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We study Floquet topological transition in irradiated graphene when the polarization of incident light changes
randomly with time. We numerically confirm that the noise-averaged time-evolution operator approaches a
steady value in the limit of exact Trotter decomposition of the whole period during which incident light has
a different polarization at each interval of the decomposition. This steady limit is found to coincide with the
time-evolution operator calculated from the noise-averaged Hamiltonian. We observe that at the six corners
(Dirac K point) of the hexagonal Brillouin zone of graphene random Gaussian noise strongly modifies the phase
band structure induced by circularly polarized light, whereas in the zone center (� point) even a strong noise
is not able to do the same. This can be understood by analyzing the deterministic noise-averaged Hamiltonian,
which has a different Fourier structure as well as a lower number of symmetries compared to the noise-free one.
In one-dimensional systems noise is found to renormalize only the drive amplitude.
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I. INTRODUCTION

Realizing topological phenomena in solid-state systems
has been one of the major topics in condensed-matter physics
since the discovery of integer quantum Hall effect (IQHE) in
two-dimensional (2D) semiconductor devices [1]. These ma-
terials are the model system for a 2D noninteracting electron
gas which under the application of a strong magnetic field
forms highly gapped Landau levels. This results in very pre-
cise quantization of Hall conductance [2,3] at low temperature
and supports robust conducting chiral states at the edges [4,5].
Later, it was shown that the magnetic field is not necessary,
and one can also observe such a phenomenon in systems
described by tight-binding Hamiltonians [6]. The so-called
Haldane model describe electrons hopping in a honeycomb
lattice threaded by periodic magnetic flux with zero net flux.
The resulting complex hopping is difficult to implement ex-
perimentally, and it was only recently that the advancement in
ultracold atomic systems has made such experiments possible
[7]. To avoid such complicated implementation of the Haldane
model and thus realize Chern insulating states more easily, a
possible alternative way, namely, irradiation of an electromag-
netic wave on graphene, was proposed recently to achieve the
essential goal of time-reversal symmetry breaking.

Graphene is a gapless 2D Dirac system [8] in which the
gap closes linearly at all six corners of the hexagonal Brillouin
zone (BZ), known as Dirac points. Out of these six points only
two are inequivalent; they are termed K and K ′ and are related
to each other by time-reversal symmetry. All other Dirac
points can be obtained from these two points via translation
by reciprocal lattice vectors. The gap is maximum (6γ , where
γ is the nearest-neighbor hopping strength) at the center of
the BZ, known as the � point, and hence determines the
bandwidth of the graphene spectrum. Controlled manipulation
of the band structure, for example, opening up a gap at the
Dirac points, is necessary for device applications. Research
in these directions shows that growing the graphene sample

on SiC [9], BN, etc., can open up a gap by breaking the
sublattice symmetry. This kind of gap, known as a trivial gap,
can be modeled by adding a constant (Semenoff) mass term in
the tight-binding Hamiltonian which produce Berry curvature
of opposite sign around K and K ′ and thus give a zero
Chern number when integrated over the full BZ. Intrinsic spin-
orbit coupling (SOC) produces a Z2 topological order in the
graphene band structure by restoring time-reversal symmetry
[10,11]. Unfortunately, in pristine graphene this gap is too
small to observe the proposed quantum spin Hall (QSH) phase
even at very low temperature. There are some first-principles
studies showing significant enhancement of this SOC gap (up
to ≈20 meV) by growing the graphene sample on heavy
compounds like Sb2Te3 [12], but this enhanced gap is still
lower than room temperature (≈25 meV).

