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Thermal and quantum lattice fluctuations in Peierls chains

Manuel Weber,1,2 Fakher F. Assaad,1 and Martin Hohenadler1

1Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
2Department of Physics, Georgetown University, Washington, DC 20057, USA

(Received 10 August 2018; revised manuscript received 15 October 2018; published 7 December 2018)

Thermodynamic and spectral properties of electrons coupled to quantum phonons are studied in the framework
of the one-dimensional spinless Holstein model. Using quantum Monte Carlo simulations and an efficient exact
estimator for the specific heat based on the properties of the perturbation expansion we calculate the specific
heat and compressibility for the entire range of electron-phonon couplings and phonon frequencies. Our results
reveal how the Peierls gap and long-range order at zero temperature as well as the significant renormalization of
electrons and phonons—revealed by the corresponding spectral functions—manifest themselves in the specific
heat. We also quantitatively assess the validity for the widely used classical phonon approximation and identify
the electronic contribution predicted for a Tomonaga-Luttinger liquid.
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I. INTRODUCTION

In one-dimensional (1D) systems, a metal-insulator tran-
sition to a state with long-range charge-density-wave (CDW)
order accompanied by a periodic lattice modulation can arise
from the Peierls instability [1,2]. The latter has its origin in
electron-phonon coupling and can be experimentally observed
in quasi-1D materials, such as TTF-TCNQ [3] or K0.3MoO3

[4]. A closely related problem is the spin-Peierls transition
[5] in, e.g., CuGeO3 [6]. The specific heat CV is of par-
ticular interest because it exhibits a peak anomaly at the
Peierls transition temperature Tc [7–12]. Depending on the
compound, the anomaly can take the form of a steplike dis-
continuity as in mean-field theory or be strongly smeared out
by fluctuations [13]. Whereas the transition at Tc is driven by
thermal fluctuations, quantum lattice fluctuations play a key
role in the low-temperature regime. Most notably, the Peierls
argument regarding the instability of any 1D system toward
dimerization holds, in general, only for classical phonons
(frequency ω0 → 0). Results beyond the classical limit are
highly desirable given the range of phonon frequencies in
Peierls materials. For example, while ω0 is small compared
to the hopping integral in polyacetylene [14], it is comparable
to the spin-exchange constant in CuGeO3 [15].

The large body of experimental results for the specific
heat of Peierls systems is in strong contrast to the state of
theoretical and, in particular, numerical work along these
lines. This discrepancy is due to the challenges involved in
obtaining reliable descriptions that capture both thermal and
quantum fluctuations even within minimal models that only
account for the dominant electron-phonon interaction while
neglecting, in particular, electron-electron interactions.

Whereas the finite-temperature Peierls transition relies on
interchain coupling, the latter is associated with a crossover
temperature above which the physics is determined by the
1D chains. The fact that Tc is typically much smaller than
mean-field predictions [13] suggests that interchain coupling
is weak. Accordingly, much of the existing theoretical work

focused on fully understanding Peierls order in isolated 1D
chains. A 1D setting permits long-range order only at T = 0
and yields a crossover rather than a thermal phase transi-
tion at T > 0. On the other hand, it accounts for a highly
nontrivial quantum phase transition between a Luttinger liq-
uid and a Peierls insulator missed by mean-field theories
[1,16]. This transition has been the subject of systematic
investigations based on exact diagonalization [17–19], quan-
tum Monte Carlo (QMC) [20–25], and the density-matrix
renormalization-group (DMRG) [26–30], as well as analyt-
ical and semianalytical methods [31–35]. Ground-state and
spectral properties are particularly well understood for the 1D
spinless Holstein model considered here. The phase diagram
for the case of half-filling relevant for the Peierls transition has
been obtained from DMRG calculations [29,30] and is shown
in Fig. 1. It captures the aforementioned metal-insulator tran-
sition at T = 0, which is either of soft-mode or central-peak
character depending on the phonon frequency. Away from
half-filling, the model was investigated with respect to many-
polaron physics, see Ref. [36] for a review.

Remarkably, there appear to be no previous results for CV

of electrons coupled to quantum phonons even in the 1D
case. For classical phonons, thermal excitations (including
solitons [14]) can be studied qualitatively with fluctuating gap
models [37,38] and quantitatively with Monte Carlo simula-
tions [39]. Some QMC results of limited quality are avail-
able for the spin-Peierls case with quantum phonons [23,34].
Finite-temperature DMRG calculations—successfully carried
out for fermionic systems [40,41]—are so far inhibited by
the large phonon Hilbert space. The determination of CV

from QMC simulations is limited by long autocorrelations
[42], large fluctuations, and Trotter discretization errors [43].
Whereas the thermodynamic Bethe ansatz is not applicable
beyond the classical-phonon limit [44], the bosonization has
been applied to study the effect of the coupling to quantum
phonons in the Luttinger liquid phase [45].

Here, we present exact numerical results for the specific
heat of the 1D spinless Holstein model across all different
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FIG. 1. Ground-state phase diagram of the half-filled spinless
Holstein model as a function of the electron-phonon coupling λ and
the phonon frequency ω0. Critical values are from DMRG calcu-
lations (open symbols) [29,30]. Additionally, we show the QMC
estimate λc = 0.68(1) at ω0/t = 0.4 [46] and the exact value λc = 0
at ω0 = 0 (filled symbols). Arrows indicate the paths in parameter
space explored in this article; the corresponding constant parameter
is indicated. Note the broken frequency axis. For more explanations
on the phase diagram see the main text.

parameter regimes (adiabatic and antiadiabatic, Luttinger liq-
uid and Peierls insulator) on large lattices while fully ac-
counting for thermal and quantum fluctuations. Such calcu-
lations are made possible by combining a recently developed
directed-loop algorithm for retarded interactions [46] with
the calculation of bosonic observables from the perturbation
expansion [47]. Approaching the experimentally relevant case
of coupled chains from the single-chain limit is motivated not
only by the central role played by these structural units for
the Peierls mechanism, but also by the fact that the ground
state of the 1D spinless Holstein model is well understood,
including accurate critical values for the quantum phase tran-
sition [48]. In contrast to higher-dimensional models, a single
chain permits simulations for temperatures and system sizes
that are sufficient to extract the thermodynamic and spectral
signatures of the 1D Luttinger liquid and Peierls physics.
The spinless Holstein model captures the essential aspects
of quantum Peierls chains, including the different character
of the Peierls transition at low and high phonon frequencies,
while avoiding complications due to spin gap formation in the
metallic phase that appear in the spinful case [49].

