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By analyzing the many-body problem for nonrelativistic electrons strongly coupled to photon modes of
a microcavity I derive the exact momentum/force balance equation for cavity quantum electrodynamics.
Implications of this equation for the electron self-energy and the exchange-correlation potential of the quantum
electrodynamic time-dependent density functional (QED-TDDEFT) are discussed. In particular I generalize the
concept of ® derivability to construct approximations which ensure the correct momentum balance. It is shown
that a recently proposed optimized effective potential approximation for QED-TDDFT is conserving, and its

possible improvements are discussed.
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I. INTRODUCTION

In most typical situations in condensed-matter and chem-
ical physics electromagnetic fields interacting with the mat-
ter can be treated classically. In this standard approach the
components of the electromagnetic four-potential enter quan-
tum dynamics of charged particles as external (possibly self-
consistent) classical parameters by producing classical forces
which drive the system out of equilibrium and control its
dynamics. However, impressive progress in the fields of cavity
and circuit quantum electrodynamics (QED) has opened a
possibility to study phenomena in which the quantum nature
of electromagnetic fields becomes essential and strong cou-
pling between electrons and confined photons plays a key
role. Historically, strong coupling to quantum electromagnetic
cavity modes was first realized for electrons in Rydberg atoms
in the cavity QED [1-3]. Further progress was related to the
development of the circuit QED, in which the regime of strong
electron-photon coupling is achieved for mesoscopic systems,
such as quantum dots and superconducting qubits embedded
into microwave transmission line resonators [4-9]. Recently,
the realm of the cavity/circuit QED has been extended to
more complicated and rich electronic systems, such as organic
molecules in the emerging field of “chemistry in a cavity” and
“polaritonic chemistry” [10—15]. In particular, strong coupling
of molecular states to microcavity photons has been demon-
strated [10,13]. A cavity-induced modification of photochem-
ical landscapes and chemical reactivity has been reported
[11,16], and the influence of the cavity vacuum fields on the
charge and energy transport in molecules has been observed
experimentally [12,14]. These remarkable experiments at the
interface between quantum optics and condensed-matter and
chemical physics triggered theoretical activity in develop-
ing methods that would allow treatment of nonrelativistic
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electrons and the cavity electromagnetic modes on equal
footing within a common quantum formalism [15,17-30].

The complex electronic structure of systems used in re-
cent experiments requires a QED generalization of the first-
principles many-body approaches to quantitatively describe
the electronic degrees of freedom. The most common and
universal frameworks of the standard electronic structure
theory are the Green’s-function-based many-body perturba-
tion theory (MBPT) [31,32] and the equilibrium and time-
dependent density functional theory (DFT and TDDFT) [33—
35]. In recent years both frameworks have been generalized
to include photonic degrees of freedom. A QED extension of
the nonrelativistic MBPT and the Hedin equations approach
to describe many-electron systems in microcavities have been
proposed in [36,37]. The generalization of TDDFT, known as
QED-TDDFT or QEDFT, was developed in Refs. [17,18], and
the working power of this theory was demonstrated for several
explicit examples [19,21,25-27].

In practice the application of many-body methods always
relies on approximations. Apparently, in constructing approx-
imate schemes it is desirable to fulfill as many exactly known
conditions as possible. The conditions that follow from the
fundamental conservation laws, such as the conservation laws
of the number of particles and momentum, are of special
importance because of their obvious physical significance. In
the standard self-consistent MBPT the constraints imposed by
the conservation laws were analyzed in the seminal work by
Baym [38], who proposed a general recipe for constructing
so-called conserving approximations (see also a recent book
[32]). The importance of the exact conditions, in particular
those related to the conservation laws, for DFT and TDDFT
is also well recognized [34,35]. While in the Kohn-Sham
formulation of (TD)DFT the number of particles is conserved
automatically, the conservation of momentum requires spe-
cial care. The latter can be restated in the form of a zero-
exchange-correlation force condition that is directly related to
a harmonic potential theorem and is crucial for constructing
nonadiabatic approximations in TDDFT [39-41]. A general
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way to derive conserving approximations in the standard
TDDFT within the optimized effective potential (OEP) ap-
proach was proposed in Ref. [42]. The authors of this work
extended the concept of the & functional to TDDFT and
showed how to construct approximate exchange-correlation
(xc) potentials which are guaranteed to be conserving.

