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Hydrogen plays an essential role in the growth process of artificial diamond and can easily form complexes
with lattice vacancies. Despite substantial efforts to resolve the electronic structure and the ground-state
properties of the hydrogen-vacancy (HV) center, the final remarks are ambiguous, while the complexes of
vacancy with two and more hydrogen atoms remain unexplored. In this paper, we used spin-polarized, hybrid
density-functional theory method to investigate electronic structure and magneto-optical properties of various
hydrogen-vacancy clusters in diamond. Our theoretical results indicate a very strong tendency toward the
formation of HnV complexes up to four hydrogen atoms that are mostly electrically and optically active
centers. One of the investigated defects introduce highly correlated electronic states that pose a challenge
for density-functional theory and, therefore, require special treatment when charge- and spin-density-related
properties are determined. We introduced an extended Hubbard model Hamiltonian with fully ab initio provided
parameters to analyze the complex electronic structure of highly correlated H2V0 defects. The role of quantum
tunneling of hydrogen in HV center and its impact on the hyperfine structure was discussed. We demonstrate that
experimentally observed HV1− center is similar to well-known NV1−, i.e., I) it possesses triplet 3A ground state
and 3E excited state in C3v symmetry; II) the calculated zero-phonon line is 1.71 eV (1.945 eV for NV1−). A
detailed experimental reinvestigation based on optically detected electron paramagnetic resonance spectroscopy
is suggested to verify whether the HV1− center has metastable singlet shelving states between the ground and
excited state triplets and, as a result, whether it may exhibit a spin-selective decay to the ground state.
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I. INTRODUCTION

Pure diamond is transparent and diamagnetic material with
a wide band gap (Eg = 5.47 eV) [1]. Once impurities or native
point defects are introduced into the diamond lattice, they
can form paramagnetic complexes that are often electrically
and optically active color centers. Over the past few years,
several optically active paramagnetic point defects in diamond
have emerged as prime candidates to realize quantum bits
and robust solid-state single-photon emitters [2–5]. The most
famous nitrogen-vacancy (NV) color center [6–8] in diamond
is widely regarded as a prototype defect for quantum informa-
tion processing. It can be formed when mobile carbon vacancy
gets trapped on substitutional nitrogen [9] and depends on the
Fermi energy value, mainly the neutral (NV0) and negative
(NV1−) charge states can be stabilized [5,9]. In particular, the
negatively charged NV1− has become a leading qubit candi-
date because its quantum states can be initialized, coherently
manipulated, and read out with high fidelity at room temper-
ature [10–13]. Furthermore, minimization of the 13C isotope
content in the grown diamond samples has led to remarkably
long spin coherence times of the NV [14,15]. Nonetheless, the
optical properties of this color center are significantly altered
by a strong electron-phonon coupling of its excited states,
causing a broad emission (∼100 nm) of which only 4% is fo-
cused in the zero phonon line (ZPL). Hydrogen is essentially
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the most abundant element present in the chemical vapor
deposition (CVD) growth environment of synthetic diamond
and under certain circumstances it can be easily incorporated
into the diamond lattice, forming complexes with native de-
fects [16]. In fact, a fingerprint of many H-related centers
in CVD and natural diamonds has been identified mainly by
their infrared, Raman, and optical signatures [17–20]. From
the perspective of molecular chemistry, carbon and hydrogen
form the C-H covalent bond with high dissociation energy of
∼3.7 eV [21]. Therefore, any native defect capable of forming
the C-H bond will be an effective trap for mobile hydrogen
atom. Obviously, the dangling bonds of carbon lattice va-
cancy have this capability and one would expect favorable
formation of HnV complexes. The most intensely investigated
hydrogen- and vacancy-related center was observed in the
infrared adsorption spectrum for the first time in 1959 by
Charette [22]. It turned out that the sharp adsorption peaks
at 3107 1/cm and 1407 1/cm can be detected in all types
of diamonds, and they have been tentatively attributed to
the stretching and bending modes of C-H and N-H groups
[23–25]. The 3107 1/cm system was not correlated to any
electron paramagnetic resonance (EPR) center, which is an
indication of its nonparamagnetic ground state. At the begin-
ning, bond-centered N-H-C defect was proposed as a plausible
model of the 3107 1/cm system [26,27] but, later, more care-
ful investigation suggested a trigonal geometry of the defect.
Recently, a robust density-functional theory (DFT) calculation
conducted by Goss et al. unambiguously assigned the 3107
1/cm absorption center to the VN3H complex, where three
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carbon atoms adjacent to vacancy are replaced by nitrogen and
the remaining carbon dangling bond is terminated by hydro-
gen [28]. Surprisingly, a simple HV defect in diamond was
identified much later by Glover et al. [29]. Using EPR mea-
surements, they observed a new S = 1 paramagnetic system
with C3v symmetry and similar zero-field splitting to the NV
center. Based on the recorded EPR data, the spin Hamiltonian
parameters of the defect coupled to a single proton were deter-
mined to be g‖= 2.0034(5), g⊥= 2.0023(5), D = ±2706(5)
MHz, |A‖| = 1.10(5) MHz, |A⊥| = 1.95(5) MHz, where g‖,
D, and A‖ are aligned with [111] crystallographic axis. A
subsequent analysis of the electronic structure deduced from a
linear combination of molecular orbitals led to the conclusion
that the observed HV center is negatively charged. There are
two very recent theoretical investigations focusing on single
hydrogen-vacancy defect in diamond [30,31]. Peaker et al.
analyzed the electronic structure and vibrational properties of
HV in different charge states [30]. They were able to repro-
duce the experimentally observed triplet ground state of HV1−