The article is organized as follows: We introduce the model
in Sec. II and outline the QMC method used in Sec. III.
Results are presented in Sec. IV, and we conclude in Sec. V.
In the Appendix, we derive the QMC estimator for the specific
heat of the Holstein model.

II. MODEL

To isolate the effect of quantum lattice fluctuations on
the thermodynamics of 1D chains, we consider a minimal
theoretical model. The Hamiltonian of the spinless Holstein
model [50] is given by

Ĥ = −t
∑

i

(ĉ†i ĉi+1 + H.c.) + ω0

∑
i

b̂
†
i b̂i + g

∑
i

Q̂i ρ̂i . (1)

Here, ĉ
†
i , ĉi (b̂†i , b̂i ) create/annihilate an electron (phonon) at

lattice site i. The Holstein model consists of an electronic hop-
ping term with amplitude t , Einstein phonons with frequency
ω0, and a local coupling between the lattice displacement
Q̂i = (b̂†i + b̂i )/

√
2Mω0 and the fermion density ρ̂i = (n̂i −

1/2). In the following, we only consider the half-filled case
with 〈ρ̂i〉 = 0 and use the dimensionless coupling constant
λ = g2/(4Mω2

0t ). Here, M is the mass of the harmonic os-
cillators. We use t as the unit of energy and set h̄ = 1.

Figure 1 shows the ground-state phase diagram as deter-
mined from DMRG simulations [29,30]. It exhibits a quantum
phase transition from a Tomonaga-Luttinger liquid (TLL) at
λ < λc(ω0) to a Peierls CDW insulator with ordering wave
vector q = 2kF = π at λ > λc(ω0) [17,19,21,29,30]. At ω0 =
0, the ground state shows CDW order for any λ > 0 and is
exactly described by mean-field theory, whereas for ω0 > 0
and small λ, quantum lattice fluctuations destroy the ordered
state and lead to a TLL phase. Although the broken ω0

axis suggests otherwise, the classical and quantum regimes
are expected to be connected by a continuous curve ωc(λ)
[30]. For ω0 → ∞, the spinless Holstein model maps to free
fermions and is hence always metallic. The nonuniversal Lut-
tinger parameters K and u have been determined by DMRG
calculations; for any ω0, the electron-phonon interaction leads
to a repulsive TLL with K < 1 and a reduction of the charge
velocity u, see Ref. [29] and references therein. For further
details on the ground-state properties, we refer to the review
[48].

Although the DMRG yields critical values and Luttinger
parameters, spectral or thermodynamic properties appear to
be out of reach due to the large bosonic Hilbert space. Instead,
spectral functions have been obtained from exact diagonaliza-
tion [19] or QMC simulations [25,47] on small system sizes
as well as from analytic approaches [33,51,52]. Results for
thermodynamic properties are only available in the adiabatic
limit ω0 = 0 [39]. The effects of quantum lattice fluctuations
have been studied for a spin-phonon model [23], but results
are limited by the accessible temperature range and system
sizes because only local QMC updates were available.

Whereas the present paper focuses on the spinless Holstein
model, a quantum phase transition from a TLL to a (bond-
ordered) Peierls insulator can also be studied in the spin-
less Su-Schrieffer-Heeger model with bond electron-phonon
coupling [53]. Despite its different symmetries and associ-
ated nontrivial topological classification, which are revealed
in high-temperature results for classical phonons [39], the
low-temperature spectral functions for the case of quantum
phonons [53] and the temperature dependence of the specific
heat for classical phonons closely resemble those of the spin-
less Holstein model [39]. The Jordan-Wigner transformation
provides a link between the spinless fermion model and spin-
phonon models [54]. The choice of Einstein phonons (relevant
for, e.g., CuGeO3 [55]) gives exponential rather than linear
(for 1D acoustic phonons) behavior of CV at low temper-
atures. However, a low-energy theory reveals that only the
2kF (zone-boundary) part of the phonon spectrum couples to
the electrons [20,56], and identical results have been reported
for Su-Schrieffer-Heeger models with optical and acoustic
phonons [35,53]. Therefore, the decoupled part of the phonon
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spectrum merely contributes a trivial background to CV that
is routinely subtracted from experimental data to reveal the
interesting electron-phonon correlation effects.

III. METHOD

To simulate the Holstein model, we used the directed-
loop QMC method for retarded interactions in the stochastic
series expansion (SSE) representation [46]. Starting from the
coherent-state path integral, the phonons are integrated out
analytically [57] to obtain the purely fermionic action,

S = S0 − t

∫ β

0
dτ

∑
i

[c̄i (τ )ci+1(τ ) + c̄i+1(τ )ci (τ )]

− 2λt

∫∫ β

0
dτ dτ ′ ∑

i

ρi (τ )P (τ − τ ′)ρi (τ
′). (2)

The coupling between electrons and phonons leads to a
density-density-type interaction nonlocal in imaginary time
and mediated by the free-phonon propagator P (τ ). The SSE
representation [58] corresponds to an expansion of the par-
tition function around S0 = ∫

dτ
∑

i c̄i (τ )∂τ ci (τ ). The re-
sulting trace over Grassmann fields is then mapped to an
expectation value of an operator sequence. By formally pro-
moting the hopping terms to retarded interactions, we can
formulate efficient global directed-loop updates from local
update rules [59] in which the time dependence of P (τ )
only enters the diagonal updates. For details on the Monte
Carlo updates see Ref. [46] and its Supplemental Material.
Electronic observables are calculated directly from the Monte
Carlo configurations [60,61]. Bosonic observables can be
recovered from electronic correlation functions using sum
rules derived with the help of generating functionals [47].