It was proposed that explicit violation of time-reversal
symmetry by irradiation of circularly polarized light on
graphene can also open up a nontrivial gap at the Dirac
point, turning it into a Haldane-Chern insulator [13,14]. In the
experimentally accessible regime [15] this gap (≈53 meV) is
already higher than room temperature and is further tunable
by controlling the light intensity and frequency. This resulting
new state, termed the Floquet topological insulator, was found
later in many other systems [16,17]. It is also detectable by
various transport signatures [18–20]. Smooth variation of the
polarization-controlling phase angle in real space can be used
to manipulate several properties of these systems, including
generation of fractionalized excitations [21]. These are steady
states of periodically driven nonequilibrium systems [22–26]
which recently gained tremendous attention because of their
potential to create new phases which can hardly be found
in their equilibrium counterparts. Traditional bulk-boundary
correspondence was extended to Floquet topological systems
taking into account the periodicity of the Floquet spec-
trum [27,28]. Experimental verification of such states has
already been achieved using both time- and angle-resolved
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photoemission spectroscopy (ARPES) [15,29] and also in
photonic systems [30,31].

Throughout the past decade a large number of studies of
real-time dynamics in closed quantum systems have extended
the notions of universality from equilibrium to nonequilibrium
via Kibble-Zurek scaling [32]. Further studies showed that the
qualitative nature of these scalings can be completely reversed
by introducing noise in the drive [33]. In these studies the
Heisenberg equation of motion picks up a dephasing term due
to averaging over different noise realizations, which leads to
nonunitary dynamics. Recently, in equilibrium systems it was
shown that periodicity in space (i.e., the crystal structure) is
not necessary to get topological behavior and one can also
see it in amorphous systems [34]. Analogously, one can ask
at this point what would happen in Floquet systems if time
periodicity of the Hamiltonian is broken due to the presence
of noise in the drive. Several studies in this direction in
models decomposable in free fermions already revealed that
the nature of the asymptotic steady state depends on the type
of aperiodic protocol [35]. Further, some analytical studies
showed that disorder averaging can be avoided for a special
class of protocols [36].

Influenced by this kind of work, we plan to study the fate
of the Floquet topological systems when the smooth time
variation of an incident electromagnetic wave is broken by
the insertion of a random phase in one of the components of
the vector potential. This kind of noise is always there in a
typical experiment if the setup to produce polarized light is not
calibrated properly. Moreover, such a noisy vector potential
can also be generated artificially using synthetic gauge fields.
We call this kind of monochromatic wave unpolarized light
in the sense that the associated Lissajous figures keep on
changing with time. The central results of this work can be
summarized as follows. We show that depending on the spatial
dimension of the problem Floquet topological transitions can
be influenced by the random change in polarization of incident
light. For graphene we find that the transitions at the Dirac
(K) point are significantly modified compared to those at the
� point. The origin of this effect can be understood to be
due to a fundamental change in the Fourier structure of the
noise-averaged time-dependent Hamiltonian at the K point.
At low frequencies of the incident radiation, it is well known
that symmetries of the underlying Hamiltonian are crucial for
topological transition [37]. In the presence of noise, we find
such symmetries to be broken. Interestingly, in contrast to the
standard expectation, we find that few of these symmetries are
restored in the noise-averaged Hamiltonian. This symmetry
restoration has an impact on the self-averaging limit in this pa-
rameter regime. Finally, for a one-dimensional (1D) model (p-
wave superconducting wire), using a nontrivial drive protocol,
we show that even a strong noise (large standard deviation)
cannot prohibit the transition.

The rest of this paper is structured as follows. In Sec. II
we introduce our protocol for irradiated graphene and plot
the results (phase bands) for numerical disorder averaging.
In Sec. II A we establish the existence of the self-averaging
limit, which suggests numerical averaging is meaningful and
can be mimicked by the ensemble-averaged Hamiltonian. This
is followed by a possible explanation of the deviation from
noise-free (the circularly polarized case) behavior separately

in high- and low-frequency regimes in Secs. II B and II C,
respectively. Next, in Sec. III, we show results for 1D sys-
tems. Finally, we conclude and discuss possible experimental
scenarios in Sec. IV.