In the present paper I analyze the laws for the conser-
vation of the number of particles and the momentum for
nonrelativistic many-electron systems strongly coupled to the
cavity photon modes. The exact conditions imposed by these
conservation laws on possible approximations in the QED
extension of MBPT and QED-TDDFT are derived. I demon-
strate that in spite of the momentum exchange between the
electronic and photonic subsystems the notion of conserving
approximations can be introduced for many-body approaches
to the cavity QED, provided the electron-photon coupling
is described within the dipole approximation. The coupling
to the cavity photons induces an effective electron-electron
interaction that does not depend on the distance between the
electrons and apparently violates Newton’s third law. At first
sight one can naively conclude that the idea of ®-derivable
conserving approximations fails here as the standard proof of
conservability heavily relies on the translation invariance of
the electron-electron interaction [32,38]. In the present paper
I show that this naive conclusion is not correct. It turns out
that the concept of ®-derivable approximations allows for
a broader class of electron-electron interactions that include
the effective interaction mediated by the cavity photons. I
demonstrate that a properly defined ® functional for the cavity
QED does generate conserving approximations both for the
self-energy in MBPT and for the xc potential in QED-TDDFT.
The results of this work prove that a recently proposed OEP
approximation for QED-TDDFT [21] is conserving and sug-
gest ways for its future improvements.

The structure of the paper is the following. In Sec. II, I
discuss general features of the many-body problem in the
cavity QED. The basic Hamiltonian in the length gauge
is derived, the effective electron-electron interaction medi-
ated by the cavity photons is introduced, and its physical
significance is discussed. In Sec. II C, I derive the exact
force balance equation in the cavity QED. The main result
of this section is the zero-xc force condition which has to
be obeyed by any approximate theory to ensure the correct
momentum balance. In Sec. III the construction of conserving
approximations in many-body approaches to electron-photon
systems is discussed. Here the concept of the ® functional is
generalized both for the QED extension of the self-consistent
MBPT and for the QED-TDDFT. It is proved that ®-derivable
approximations fulfill the zero-xc force condition despite the
lack of Newton’s third law for the electron-electron interaction
mediated by long-wavelength cavity photons. Finally, Sec. IV
summarizes the main results of this work.

II. MANY-BODY PROBLEM IN CAVITY QED
AND THE ELECTRON FORCE BALANCE

A. Many-body Hamiltonian for cavity QED

In this work I consider the typical setup of a cavity/circuit
QED which consists of a nonrelativistic many-electron system
(an atom, a molecule, an atomic cluster, a quantum dot,

etc.) embedded into a microcavity supporting a discrete set
of quantum transverse electromagnetic modes. The electrons
are confined by an external potential V(r) and localized
within a characteristic scale £ around some point ry inside
the cavity. Typically, the size of the electronic subsystem & is
much smaller than the wavelength A of relevant cavity modes.
The small parameter £ /A < 1 justifies the description of the
electron-photon coupling within the dipole approximation.
Physically, this means that from the point of view of the elec-
tromagnetic degrees of freedom the electron subsystem looks
like an effective point dipole with the following polarization
density:

P(r) = eRS(r — ry), (D)

where R = f rii(r)dr is the center-of-mass coordinate of the
electrons and 7i(r) is the electron density operator. Within
the dipole approximation it is convenient to describe the
combined system of electrons and the electromagnetic field
using the length gauge that in the QED context is commonly
referred to as a Power-Zienau-Woolley (PZW) gauge [43,44].
The corresponding many-body Hamiltonian reads

H=Hy+ Hep. 2)

Here H, is the standard Hamiltonian of a nonrelativistic
many-electron system,

A

~ vZ . ~ ~
Ay = / dr[—wf(r)ﬂw(rw V(r)w*(r)w(r)}
l N N A A
+3 / drdr' We(r — V)P @) @) d @) @x), (3)

where fh(r) is the fermionic field operator and W¢(r) is the
electron-electron Coulomb interaction potential. The second
term in the Hamiltonian (2) corresponds to the energy of
the transverse electromagnetic field, which also includes the
dipole interaction with the electronic subsystem,

1 ~ . .
Aon= / QB+ (D —dxPLY), @)
T

where B is the magnetic field and the electric field K+ =
D — 47Pt is expressed in terms of the electric displacement
Dt (r) and the transverse part pL (r) of the electronic polar-
ization density of Eq. (1) [note that only the transverse part
of the vector field P(r) is coupled to the cavity modes]. The
electric displacement D (r) is the proper canonical variable
conjugated to the magnetic field B. The corresponding com-
mutation relations read as follows:

[Bi(r), Dy (x')] = —idmeendpd(r — '), 5)

where ¢ is the speed of light. One can easily check that
the Heisenberg equations of motion generated by the above
commutation relations and the Hamiltonian in Eq. (4) indeed
correctly reproduce the Maxwell equations.