in C3v point group, paying attention to its similarity with
NV1− center. According to the study, in the case of neutral
HV0, both the doublet and quartet spin states are degenerate in
energy and, hence, either can be the ground state of the defect,
whereas Salustro et al. [31] found the ground state of HV0 to
be spin doublet. This discrepancy requires further theoretical
investigation and, ultimately, experimental verification. To the
best of our knowledge, the complexes of vacancy with two
or more hydrogen atoms have not been considered so far
and their electronic structure remains elusive. In this paper,
we investigate electronic structure and magneto-optical prop-
erties of various hydrogen-vacancy clusters in diamond by
means of spin-polarized, hybrid DFT. We found a significant
driving force for hydrogen clustering with a single vacancy
and relatively low formation energies of these defects. Besides
the electronic structure calculations, we provide the magneto-
optical and vibrational signals of the investigated defects for
comparison with available experimental data, and to medi-
ate future identification of yet unidentified hydrogen- and
vacancy-related complexes. We used an extended Hubbard
model to analyze the complex electronic structure of highly
correlated H2V0 defects. We demonstrated that one of the
investigated HV1− centers is similar to well-known NV1− and
might be another interesting candidate for realizing quantum
information processing in diamond.

II. COMPUTATIONAL DETAILS

The electronic structure calculations have been carried out
using spin-polarized DFT (SP-DFT), with the projector aug-
mented wave [32,33] method, as implemented in the VIENNA

AB INITIO SIMULATION PACKAge (VASP). We applied the
screened, range-separated, nonlocal hybrid functional HSE06
of Heyd, Ernzerhof, and Scuseria [34] to calculate the ground-
state charge and spin densities of the system. Previous the-
oretical calculations indicate that HSE06 in group-IV semi-
conductors satisfies the generalized Koopmans’ theorem [35].
Due to the error compensation between the Hartree-Fock and
GGA exchange, HSE06 in diamond turned out to be nearly
free of the electron self-interaction error and is capable of
providing defect levels and defect-related electronic transi-

tions within ∼0.1 eV, with respect to experiment [36]. To
minimize finite-size effects, we selected a periodic, cubic
supercell of N = 512 atoms. Such a large supercell enables
the approximation of the first Brillouin zone (BZ) using �-
point, at which the degeneracy of Kohn-Sham wave functions
can be inspected. Our previous studies showed that this setup
reproduces known experimental values in the case of point
defects in diamond [36–39] and silicon [40]. Convergence
parameters and equilibrium lattice constant were determined
in a bulk calculation on primitive cell. A BZ sampling with
an 8 × 8 × 8 Monkhorst-Pack [41] mesh (kMP = 83) and the
plane-wave cutoff energy of 520 eV assure convergence of
the charge and spin densities. As a result, an equilibrium
lattice parameter of aHSE = 3.549 Å, and indirect band gap
of Eg = 5.32 eV agree well with the experimental values
of a = 3.567 Å, Eg = 5.48 eV, respectively. Defects in the
supercell were allowed to relax in constant volume until the
Hellmann-Feynman forces acting on the atom were smaller
than 0.01 eV/Å.

