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Response functions 〈Âx (t )B̂y (0)〉 for one-dimensional strongly correlated quantum many-body systems can
be computed with matrix product state (MPS) techniques. Especially, when one is interested in spectral functions
or dynamic structure factors of translation-invariant systems, the response for some range |x − y| < � is needed.
We demonstrate how the number of required time-evolution runs can be reduced substantially: (a) If finite-
system simulations are employed, the number of time-evolution runs can be reduced from � to 2

√
�. (b) To go

beyond, one can employ infinite MPS (iMPS) such that two evolution runs suffice. To this purpose, iMPS that
are heterogeneous only around the causal cone of the perturbation are evolved in time, i.e., the simulation is
done with infinite boundary conditions. Computing overlaps of these states, spatially shifted relative to each
other, yields the response functions for all distances |x − y|. As a specific application, we compute the dynamic
structure factor for ground states of bilinear-biquadratic spin-1 chains with very high resolution and explain
the underlying low-energy physics. To determine the initial uniform iMPS for such simulations, infinite-system
density matrix renormalization group (iDMRG) can be employed. We discuss that, depending on the system and
chosen bond dimension, iDMRG with a cell size nc may converge to a nontrivial limit cycle of length m. This
then corresponds to an iMPS with an enlarged unit cell of size mnc.
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I. INTRODUCTION

Spectral functions and dynamic structure factors give in-
sights into the many-body physics of strongly correlated
quantum systems by providing detailed information about the
low-lying excitations. Experimentally, these quantities can be
measured directly, for example, by using inelastic neutron-
scattering or ARPES techniques. Their calculation with nu-
merical methods remains challenging. For one-dimensional
(1D) systems, density matrix renormalization group (DMRG)
algorithms allow us to efficiently determine precise approx-
imations of ground-state wave functions, either as matrix
product states (MPS) for finite systems or as infinite MPS
(iMPS) in the thermodynamic limit [1–3]. In combination
with time-evolution algorithms [4–6], one can compute real-
time response functions, from which spectral functions can be
obtained by Fourier transform. One challenge in this approach
is the growth of entanglement during time evolution, which
leads to a corresponding growth of the computation cost with
time. A simple trick allows to double the maximum reachable
times, but requires a separate simulation for each distance for
which the response function is needed.

Here, we introduce a scheme for finite-system simulations
of translation-invariant models that reduces the required num-
ber of time-evolution runs significantly. In addition, we show
how iMPS simulations can be used to reduce the number of
required runs to only two. If we apply a local perturbation to
an initial uniform iMPS and evolve the state in time, Lieb-
Robinson bounds [7] guarantee that the perturbation only has
a significant effect on sites within a causal cone, a finite spatial
region that grows linearly with time. We can hence simulate
the time evolution using a finite heterogeneous window with
infinite boundary conditions, a technique that has been used

before to study quantum quenches [8,9]. The difference in our
approach is that we shift the heterogeneous windows of two
iMPS relative to each other to evaluate the response functions
for all required distances between perturbation and measure-
ment. We employ this technique to compute high-resolution
dynamic spin structure factors for bilinear-biquadratic spin-1
chains. We explain the corresponding low-energy physics.
Note that after the main parts of this work were completed,
Ref. [10] appeared, which introduces a similar technique for
the simulation of finite-temperature response functions with
purifications.

Different algorithms exist to obtain an approximation of
the ground state in form of a uniform iMPS. We use infinite-
system DMRG (iDMRG) [3] which is rather efficient and
straightforward to implement. Alternatively, one can em-
ploy the uniform variational iMPS algorithm of Ref. [11]
or imaginary-time evolution using the infinite time-evolving
block decimation algorithm [12,13]. As the ground-state cal-
culation is followed by a real-time evolution which typically
dominates the computation cost, possible differences in con-
vergence speeds for the ground-state computation are not so
important.

We address the convergence of the iDMRG algorithm
for different phases of the bilinear-biquadratic spin-1 model
and sizes of the iDMRG unit cell nc. We observe that un-
der certain conditions, the algorithm fails to converge to a
simple fixed point, but can rather converge to a nontrivial
limit cycle of length m. Based on our analysis of corre-
sponding fidelities, this is to be interpreted as the prox-
imity to a low-entangled iMPS solution with a larger unit
cell of size mnc. We also discuss how the use of sym-
metric initial states for iDMRG can result in substantially
increased bond dimensions and degeneracies of the MPS
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transfer operator that can cause problems in the wave-function
orthogonalization.

The structure of this work is as follows. In Sec. II,
we briefly summarize the different phases of the bilinear-
biquadratic spin-1 chain. Section III reviews the calculation
of response functions for translation-invariant systems in the
linear response regime using matrix product state methods. In
Sec. IV, we describe schemes to calculate response functions
with finite-system simulations. In Sec. V, we introduce an
efficient scheme using infinite boundary conditions that re-
duces the number of required time-evolution runs. We apply
this technique to the calculation of dynamic spin structure
factors for the bilinear-biquadratic spin-1 chain in Sec. VI and
interpret the different features. In Sec. VII, we discuss non-
trivial limit cycles in the iDMRG algorithm. We summarize
and conclude in Sec. VIII.