We study the thermodynamics of the Holstein model in
terms of the specific heat,

CV = kBβ2[〈Ĥ 2〉 − 〈Ĥ 〉2] (3)

and the compressibility (we define N̂ = ∑
i n̂i),

κ = β

L
[〈N̂2〉 − 〈N̂〉2]. (4)

Here β = 1/(kBT ) is the inverse temperature. Whereas κ

is obtained directly from the world-line configurations, the
calculation of CV via Eq. (3) is complicated by the fact that the
phonon fields have to be extracted from fermionic correlation
functions. In the Appendix, we derive an efficient estimator
to measure CV in O(n) operations by exploiting properties
of the interaction expansion (n denotes the expansion order)
[47]. This estimator has been verified by comparing to exact
diagonalization results for a two-site system and the alterna-
tive approach for calculating CV outlined next.

We also determined CV from the total energy via the rela-
tion CV = ∂E(T )/∂T . Following Ref. [62], we fitted E(T ) to
the functional form

E(T ) =
∫

dω ω[nF(ω, T )ρF(ω) + nB(ω, T )ρB(ω)], (5)

which corresponds to a spectral decomposition into nonin-
teracting fermionic and bosonic contributions ρF and ρB,
respectively. This ansatz is well motivated for the electron-
phonon model at hand—compare Eq. (8) and the discussion

of spectral functions below—but the temperature dependence
is considered to originate only from the Fermi and Bose
functions nF and nB. Given Monte Carlo data for E(T ),
Eq. (5) represents an inverse problem that can be solved
using the maximum entropy approach [62,63]. The spectra
obtained in this way do not have a physical meaning and only
serve to fit E(T ) with a reasonable χ2. Then, CV (T ) can be
easily calculated from ρF and ρB by applying the temperature
derivative to the Fermi and Bose functions in Eq. (5). The
results obtained in this way are in good agreement with those
from Eq. (3) over a large temperature range. However, for
some parameters we observe poor convergence especially
at low temperatures because the fitting ansatz becomes too
restrictive. Therefore, we prefer the unbiased and hence su-
perior covariance estimator for CV [Eq. (3)] and include the
continuous fits from E(T ) merely as a guide to the eye. As
the covariance estimators for CV and κ are subject to large
statistical fluctuations, we restrict our simulations to L = 162
lattice sites.

To interpret the low-temperature features of the thermo-
dynamic observables, we also calculated the single-particle
spectral functions of electrons and phonons with the Lehmann
representations

A(k, ω) = 1

Z

∑
mn

e−βEm (1 + e−βω )|〈m|ĉk|n〉|2δ(ω − �nm),

BQ(q, ω) = Mω2
0

Z

∑
mn

e−βEm |〈m|Q̂q |n〉|2δ(ω − �nm), (6)

respectively. Here, |m〉 is a many-particle eigenstate of the
Hamiltonian, Em is the corresponding energy, and �nm =
En − Em. We obtained the spectral functions from the
corresponding Green’s functions G(r, τ ) = 〈ĉ†r (τ )ĉ0(0)〉 and
DQ(r, τ ) = 〈Q̂r (τ )Q̂0(0)〉. The electronic Green’s function
can be accessed directly during the construction of the di-
rected loop [64]. In the simulation of retarded interactions,
each Monte Carlo vertex already includes imaginary-time
variables so that an additional mapping is not necessary. The
phonon propagator can be inferred from the density struc-
ture factor Sρ (q, i�m) = ∫ β

0 dτ ei�mτ
∑

r e−iqr〈ρ̂r (τ )ρ̂0(0)〉
via [65]

DQ(q, i�m) = P+(i�m) + 4λtP+(i�m)2Sρ (q, i�m). (7)

Here, �m = 2πm/β are the bosonic Matsubara frequencies
and P+(i�m) = ω2

0/(ω2
0 + �2

m) is the free-phonon propagator.
Sρ (q, i�m) can be calculated efficiently in the SSE repre-
sentation [60,61]. Finally, the spectral functions A(k, ω) and
BQ(q, ω) are obtained via stochastic analytic continuation
[66,67] using G(k, τ = 0) and DQ(q, τ = 0) as sum rules.

The total energy and hence the specific heat CV = ∂E/∂T

are directly related to the single-particle spectral functions.
Using the equation of motion [68], we obtain the sum rule

E =
∑

k

∫ ∞

−∞
dω

ω + εk

2
nF(ω)A(k, ω)

+
∑

q

∫ ∞

−∞
dω ω nB(ω)B(q, ω). (8)
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Here, εk = −2t cos k is the bare electronic dispersion
and B(q, ω) = Z−1 ∑

mn e−βEm (1 − e−βω )|〈m|b̂q |n〉|2δ(ω −
�nm) is the bosonic spectral function defined from the
second-quantized operators. In the noninteracting limit,
we have A(k, ω) = δ(ω − εk ) and B(q, ω) = [δ(ω − ω0) −
δ(ω + ω0)]/2, i.e., the temperature dependence of CV only
arises from nF and nB. For finite electron-phonon interactions
also A(k, ω) and B(q, ω) change with temperature. Note that
the interaction energy equally contributes to the fermionic and
bosonic parts in Eq. (8). Whereas A(k, ω) has been previously
studied by an exact numerical method over the entire range of
temperatures for classical phonons [39] [where the bosonic
part in Eq. (8) reduces to the classical result LkBT ], the quan-
tum case requires numerical analytic continuation. We focus
on the low-temperature spectral functions that characterize the
ground state.