Formation energies of the defects (�H
q

f ) as a function of
the electron chemical potential EF (μe|T =0K

= EF ) in the band
gap can be expressed as

�H
q

f = E
q
tot −

∑
i

niμi − q(EVBM − EF ) + �Ecorr, (1)

where the Fermi level EF is aligned to the valence band
maximum (VBM) of nondefective diamond, q stands for the
charge state of a defect, E

q
tot is the total energy of defective

supercell, and the μi is a chemical potential of the corre-
sponding atoms (i = C,H ). The μC value is calculated from
the total energy of a perfect diamond lattice, whereas μH is
deduced from the gas phase H2. The last term �Ecorr is the
charge correction in total energy due to the defective supercell.
After the electrostatic potential alignment, we applied 2

3 of
the monopole term of the Makov-Payne charge correction
[42,43] to compute �Ecorr. The adiabatic charge transition
levels Eq|q+1 for a selected point defect can be calculated as
follows:

Eq|q+1 = �H
q

f − �H
q+1
f . (2)

To calculate the potential energy surface (PES) of the excited
states and the corresponding ZPL values, we applied the
constrained DFT �SCF method [44] implemented in VASP
code. This method allows one to determine the relaxation
energy of the atomic cores upon optical excitation. We used
the VASP implementation of density-functional perturbation
theory to calculate the phonon spectrum of the systems. In
this case, we applied the Perdew-Burke-Ernzerhof (PBE) [45]
approximation in the Hamiltonian. The selection of PBE for
computing the vibrational modes and frequencies is dictated
by following reasons: (1) It has been demonstrated that PBE is
able to accurately reproduce the experimental lattice constant
of diamond, phonon spectrum, as well as their dependence on
pressure and temperature [46]. In fact, the calculated Raman
mode of 1336 1/cm for the perfect 512 atomic supercell is
very close to the experimental value of 1332 1/cm [47]. (2)
The application of nonlocal hybrid functional in this case is
beyond the computational power of our facilities since we
allow all atoms to vibrate, and as a result, for lower symmetry
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FIG. 1. Formation energy of the investigated complexes as a
function of Fermi level position in the fundamental band gap of
diamond. The Fermi energy level is referenced to the VBM.

defects there is >1000 vibrational degrees of freedom. To
calculate the quasilocal vibrational modes with high preci-
sion, we applied very strict 10−4 eV/Å force convergence
criterion. The normal modes were analyzed using the inverse
participation ratio approach [48]. We calculated the hyperfine
tensor, including the core spin polarization effect in the Fermi
contact within the frozen valence approximation, using the
VASP implementation suggested by Szász et al. [49]. In this
case, the plane-wave cutoff energy was raised up to 800 eV.

III. RESULTS AND DISCUSSION

To elucidate the tendency toward the formation of
hydrogen-vacancy complexes in diamond, we first analyzed
binding energy of H to these complexes. In fact, we have
investigated the hydrogen clustering effect on single vacancy
in our previous work [36]. High positive value of H binding
energy >5 eV indicates strong driving force for the entire
hydrogen passivation of vacancy-related dangling bonds. The
ground state geometries (see Fig. 2) of the considered HV,
H2V, H3V, and H4V complexes can also be found in Ref. [36].
Next, we calculated the formation energies of these defects as
a function of Fermi energy level in the band gap (see Fig. 1),
where the reference of the Fermi level is aligned with the
VBM. From these graphs, one can predict the relative stability
of a given point defect in various charge states with respect
to Fermi energy level. As can be seen in Fig. 1, the HV,
H2V, and H3V are electrically active complexes, whereas, the
H4V is entirely neutralized and does not reveal any charge
transition. Interestingly, the incorporation of hydrogen atoms
slightly lowers the formation energy and hence, makes the
complexes even more stable. Since the H4V defect in diamond
is electrically inactive and it does not introduce any defect
level in the band gap, we further focus our attention only on
HV, H2V, and H3V.