II. BILINEAR-BIQUADRATIC SPIN-1 CHAIN

As a specific application, we simulate SU(2) symmetric
bilinear-biquadratic spin-1 chains

Ĥ = ∑
i[cos θ Ŝi · Ŝi+1 + sin θ (Ŝi · Ŝi+1)2]. (1)

For π/2 < θ < 5π/4, the system is in a gapless ferromagnetic
and, for 5π/4 < θ < 7π/4, in a gapped dimerized phase
[14–17]. For −π/4 < θ < π/4, it is in the gapped Haldane
phase [18] which includes the Affleck-Kennedy-Lieb-Tasaki
(AKLT) point tan θ = 1

3 where the ground state is an MPS
with bond dimension D = 2 [19]. The Haldane phase is an ex-
ample for symmetry-protected topological order [20,21]. For
π/4 � θ � π/2, the system is in a gapless spin quadrupolar
phase [17,22–24], and, in the vicinity of the integrable point
θ = π/4, the long-range physics is governed by the level-1
SU(3) Wess-Zumino-Witten model with marginally irrelevant
perturbations [24,25]. In this critical phase, period-three spin
quadrupolar correlations dominate. In particular, approaching
the gapless phase from θ = 0, the single-magnon excitation
with the minimum (Haldane) gap at k = π deforms with
increasing θ . The minimum switches to k = 2π/3 and the gap
at this momentum closes at the critical point θ = π/4.

The model (1) describes several quasi-1D quantum
magnets. Some examples are CsNiCl3 [26,27] and
Ni(C2H8N2)2NO2ClO4 (NENP) [28,29] which are to a
good approximation Heisenberg antiferromagnets (θ = 0)
or LiVGe2O6 [30,31], which features a sizable biquadratic
coupling.

III. RESPONSE FUNCTIONS FOR
TRANSLATION-INVARIANT SYSTEMS

The response of a system to a time-dependent perturbation
Ĥ → Ĥ ′(t ) = Ĥ + f (t )B̂y around site y can be character-
ized by its influence on the expectation value of an observ-
able Âx , located around site x. According to linear response
theory, the effect of weak perturbations is determined by
time-dependent correlation functions

〈Âx〉t = 〈Âx〉0 − i

∫ t

−∞
dt ′ f (t ′)〈[Âx (t ), B̂y (t ′)]〉0 + O(f 2)

which is the fluctuation-dissipation theorem. Here, 〈. . . 〉0

denotes the expectation value with respect to an initial Ĥ -
equilibrium state and the right-hand side uses the Heisenberg

picture. In this work, we consider systems at zero temperature,
i.e., response functions have the form 〈ψ |Âx (t )B̂y (t ′)|ψ〉 if
the ground state |ψ〉 is nondegenerate, and are given by a
corresponding average in the case of degeneracies.

In translation-invariant autonomous systems, the response
functions only depend on x − y and t − t ′. They can hence be
parametrized, equivalently, by momentum k and frequency ω,
i.e., the Fourier transform with respect to space and time

S(k, ω) =
∑

x

e−ikx

∫
dt eiωtS(x, t )

(2)
with S(x, t ) = 〈ψ |Âx (t )B̂0(0)|ψ〉.

These are typical experimental observables, e.g., measured in
ARPES and neutron scattering experiments.

For 1D systems, ground states |ψ〉 can be determined effi-
ciently in MPS form using the DMRG method. The simplest
way to compute response functions would be to apply B̂0

to |ψ〉 and use time-dependent DMRG (tDMRG) to obtain
an MPS approximation of |ψB̂0

(t )〉 := e−iĤ t B̂0|ψ〉. Then, the
response function is obtained by evaluating matrix elements

S(x, t ) = eiE0t 〈ψ |Âx |ψB̂0
(t )〉 (3)

with the ground-state energy E0. One issue with this approach
is that, in states |ψB̂0

(t )〉, correlations spread in a causal cone
emanating from (x, t ) = (0, 0). As a consequence, entangle-
ment entropies for bipartitions that cut this region grow and
tDMRG computation costs increase accordingly, limiting the
maximum reachable times.

There is a simple trick to increase (typically double) the
accessible time range. By also computing |ψ

Â
†
x
(−t )〉, we have

S(x, t1 + t2) = eiE0(t1+t2 )
〈
ψ

Â
†
x
(−t1)

∣∣ψB̂0
(t2)

〉
. (4)

While this is very advantageous concerning the reachable
times, there is one drawback compared to Eq. (3). Often,
one needs S(x, t ) for some range of distances x. The typical
situation is that we want to compute spectral functions S(k, ω)
and hence need all S(x, t ) that are not negligible for the
spatial Fourier transform in Eq. (2), corresponding to a time-
dependent range |x| < �. While for Eq. (3), only a single
time-evolution run is needed, assuming reflection symmetry,
we need ∼� runs for Eq. (4). We will show in the following
how this can be avoided.

Note that the trick of Eq. (4), in a generalized form,
also works for nonzero temperatures [32–34]. Another device
to reach longer times, which is by now a standard tool, is
to extrapolate the simulation data through linear prediction
[35,36].

