and orange cells associated with opposing
Chern valley numbers at a specific valley. Frequency ω = 15.91, bulk
gap {13.90, 16.23}.

FIG. 22. Topological supernetwork schematic: The total arrange-
ment contains 2340 cells, each contains a hexagonal arrangement
of point scatterers; different colors denote dissimilar arrangements.
The network is excited at the leftmost junction with a dipole at
ω = 15.28. The resulting scattered field is shown in Fig. 23.

occurring before and after the junction. The nodal region
differs from Fig. 20; this is done to ensure the propagation
of ZLM 1 through the central region and beyond. If instead
we used the tessellation of Fig. 20, this would create an
effective barrier at the junction; consequently, we would ob-
tain a similar arrow modal pattern to Fig. 18(b), albeit with
backscattering. A major benefit of utilizing tunneling to parti-
tion energy is that it allows for the preservation of topological
charge [57] and hence ZLMs 2 − 5 in Fig. 21 are topologically
protected; therefore, compared with the trivial energy-splitters
[Figs. 1(d), 19(c), and 20] the nontrivial modes (Fig. 21) are
more robust and hence of more practical use.

D. Topological supernetwork

The topological supernetwork, Fig. 23, is generated using
the design paradigm building blocks, Sec. II. It contains only
the C6v nontrivial case and therefore the topological charge
is conserved; the giant tessellation is a combination of those
tessellations found in Figs. 18(c), 21, and 19(b) in that order.

This is just one amongst many supernetworks that can
now be constructed from individual building blocks. There
are a myriad of other complicated topological networks that
can now be accurately designed by partitioning the medium
differently. Direct generalizations include using fractional
cells, different edge terminations, or combining different
geometrical cases. For the latter, we could design the C6v

and C3v nontrivial cases to have simultaneous bulk band
gaps, then create a tesselation where neighboring regions are
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FIG. 23. Scattered field for the topological supernetwork; details
of tesselation shown in Fig. 22. Note the clarity of the modal shapes,
the four-way splitting, via tunneling, and the limited propagation
along the rightmost interface (due to the wavevector mismatch). The
color bar is for a linear gradient of values.

topologically distinct (opposite valley Chern numbers). This
way, the filtering properties of the C3v case are combined
with the dual propagation properties of the C6v . Moreover,
one can tune the rates of decay of the ZLMs perpendicular
to the interface; thereby controlling the amount of energy
partitioned via tunneling as well as the sensitivity of modes
to backscattering by defects.

IV. CONCLUDING REMARKS

Herein we have shown in detail how to design geometri-
cally engineered interfacial wave networks containing energy-
splitters that partition energy in more than two-way directions.
The main concepts used to design these systems have been
laid out systematically in Sec. II. The specific model we
use, the elastic plate and point masses, is irrelevant to our
main argument which relies on topology and group theoretic
principles. Thus we anticipate that the approach described
will motivate the design of experimental and other theoretical,
topological networks for all similar scalar wave systems:
plasmonics, photonics, acoustics, as well as for vectorial
systems such as plane-strain elasticity, surface acoustic waves,
and Maxwell equation systems). It is also easy to construct
geometries that do not involve point scatterers, see Fig. 8,
and yet will share the same group and geometric properties
required for our designs. Additionally, returning to the valley-
Hall “weak” topological phase that underlies the ZLMs, the
principles that underly the topological networks presented
here should extend to potentially more robust geometrically
induced phases [60–62], thereby bringing the design of broad-
band, robust, energy-splitters to yet another level.
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