The last step towards the basic cavity QED Hamiltonian is
to introduce a set {E,} of cavity modes labeled by the mode
index o and characterized by the mode’s frequencies w, and
electric fields E, (r). After projecting on the cavity modes all
transverse fields entering the electromagnetic Hamiltonian (4)
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one can reduce it to the following form:

N 1 Xy

He—m = E ; |:13§ + wﬁ (Qa - C(TZR) :|’ (6)
where the canonical momenta p, and coordinates §, obey
the standard commutation relations [Py, §g] = —idqg and the
vector coupling constant Ao, = e~/4E, (rp) is determined by
the electric field of the & mode at the location of the electronic
system. Formally, the Hamiltonian in Eq. (6) corresponds
to that of a set of shifted quantum harmonic oscillators
with coordinates counted from the center-of-mass position
of the electrons. This dynamical shift is responsible for the
electron-photon coupling. By comparing the representations
of Egs. (4) and (6) we easily identify the physical significance
of the canonical variables p, and §,. Namely, /47 p, and
VA wygy correspond, respectively, to quantum amplitudes
of the magnetic and electric displacement fields in the cavity
mode «.

The total Hamiltonian defined by Egs. (2), (3), and (6)
serves as a common starting point for the first-principles the-
ories of realistic many-electron systems in quantum cavities
[17,18,21,22,25,28,30]. A more detailed simple derivation of
this Hamiltonian can be found in a recent paper [45] or,
with somewhat different notations, in standard quantum optics
textbooks (see e.g. Ref. [46]). In the following I will use
this Hamiltonian to analyze basic conservation laws and their
implications for constructing approximations.

B. Electron-electron interaction induced by cavity photons

The coupling of electrons to quantum electromagnetic
modes, originating from the second (electric energy) term
in Eq. (6), induces an additional electron-electron interaction
via the exchange by cavity photons. A very special harmonic
form of this coupling has a deep physical meaning that can be
revealed by analyzing the structure of the induced interaction
between the electrons. Let us write more explicitly the part of

N

H._., in Eq. (6) which depends on electronic variables

=3 [ - / drwy (M) ¥ ()P (1)

+ %/drdr’(kar)(lar’)ﬁ(r)ﬁ(r’)]. @)

By representing the canonical mode coordinate g, in terms
of the bosonic creation and annihilation operators §, =
ﬁ(&l + a,) we recognize the first term in this equation
as a typical fermion-boson coupling similar, for example, to
the electron-phonon coupling in solids. This term generates
an effective retarded interaction between the electrons. The
second term in Eq. (7) comes from the P2 term in the
electric energy and corresponds to an additional instanta-
neous electron-electron interaction with a bilinear potential
v(r, ') = (Ao r)(Ar’). The total correction to the interaction
induced by the o mode is the sum of the above two contribu-
tions,

WEME, 158, 1) = XaX [0} (4u(1)Ga (1)) + 8(t — 1')|Aar’
= AoFDy (t — )Ayr'. (8)

Importantly, the two seemingly different contributions to Wit
enter the photon-induced interaction in a special “balanced”
way because the coefficients in front of the corresponding

terms in Fli:ph of Eq. (7) reflect the harmonic form of
the electric energy in Eq. (6). Physical implications of this
balance are most clearly visible in the frequency domain.
By using the standard expression for the boson propagator
(Gudu)ew = 1/(* — w?) one finds for the Fourier component

of the function D, (¢) in Eq. (8)

w? w?

Do) = ——— +1=—

— 2
w Wy, w

— ©)
The first term in this equation, or, equivalently, in Eq. (8),
is the displacement propagator (Dt - D*),, while the total
induced interaction, given by the sum of the two contributions,
is nothing but the propagator of the transverse electric field
(BL . E1L),. This is very natural physically as the electric field
is the object that determines the energy and the force acting
on charged particles. The total propagator D,(w) in Eq. (9)
is proportional to w?, which reflects the well-known fact that
only an accelerated electron can emit radiation felt by another
electron. The corresponding electron-electron interaction is
mediated by the electric field as one would expect physically.
These fundamental physical consequences are formally re-
lated to the balanced nature of the two interaction terms in
Eq. (7) as they both originate from the E? contribution to the
energy of the electromagnetic field.

An important practical outcome of the above analysis is
that in any approximate approach (unavoidable in practice)
the two cavity-induced interaction terms in the Hamiltonian
should be treated consistently at the same level of approxima-
tion. Otherwise, there is a danger of violating the fundamental
physics of the Maxwell electrodynamics.