IV. FINITE-SIZE SIMULATIONS

A. Reduced number of evolution runs in the square-grid scheme

The number of time-evolution runs, required to compute
S(x, t ) for |x| < � with maximum times as in Eq. (4), can
be reduced from ∼� to ∼2

√
�. For simplicity, reflection

symmetry is assumed such that x � 0 is sufficient. Let n =
ceil(

√
�). Do n time-evolution runs to compute |ψB̂j

(t2)〉
for j = 0,−1, . . . ,−(n − 1). Then, do n runs to compute
|ψ

Â
†
in

(−t1)〉 for i = 0, 1, . . . , n − 1 as indicated in Fig. 1.
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(a)

(b)

FIG. 1. Finite-size schemes. (a) In finite-size simulations, re-
sponse functions S(x, t ) for a certain spatial range 0 � x < � can
be evaluated according to Eq. (4) by evolving B̂0|ψ〉 and Â†

x |ψ〉,
and computing their overlaps. This requires � + 1 evolution runs. (b)
A more efficient method is to evolve B̂x′ |ψ〉 and Â

†
x′′ |ψ〉 for some

strategically chosen sites x ′ and x ′′ as in Eq. (5). This “square-grid
scheme” reduces the number of required evolution runs to ≈ 2

√
�.

Their mutual overlaps yield

S(x = in − j, t1 + t2) = eiE0(t1+t2 )〈ψ
Â

†
in

(−t1)
∣∣ψB̂j

(t2)
〉

(5)

for x = 0, . . . , n2 − 1. To avoid finite-size effects, sites i and
j need to be at sufficient distance from the boundaries in
a region where the state is approximately translation invari-
ant. Finite-size effects can be reduced further by employing
smooth boundary conditions [37]. The described “square-grid
scheme” can be easily adapted for states ψ with a unit cell of
size nc > 1 in the bulk.

B. Fourier-transformed operators

Sometimes, one is not interested in the full momentum
dependence of the response function but only, say, a particular
momentum k or a few momenta. In such cases, an alternative
to computing the response S(x, t ) and Fourier transform is to
directly determine the Fourier-transformed correlator [33]

〈ψ |Âk (t )B̂0(0)|ψ〉 with Âk =
∑

x

e−ikxÂx. (6)

If Âx is a single-site operator, Âk can be written as a matrix
product operator (MPO) with bond dimension D = 2. For
a single momentum k, we can use the analog of Eq. (4) to
compute S(k, t ) with only two evolution runs. This approach
has one drawback. While the entanglement growth in states
|ψ

Â
†
x
(−t )〉 is restricted to a causal cone centered at site x,

entanglement entropies typically grow for all bonds in states
|ψ

Â
†
k
(−t )〉. In comparison, the computation costs are hence

typically increased by a factor proportional to the system size
or to � if the sum in the definition of Âk is limited to the range
|x| < �.

V. USING INFINITE BOUNDARY CONDITIONS

A. Method

An attractive option for the evaluation of response func-
tions S(x, t ) = 〈ψ |Âx (t )B̂0(0)|ψ〉 for a whole range of dis-
tances x is to work in the thermodynamic limit using infinite
boundary conditions. In this case, one can use the following
procedure, for which two time-evolution runs are sufficient.

(1) Compute a uniform iMPS (uiMPS) approximation ψ

of the ground state using imaginary-time evolution [12,13],

FIG. 2. Scheme with infinite boundary conditions. Using infinite
boundary conditions for translation-invariant systems, two evolution
runs are sufficient to evaluate response functions S(x, t ) for a certain
spatial range |x| < �. (a) First, one computes the initial state ψ in
uiMPS form. In the diagrams, we assume it has a unit cell of size
nc = 3. (b) Then, one evolves Â

†
0|ψ〉 and B̂0|ψ〉 in time by allowing

iMPS tensors to vary in a heterogeneous window of width �w around
site 0. (c) Finally, one computes overlaps of the evolved states shifted
spatially relative to each other to obtain S(x, t ).

iDMRG [1–3], or the approach of Ref. [11] to find iDMRG
fixed points with nonlocal updates.

(2) For the following, allow the tensors of the iMPS within
a spatial interval (“window”) of appropriate size �w to vary
in time as in Refs. [8,38], i.e., switch from a uniform to a
heterogeneous iMPS.

(3) Apply operators Â and B̂ at a site i = 0 in the center
of the window to get Â

†
0|ψ〉 and B̂0|ψ〉.

(4) Evolve both states in time to obtain |ψ
Â

†
0
(−t1)〉 and

|ψB̂0
(t2)〉.

(5) Evaluate overlaps of the time-evolved states with a
relative spatial shift by x sites to obtain

S(x, t1 + t2) = eiE0(t1+t2 )
〈
ψ

Â
†
0
(−t1)

∣∣T̂−x

∣∣ψB̂0
(t2)

〉
, (7)

where T̂−x shifts by −x sites.
Note that, if the system is critical, we are formally working

in the thermodynamic limit here, but the finite MPS bond
dimension D of the initial state inevitably imposes a finite
correlation length. A scaling analysis in D is required to really
capture the thermodynamic limit.

While we work with windows of fixed size, it is also
possible to reduce computation costs somewhat by starting
from a small window around site 0 and expand it during the
time evolution in accordance with the spreading of correla-
tions [9]. Usually, the resulting gains should, however, be
minor. As the entanglement growth is limited to causal cones
around the perturbations, the computation costs are in any
case dominated by the sites inside these cones.