IV. RESULTS

We will discuss the thermodynamic properties of the
spinless Holstein model along the paths in parameter space
indicated in Fig. 1. As a function of the electron-phonon in-
teraction λ, we consider both the antiadiabatic regime ω0 � t

and the adiabatic regime ω0 	 t . Because the physics of
the Holstein model differs significantly between these two
regimes, we also present low-temperature spectral functions
of electrons and phonons to explain the characteristic sig-
natures in the thermodynamic observables. A special case
of the adiabatic regime is the limit ω0 = 0 where spectral
functions have been calculated exactly at finite temperatures
[39]. For completeness, we review the main results obtained
in this limit. The effects of quantum lattice fluctuations on the
specific heat are finally studied as a function of ω0 from low
to high phonon frequencies.

A. Polaron formation in the antiadiabatic regime

In the antiadiabatic regime ω0 � t , the metallic TLL phase
extends up to rather strong couplings λ, see Fig. 1. With in-
creasing λ, the electrons first undergo a crossover to small po-
larons with a significantly enhanced effective mass due to the
dressing with phonons, before ordering into a polaronic su-
perlattice at λc [19]. These effects can be characterized by the
single-particle spectral functions of electrons and phonons,
which were previously calculated numerically in the antiadia-
batic regime using exact diagonalization [19] and a projective
renormalization approach [52]. The electronic spectral func-
tion has also been obtained by the bosonization method [51].

In Fig. 2, we present QMC results for A(k, ω) and
BQ(q, ω) for ω0/t = 4 and λ = 2 obtained for L = 162 and
βt = 2L. The electronic spectrum in Fig. 2(a) exhibits a well-
defined band with a renormalized cosine dispersion −2t̃ cos k

with t̃ = u/2 and u ≈ 0.47vF for the parameters considered.
This polaronic renormalization (but not the Peierls transition
at larger λ) can be qualitatively captured by the Lang-Firsov
approximation [70,71] or variational methods [36,71,72].
The renormalization of the electronic band is also visible
in the phonon spectrum in Fig. 2(b). The lower branch of
BQ(q, ω) corresponds to the particle-hole continuum, which
is visible in the phonon spectral function because of the
density-displacement coupling in Eq. (1) and again reveals
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FIG. 2. Single-particle spectral functions of (a) electrons and
(b) phonons at ω0/t = 4 and λ = 2. The dashed lines indicate the
corresponding free dispersions. Here, L = 162 and βt = 2L. Color
scheme based on Ref. [69].

the renormalized electronic band. The upper branch starts
at ω = ω0 for q = 0 and hardens with increasing q. The
Peierls transition in the antiadiabatic regime is characterized
as a central-mode transition, with a hardening of the phonon
frequency and a central peak at q = 2kF for λ � λc [19].

To explore the thermodynamic signatures of the TLL
phase, we follow the path in Fig. 1 at constant ω0/t = 4 and
L = 162. At λ = 0, the specific heat shown in Fig. 3(a) is the
sum of two contributions. The free-phonon part approaches
the Dulong-Petit law CV = LkBT for T → ∞ but eventually
drops off exponentially below kBT ≈ ω0. The free-electron
part has a maximum at kBT ≈ 0.63t that can be identified with
the onset of coherent electronic motion [39].

The interpretation of the results in terms of electron and
phonon contributions remains useful at λ > 0. With increas-
ing coupling, the high-temperature part of CV converges to the
free-phonon contribution because the renormalization of the
phonon branch in BQ(q, ω) is smeared out by thermal fluctu-
ations. At the same time, the formation of small polarons with
substantially increased mass leads to a significant reduction
of the effective hopping t̃ , causing the electronic contribution
to CV to shift towards lower temperatures while maintaining
its shape. In particular, the temperature dependence of CV

seems to originate mainly from the distribution functions in
Eq. (8). Similar to λ = 0, the low-temperature peak in CV can
be identified with the onset of coherence, determined by the
renormalized hopping t̃ .

For the spinless model considered, there is a direct relation
among the electronic contribution to CV , the density of states
at the Fermi level N (EF), and the renormalized charge veloc-
ity u [45,73]. At temperatures where the phonon contribution
is frozen out, we expect

CV = π2

3
Lk2

BT N (EF) = π

3

Lk2
BT

u
. (9)

The first expression is generic, and the second expression
holds in a TLL [45]. Figure 3(b) shows CV /T for the two
smallest λ’s considered. The convergence of CV /T for low
T to a constant that increases with λ is clear evidence for
the reduction of the charge velocity u. Low-temperature fits
of the total energy to the form E(T ) = E0 + 1

2aT 2 are in
good agreement with the CV data [cf. the dashed lines in
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FIG. 3. (a) Specific heat CV , (b) specific heat over tempera-
ture CV /T , and (c) compressibility κ in the antiadiabatic regime
(ω0/t = 4, L = 162). Data points correspond to direct estimates,
whereas straight lines in (a) are from fits to the total energy using the
maximum entropy method. The shaded areas in (a) indicate the free-
electron and free-phonon contributions to CV . The dashed lines in (b)
correspond to fits to the total energy of the form E(T ) = E0 + 1

2 aT 2

in the interval T ∈ [0.05, 0.1].