Another important feature of the cavity-induced interaction
(8) is its dependence on the spatial coordinates of the inter-
acting particles. In contrast to the direct Coulomb interaction
the function Wgh(r;r’) is not translation invariant; that is,
it does not depend on the coordinate difference r — r’. This
implies the lack of Newton’s third law, and therefore, one
may expect a net force exerted on the center of mass of the
electronic system due to the photon-induced interaction. This
is, of course, not surprising as the coupling to cavity photons
can produce a net force on the electrons leading, for example,
to radiation friction.

The absence of translation invariance of the electron-
electron interaction also has serious technical consequences
for the demonstration of conservability of ®-derivable ap-
proximations. As the classical argumentation by Baym heav-
ily relies on the fact that the interaction potential depends on
the distance between particles [32,38], the usual conservabil-
ity proof apparently fails in the presence of cavity photons.
These points will be carefully analyzed in subsequent sec-
tions.

C. Dynamics of observables and the force balance

In the present context the following physical observables
are of interest: (i) the electern density n(r, t) = (fi(r)), (ii) the
electron current j(r, t) = (j(r)), and (iii) the expectation value
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of the electric displacement amplitude Q,(¢) = (G,). The
dynamics of the observables is governed by the corresponding
Heisenberg equations of motion,

3(Ge) = i([H,8a]), 8(pa) =i([H, pol), (10)
d (A(r)) = i([H, Ar)]), (11)
() =i((H,jI)]). (12)

The couple of equations in Eq. (10) corresponds to the mode-
projected Maxwell equations for the expectation values of the
transverse fields. After evaluating the commutators and elim-
inating the magnetic amplitude (p, ), we obtain the following
projected “wave equation” for the electric displacement:

3} 0y + 0204 — WA R =0, (13)

where R(t) = ( f rn(r, t)dr is the expectation value of
the center-of-mass coordinate of the electrons.

Since the electron density operator commutes with H,_p,
of Eq. (6), the equation of motion (11) reduces to the standard
continuity equation which reflects the local conservation law
of the number of electrons and stays unmodified by the
presence of the cavity,

dn+V-j=0. (14)

In contrast, for the electron current the commutator
[ﬁe_m,j(r)] # 0 does not vanish, thus producing a force
exerted on electrons from the photonic subsystem. This force
is our main concern here. Equation (12) describes a local
electron force balance and can be written more explicitly as
follows:

3j—F" =D " +aVV =0. (15)

Here the last term is the force density due to the external
classical potential [the second term in H, in Eq. (3)]. The
second term in Eq. (15) is the electron stress force originating
from the kinetic 7' and the interaction Wc contributions in Hel,

F (e, 1) = il[T + We, ju@)]) = =0Ty (16)

Since the Hamiltonian 7" + Wc is translation invariant, the
local stress force obeys Newton’s third law. This means that
the vector F*'"(r, 1) can be represented as a divergence of a
second rank tensor IT;;(r, #): the electron stress tensor [47].
Finally, the third term is the force due to the coupling to the
cavity modes,

£(r, 1) = Ma(@ufo — Ao - RIA)) = (&, (),  (17)

where we recognize €, = Ay (WeGo — Ay -ﬁ) as an operator
of the o-mode electric field at the position of the electronic
system. Not surprisingly, the force density in Eq. (17) pro-
duced by the photonic subsystem is given by the equal-time
correlation function of the electric field and the electron
density operators.

The equation for the global electron force/momentum bal-
ance is obtained by integrating Eq. (15) over the space variable
r. Because of Newton’s third law the net electronic stress
force vanishes, f F*'(r, t)dr = 0, and we are left with the

following result:
3P = Z)W(a)a Oy — Ao - RN — anVdr, (18)

where P(t) = f j(r, t)dr is the total momentum of the elec-
trons. The first term on the right-hand side of Eq. (18) is the
net force exerted on electrons from the cavity photons,

/f"‘(r, 1)dr = Ay[wyg Qy — Ay - RIN = (€,)N, (19)

which is determined by the expectation (mean) value of the
electric field operator. Having in mind this result, I represent
the local force f*(r,t) as the sum of mean-field and xc
contributions,

9, 1) =1 (r, 1)+ £5.(r, 1),

where the mean-field force is given by the product of the
expectation values of the electric field and the density,

£l (e, 1) = @u)n(r, 1) = Ao[w Qo (1) — LoR(@)In(r, 1),
(20)

while the xc force is determined by the equal-time correlation
function of the fluctuation operators,

£2.(r, 1) = (A AR(D) = (Ao(y Ade — Ao AR)AA(T)).
2

Here the fluctuation operators are defined in a standard man-
neras AO = O — (0).