For the evolution of the heterogeneous iMPS, we use
a fourth-order Trotter-Suzuki decomposition [39,40] of the
time-evolution operator. In order to keep the MPS tensors
to the left (right) of the window invariant, all Hamiltonian
terms outside the window are projected onto the reduced
D-dimensional Hilbert space of the left (right) block. Let
(i − 1, i) be the bond at the left boundary of the window.
An evolution operator for Hamiltonian terms that are entirely
supported in the left block then only act on the left index of
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FIG. 3. Comparison of different schemes. Response functions
S(k, t ) = ∑

x e−ikx〈ψ |Ŝα
x (t )Ŝα

0 (0)|ψ〉 computed with the different
MPS schemes are compared for the spin-1 system (1) at θ = π/5.
Data for the finite-size schemes are labeled by “�” for the original
scheme and “

√
�” for the square-grid scheme, respectively, and

we used chains of length L = 256. For the scheme with infinite
boundary conditions, one iDMRG simulation was initialized with a
symmetric state [iMPS (s)]; another simulation was initialized with a
state that breaks the spin-flip symmetry [iMPS (b)] and features, for
the same λtrunc, smaller bond dimensions. Truncation thresholds were
chosen to be λ2

trunc = 10−9 for the ground-state computation and 10−8

during the time evolution.

the MPS tensor at the left end of the window [Mσi

i ]a,b 
→∑
a′ Ua,a′ [Mσi

i ]a′,b. For the MPS tensor [Mσi

i ]a,b of site i,
the index σi labels local orthonormal basis states and a, b =
1, . . . , D label basis states for reduced Hilbert spaces of the
left block (sites left of i) and the right block (sites right of
i), respectively. A Hamiltonian term acting on site i and sites
in the left block results in a unitary acting on the physical
index and left index of that MPS tensor, i.e., [Mσi

i ]a,b 
→∑
σ ′

i ,a
′ U

σi,σ
′
i

a,a′ [M
σ ′

i

i ]a′,b.
The overlap (7) for a given window size �w and spatial

translation x can be evaluated efficiently with a cost that is
proportional to �w + x. Let L and R be the left- and right-
orthonormalized variants of the uiMPS tensors of the initial
state ψ , i.e.,

∑
σ (Lσ )†Lσ = 1 and

∑
σ Rσ (Rσ )† = 1. Then,

the left eigenmatrix of the transfer operator
∑

σ (Lσ )∗ ⊗ Lσ

and the right eigenmatrix of the transfer operator
∑

σ (Rσ )∗ ⊗
Rσ with the (maximum) eigenvalue 1 are D-dimensional
identity matrices. The overlaps (7) are obtained by contracting
these identity matrices with tensors from the heterogeneous
windows of |ψ

Â
†
0
(−t1)〉 and |ψB̂0

(t2)〉 and x tensors from ψ at
each end as shown in Fig. 2.

In all simulations, we use a Trotter time step �t = 0.1
such that truncation errors dominate. Precision and compu-
tation costs are controlled by truncating state components
with Schmidt coefficients λk < λtrunc below a suitably chosen
truncation threshold λtrunc or by fixing the bond dimension D.
These parameters are specified in the figure captions.
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FIG. 4. iDMRG with symmetric and symmetry-broken initial
states. As a function of the truncation threshold λ2

trunc, we compare
the results of iDMRG simulations with symmetric [iMPS (s)] and
symmetry-broken [iMPS (b)] initial states and finite-size ground-
state simulations (L = 256) for the bilinear-biquadratic spin-1 chain
at θ = 0 (left) and π/5 (right). The top panels show the maximum
error of the correlator maxi |〈Ŝz

i Ŝ
z
0〉λtrunc − 〈Ŝz

i Ŝ
z
0〉exact| and the error

of the ground-state energy per site, both compared to quasiexact
reference values. The dashed black lines indicate λtrunc and λ2

trunc as a
reference. In the bottom panels, we compare the bond dimensions in
these simulations.

B. Comparison of the schemes

Figure 3 compares a simulation with infinite boundary
conditions to simulations using the two finite-size schemes.
The iMPS window size �w is chosen such that the perturba-
tion, spreading from the center, does not reach the window
boundaries for the considered times. Deviations between the
different schemes are not discernible in the top panel. Devi-
ations between the two finite-size schemes are small. They
are due to the fact that different sets of lattice sites are used
and are consistent with the chosen truncation threshold, i.e.,
of order O(λtrunc). We observe differences between two iMPS
simulations that only differ in their initial states. Data labeled
“iMPS (s)” were computed using a symmetric initial state
for the iDMRG: the exact two-site ground state. Data labeled
“iMPS (b)” were computed by starting from the symmetry-
broken state |↑,↓〉. The deviations of the symmetry-broken
simulation are similar to those of the finite-size schemes (also
initialized with symmetry-broken states); the deviations of the
symmetric simulation are larger. To clarify this issue, ground-
state energies, correlation functions, and bond dimensions are
compared in Fig. 4. For the same truncation threshold, errors
and bond dimensions of the symmetry-broken iDMRG simu-
lations are very similar to those of simulations for finite but
long chains (L = 256). The symmetric iDMRG simulations
yield, as a function of the truncation threshold, slightly larger
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errors and roughly doubled bond dimensions. This can be
explained as follows.

For symmetry-broken initial states, the iDMRG converges
to one of two fixed points, corresponding to two uiMPS |ψ (b)〉
and F̂ |ψ (b)〉, where F̂ = ⊗

i F̂i denotes the global spin-flip
operator. Block Hilbert spaces for these states are orthogonal.
For symmetric initial states, the iDMRG converges to an
equal-weight superposition |ψ (s)〉 = (|ψ (b)〉 + F̂ |ψ (b)〉)/

√
2.