Fig. 3(b)]. The reduction of u can also be inferred from the
compressibility shown in Fig. 3(c) whose low-temperature
limit is given by [73]

κ = K

uπ
. (10)

Equation (10) additionally includes the Luttinger parameter
K that also decreases with increasing λ. Comparing Fig. 3(c)
with Fig. 3(a) reveals that the TLL regime with a constant
κ emerges below the coherence scale defined by the low-
temperature peak in CV . The observed decrease in u with
increasing λ (reflecting the enhanced polaron mass) is in
contrast to the t-V model. The latter also has a critical point
separating a TLL from a CDW insulator, but u increases
with increasing V in the metallic phase [73] as recently
also observed directly from thermodynamic properties [41].
The opposite behavior in electron-phonon models, namely,
a decrease in u upon increasing the interaction, agrees with
previous numerical [17,30] and bosonization results [45].
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FIG. 4. (a) Specific heat CV and (b) compressibility κ at ω0 = 0.
The dashed lines indicate the free-phonon contribution to CV and the
T = 0 limit of κ at λ = 0. Results were obtained using the Monte
Carlo method of Ref. [75] for L = 162. To illustrate finite-size
effects for κ , we also show results for L = 322 (short-dashed lines).

B. Formation of CDW order in the adiabatic limit

The previous section revealed the principal features of CV

and κ in the metallic phase. To understand the impact of
quantum lattice fluctuations on the thermodynamic properties
of Peierls insulators, we start from the adiabatic limit ω0 = 0
where they are entirely absent. Then, the ground state is a
Peierls insulator for any λ > 0 and exactly described by mean-
field theory [1,2]. The formation of a 2kF CDW is accompa-
nied by the opening of a single-particle gap and the formation
of shadow bands due to the doubling of the unit cell [39,74].

Thermal fluctuations in Peierls chains have been studied
very generically in fluctuating gap models [37,38] and re-
cently by simulations of the classical Holstein model [39].
The latter approach permits the exact calculation of spectral
properties without the need for numerical analytic continu-
ation [75] and was also applied in higher dimensions [76].
At T > 0, the mean-field gap is filled in by polaron ex-
citations bound to thermally generated domain walls [39].
The temperature scale where the gap disappears matches
the position of a low-temperature peak in the specific heat
[39]. According to Eq. (9), the low-temperature electronic
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FIG. 5. Electron spectral function A(k, ω) in (a) the metallic
phase and (b) the Peierls phase. Closeups of the same results are
presented in Figs. 6(b) and 6(d), respectively. Here, ω0/t = 0.4,

L = 162, and βt = 2L.

contribution to CV scales directly with the density of states
at EF. Figure 4(a) shows CV for different electron-phonon
couplings λ. Although for λ = 0.25 the peak related to the
Peierls gap still lies outside the temperature range shown, it
shifts to higher temperatures and grows with increasing λ,
in accordance with the exponential opening of the gap. In
contrast to the discontinuous feature predicted by mean-field
theory, the peak in CV is smeared out by thermal fluctuations
and appears at an energy scale much lower than the mean-field
critical temperature [38]. At higher temperatures, CV again
exhibits a peak related to the temperature scale where coher-
ent band motion and Fermi statistics become relevant. With
increasing λ, this peak is strongly suppressed. Whereas the
Dulong-Petit law is obeyed at high temperatures, the classical
phonons produce the same constant also at T = 0, leading to
the well-known violation of the third law of thermodynamics.

The formation of a pseudogap at low temperatures can also
be inferred from the compressibility. Figure 4(b) reveals that
κ is suppressed at a temperature scale that matches the peak
position in CV . The sharp drop-off below T � 0.02t visible
in Fig. 4(b) for λ = 0 and λ = 0.25 is related to a finite-size
gap, as illustrated by the results for L = 322 (short-dashed
lines). If the Peierls gap is sufficiently small, κ exhibits the
constant behavior characteristic of the TLL phase at interme-
diate temperatures. Apart from that, electron-phonon coupling
enhances charge fluctuations at intermediate temperatures.

C. Peierls transition in the adiabatic regime

Having established the thermodynamic signatures of the
metallic and the insulating phase, we now consider the Peierls
transition between these phases in the adiabatic quantum-
phonon regime 0 < ω0 < t . We will see that the evolution of
the low-temperature specific heat across the transition is rather
intricate due to the impact of the electron and phonon dy-
namics. Therefore, we first review the corresponding single-
particle spectral functions; a more detailed discussion can
be found in Refs. [25,65]. Specifically, Figs. 5 and 6 show
electron and phonon spectral functions for ω0/t = 0.4 and
different λ’s. The critical coupling for the Peierls transition is
λc = 0.68(1) [46]. These results were obtained for L = 162
and βt = 2L, significantly larger than in previous works.
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FIG. 6. (a)–(e) Electron spectral function A(k, ω) and (f)–(j)
phonon spectral function BQ(q, ω) for ω0/t = 0.4, βt = 2L, and
L = 162 (82) for λ � 1.0 (λ = 1.25). The dashed lines indicate the
corresponding free dispersions.

The electronic spectral function over the relevant energy
range set by the free bandwidth is shown in Fig. 5; Figs. 6(a)–
6(e) focus on the low-energy region around EF. In the TLL
phase, the main effect of the electron-phonon interaction
is a renormalization of A(k, ω) inside the coherent interval
[−ω0, ω0]. Although this effect is still small at λ = 0.25
[Fig. 6(a)], the charge velocity is significantly reduced at
λ = 0.5 and a low-energy polaron band starts to split from the
incoherent high-energy excitations [Fig. 5(a)]. The evolution
of A(k, ω) in the metallic phase can be understood in the
framework of the bosonization in terms of a hybridization of
charge and phonon modes [51]. At λc, a gap opens in the
polaron band which is still small at λ = 0.75 [Fig. 6(c)] but
well developed at λ = 1.0 [Fig. 6(d)]. Finally, at λ = 1.25,
the low-energy polaron excitations have almost vanished.
The high-energy features of the spectrum are dominated by
mean-field-like bands, which become more incoherent with
increasing λ. At the Peierls transition, these bands split from
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the polaron band and exhibit the shadow bands characteristic
for the ordered phase [Fig. 5(b)].