Now the most important outcome of the above analysis can
be formulated as follows. Within the dipole approximations
the exact global force exerted on the electrons from the cavity
photons is exhausted by the mean-field contribution,

/f“(r,t)dr: /fr‘f]f(r,t)dr.

In other words, the correct force balance of Eq. (18) is guar-
anteed only if the global xc force from the photons vanishes,

/ £.(r, 1)dr = / (Aéy Afi(r))dr = 0. (22)

This condition generalized the requirement of the momen-
tum conservation to systems of electrons coupled to long-
wavelength cavity photons. Obviously, it is desirable for
approximate many-body theories to fulfill the above exact
condition. The corresponding approximations can be naturally
called conserving.

It is worth noting that, similar to the standard many-body
theory, the zero-xc force condition of Eq. (22) can be viewed
as a consequence of the harmonic potential theorem (HPT)
[39—41]. As pointed out in Ref. [17], the HPT also holds true
in the cavity QED because, formally, the photonic degrees
of freedom enter the theory as a set of harmonic oscillators
harmonically coupled to the center-of-mass coordinate of the
electrons. The HPT manifests itself as a complete decou-
pling of the center of mass and the relative motions of the
electrons, provided the confining potential is harmonic. This
can be directly seen from Eq. (18) as in the special case
of V(r)= %er2 + F(t)r the external force reduces to the
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form [nVVdr = Q?R+ NF(t). As a result Egs. (35) and
(18) form a closed system of equations for R(¢) and Q,(t)
which thus evolve independently of the relative motion of the
electrons. In the cavity QED the HPT is slightly modified as
the dynamics of the center of mass is now coupled to the
dynamics of the expectation values of the displacement ampli-
tudes. Apparently, this trivial modification does not influence
the zero-xc force condition.

In the next section I consider two possible first-principles
approaches to the nonequilibrium many-body theory: (i)
a self-consistent MBPT and (ii) the QED-TDDFT of
Refs. [17,18]. I will show how the standard arguments leading
to conserving approximations in the usual MBPT [32,38] and
TDDFT [42] can be generalized to the case of electron-photon
systems in the cavity QED.

III. CONSERVING APPROXIMATIONS:
GENERALIZATION OF THE BAYM ARGUMENT

A. Self-consistent many-body perturbation theory

Let us start from a field-theoretical formulation of
the many-body problem: the MBPT. The key object of
this approach is a one-particle Green’s function G(1,2) =
—i({Teyr(ry, tl)l//T(rz, 1)), where the operator T orders
“time” arguments along a certain contour C in a complex
plane. Depending on the choice of the contour, we recover
different versions of MBPT, such as zero-temperature, equi-
librium Matsubara, and nonequilibrium Keldysh formalisms
[32,48]. As in the present paper I am interested in dynamics,
the Keldysh time contour is assumed.

By explicitly separating the mean-field contribution I rep-
resent the equations of motion for the Green’s functions in the
following form:

i9,G(1,2) — hyt (HG(1,2) — /d32xc(l, 3)G(3,2)

=8(1-2), (23)

—i8,G(1,2) — hp(2)G(1,2) — /d3G(1, 3)2xc(3,2)

=8(1-2), (24)

where the mean-field Hamiltonian reads
. V2
g (6, 1) = =2+ V + Vi + ;ma Qu — AaR)AT.

(25)

Here Vi (r,1) = [ We(r — v')n(r’, t)dr’ is the usual Hartree
potential, and the displacement amplitude Q,(¢) satisfies
the projected Maxwell equation (13). The xc self-energy
3(1,2) is constructed according to the standard diagram-
matic rules from the one-particle Green’s functions and
the total effective interaction WW(1,2) that consists of the
direct Coulomb interaction and the cavity-induced correction
WP (1, 2) of Eq. (8):

W(1,2) = Wery = 1)8(t — 1)+ Y kol Dalty — )Aar.

(26)

| -
=

100D

FIG. 1. Example of ® functional [32].

Specifically, Xy is given by one-particle irreducible skele-
ton diagrams, excluding the Hartree diagram. The Ilatter
is represented by the last two terms in the mean-field
Hamiltonian (25).

The equations of motion for the electron density n(r, t)
and the total electron momentum P(7) can be now straight-
forwardly derived from Eqgs. (23) and (24) with any given Xy,
[32]. By comparing the obtained equations with their exact
counterparts in Eqgs. (14) and (18) one finds the conditions
which should be fulfilled by the self-energy to guarantee
the correct form of the conservation laws. In particular, the
continuity equation is recovered if Xy, satisfies the condition

/dZ[ZXC(l, 2)G(2,1)-G(1,2)Z(2,D]=0. (27

Similarly, we find that the correct momentum balance of
Eq. (18) is reproduced provided the following equation is
fulfilled:

/dr1d2[EXC(1, 2)ViG(2,1)-G(1,2)V 1 Z(2, D] =0.