The two symmetry-broken fixed points have the same Schmidt
spectrum {λk}. Due to the orthogonality of the block Hilbert
spaces, for each λk , the Schmidt coefficient λk/

√
2 occurs

twice in the Schmidt decomposition of |ψ (s)〉. Hence, the
symmetric simulation requires roughly twice the bond dimen-
sion of |ψ (b)〉 for a given truncation threshold. In particular,
a symmetric computation with lowered truncation threshold
λtrunc/

√
2 requires bond dimension 2Db where Db is the bond

dimension of the symmetry-broken simulation with truncation
threshold λtrunc.

C. Degeneracy of the transfer operator

There is another good reason for avoiding the symmetric
initial states in iDMRG simulations: The orthogonalization
of the resulting uiMPS |ψ〉 [13] requires the computation of
dominant eigenmatrices of MPS transfer operators. For spin-
flip symmetric states, eigenvalues of the transfer operators are
doubly degenerate. If the spin-flip symmetry is not imposed
explicitly, the degeneracy can be slightly broken. If this is not
handled with care, the orthogonalization of the wave function
will be imprecise, impairing the accuracy of observables.

For a bipartition of the system, let the Schmidt decomposi-
tion of the MPS be denoted by |ψ〉 = ∑

k λk|�k〉 ⊗ |rk〉. For a
spin-flip symmetric state F̂ |ψ〉 = f |ψ〉 with f = ±1, each
Schmidt component is either spin-flip symmetric (F̂ |�k〉 ⊗
|rk〉 = f |�k〉 ⊗ |rk〉) or there exists a second component k′
with λk′ = λk and F̂ |�k〉 ⊗ |rk〉 = f |�′

k〉 ⊗ |r ′
k〉. Hence, after

appropriate unitary transformations, all block basis states are
spin-flip symmetric with the product of their eigenvalues ±1
being equal to f , and MPS tensors of the spin-flip symmetric
state obey the condition∑

σ ′
〈σ |F̂i |σ ′〉FAσ ′F† = Aσ (8)

with spin-flip operators on the bond vector spaces denoted
by F . Specifically, in a uiMPS defined by tensors A for an
entire unit cell, the left and right bond vector spaces and
corresponding flip operators F in Eq. (8) coincide. Let V

be a dominant eigenmatrix of the MPS transfer operator,
i.e.,

∑
σ (Aσ )†V Aσ = ηV . Then, it follows from Eq. (8) that

F†VF is also an eigenmatrix with the same eigenvalue η,
explaining the degeneracy of the transfer operator.

VI. RESULTS FOR BILINEAR-BIQUADRATIC
SPIN-1 CHAINS

Figure 5 shows numerical results for the dynamic spin
structure factor

S(k, ω) =
∑

x

e−ikx

∫
dt eiωt 〈ψ |Ŝα

x (t )Ŝα
0 (0)|ψ〉 (9)

in the spin-1 Heisenberg antiferromagnet (θ = 0) and the
bilinear-biquadratic chain at θ = π/5 which is still in the
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FIG. 5. Dynamic structure factor in spin-1 chains. Numerical
results for the dynamic spin structure factor (9) in the bilinear-
biquadratic spin-1 chain (1) at θ = 0 and π/5 in the Haldane phase.
The MPS simulations were done with infinite boundary conditions
and, during the time evolution, truncation thresholds were set to
λ2

trunc = 10−10 and λ2
trunc = 10−8 for θ = 0 and π/5, respectively.

The real-time response functions have been extrapolated by linear
prediction before the Fourier transform.

Haldane phase, but close to the critical Uimin-Lai-Sutherland
(ULS) point at θ = π/4, where the model is Bethe-ansatz
integrable [41–43]. Note that, due to the rotation invariance
of the model, S(k, ω) is the same for all projections of
the spin components α = x, y, z or, in fact, any projection
of the spin operators. The spectral weight

∫
dω S(k, ω) =

2π〈ψ |Ŝα
k Ŝα

0 |ψ〉 (static spin structure factor) vanishes for k →
0 and all θ , as the ground states have zero total Ŝz

k=0 quantum
number.

Let us first discuss the Heisenberg antiferromagnet at
θ = 0. Around k ≈ 0 and k ≈ π , the low-energy physics
is approximately captured by the O(3) nonlinear σ model
(NLσM) which is based on a large-S expansion [18,44,45].
For integer spin chains, this field theory equivalently describes
a classical 2D ferromagnet at an effective finite temperature.
Hence, correlations decay exponentially, which led Haldane
to conjecture a finite excitation energy gap for such antiferro-
magnetic integer spin chains [18,46].

The Haldane gap is clearly visible in Fig. 5(a) at k =
π and has a value of �EH ≈ 0.41048 [35,47]. The lowest
excited states are a triplet of spin-1 magnons. These single-
particle excitations result in a delta peak in the dynamic
structure factor. The additional small low-energy features in
the structure factor around k = π are associated with the edge
states [21,48,49] of the model. The single-magnon energy
increases as k is lowered, goes through an inflection point
and a maximum, before entering the two-magnon contin-
uum at k ≈ 0.24 π [35,50,51]. Neglecting magnon-magnon
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FIG. 6. Two-magnon dispersion relation for θ = 0. For the
Heisenberg antiferromagnet with θ = 0 in Eq. (1), the two-magnon
dispersion relation is shown for several k = k1 + k2 as a function
of �k = k1 − k2. End points result from the fact that the single-
magnon excitation enters the two-magnon continuum at ki ≈ 0.24π .
The global maxima and minima define the boundaries of the two-
magnon continuum and the submaxima yield sudden jumps in the
two-magnon density of states. The corresponding boundaries are
indicated in Fig. 5(a).

interactions, upper and lower thresholds for the two-magnon
continuum can be obtained from the single-magnon disper-
sion. In addition, due to a maximum in the two-magnon
dispersion relation, a van Hove singularity occurs below the
upper threshold of the continuum. At this point, the two-
magnon density of states drops discontinuously. All of these
thresholds are indicated in Fig. 5(a) and can be understood by
inspecting the two-magnon dispersions shown in Fig. 6. The
two-magnon continuum has its minimum of ≈2�EH at k = 0.
The structure factor is considerably increased in the region
where the single-magnon branch enters. While no strong
features appear at the upper boundary of the continuum, the
van Hove singularity results in a clear sudden drop of the
structure factor.