A. Vacancy with one hydrogen atom (HV center)

When single vacancy in diamond traps a mobile hydrogen
atom, one out of four carbon dangling bonds gets termi-
nated and, as a result, HV complex is formed. According to
our HSE06 results, the defect can be stabilized in positive,

FIG. 2. The geometric sketch of HnV center in diamond. All
atoms are numerated in accordance with Table II.

neutral, negative, and doubly negative charge states. We ap-
plied the combination of group theory and the HSE06 calcu-
lated eigenvalues to describe the electronic structure of the de-
fect (see Fig. 4). In the positive charge state that can be found
only in heavily boron-doped diamond, HV has singlet ground
state in C3v symmetry. According to the character table of
C3v point group, a doubly degenerate e and nondegenerate a1

electronic states can be constructed from symmetry adaptive
basis. Only the unoccupied, doubly degenerate e state appears
in the band gap while the nondegenerate a1 falls into the
valence band. By adding one electron to the empty e state, the
neutral HV defect can be stabilized. This system is principally
Jahn-Teller unstable and, thus, the symmetry is lowered to
Cs and the former degenerate e states split into symmetric
2a′ and antisymmetric 2a′′. Theoretically, two spin states:,
doublet S = 1

2 and quartet S = 3
2 , can be possible for HV0. In

fact, there is some controversy in literature which is the true
ground state of HV0 [30,31]. Our HSE06 calculations indicate
that doublet HV0 is more stable by 0.28 eV than quartet,
supporting the conclusion reached by Salustro et al. [31]. As
can be seen in Fig. 4, the spin electron occupies 2a′′ orbital,
building up 2A′′ many-body ground state. In principle, the
electron can be promoted to 2a′ orbital via optical excitation.
Using constraint DFT method, we calculated the ZPL value
for 2a′′ → 2a′ transition and got ZPL = 1.88 eV (see Table I).
Nevertheless, the excitation process associated with 2a′′ →
2a′ transition would not generate sharp ZPL. To elucidate this
statement, we constructed the sketch of adiabatic potential
energy surface (APES) with respect to the atomic displace-
ment along symmetry breaking phonon modes for different
electronic states of HV0 (see Fig. 3). If the symmetry of HV0

is restricted to C3v , it is not important which sublevel of e

is occupied—both configurations 2ex (2a′) and 2ey (2a′′) must
exhibit the same total energy. If the symmetry constraint is

TABLE I. The calculated zero-phonon line (ZPL) values for the
selected electronic transitions.

Defect Transition ZPL (eV) ZPL (eV) Ref. [30]

HV0 2a′′ → 2a′ 1.88 –
HV1− a1 → e 1.71 1.67
H2V0 a1 → b1 2.53a –

1.49b

H2V1− a1 → b1 0.97 –

aTaken from the extended Hubbard model.
bTaken from symmetry-restricted HSE06 �SCF.
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FIG. 3. Adiabatic potential energy surface of the ground and ex-
cited states of HV0. The deformation modes of HV0 corresponding to
different electronic states are shown as well. The vertical excitation
leads to 2A′ excited state in configuration Q3. A metastable state
(nearly degenerate in energy with the ground state) with the same
type of distortion was found, which leads to an avoided crossing (the
conical intersection) at C3v symmetry point.

removed, the system relaxes to Cs symmetry and then the
2a′′ level is occupied by a single electron and the 2a′ is
empty. The energy from the symmetry-breaking solution is
called the Jahn-Teller energy. As can be seen in Fig. 3, the
C3v symmetry point is the conical intersection of the Jahn-
Teller effect where 2a′ and 2a′′ levels are degenerate. The
2a′ and 2a′′ electronic states correspond to the double layered
APES of the Jahn-Teller effect. In fact, the absorption process
between these two layers of the APES (2a′′ → 2a′) is possible
with ∼1.88 eV photons, but shortly afterward the system
would nonradiatively relax through the conical intersection.
The ∼1.88 eV excitation process promotes the system to one
of the vibronic excited levels. As a consequence, we suspect
that there is no possible luminescent signal for HV0 and
hence, there is no sharp ZPL.To further characterize the HV0