II. IRRADIATED GRAPHENE

We consider graphene irradiated by an electromagnetic
wave defined by the vector potential A = A0( cos[ωt +
φ(t )], sin(ωt )). We have to further assume it to be space inde-
pendent in the graphene plane to keep the integrability of the
problem intact. The φ = 0 (circularly polarized) case is well
studied in the literature [38]. We allow φ to be a normally dis-
tributed random variable with mean μ and standard deviation
σ at each instant of time, which gives rise to its unpolarized
nature. If one wishes to produce this vector potential in a
laboratory, then this kind of noise will be inherently present
as a random experimental error. The normalized probability
distribution of φ at each time instant t is given by

P (φ) = 1√
2πσ

e
− (φ−μ)2

2πσ2 , (1)

where μ can be any real number within the interval (−π �
μ � π ). Here we will concentrate on the special value μ = 0
(i.e., this is the value of μ in all plots), which will allow us to
directly compare the result with circularly polarized case.

The time-dependent graphene Hamiltonian (for each k

mode) after Peierls’s substitution with this protocol becomes

H (k, t ) =
(

0 Z(k, t )
Z∗(k, t ) 0

)
, (2)

where Z(k, t )= − γ [2ei k̃x
2 cos(

√
3k̃y

2 )+e−ik̃x ] and k̃=k+eA.
Next, we calculate the time-evolution operator over one

time period T for each k mode by dividing the period into
N parts,

Uk (T , 0) = Tte
−i

∫ T

0 Hk (t ′ )dt ′

= e−iHk (T −δt )δt e−iHk (T −2δt )δt · · · e−iHk (2δt )δt

× e−iHk (δt )δt , (3)

where Tt denotes the time-ordered product and δt = T/N is a
very small but fixed time interval. Such decomposition intro-
duces Trotter error, which gets reduced with increasing N and
reproduces the exact U for the chosen continuous drive in the
N → ∞ limit. We calculate the time-dependent Hamiltonian
at each partition by drawing φ from a normal distribution and,
using Eq. (3), get U (T , 0) for one particular noise realization.
We then average over several such realizations numerically
and get the noise-averaged time-evolution operator

〈Uk (T , 0)〉 = 〈
Tte

−i
∫ T

0 Hk (t ′ )dt ′ 〉. (4)

Equation (4) has a self-averaging limit [39] in the sense that
all four elements of 〈U (T , 0)〉 go to some steady value with
increasing the number of partitions N . We shall discuss this in
more detail in the next section.

In Fig. 1 we plot the phase bands �(T ) obtained using
cos[�(T )] = Re[〈U (T )〉11]. We can see that with increasing
the magnitude of random noise the phase bands get modified,
but we recover the results for pure circularly polarized light
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FIG. 1. Noise-averaged phase bands vs T for the � point (left; at
α = 1.5) and for the K point (right; at α = 2.0) for various values of
standard deviation σ . N = 1000, the number of samples is 1000, and
α = eA0/c.

in the σ → 0 limit as expected. We find that the phase bands
remain almost unchanged for the � point for a broad range of
parameter values; however, at the K point, they are strongly
modified by the noise. We calculate the Chern number of
the lower Floquet band using the eigenfunctions of 〈U (T )〉
in a discretized Brillouin zone. The plot is shown in Fig. 2.
We find that the transitions (the position of the integer jump
in the Chern number) can sustain an appreciable amount of
temporal noise and merely get shifted in parameter space, but
very strong noise (large σ ) abolishes them.

A. Ensemble-averaged Hamiltonian

In this section we explore the possibility of construct-
ing a deterministic Hamiltonian such that the time-evolution
operator constructed using it resembles the noise-averaged
time-evolution operator. In a recent work [39] Lobejko et al.
showed rigorously that the difference between the ensemble-
averaged time-evolution operator and the time-evolution
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FIG. 2. Chern number of the noise-averaged lower Floquet band,
showing the transitions through the � (left) and K (right) points.
Others parameters are the same as in Fig. 1.

operator constructed by the ensemble-averaged Hamiltonian
scales as O( 1

N
) for a certain class of protocols. For these

protocols the ensemble-averaged Hamiltonian at two different
times commutes, which they termed “commutation in statis-
tical sense.” They further extended the applicability of the
above theorem to some simple noncommuting Hamiltonian
by numerical simulations. But unlike those cases, irradiated
graphene contains the noise term within the argument of
complicated trigonometric functions. Hence, the ensemble-
averaged Hamiltonian cannot be obtained here simply by
substituting φ by its mean value. Therefore, we explicitly
calculate the ensemble-averaged Hamiltonian for irradiated
graphene at time t ,

〈Hk (t )〉 =
∫ ∞

−∞
P (φ)Hk (φ, t )dφ, (5)

with the P (φ) given in Eq. (1) we get using Jacobi-Anger
relations [40].