(28)

Equations (27) and (28) coincide with the well-known condi-
tions imposed on the self-energy of conserving of approxima-
tions in the standard MBPT [32,38]. The reason is that at the
level of the conservation laws of interest the cavity-induced
modifications are exactly captured by the mean-field part of
Egs. (23) and (24). Therefore, similar to the standard MBPT,
the many-body xc corrections due to X should not contribute
to the conservation laws. Note that (28) is nothing but the
statement of the vanishing xc force expressed in terms of the
self-energy of MBPT.

Let us now examine the standard arguments for construct-
ing conserving approximations for xc self-energy. The com-
mon prescription relies on the concept of the & functional
due to Baym [38]. A functional ®[G] of the Green’s function
G is constructed by selecting a subset of connected “energy
diagrams.” An example of the ® functional is shownin Fig. 1,
where thick arrows denote the Green’s functions G (1, 2), and
wiggly lines stand for the particle-particle interaction YW(1, 2)
[32]. For a given ®[G], the corresponding self-energy is
defined as the following functional derivative:

s
5G(2, 1)

Approximations generated via this procedure are called &
derivable.

To prove that a ®-derivable approximation is conserving
one has to look at symmetries of the underlying & functional.
In particular the condition (27) is a consequence of the gauge
invariance. By construction, any diagram for ®[G] is invari-
ant with respect to the following replacement: G(1,2)
e AG(1,2)e M) where A(r,t) is an arbitrary function.
By requiring that ®[G] is unchanged under the corresponding

EXC(la 2) = (29)
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infinitesimal variation, G(1,2) —~ G(1,2)+8G(1,2), with
6G(1,2) =i[A(1) — A(2)]G(1,2), and using the definition
in Eq. (29), we immediately obtain Eq. (27).

Obviously, the gauge invariance of the diagrams for ®[G]
does not depend on a specific form of the particle-particle
interaction WW(1, 2) (only the space-time locality of vertices
where two Green’s functions meet is important). Therefore,
the modification of the interaction by the cavity photons
does not influence the standard arguments, and we can
safely conclude that ®-derivable approximations still con-
serve the number of particles in the presence of quantum
electromagnetic field in cavity QED. In contrast, the situ-
ation with the momentum/force balance is very different.
The standard proof of the momentum conservation assumes
that ®[G] is unchanged under a time-dependent shift of
space arguments of the Green’s function G(ry, t;12, 1) >
G(ry +u(ty), ;12 +u(tr), t,). However, this is only true for
an instantaneous translation-invariant particle-particle interac-
tion W(1,2) = W(r; —r2)é(t; — t,) that implies Newton’s
third law, V;W(r;, r;) = —V,W(ry, rp). The coupling to
cavity modes breaks this property by producing an additional
photon-exchange interaction given by the second term in
Eq. (26). Below I will show how to generalize the proof
and demonstrate that the &-derivable approximations are
consistent with the zero-xc force for a more general class of
particle-particle interactions, including the one in Eq. (26).

First, I notice that by construction ®[G, W] is a functional
of the Green’s function G and the interaction V. Another
simple observation is that, irrespective of a specific form of
interaction, the ® functional is unchanged if we perform a
simultaneous shift of space arguments both in G(1, 2) and in
W(l, 2),

G(ri, tisro, ) = G(ry+u(t), t;r +u(h), b),
W(ry, tis1, 1) = W +u(f), t;10 +u(t), t).

The reason for the invariance is the space integration in all
vertices in each diagram for a given approximate & functional.
Because of this invariance a variation §® generated by an
infinitesimal translation of spatial arguments of G and W
should vanish,

SO[G, W] S®[G, W] _
/dle[méG(l, 2) + mswa, 2)] =0,

(30)

where the variations of the two point functions are defined
as §F(1,2) =u())V1F(1,2) +u()V,F(1, 2). The func-
tional derivative in the first term in Eq. (30) is, by definition,
the xc self-energy Xy from Eq. (29). By direct inspection
of the diagrams the functional derivative in the second term
is easily recognized as the density response function y (1, 2)
[32,49],

5O[G, W] 1
iy = 32 31)

Using the above identification of the functional derivatives,
one can rewrite the identity of Eq. (30) in the following

form:

/drle[Zxc(l, 2)ViG(2,1)—-G(,2)V 1 Z (2, 1)]