The corresponding phonon spectral functions are shown
in Figs. 6(f)–6(j). In the adiabatic regime considered, the
Peierls transition is a soft-mode transition. Even at small
λ, BQ(q, ω) is significantly renormalized near q = π before
becoming completely soft at λc [Fig. 6(h)]. In the Peierls
phase, BQ(q, ω) hardens again and has almost returned to
the original constant dispersion for λ = 1.25. The existence
of long-range order is again reflected in a central peak at
q = π . As pointed out before, BQ(q, ω) also contains spectral
information about the particle-hole continuum. Although the
high-energy part of BQ(q, ω) has very low spectral weight,
there is a clear feature at small q related to the hybridization
of the free-phonon dispersion and the particle-hole continuum
that is smeared out with increasing λ and disappears in the
Peierls phase. Similarly, the phonon softening near q = π

can also be regarded as a hybridization effect: Because of
the presence of the particle-hole continuum, BQ(q, ω) must
include gapless excitations at q = π throughout the metallic
phase. Similar results for BQ(q, ω) were previously obtained
from analytic approaches [52] and from QMC simulations of
spin-phonon models [77,78].

Figure 7 shows the evolution of CV and κ from weak to
strong coupling at ω0/t = 0.4. The specific heat in Fig. 7(a)
exhibits a high-temperature electronic peak at kBT = O(t )
that is suppressed by the electron-phonon interaction, similar
to ω0 = 0. However, quantum lattice fluctuations lead to a
very different behavior at kBT � ω0. Most notably, CV → 0
for T → 0 as expected from the third law of thermodynamics.

To better contrast the low-temperature features of the
metallic and insulating phases, we compare CV /T in Fig. 7(b)
to κ in Fig. 7(c). In contrast to the antiadiabatic regime, the
low-energy phonon mode makes a substantial contribution to
CV that only vanishes at the lowest temperatures considered.
For λ = 0, we can still identify the constant contribution to
CV /T expected from Eq. (9) (dashed line, u = vF) at low
temperatures, although finite-size effects eventually become
visible as T → 0. For λ > 0, the phonon softening around
q = π enhances CV at low T and thereby complicates the
analysis of the TLL behavior. From the maximum entropy
fits to the total energy (solid lines), we deduce a reduction
of the charge velocity with increasing λ in accordance with
Figs. 6(a) and 6(b). However, we cannot unambiguously de-
termine u from the QMC data because CV /T does not yet
reach a plateau for the present temperatures and system size.
By contrast, the compressibility in Fig. 7(c) does exhibit the
expected constant behavior over a broad temperature range
before finite-size effects set in. Even the small Peierls gap at
λ = 0.75 leads to a significant decrease of κ at kBT/t < 0.1,
whereas it does not leave any signature in CV /T . Deep in the
Peierls phase, for λ = 1.0 and λ = 1.25, CV /T , κ → 0 for
T → 0 as expected for a gapped system.

A comparison between Fig. 7(c) and Fig. 4(b) reveals
that the temperature dependence of κ in the Peierls phase is
very similar to the classical case. For a direct comparison at
λ = 1.25, the inset of Fig. 7(a) shows �CV , corresponding
to CV minus the temperature-dependent free-phonon con-
tribution. Subtracting the free-phonon part appears justified
since the phonon dispersion in Fig. 6(j) exhibits only minor
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FIG. 7. (a) Specific heat CV , (b) specific heat over temperature
CV /T , and (c) compressibility κ in the adiabatic regime (ω0/t =
0.4, L = 162). Data points correspond to direct estimates, whereas
straight lines in (a) are from fits to the total energy using the
maximum entropy method. The dashed line in (a) corresponds to the
free-phonon contribution, whereas the dashed line in (b) indicates
the TLL result for λ = 0. The inset in (a) shows CV for λ = 1.25
minus the free-phonon contribution and compared to ω0 = 0.

renormalization effects compared to the noninteracting case.
The comparison reveals good agreement between �CV for
ω0/t = 0.4 and the adiabatic results with minor differences
only at intermediate temperatures. This suggests that deep
in the Peierls phase the adiabatic approximation is valid and
the opening of a pseudogap occurs at the same temperature
scale as for ω0 = 0. The same holds for the electronic spectral
function in Fig. 6(e) which qualitatively resembles the mean-
field band structure. However, the gaps in Figs. 5(b) and 6(e)
are smaller than �MF (not shown).

D. Crossover from low to high phonon frequencies

The present method permits us to investigate the impact
of quantum lattice fluctuations by calculating CV over the
entire range of phonon frequencies from the adiabatic to the
antiadiabatic limit at λ = 0.75.

In principle, the classical approximation is expected to be
accurate for kBT � ω0. Our results provide a quantitative
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FIG. 8. Specific heat CV for different ω0’s at λ = 0.75 and
L = 162. The dashed lines indicate the free-phonon contributions.

estimate of the temperature beyond which quantum-phonon
effects become negligibly small. Remarkably, the correspond-
ing temperature is on the order of only 2–3ω0 for the parame-
ters of Fig. 8. A comparison between ω0 = 0 and ω0/t = 0.4
at stronger coupling was discussed before and is shown in the
inset of Fig. 7(a).

At lower temperatures, a significant dependence on ω0

is visible. For ω0/t � 0.2, we can approximate the phonon
contribution by the noninteracting result (dashed lines), which
drops to zero at a temperature scale that increases with
increasing ω0. The low-temperature peak associated with
pseudogap formation remains almost unchanged for ω0/t �
0.1. It can be identified even at ω0/t = 0.2 after subtracting
the free-phonon part (not shown). This suggests that the coher-
ence temperature below which the 1D Peierls physics emerges
remains almost unchanged for ω0 	 �MF. With increasing
ω0, the formation of lattice defects in the dimerization pattern
is accompanied by the creation of low-lying polaron states
in A(k, ω) and a renormalization of the phonon dispersion in
BQ(q, ω) near q = π (see Fig. 6). Eventually, both excitations
become gapless at the critical value ω0,c/t � 0.4 for the
Peierls transition and leave a dominant low-temperature tail in
CV . For ω0 � �MF we recover separate electron and phonon
contributions, and CV approaches the result for noninteracting
electrons as ω0 → ∞.