〈Z(k, t )〉 = −γ

(
2ei kx

2 cos

(√
3[ky + α sin(ωt )]

2

){
J0

(α

2

)
+ 2

∞∑
n=1

inJn

(α

2

)
e− n2σ2

2 cos[n(ωt + μ)]

}

+ e−ikx

{
J0(α) + 2

∞∑
n=1

(−i)nJn(α)e− n2σ2

2 cos[n(ωt + μ)]

})
(6)

Using this, we numerically calculate the Frobenius norm of
the distance between 〈U (H (t ))〉 and U (〈H (t )〉),

DN = ∣∣∣∣〈Tte
−i

∫ T

0 H (t ′ )dt ′ 〉 − Tte
−i

∫ T

0 〈H (t ′ )〉dt ′ ∣∣∣∣, (7)

and the same norm for the corresponding variance matrix,

SN = ∣∣∣∣〈(Tte
−i

∫ T

0 H (t ′ )dt ′ − Tte
−i

∫ T

0 〈H (t ′ )〉dt ′)2〉∣∣∣∣, (8)

where N is the number of partitions used to calculate [us-
ing Eq. (3)] each quantity inside the norm. These are two
appropriate quantities to measure the deviation of the time-
evolution operator in different noise realizations. We see the
power law decrease of both DN and SN in the number of
partitions N (see Fig. 3), which suggests a self-averaging limit
exists here. It is only in this limit that the disorder averaging
is meaningful in dynamical systems in the sense that the final
results will depend on only the disorder parameters (mean,
standard deviation, etc.) and not on different realizations. This

is in close analogy to systems with spatial disorder where
for each disorder realization some amount of deviation (from
the mean) is introduced in all physical observables due to
the finite size of the system but these deviations get canceled
when averaged out over several disorder realizations and thus
help to achieve the thermodynamic result quickly. Here in
a dynamical system a finite number of partitions N plays
the role of finite system size, and the thermodynamic limit
corresponds to the continuous drive (N → ∞). The vanishing
of SN with large N also implies the equivalence

cos[〈�(T )〉] ≡ 〈cos[�(T )]〉, (9)

which we have used throughout the paper. In Fig. 3 note that
DN and SN have larger values at the K point compared to
the � point for small N . This is related to the fact that the
time-dependent Hamiltonian of irradiated graphene at the K

point is more complicated than at the � point due to the
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FIG. 3. Decrease of DN (top left panel) and SN (top right panel)
with N for the � point at α = 1.5 and T = 4.0. The same is shown
for the Dirac point in the lower left and right panels at α = 2 and
T = 4.0. The number of samples is 1000, and σ is π/10 and π/3
for the thick blue and think red curves, respectively. The slope of the
linear fit is mentioned in the insets.

presence of fewer symmetries [37]. The larger the complexity
is, the larger the N one needs to use to reduce these errors
is. This power law decrease suggests that the time-consuming
numerical disorder averaging can be avoided with the use of
an ensemble-averaged Hamiltonian to calculate U (T , 0) with
a sufficiently large number of partitions of the whole period.
We further demonstrate this by explicitly comparing the phase
bands from both these methods in Fig. 4. Our next target is to
understand better why in some cases weak noise is sufficient
to modify the photoinduced gaps (as in the K point) but in
some other cases (as in the � point) even a strong noise cannot
do the same. We will carry out this research by analyzing
the ensemble-averaged Hamiltonian [Eq. (6)] in two different
frequency regimes.