— %//dr1d2[x(1,2)V1W(2,1)+V1W(1’2)X(2’1)L

(32)

where the left- and right-hand sides correspond, respectively,
to the first and second terms in Eq. (30). The left-hand side in
Eq. (32) coincides with the left-hand side in Eq. (28). Hence,
the zero-xc force condition is satisfied if the right-hand side
in Eq. (32) vanishes. It obviously vanishes for an instanta-
neous translation-invariant interaction of the form W(1, 2) =
W(ry —r)é(ty — t,), which satisfies Newton’s third law.
There is, however, another possibility for the interaction to
nullify the right-hand side in Eq. (32). Notice that because of
the gauge invariance the response function y (1, 2) satisfies the
following identity: [ dryx(1,2) = [dryx(1,2) =0, which
guarantees the absence of the density response generated by
a spatially uniform scalar potential [50]. Using this property,
we find that the right-hand side in Eq. (32) also vanishes for
a bilinear interaction of the form W(1,2) = riDl (#, tr)r],
where DU (¢, 1,) is an arbitrary function of only time vari-
ables. Therefore, a generic particle-particle interaction consis-
tent with the zero-xc force condition of Eq. (28) is as follows:

W(1,2) = W(r) —1)8(ty — ) + riDY (11, 12)r].  (33)

This is exactly the form of the particle-particle interaction we
have found for the cavity QED [see Eq. (26)]. Specifically, for
the many-electron system interacting with long-wavelength
cavity photons W(r; — r;) = We(|r; — rp|) is the Coulomb
interaction potential, and DV (t1, 1) = Y, AL Do (1) — 12)A% is
the electric field propagator for the cavity photons.

The most important conclusion is that although the cou-
pling to quantum cavity modes breaks Newton’s third law,
all ®-derivable approximations are still both number and
momentum conserving.

B. Time-dependent density functional theory

In this section the previously obtained results will be
applied to the construction of conserving approximations for
xc potential in the QED extension of TDDFT.

I start with a brief review of QED-TDDEFT in the form
proposed in Ref. [17] and further elaborated in Ref. [18].
Generically, QED-TDDFT relies on the following mapping
theorem [17]. The time-dependent many-body wave function
|W(¢)) of the electron-photon system and the external one-
particle potential V (r, ¢) are unique functionals of the initial
state |\Wy), the electron density n(r, 7), and the expectation
values Q,(t) of the displacement amplitudes. This statement
allows us to calculate the basics observables, n(r,t) and
Q. (1), by solving a system of self-consistent Kohn-Sham-
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Maxwell equations for a set of one-particle Kohn-Sham (KS)
orbitals ¢; (r, ¢) and the displacement amplitudes Q,(¢):

VZ
i = —5 - + [vs + (@04 — xaR)xar}d)i, (34)

3204 + 0204 — AR =0. (35)

Here the KS potential Vg(r, ) is the sum of the external
potential V(r, t), the Hartree potential Vg (r, t), and the xc
potential Vy.(r, 1),

VS(r9 t) = V(rv t) + VH[n](r, t) + ch[l’l, Q](r9 t)' (36)

The xc potential is a functional of the basic observables
Vieln, Q] which encodes all complicated many-body effects.
It is adjusted in such a way that exact electron density is
reproduced in the system of noninteracting KS particles,
n(r,t) = 22;1 |¢; (r, 1)|?. Reference [17] showed that sim-
ilar to the usual TDDFT [34,35], the xc potential of QED-
TDDEFT satisfies the zero-force condition,

/n(r, 1)V Vie(r, 1)dr = 0. (37)

Clearly, this condition is a direct consequence of the con-
servation laws derived in Sec. IIC. In fact, Eq. (37) ensures
the correct global momentum balance in the coupled electron-
photon system. It is worth noting that in the KS formulation of
any TDDFT the continuity equation is satisfied automatically.

Any practical application of TDDFT requires approxima-
tions for the xc potential. In the standard TDDFT a general
scheme of constructing conserving OEP approximations for
Vie Was proposed in Ref. [42]. T will show that this scheme
can be easily adopted to QED-TDDFT and prove that here it
also produces conserving xc potentials.

Following the idea in Ref. [42], I consider an approximate
®-functional of MBPT but evaluate it at the KS Green’s
function ®[G,, W], where the KS Green’s function is the
one-particle propagator related to the KS Hamiltonian in
Eq. (34). Because of the density-potential mapping G[n] is
a functional of the electron density. Therefore, the above ®
functional can also be regarded as a functional of the density
and the particle-particle interaction, &[G, W] = dn, WI.
Importantly, the & functional depends on n only via G,. The
xc potential is now defined as follows [42]:

§P[n, W]
sn(r. 1)

The level of the OEP approximation in this scheme depends
on the diagrams taken into account in ®[G,, W].