Similarly, the three-magnon continuum has its minimum
of ≈3�EH at k = π and we again indicate the approximate
lower threshold. This and the two-magnon thresholds explain
to a large extent the nontrivial structure of S(k, ω) around
(k, ω) ≈ (π/2, 3.5). The shape of the three-magnon contri-
bution to the dynamic structure factor at k ≈ π has been
computed for the integrable NLσM [52–54]. As discussed
in Ref. [35], the peak height and the high-frequency decay,
however, deviate quite strongly from the actual structure
factor in the Heisenberg antiferromagnet. This is mainly due
to a missing UV cutoff in the field-theoretic description.

When θ is increased, S(k, ω) gets restructured con-
siderably, especially, when passing the AKLT point θ =
arctan 1/3 ≈ π/10. At θ = π/5 [Fig. 5(b)], the single-
magnon mode has undergone drastic changes. It now has a
maximum of ≈0.87 at k = π and decays almost to zero at
k = 2π/3. This and other features can be explained best by
comparing to the ULS point θ = π/4, where the system has
an enlarged SU(3) symmetry and can be solved by the nested
Bethe ansatz [41–43]. The ground state is then parametrized
by two sets of rapidities (Bethe quantum numbers). Due to
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FIG. 7. Continuum of low-energy excitations at ULS point. At
the ULS point θ = π/4, the spin-1 chain (1) can be solved by
the nested Bethe ansatz. The figure shows three thresholds for
low-energy excitations which consist of two elementary excitations
(10). The two-particle continuum is bounded from below by ω1(k)
and from above by ωu(k). Below the threshold ω2(k), there is one
solution for each total momentum k. Above ω2(k), there are two
solutions.

symmetry constraints, the low-energy excitations consist of
two solitonlike elementary excitations. They have energies

E(k1, k2) = ε1(k1) + ε2(k2) with (10a)

ε1(k1) = π
√

2

3

cos(π/3 − k1) − cos(π/3)

sin(π/3)
and (10b)

ε2(k2) = π
√

2

3

cos(π/3) − cos(π/3 + k2)

sin(π/3)
, (10c)

where 0 � k1 � 2π/3 and 0 � k2 � 4π/3 [43,55]. The total
momentum k = k1 + k2 ∈ [0, 2π ) can be folded into the first
Brillouin zone. The resulting two-particle continuum features
three thresholds ω1(k) � ω2(k) � ωu(k) shown in Fig. 7. The
lowest-energy excitations for given total momentum k have
energy E(k, 0) for |k| � 2π/3 and E(2π/3, k − 2π/3) for
2π/3 � |k| � π . Above the threshold ω2(k) = E(0, k), there
are two solutions for (k1, k2) with given total momentum k

and energy instead of just one. Correspondingly, the density
of states increases by a factor of 2 at ω2(k). The two-particle
continuum ends at the upper threshold ωu(k) which coincides
with ω2(k) for 0 � |k| � π/3 and is given by E(q(k), k −
q(k)) with q(k) = −π/6 − arctan{[cos(k) − 1]/ sin(k)} oth-
erwise. For |k| > π/3, the two-particle density of states has
a square-root van Hove singularity at ω = ωu(k) due to the
maxima in the two-particle dispersion relations.

These characteristics are reflected in the dynamic structure
factor for θ = π/5 which is shown in Fig. 5(b). The additional
small low-energy features around k = 2π/3 can be due to
the edge states or might also be artifacts as low-frequency
features are more difficult to resolve with the finite-time data.
The splitting of the continuum around k = 0 indicates that
the gap due to breaking of the SU(3) symmetry is symmetry-
sector dependent. Also, (n > 2)-particle continua contribute
to S(k, ω). For θ = π/5, the gap at k = 2π/3 is quite small.
This is because the transition from the gapless quadrupo-
lar phase π/2 > θ > π/4 to the Haldane phase π/4 > θ >

−π/4 is a Berezinskii-Kosterlitz-Thouless transition [23,24].
Hence, we have a slow exponential opening of the gap. We
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interpret the feature in the region (k, ω) ≈ (0.2π, 2.5) as a
remnant of the single-magnon excitation. A detailed analysis
also at other values of θ will be presented elsewhere.

When θ is increased, starting from θ = 0, a significant
amount of spectral weight is transferred from the single-
magnon excitation to the multimagnon continua and the
single-magnon band flattens. Around the AKLT point, the
single-magnon dispersion becomes monotonic, i.e., ceases to
have a maximum around k = π/2. Increasing θ further, the
dispersion develops a minimum around k = 2π/3 (see also
Ref. [56]) and the gap at this point closes for θ → π/4. Cor-
respondingly, when increasing θ , the multimagnon continua
deform and become tighter. At the AKLT point, most of their
spectral weight at k = π is for example concentrated around
ω ≈ 3.2. When θ is increased further, the continua widen
again with the lower edge approaching zero at k = 0 and
k = 2π/3 for θ → π/4 and most features corresponding to
those of the Bethe-ansatz solution at the ULS point θ = π/4
(Fig. 7).