defect, we provide its hyperfine structure (see Table II) and
quasilocal vibrational modes associated with hydrogen atom
(see Table III). Based on the calculated hyperfine structure,
one can notice significant coupling with three nearest 13C,
which is an indication of substantial spin-density localization
on C-related dangling bond states. Interestingly, the hyperfine
coupling with 1H in HV0 is one order of magnitude stronger
than in HV1−, which possibly makes these two charge states to
be easily distinguished. We found three quasilocal vibrational
modes associated with H that can be captured in infrared
adsorption, Raman scattering spectrum, or phonon sideband
in the photoluminescence experiment. The C-H stretching
mode at 3059 1/cm belongs to a′ irreducible representation of
Cs point group and agrees nicely with the value of 3040 1/cm

TABLE II. Hyperfine constants of the investigated hydrogen-
vacancy complexes calculated with HSE06 functional. The direction
of hyperfine constants are provided in spherical coordinates [R
(MHz), θ (°), ϕ (°)]. The θ value describes the polar angle of
the [001] direction, whereas ϕ is the azimuthal angle of the [100]
direction (on the (100) plane).

Axx Ayy Azz

N. R θ ϕ R θ ϕ R θ ϕ

1 13C 25 66◦ 153◦ 25 59◦ 289◦ 45 55◦ 45◦

2 13C 41 114◦ 206◦ 41 45◦ 270◦ 117 55◦ 135◦

3 13C 41 35◦ 45◦ 41 90◦ 135◦ 117 55◦ 225◦

H
V

0
S

=
3 2

4 13C 41 66◦ 64◦ 41 135◦ 0◦ 117 126◦ 136◦

1 1H 9 114◦ 333◦ 9 144◦ 59◦ 13 55◦ 45◦

1 13C 27 113◦ 244◦ 13 45◦ 180◦ 10 54◦ 316◦

2 13C 125 75◦ 237◦ 124 40◦ 346◦ 340 54◦ 136◦

3 13C 125 58◦ 108◦ 124 51◦ 349◦ 340 125◦ 44◦

4 13C 102 114◦ 243◦ 102 45◦ 180◦ 293 55◦ 315◦

H
V

0
S

=
1 2

1 1H 52 49◦ 330◦ 16 135◦ 0◦ 36 72◦ 74◦

1 13C 10 114◦ 333◦ 10 142◦ 72◦ 9 125◦ 225◦

2 13C 89 115◦ 208◦ 89 45◦ 270◦ 175 56◦ 137◦

3 13C 89 37◦ 45◦ 89 90◦ 135◦ 175 53◦ 225◦

4 13C 89 65◦ 62◦ 89 135◦ 0◦ 175 125◦ 133◦

H
V

1−
S

=
1

1 1H 1.56 114◦ 333◦ 1.56 75◦ 304◦ 1.03 55◦ 45◦

Ref. [29] 1H 1.95(5) 1.95(5) 1.10(5)
1 13C 24 121◦ 143◦ 11 119◦ 34◦ 11 45◦ 90◦

2 13C 24 59◦ 217◦ 11 119◦ 146◦ 11 45◦ 90◦

3 13C 50 45◦ 270◦ 51 66◦ 27◦ 164 55◦ 135◦

4 13C 50 45◦ 270◦ 51 66◦ 153◦ 164 125◦ 225◦

H
2
V

0
S

=
1

1 1H 3 135◦ 270◦ 12 114◦ 154◦ 20 125◦ 135◦

2 1H 3 135◦ 270◦ 12 114◦ 26◦ 20 55◦ 315◦

1 13C 11 134◦ 74◦ 10 79◦ 354◦ 9 135◦ 270◦

2 13C 11 46◦ 286◦ 10 84◦ 191◦ 9 135◦ 270◦

3 13C 256 54◦ 132◦ 128 68◦ 24◦ 129 45◦ 270◦

4 13C 255 126◦ 228◦ 128 68◦ 156◦ 128 45◦ 270◦

H
2
V

1−
S

=
1 2

1 1H 15 45◦ 90◦ 2 114◦ 154◦ 14 125◦ 45◦

2 1H 15 45◦ 90◦ 2 114◦ 26◦ 14 55◦ 315◦

1 13C 18 71◦ 315◦ 6 88◦ 224◦ 6 19◦ 128◦

2 13C 6 77◦ 167◦ 17 48◦ 65◦ 6 45◦ 270◦

3 13C 18 132◦ 26◦ 6 46◦ 357◦ 6 75◦ 102◦

4 13C 81 48◦ 264◦ 81 118◦ 203◦ 299 125◦ 315◦

1 1H 26 95◦ 315◦ 24 90◦ 45◦ 22 172◦ 135◦

H
3
V

0
S

=
1 2

2 1H 22 84◦ 6◦ 26 45◦ 97◦ 24 134◦ 90◦

3 1H 26 135◦ 353◦ 24 45◦ 0◦ 22 96◦ 84◦

reported elsewhere [30]. The remaining bending modes at
1394 1/cm and 1323 1/cm have a′ and a′′ characters,