B. High-frequency Floquet formalism

The Floquet formalism allows one to treat a periodic time-
dependent problem as a time-independent eigenvalue prob-
lem. The cost of this is to deal with an infinite-dimensional
Hilbert space (known as Sambe space) which is a direct
product of the original Hilbert space and the space of T -
periodic functions. The representation of the Floquet Hamil-
tonian [related to U (T , 0) by U (T , 0) = e−iHF T ] in this basis
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FIG. 4. Comparison of phase bands obtained by numerically
disorder averaging the U (T , 0) operator (black solid line) and by
using the ensemble-averaged H (t ) to calculate the U (T , 0) operator
(red dashed line) for the � point (left panel) and for the K point (right
panel). The relevant parameters are the same as in Fig. 3.

is defined by the following matrix elements:

H
m,n
i,j = mωδmnδij + 1

T

∫ T

0
e−i(m−n)ωt ′Hij (t ′)dt ′, (10)

where (m, n) is the row and column index of different square
blocks each of size (H1 × H1), where H1 is the Hilbert space
dimension of the equilibrium problem (2 for each k mode
in our case), and (i, j ) denotes the position of each matrix
element within one such block. For numerical purposes one
can truncate this matrix after some order which depends
on the details of the problem, especially the absolute value
of the maximum order of the Fourier components (of the
time-dependent Hamiltonian) with a nonvanishing coefficient.
One also needs to increase the truncation dimension with
decreasing frequency. Following this prescription, one can
safely truncate the Floquet Hamiltonian for the noise-free case
in the zeroth order at the � point(where one has a 2 × 2 HF )
and in the first order at the K point (where one has a 6 × 6 HF )
for high frequencies and a low amplitude of radiation [13,38].
Thus, one gets expressions for the Floquet conduction band
�(T ) in the first quasienergy BZ for the noise-free (circularly
polarized) case with the hopping amplitude γ set to unity:

�(�, T ) = 3J0(α)T , (11)

�(K, T ) =
√

4π2 + 36J 2
1 (α)T 2 − 2π

2
. (12)

Next, we aim to calculate some simplified expression of the
phase band for the unpolarized light using the ensemble-
averaged Hamiltonian in some suitable parameter regime. We
can sufficiently simplify Eq. (6) for strong noise. Note that al-
though φ appears to be an argument of trigonometric functions
due to its random nature at each instant of time, φ[μ, σ ] and
φ[μ + 2nπ, σ + 2pπ ] will not give the same time-evolution

operator. Using e− n2σ2

2 ≈ 0 for large σ in Eq. (6), we get

〈Z(k, t )〉 |σ�0 ≈ −γ

[
2J0

(α

2

)
eikx cos

{√
3

2
[ky + α sin(ωt )]

}
+ J0(α)e−ikx

]
; (13)

for the � point this gives a Hamiltonian proportional to only σx , and hence, we simply get the phase band

�(�, T ) =
∫ T

0
〈Z(�, t ′)〉dt ′. (14)
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The integrand is difficult, but again using Jacobi-Anger relations, we get (taking γ = 1)

�(�, T ) =
[

2J0

(α

2

)
J0

(√
3α

2

)
+ J0(α)

]
T + 4J0

(α

2

) ∞∑
n=1

J2n

(√
3α

2

) ∫ T

0
cos(2nωt ′)dt ′

=
[

2J0

(α

2

)
J0

(√
3α

2

)
+ J0(α)

]
T . (15)

Similarly, for the K point we get

�(K, T ) =
[
J0(α) − J0

(α

2

)
J0

(√
3α

2

)]
T ; (16)

we compare cosines of Floquet bands for the circularly po-
larized (σ = 0) and unpolarized (σ � 0) cases in Fig. 5. The
functional behavior of these two bands does not change much
for the � point, whereas for the K point they show drastically
different behaviors. This huge change for the K point is due
to the fact that strong noise (highly unpolarized light) changes
the lowest nonvanishing Fourier component of 〈HK (t )〉 from
1 to 0 and thus reduces the effective Sambe space dimension
from 6 to 2. These changes make the Floquet band at the
K point depend on only J0, abolishing J1. Note that J0 and
J1 have completely different behaviors when the argument is
small; the former is a decreasing function, but the latter is an
increasing function of the argument.