V. CONCLUSIONS & OUTLOOK

We studied the thermodynamic properties of Peierls chains
using the 1D spinless Holstein model at half-filling. By means
of a recently developed, highly efficient QMC method [46],
we obtained accurate results for the specific heat over the
entire range of model parameters. These results were com-
plemented by calculations of the compressibility as well as
electron and phonon spectral functions. Crucially, all quantum
and thermal fluctuations are exactly accounted for as is the
fundamentally different nature of the Peierls transition at
low and high phonon frequencies. At the technical level, our
results demonstrate the feasibility of using an exact estimator
to measure the specific heat by QMC methods.

For classical phonons, the ground state is a Peierls insulator
for any coupling. The specific heat exhibits a peak in the tem-
perature range where CDW correlations are suppressed and

the Peierls gap is filled in. A second peak at higher tempera-
tures is associated with the onset of coherence in the electronic
spectrum. Deep in the Peierls phase, the effects of quantum
lattice fluctuations are overall small and mostly restricted to
the phonon contribution to CV ; our exact results provide a
quantitative assessment of the validity of the adiabatic approx-
imation. On approaching the Peierls transition in the adiabatic
regime, polaron excitations appear in the electronic spectrum
and become gapless at the critical point. Moreover, the phonon
mode softens at the transition. Both types of low-energy ex-
citations have a significant effect on CV at low temperatures.
By contrast, in the antiadiabatic regime, phonon softening is
absent, and electrons are strongly renormalized by polaronic
effects even in the metallic Luttinger liquid phase. This is
evident in the linear electronic contribution to CV which is
proportional to the charge velocity. The renormalization of the
latter was found to be particularly strong in the antiadiabatic
regime, causing a shift of the electronic contribution to CV

and hence the coherence scale to lower temperatures. It is also
opposite to the enhancement observed in the t-V model for
the charge-density-wave transition [41].

The 1D spinless Holstein model captures the signatures of
Luttinger liquid and Peierls insulating ground states in the
thermodynamic properties, including the significant renormal-
ization of electron and phonon excitations across the Peierls
quantum phase transition. At the same time, it excludes long-
range order and hence a phase transition at finite temperatures.
Our results provide the starting point for future work on
coupled chains, although such models will be significantly
harder to simulate. Other interesting aspects in the context
of 1D Peierls systems include the influence of the generic
spin gap of the Luther-Emery phase and the interplay between
electron-phonon and electron-electron interactions.

Data files for the results presented here are available in the
Supplemental Material [80].
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APPENDIX: DIRECT MONTE CARLO ESTIMATOR FOR
THE SPECIFIC HEAT OF THE HOLSTEIN MODEL

The SSE representation was originally formulated for
instantaneous interactions in which case it corresponds to
a series expansion of the partition function in the total
Hamiltonian. Therefore, the specific heat has the particularly
simple estimator CV = 〈n2〉 − 〈n〉2 − 〈n〉, corresponding to
the fluctuations of the expansion order. To efficiently simulate
fermion-boson models, we integrate over the bosonic fields
and expand in terms of retarded interactions. As a result,
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we lose direct access to the bosonic fields and hence the
Hamiltonian and can no longer use the above estimator for
CV . We have shown in Ref. [47] that the bosonic fields
can be recovered from sum rules over fermionic correlation
functions using generating functionals. Moreover, the total
energy can be calculated efficiently from the distribution of
vertices using the properties of the perturbation expansion
[61]. In the following, we show that even the second moment
of the Hamiltonian can be calculated in O(n) operations from
the distribution of vertices. To set the notation, we begin with
a brief discussion of the interaction vertex of the Holstein
model. For completeness, we first outline the estimator for
the total energy before turning to the estimator for the second
moment of the Hamiltonian.

1. Interaction vertex of the Holstein model

The directed-loop algorithm for retarded interactions is
based on the generic formulation of the perturbation expan-
sion in the path-integral representation discussed in Ref. [47].
The Monte Carlo sampling is over configurations C =
{n,Cn, |α〉} defined by the expansion order n, the ordered ver-
tex list Cn = {ν1, . . . , νn}, and state |α〉 in the local occupation
number basis. In Ref. [46], we defined the interaction vertex
for the spinless Holstein model. In the following, we extend
it to the spinful case where each subvertex j ∈ {1, 2} now has
local variables {aj , b, σj , τj } labeling its operator type, bond,
spin, and imaginary time. The interaction vertex becomes

S1 = −
∫∫ β

0
dτ1dτ2P+(τ1 − τ2)

∑
a1, a2, b,
σ1, σ2

h
σ1σ2
a1a2,b

(τ1, τ2). (A1)

Here and in the following, we use the (anti-)symmetrized
phonon propagators P±(τ ) = 1

2 [P (τ ) ± P (β − τ )] with
P (τ ) = ω0 exp(−ω0τ )/[1 − exp(−ω0β )]. The off-diagonal
hopping vertices are given by

h
σ1σ2
10,b (τ1, τ2) = t

2Nσ

Bb,σ1 (τ1)1b,σ2 (τ2),

h
σ1σ2
01,b (τ1, τ2) = t

2Nσ

1b,σ1 (τ1)Bb,σ2 (τ2), (A2)

whereas the diagonal interaction vertices read

h
σ1σ2
22,b (τ1, τ2) = λt[C + ρi(b),σ1 (τ1)ρi(b),σ2 (τ2)

+ ρj (b),σ1 (τ1)ρj (b),σ2 (τ2)], (A3)

with j (b) = i(b) + 1. We introduced an additional factor Nσ

in the hopping terms that counts the number of spin flavors
and compensates the sum over the second spin index. For
the spinful Holstein model, we have Nσ = 2, whereas the
spinless case is recovered by choosing Nσ = 1 and dropping
the spin indices. The constant shift C in Eq. (A3) ensures
positive Monte Carlo weights. Although we only consider the
half-filled Holstein model, a chemical potential can be easily
included in the diagonal term. In the following, we partition
the total expansion order n = n1 + n2 into the number of off-
diagonal vertices n1 = n10 + n01 and the number of diagonal
vertices n2 = n22.