whereas, the later is resonant with the valence band and,
hence, much less localized. The HV0 complex can be further
ionized to HV1− charge state. We found 0/1− charge transi-
tion level to be at 2.75 eV with respect to VBM. The calcu-
lated ground state of the defect is triplet 3A in C3v symmetry,
consistent with previous experimental observations [29] and
computational predictions [30]. Two defect-related electronic
states can be found in the band gap: nondegenerate, occupied
a1 and doubly degenerate, half-occupied e (see Fig. 4). Similar
to the negatively charged NV center, the excitation can be
triggered from the occupied a1 to the empty e state in the
spin minority channel. In fact, the calculated ZPL = 1.71 eV
for a1 → e internal transition is indeed close to experimental
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TABLE III. The calculated quasilocal vibrational modes associ-
ated with H atom. (2) stands for doubly degenerate modes.

Defect Mode of vibration Symmetry label Frequency (1/cm)

HV0 C-H stretching a′ 3059
3040a

C-H bending a′ 1394
a′′ 1323

HV1− C-H stretching a1 3047
2970a

C-H bending e(2) 1366
H2V0 C-H stretching a1 3534

b1 3366
C-H bending a1 1551

H2V1− C-H stretching a1 3344
b1 3137

C-H bending b1 1606
H3V0 C-H stretching a1 3719

e(2) 3466
C-H bending e(2) 1474

a1 1432
H3V1− C-H stretching a1 3450

e(2) 3125
C-H bending e(2) 1577

a1 1518

a Ref. [30].

1.945 eV value reported for NV1− and 1.67 eV estimated for
HV1− by Peaker et al. [30]. The calculated hyperfine constants
of HV1− complex reproduce accurately weak coupling with
1H observed in EPR experiment by Glover et al. [29]. We
also calculated the quasi-local vibrational modes associated
with hydrogen: C-H stretching at 3047 1/cm (a1 character)
and doubly degenerate C-H bending mode at 1366 1/cm
(e character). Due to striking similarity between HV1− and
well-known qubit NV1−, we conclude that it would be inter-
esting to reexamine the HV1− center by means of optically

detected EPR spectroscopy (ODMR) to verify whether the
optical polarization cycle can be achieved for the defect and,
ultimately, whether it can act as a qubit similar to NV1−. Ac-
cording to our HSE06 results, the double negative charge state
of HV defect may theoretically exist in phosphorus-doped
diamond. The addition of a third electron to doubly degenerate
e orbital again drives the system to the lower Cs symmetry
due to Jahn-Teller static effect. The electronic ground state of
the defect is doublet 2A′ where the spin electron occupies 2a′′
orbital. In principle, there is one possible internal electronic
transition 2a′′ → 2a′ in the spin majority channel. We did not
calculate the ZPL for this transition; however, we anticipate
it to be within far infrared region due to small separation
between 2a′′ and 2a′ orbitals. Similar to HV0, we anticipate
the existence of conical intersection in the APES of HV2− and,
as a result, the fast nonradiative decay to the ground state.