C. Low frequency

At low frequencies (and also at high radiation amplitudes)
one need to take into account the higher Fourier components
of the time-dependent Hamiltonian, and consequently, the
truncation dimension of the Floquet Hamiltonian increases.
This is why at low frequencies one cannot have a simple
analytical expression of Floquet bands in terms of Bessel
functions, and one needs to consider other methods like the
adiabatic impulse which matches well with numerics in low
to moderate frequencies and at high amplitudes [37]. Symme-
tries of H (t ) also play a crucial role in predicting the existence
of phase band crossings at different high-symmetry points.
But before going into the details of that we investigate the
behavior of DN and SN as a function of N at low frequencies.
Generally, low ω and hence a high period T necessitate a pro-
portional increase of the number of partitions, but numerics
suggests that the convergence of these quantities to zero is
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FIG. 5. Comparison of cosines of Eqs. (11) (black solid line) and
(15) (red dashed line) for the � point (left panel) and of Eqs. (12)
(black solid line) and (16) (red dashed line) for the K point (right
panel). All parameters are the same as before.

much slower than that in this parameter regime. In Fig. 6 (top
left, top right, and bottom left panels) we demonstrate this.
We see for a typical high σ one needs to increase N nearly
quadratically (instead of linearly) with T to make the value
of DN go below some particular threshold. We therefore, to
reduce the numerical cost, keep all our calculations confined
within small σ values at low frequencies.

It was shown in Ref. [37] that there exists sixfold sym-
metries at the � point of graphene irradiated by circularly
polarized (CP) light. This was shown to be responsible for
phase bands crossing simultaneously at T/3, 2T/3, and T .
But here for unpolarized light, typically, all these symme-
tries are absent for any disorder realization. Consequently,
disorder averaging also leads to avoided crossing. Here also
the ensemble-averaged Hamiltonian can capture the essential
physics, but interestingly, two of the symmetries get restored
in it. We chart out the symmetries of the � point under the
irradiation of CP and unpolarized [ensemble-averaged H (t )]
light in detail in Table I. This kind of symmetry mismatch
between the two quantities inside the norm of Eq. (7) has a
significant impact on the decrease of DN at low frequencies.
We find that DN decreases very slowly with N (see Fig. 6)
here.
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FIG. 6. Decrease of DN (top left panel) and SN (top right panel)
with N for the � point at α = 2.0 and T = 60. σ for the blue
solid, red dotted, and green dashed curves is π/50, π/10, and π/3
respectively. N∗ (for which DN∗ fall below 10−4) vs T is shown
in the bottom left panel for σ = π/3. The slope of the linear fit in
the log-log plot is 1.83 (inset). The bottom right panel shows the
matching of the phase band from 〈U (T )〉 (black solid curve) and
U (T ) calculated from 〈H (t )〉 (red dashed curve) for the � point at
α = 2.2 and σ = π/10.
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TABLE I. Symmetries of the � point for circularly polarized and
unpolarized light.

Symmetry Type of polarization

CP Unpolarized

H (T − t ) = H (t )
√ √

H ( T

2 ± t ) = τxH (t )τx

√ √

H ( T

6 ± t ) = τxH (t )τx

√
X

H ( T

3 ± t ) = H (t )
√

X

H ( 2T

3 ± t ) = H (t )
√

X

H ( 5T

6 ± t ) = τxH (t )τx

√
X

In Fig. 7 we show this symmetry mismatch between CP
and unpolarized light [a large σ is used for this purpose
in Fig. 7(a)] and its consequences. Figure 7(b) shows (by
exact numerical disorder averaging) a small σ is sufficient to
abolish the crossing at T/3. The same qualitative behavior is
found when 〈H (t )〉 is used to calculate U (T , 0). We show in
Figs. 7(c) and 7(d) that the crossings at T/3 and 2T/3 get
increasingly avoided with increasing σ .