2. Total energy

For completeness, we review the estimator for the total
energy derived in Ref. [47]. The Hamiltonian of the Holstein
model Ĥ = ∑

x Ĥx is split into three contributions labeled by
the indices x ∈ {el, ph, ep}. The first element corresponds to
the kinetic energy of the electrons, the second corresponds to
the purely bosonic part (including a shift of ω0/2 per site),
and the third corresponds to the electron-phonon interaction—
see Eq. (1) for exact definitions. For each Monte Carlo con-
figuration, we define the contributions to the total energy by

Ex (Cn) = 1

β

∫ β

0
dτ 〈〈Hx (τ )〉〉Cn

. (A4)

Translational invariance of all vertices is taken into account
by the average over imaginary time. Using the sum rules
specified in Ref. [47], each contribution to E(Cn) can be
expressed in terms of the interaction vertices (A2) and (A3)
to obtain

Eel(Cn) = −n1

β
, (A5)

Eph(Cn) = LP+(0) − λtCLN2
σ

+
n2∑

k=1

[P̄+(τk − τ ′
k ) − P̄−(τk − τ ′

k )], (A6)

Eep(Cn) = −2n2

β
+ 2λtCLN2

σ . (A7)

Translational invariance of all vertices is contained in the
averaged propagator,

P̄±(τk − τ ′
k ) = 1

β

∫ β

0
dτ

P±(τk + τ )P±(τ ′
k + τ )

P+(τk − τ ′
k )

. (A8)

Explicitly, it is given by (τ ∈ [−β, β])

P̄±(τ ) = 1

2β
± ω0

4

β − |τ |
β

[
coth(ω0β/2) − P−(τ )

P+(τ )

]

± ω0

4

|τ |
β

[
coth(ω0β/2) + P−(τ )

P+(τ )

]
. (A9)

3. Second moment of the Hamiltonian

To calculate the second moment of Ĥ , we write its expec-
tation value in a translationally invariant form, i.e.,

〈Ĥ 2〉 = 1

β2

∫∫ β

0
dτ dτ ′〈H (τ ) H (τ ′)〉. (A10)

Using the time-displaced form of the correlation function
ensures that in the end each operator identified with a subver-
tex of the interaction vertex obtains an individual time label
that is integrated over. We again split the total Hamiltonian
into fermionic, bosonic, and fermion-boson contributions. To
simplify the notation, we define (x, x ′ ∈ {el, ph, ep})

Fx−x ′ (Cn) = 1

β2

∫∫ β

0
dτ dτ ′〈〈Hx (τ )Hx ′ (τ ′)〉〉Cn

. (A11)
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The estimator for the purely electronic contribution has the
same form as usual and is given by

Fel-el(Cn) = n1(n1 − 1)

β2
. (A12)

Also the mixing terms between the electronic part of the
Hamiltonian and the remaining parts have simple estimators
that are given by

Fel-ph(Cn) = Eel(Cn)Eph(Cn), (A13)

Fel-ep(Cn) = Eel(Cn)Eep(Cn). (A14)

The electronic and the bosonic contributions are recovered
from vertices with different operator types and hence do not
interfere in the total estimators.

The derivation of estimators is more complicated for corre-
lation functions where each part of the Hamiltonian contains
bosonic fields. When we calculate the functional derivatives
to obtain sum rules for the bosonic fields, we have to account
for additional cross terms that do not appear for the individual
energies. For example, the correlation function between the
electron-phonon parts of the Hamiltonian becomes

〈Hep(τ )Hep(τ ′)〉
= 4λtP+(τ − τ ′)

∑
i

〈ρi (τ )ρi (τ
′)〉

+ (4λt )2
∫∫ β

0
dτ1dτ2P+(τ − τ1)P+(τ ′ − τ2)

×
∑
ij

〈ρi (τ )ρi (τ1)ρj (τ ′)ρj (τ2)〉. (A15)

The first term on the right-hand side is an additional cross
term. The corresponding estimator is

Fep-ep(Cn) = Eep(Cn)2 − 4n2

β2
− Eep(Cn)

β
. (A16)

Similar considerations yield the estimators,

Fep-ph(Cn) = Eep(Cn)Eph(Cn) + 2λtCLN2
σ

β
, (A17)

and

Fph-ph(Cn) = Eph(Cn)2 + LP+(0)[P̄+(0) − P̄−(0)]

−
n2∑

k=1

[P̄+(τk − τ ′
k ) − P̄−(τk − τ ′

k )]2

+
n2∑

k=1

Z(τk − τ ′
k )

P+(τk − τ ′
k )

− 2λtCLN2
σ

β
. (A18)

For the latter, we introduced an additional function,

Z(τ ) = ω3
0

β2
e(β−τ )ω0nB(ω0)

× [τ 2 + β(β + 2τ )nB(ω0) + 2β2nB(ω0)2], (A19)

that is defined for τ ∈ [0, β ).To evaluate Z(τ ) for τ < 0, we
use Z(τ + β ) = Z(τ ). Here, nB(ω) = [exp(βω) − 1]−1.
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