The first step in proving that the xc potential of Eq. (38)
is conserving is to analyze the symmetry of the functional
®[n, W]. Let us shift the spatial argument of the den-
sity by a time-dependent amount n(r + u(t), ). This will
generate the corresponding shift of arguments in the KS
Green’s function G (ry, t1;12, ) — G(ry +u(ty), t1;r2 +
u(ty), t;). If we simultaneously perform a similar shift in
the particle-particle interaction W(ry, t1;12, 1) — W(r| +
u(ty), t1;1r2 + u(t), 1p), then, in full analogy with the discus-
sion in Sec. IIT A, the & functional will remain unchanged.
By requiring the invariance of ®[G,, W] = ®[n, W] with

Vie(r, 1) = (38)

respect to the infinitesimal version of the above shift and per-
forming calculations similar to those in the previous section
we arrive at the following identity:

- / n(ry, 1)V Vi(ry, t1)dr;

= %//drldzml,zwlvv(z, D+V WAL 2R 2, D],

(39)

Here %(2, 1) is defined similar to Eq. (31), but with the ®
functional evaluated at the KS Green’s function,

SO[G, W] 1 _

The function ¥ (2, 1) is not the density response function of
our physical system. However, by construction it is given by
the density response diagrams constructed from the physical
interaction W and the KS Green’s G that is a legitimate
gauge-invariant one-particle propagator. Therefore, ¥(2, 1)
obeys all fundamental properties of the density response
function, in particularfdrlf((l, 2)= fdrzi(l, 2) = 0 [50].
Therefore, using the same reasoning as in Sec. III A, we
conclude that the right-hand side in Eq. (39) vanishes if the
particle-particle interaction has the generic form of Eq. (33).
In other words I have demonstrated that the described cavity-
QED generalization of the OEP construction generates con-
serving approximations for the xc potential.

Recently, an OEP approximation based on the first-order
xc self-energy was proposed for QED-TDDFT [21]. A good
performance of this approximation has already been demon-
strated in several publications [21,25,27]; however, it re-
mained unclear whether it satisfies the fundamental zero-force
theorem. In terms of the ® functional the OEP V. of Ref. [21]
is generated by the first diagram in Fig. 1. Hence, the results of
the present section imply that this approximation is perfectly
conserving.

IV. CONCLUSION

In conclusion, by considering the many-body problem
for electronic systems strongly coupled to the cavity photon
modes I derived the electron force balance equation and
analyzed the exact conditions imposed by this equation on
approximate many-body approaches to the cavity QED. The
correct momentum balance in the combined system is guar-
anteed if a properly defined global xc force exerted on elec-
trons from the photonic subsystem vanishes. This condition
is similar to the momentum conservability in the standard
many-body theory. To construct approximations which fulfill
the zero-xc force constraint in the frameworks of MBPT and
OEP QED-TDDFT I generalized the concepts of ®-functional
and ®-derivable approximations. In the case of cavity QED
the conservability of ®-derivable approximations is not as
trivial as it may appear at first sight. The reason is that
the exchange by the long-wavelength cavity photons induces
an effective electron-electron interaction violating Newton’s
third law, which can be traced back to the momentum transfer
between the electronic and photonic subsystems. Nonetheless,
the concept of conserving approximations can be introduced,
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and all ®-derivable approximations remain conserving as long
as the dipole approximation is valid for the electron-photon
coupling (which is the case in most experimentally relevant
situations). In particular, this result implies that the recently
proposed first-order OEP xc potential for QED-TDDFT [21]
is conserving.

An interesting observation is that ®-derivable approxima-
tions are conserving independent of the specific form of the
electric field propagator D% (¢, t,) in Eq. (33). This suggests
a natural and simple way to improve/generalize the OEP of
Ref. [21] without introducing extra numerical complexity. In
the genuine first-order OEP one uses the bare photon propa-
gator in the effective interaction, which obviously misses the
renormalization of the cavity photons. However, the photon
renormalization effects can be mimicked without breaking
the momentum balance by replacing the bare propagator

with an effective one constructed phenomenologically on
physical grounds or imported from a simplified solvable sys-
tem. Specifically, one may think of solving separately in a
simplified manner a polaritonic problem and then importing
the polaritonic energies into the photon propagator to capture
the effects of the photon propagation through the electron
medium. It would be interesting to explore this possibility in
the future.
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