VII. CYCLES IN INFINITE-SYSTEM DMRG

We are using iDMRG [1–3] to compute uiMPS approxima-
tions for ground states of bilinear-biquadratic spin-1 chains
(1) in the thermodynamic limit. For the gapless quadrupolar
phase π/4 < θ < π/2, we notice that iDMRG with insertion
of two-site unit cells does not converge in the traditional sense.
Interpreted as a discrete dynamical map, it does not converge
to 1-cycles but to 3-cycles. While the former correspond
to uiMPS with a two-site unit cell, the latter correspond to
uiMPS with a six-site unit cell. This behavior can be explained
by the dominance of quadrupolar period-three correlations in
this gapless phase [16,17,22,57]. As discussed in more detail
below, the iDMRG then favors low-entangled states that break
the translation invariance with unit cells containing a multiple
of three sites.

For fermionic systems, convergence of iDMRG to nontriv-
ial limit cycles has been observed earlier on through cycles
in the energy density [58]. In this case, the phenomenon is
attributed to the discrete changes in the number of fermions
as the system size is increased iteratively. Also, different from
our observations in the spin-1 chains, the variations of energy
densities in the cycles were found to be on the order of the
truncation error.

A. Summary of the iDMRG algorithm

The idea of iDMRG, due to White [1,2], is to build up the
lattice iteratively and compute, in the process, MPS approx-
imations for the ground states that live in suitably reduced
Hilbert spaces. In every iteration, nc sites are added at the
center of the system. Using reduced bases for left and right
blocks from the previous iteration, the energy is minimized
and bases for the enlarged blocks are selected based on
Schmidt decompositions of the ground-state approximation.
Operator matrix elements needed for subsequent iterations
are projected onto the new bases, in particular, those of the
Hamiltonian.

For nc = 2, the algorithm can be summarized as follows.
After n iterations, the ground-state approximation for the 2n-

site system has MPS form

|ψn〉 =
∑

σ

L
σ1
1 L

σ2
2 . . . Lσn

n �nR
σ̄n

n . . . R
σ̄2
2 R

σ̄1
1 |σ 〉. (11)

Tensors Li and Ri obey left and right orthonormality con-
straints, respectively. �n is a diagonal D × D matrix contain-
ing the Schmidt coefficients of the state ψn. D is the bond
dimension. To obtain a ground-state approximation ψn+1 in
the next iDMRG iteration, one replaces �n by a two-site
tensor Cσn+1σ̄n+1 , minimizes the energy expectation value with
respect to C, and applies a singular value decomposition to
split C into L

σn+1
n+1�n+1R

σ̄n+1
n+1 . In that last step, some of the

smallest Schmidt coefficients λ1 � λ2 � · · · can be discarded
to limit the bond dimension D of the resulting MPS ψn+1. The
discarded weight

ε :=
∑
k>D

λ2
k (12)

is called the truncation error and can be used for convergence
analysis.

An addition to the iDMRG algorithm, the wave-function
prediction, was introduced by McCulloch [3]. Moving the
orthogonality center in the state ψn one site to the left or right,
one computes

Lσ
n�nR

σ ′
n =: �L

n R̃σ
n+1R

σ ′
n =: Lσ

n L̃σ ′
n+1�

R
n .

This then provides a prediction for ψn+1:

∣∣ψpred
n+1

〉 = . . . Lσn

n

(
L̃

σn+1
n+1�

R
n �−1

n−1�
L
n R̃

σ̄n+1
n+1

)
Rσ̄n

n . . . . (13)

The corresponding prediction for C is used to initialize the en-
ergy minimization problem for ψn+1 and reduces the number
of required iterations. Furthermore, the prediction infidelity

1 − ∣∣〈ψpred
n+1

∣∣ψn+1
〉∣∣ (14)

can be used to assess the convergence of the algorithm.
Once the algorithm has converged to an acceptable preci-

sion (at iteration step n), it corresponds to the uiMPS

|ψ∞〉 = . . .
(
Lσi

n �nR
σi+1
n �−1

n−1

)(
Lσi+2

n �nR
σi+3
n �−1

n−1

)
. . . .

(15)

In a final step, this uiMPS should be orthonormalized which
can be done as described in Ref. [13].

For iDMRG with cell size nc > 2, the algorithm is to
be modified as follows. In the wave-function prediction, the
orthogonality center is shifted by nc/2 sites to the right and
to the left. One inserts the corresponding nc tensors at the
center of the MPS. For odd nc, the new cell can be inserted
alternatingly one site to the left and one site to to right of the
center of the previously inserted cell. This way, the left and
right blocks are grown equally. For the energy minimization,
one sweeps back and forth through the inserted cell and
minimizes the energy expectation value, e.g., as in standard
two-site finite-system DMRG. If the algorithm converges to
a fixed point (1-cycle), it yields a uiMPS with cell size nc in
analogy to Eq. (15).
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Bond dimensions for all simulations in this plot were set to D = 400.