III. ONE-DIMENSIONAL SYSTEMS

One-dimensional interacting spin chains whose Hamilto-
nian can be expressed in terms of free fermions via Jordan-
Wigner transformation have attracted a lot of theoretical at-
tention in recent decades due to their integrable structure,
the existence of topological transition, and the possibility of
experimental realization using ion traps and ultracold atom
systems. Nonequilibrium dynamics in these models is equally
interesting because nontrivial topology can be induced by the
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FIG. 7. (a) Instantaneous energies vs t/T for CP (top panel) and
for unpolarized (σ = π/8; bottom panel) light at the � point for
α = 2.3. (b) cos[�( T

3 )] vs T . The red curve is achieved by exact
numerical averaging with 1000 samples, N = 10 000 for α = 2.35.
(c) cos[�( T

3 )] vs T for α = 2.35. (d) cos[�( 2T

3 )] vs T for α =
2.28. Phase bands in (c) and (d) are calculated using the ensemble-
averaged Hamiltonian.

periodic drive of different terms in the Hamiltonian [41]. This
can be independently done using multiple lasers with different
amplitudes and frequencies. In these experiments phase differ-
ences between different drive terms can be randomly changed
in the timescale t0 � 1/ω, where ω is the frequency of the
drive. This constitutes a 1D platform to study physics similar
to that studied in the previous section for 2D systems using
unpolarized light. The survival of the topological transition
under such a noisy drive is the key issue we would like to
address. To this end, we consider a p-wave superconductor
described by the following Hamiltonian [42,43]:

H =
L−1∑
i=1

[(γ c
†
i ci + H.c.) + �(cici+1 + H.c.)]

−μ

L∑
i=1

(2c
†
i ci − 1). (17)

This model is equivalent to a spin- 1
2 XY chain in a perpen-

dicular magnetic field via Jordan-Wigner transformation [44].
After a Fourier transformation defined by ck = 1

L

∑L
j=1 cie

ikj

we can write this as

H = 2
∑

0�k�π

ψ
†
kHkψk, (18)

where ψk = (ck, c
†
−k )T is a two-component vector. Thus each

k mode of such systems can be described by the following
Hamiltonian (we scale everything by γ ):

H (k, t ) = [μ − cos(k)]σz + � sin(k)σx, (19)

and we use the following drive protocol: μ = A cos[ωt +
φ(t )] and � = cos(rωt ), where r is an integer and φ is,
as usual, a Gaussian random variable at each time t . The
dynamics of this model is nontrivial for r > 1 due to the
nonremovable time dependence in both diagonal and off-
diagonal elements [45,46]. This model [with φ(t ) = 0] has a
phase band crossing for k = π/2 at t = T/2 which exists at
all frequencies. We study here what happens to this crossing
if at each instant of time φ is a random Gaussian variable with
zero mean. Below we mention the scheme for partitioning a
full period to calculate the noise-averaged U (t, 0) now at any
time t � T ,

δt = t

N
= const; (20)

that is, we increase the number of partitions proportionally
as the time t gets closer to T , keeping the duration of the
constant time evolution (δt) fixed. Thus, we calculate the
noise-averaged phase band at all times t within a period for
different noise strengths σ and compare it with the noise-free
case in Fig. 8 (left panel). Interestingly, noise modifies the
phase band at all times except at t = T/2, which is the phase
band crossing point for the noise-free drive. This shows that
the transition at t = T/2 is immune to any amount of temporal
disorder. As a routine task we calculate the noise-averaged
instantaneous Hamiltonian for the chosen protocol〈

H
(
k = π

2
, t

)〉
= A cos(ωt )e−σ 2/2σz + cos(rωt )σx. (21)

235112-6



FLOQUET TOPOLOGICAL TRANSITION BY UNPOLARIZED … PHYSICAL REVIEW B 98, 235112 (2018)

0 0.2 0.4 0.6 0.8 1
t/T

0

0.5

1

C
os

(φ
(t)

)

σ = 0
σ = π/10
σ = π/5
σ = π/3

0 0.2 0.4 0.6 0.8 1
t/T

-2

-1

0

1

2

E(
t) σ = 0

σ = π/3

FIG. 8. Left: Phase bands from the numerically averaged U

operator (lines) and from the averaged Hamiltonians (dots) for the
1D model [in Eq. (17)]. A = 1.5, ω = 1.0, r = 3. Right: The change
in instantaneous energies with the insertion of noise.