B. Nontrivial limit cycles

Figure 8 shows convergence properties of iDMRG with
two-site and three-site unit cells in different phases of the
bilinear-biquadratic spin-1 chain (1). For the Heisenberg an-
tiferromagnet at θ = 0, the algorithm converges well for both
cell sizes. At θ = 1.5 π in the dimerized phase, iDMRG with
cell size nc = 2 converges well, but for nc = 3 we see period-
2 oscillations. As we will discuss in more detail for similar
observations in the quadrupolar phase, this does not mean that
nc = 3 iDMRG has not converged. Rather, it converges to a
limit 2-cycle that corresponds to a uiMPS with cell size 6. As
a multiple of two, this is commensurate with a spontaneous
dimerization of the ground state.

In the critical quadrupolar phase, both energy and infidelity
indicate very good convergence for nc = 3, but there are
strong oscillations and a rather high prediction infidelity for
nc = 2. As shown in an inset, the oscillations have a period
of three but are not really stable. Figure 9 shows that the
oscillations become stable 3-cycles when the number of
Lanczos iterations in the energy minimizations is increased
until convergence. This can be explained as follows. The
critical phase features dominant period-three correlations
[16,17,22,57]. In simulations with nc = 3, iDMRG can

converge to a ground-state approximation with translation
invariance spontaneously broken to an invariance under shifts
by three sites. These symmetry-broken states ψ (3) have lower
entanglement than a corresponding translation-invariant
state |ψ∗〉 = |ψ (3)〉 + T̂1|ψ (3)〉 + T̂2|ψ (3)〉 and are hence
favored by iDMRG for a given fixed bond dimension D. If
iDMRG with nc = 2 converged to a fixed point (1-cycle),
it would necessarily produce the higher entangled state ψ∗.
The convergence to the limit 3-cycles means that it rather
breaks the translation invariance and yields uiMPS with cell
size 6. Of course, the two-site wave-function prediction is
incorrect in this case, explaining the large two-site infidelities
in Figs. 8 and 10. That the algorithm with cell size nc = 2 has,
however, indeed converged to a uiMPS with six-site unit cell
is confirmed by the small six-site infidelities shown in Fig. 10.
For these, we compare the state ψn+3, the state obtained from
ψn by three iterations of nc = 2 iDMRG, to the state ψ

pred,6
n+3

which is obtained from ψn by a six-site wave-function predic-
tion without energy optimization. For this, the orthogonality
center of ψn is rotated three sites to the left and to the right and
the resulting six tensors are inserted in analogy to Eq. (13).

In conclusion, when iDMRG with cell size nc converges
to a limit cycle of length m, the algorithm has converged
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assess the convergence of iDMRG with a two-site unit cell. The plots
show the change e3n+k = (E3n+k − E3n+k−1)/nc in the total energy
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For the simulation shown in the bottom panel, the local energy
minimization was run until convergence. This stabilizes a limit cycle
of length 3 and then corresponds to a uiMPS with a six-site unit cell.
Here, the bond dimension was set to D = 100.

to a uiMPS with a unit cell of size mnc instead of nc. This
happens naturally when there exist low entangled ground-state
approximations with spontaneously broken translation sym-
metry. In such cases, where iDMRG converges to a nontrivial
limit cycle or shows periodic oscillations, it is advisable to
change the cell size nc appropriately to harness the efficiency
gains due to the nc-site wave-function prediction.

VIII. DISCUSSION

We have demonstrated how the number of time-evolution
runs in the computation of spectral functions and dynamic
structure factors for translation-invariant systems can be sig-
nificantly reduced. For finite-system simulations, one can
apply the square-grid scheme which reduces the required
number of runs from � to 2

√
�, or one can employ momentum-

space operators encoded as MPOs if one is only interested
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FIG. 10. Prediction fidelity for nontrivial cycles. Here, we con-
sider the same two-site cell iDMRG simulation as in the lower
panel of Fig. 9. We show the regular (two-site) infidelity (14) which
compares the state after one iteration to the state obtained by inser-
tion of a two-site cell using the wave-function prediction. Second,
the six-site infidelity compares the state after three iterations to the
state obtained by insertion of a six-site cell using the wave-function
prediction. The quantities are shown after a large number of iterations
and the Lanczos algorithm for energy minimizations is run until
convergence.

in the dynamic response for a few momenta. Alternatively,
one can approximate the ground state in form of an iMPS
and simulate the time evolution using a finite heterogeneous
window with infinite boundary conditions. This version only
needs two time-evolution runs, as we can spatially shift the
wave functions relative to each other to evaluate the re-
sponse function for all distances. The results of the improved
schemes are in very good agreement with simulations using
the standard scheme. Hence, they are an attractive technical
advancement that allows to significantly reduce the required
computation cost. We have applied the technique to compute
high-resolution dynamic structure factors for ground states
of bilinear-biquadratic spin-1 chains. The results allow us to
discuss the low-lying excitations for two points in the Haldane
phase with quite different physics due to the influence of the
biquadratic interaction. Note that after the central parts of
this work were completed, Ref. [10] appeared. There, infi-
nite boundary conditions are used to compute spin structure
factors at finite temperatures. For the example of the spin-1
chains, we also demonstrated that iDMRG may converge to
nontrivial limit cycles. These then correspond to uiMPS with
enlarged unit cells, indicating the existence of low-entangled
states with reduced translation invariance. We also showed
that initializing iDMRG with symmetric states can result in
substantially increased bond dimensions and (problematic)
degeneracies of the MPS transfer operator. More detailed
results on the bilinear-biquadratic spin-1 chains will be pre-
sented elsewhere.
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