In Fig. 8 (left panel) we see that time evolution governed
by this averaged H mimics the numerically disorder averaged
U operator like before. We note that this numerical agreement
leads to the following statement: The effect of random noise
is just to renormalize the laser amplitude,

Ã = Ae−σ 2/2. (22)

The robustness of the transition at t = T/2 also follows from
the symmetry of Eq. (21). Note that the symmetry of the
noise-free Hamiltonian for k = π/2 and for odd r [namely,
H (T/2 − t ) = −H (t )] is not destroyed by the insertion of
noise here (see Fig. 8, right panel). This can be used together
with the Trotter-like decomposition of the U operator [as
in Eq. (3)] to show U−1(T/2) = U †(T/2) = U (T/2), sig-
nifying that a crossing through the Floquet zone center will
always be there at t = T/2 for all parameter values (A, ω, φ,
etc.). Further, the right panel of Fig. 8 demands that the same
adiabatic-impulse method (as done for the noise-free case in
Ref. [37]) can be used to show the existence of the crossing at
t = T/2 in spite of the change in sizes of different adiabatic
regions.

IV. DISCUSSION

In this work we have studied the existence of the self-
averaging limit in graphene irradiated by unpolarized light.
We see the limit holds in the high-frequency regime and
can be captured by the noise-averaged Hamiltonian. In low
frequencies the limit is achieved very slowly as a possible
consequence of retaining two of the symmetries in the noise-
averaged Hamiltonian. This opens up an opportunity to search
for some other deterministic Hamiltonian for speeding up the
convergence to the asymptotic limit. We hardly found any
steady limit at extremely low frequencies to the best of our
numerical ability. Floquet topological transitions are found
to be modified by the insertion of noise to various degrees
depending on the k point in the BZ. These range from a
small shift in crossing positions to complete abolition of the
transition depending on the amount of disorder. We found

that certain k points are more affected as a consequence of
a change in the Fourier structure of their time-dependent
Hamiltonian induced by the noise. The presence of a sixfold
symmetry at the � point plays a crucial role in the existence
of a special type of crossing which simultaneously happens at
T/3, 2T/3, and T [37]. This kind of crossing is ubiquitous
at low frequencies but ceases to exist at high frequency
(scanning the whole parameter regime as much as possible,
we found they are absent below T ≈ 11). Now breaking
four of those six symmetries by the noise abolishes these
transitions, confirming again the importance of symmetries at
low frequencies. In 1D systems due to the simplicity of the
BZ, noise obeys all symmetries of the clean time-dependent
Hamiltonian, and as a consequence, crossings persist at all
noise strengths. Noise merely renormalizes the drive ampli-
tude.

In typical experiments one needs to keep the optical axis of
a quarter-wave plate exactly at 45◦ with the plane of vibration
of the incident plane polarized light to extract pure circularly
polarized light. Now if this angle changes randomly (which
is always the case to a small degree if the experiment is not
performed carefully, such as a small vibration of the table on
which the setup lies), then the polarization of the outgoing
light will also fluctuate. A Babinet compensator is widely used
to create an arbitrary phase difference between the ordinary
ray and extraordinary ray in a broad spectral range. These
two plane polarized light with mutually perpendicular plane of
vibration are actually just the two component of the incident
light inside such apparatus. One needs to get control over this
on a timescale � T to get the desired random change in po-
larization. One can also use synthetic gauge fields to produce
such a noisy vector potential. This kind of perturbation is very
common in an interference experiment if incoherent sources
are used. The quantitatively different noise responses from
various k points can be experimentally verified by measuring
the photoinduced gap in a momentum-resolved manner using
pump-probe spectroscopy as done in Ref. [15]. The abolition
of transition and hence a change in the topological structure of
the Floquet bands can be detected by analyzing the intensity
and angular dependence of ARPES spectra [29].

In conclusion we have shown random noise in the vector
potential of incident light has a significant impact on the
Floquet topological transition in graphene-like 2D systems.
One can analyze the symmetries and Fourier structure of the
noise-averaged Hamiltonian to understand the modifications
caused by the noise. In 1D systems such noisy drives have no
effect on the transitions.
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