B. Vacancy with two hydrogen atoms (H2V center)

To the best of our knowledge, the complex of single
vacancy with two hydrogen atoms in diamond has not been
assigned yet to any known EPR or PL center. Here, we inves-
tigate the H2V defect in detail to mediate its future identifica-
tion. When two hydrogen atoms get trapped by single vacancy,
two out of four C-dangling bond states get terminated and
complex of C2v point-group symmetry is formed. Our HSE06
calculations show that the defect may exist in positive, neutral,
negative, and doubly negative charge states, whereas, the
H2V1+ is unlikely to be found in diamond due to its extremely
narrow stability window. According to the C2v character table,
nondegenerate a1, a2, b1, and b2 orbitals can be constructed.
We found the neutral H2V0 complex very challenging for
standard DFT so its thorough description will be provided
separately (see Sec. III D). In the negative charge state, two
defect-related electronic levels appear in the band gap: the
occupied a1 and half-occupied b1 forming paramagnetic dou-
blet 2B1 many-body ground state (see Fig. 4). There is one
possible internal electronic transition a1 → b1 in the spin

FIG. 4. Localized Kohn-Sham levels of the investigated complexes in diamond calculated with HSE06 hybrid functional. The light orange
shaded area represents the conduction and valence band of an ideal diamond. Spin down (up) channels are indicated by blue (red) triangles,
whereas, the filled (unfilled) triangles represent the occupied (empty) states. For the sake of clarity, the corresponding K-S states in different
charge states are linked by black dotted lines.
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FIG. 5. 3D representation of the symmetry-broken Kohn-Sham wave functions for highly correlated H2V0 defect in diamond. The
symmetrical a1 and b1 orbitals calculated for the closed-shell singlet H2V2− are also depicted. The red (blue) lobes indicate the positive
(negative) phase of the wave functions with arbitrary selected isosurface value.

minority channel of H2V1− with the calculated ZPL = 0.97
eV. The calculated hyperfine coupling constants of H2V1−
defect (see Table II) indicate significant spin-density localiza-
tion on two C-dangling bonds. We found several quasilocal
vibrational modes associated with H atom at 3344 1/cm
(C-H stretching mode with a1 character), 3137 1/cm (C-H
stretching mode with b1 character), and 1606 1/cm (C-H
bending mode with a1 character). In the doubly negative
charge state, the complex has closed-shell singlet electronic
configuration with both a1 and b1 defect orbitals filled. It is
neither an optically nor EPR active center.

C. Vacancy with three hydrogen atoms (H3V center)

Finally, we briefly analyze the complex of single vacancy
with three hydrogen atoms. In this complex, three out of
four C-dangling bond states are terminated by H, giving rise
to C3v point-group symmetry of the defect. The neutral and
negative charge states were found to be feasible with the 0/1−
adiabatic charge transition level located in the middle of the
band gap (see Fig. 1). Only one nondegenerate a1 orbital
appears in the band gap, while the doubly degenerate e state
falls into the valence band. The neutral H3V0 is paramagnetic
doublet and, therefore, can be observed via EPR spectroscopy
(see the hyperfine constants in Table II). We conclude that
the defect does not produce any luminescence since the only
possible electronic transition is from the valence band to
a1 state in the spin minority channel; however, the valence
band orbitals are delocalized in nature and hole created upon
optical excitation may rapidly recombine with delocalized
electron, leaving behind the defect negatively charged. The
negatively charged H3V1−, in turn, has closed-shell singlet
electronic configuration and is optically inactive. Although
the H3V1− cannot be identified via EPR measurements, it can
be detected by C-H characteristic vibrations in infrared or
Raman spectrum. The calculated frequencies of C-H quasilo-
cal vibrational modes together with the corresponding sym-
metry labels can be found in Table III.

D. Highly correlated electronic structure of H2V0

To understand the electronic structure of H2V0 complex,
one has to take into account a highly correlated nature of
the defect-related orbitals in the ground state. As previously
discussed by Thiering et al. [50], the application of HSE06
functional may lead to the symmetry-broken solution due to

the presence of Fock operator. In such cases, the Kohn-Sham
wave functions do not follow symmetry of defect-containing
supercells and hence, they are not necessarily the eigenstates
of the corresponding space group of the supercell. This is
an indication of highly correlated orbitals that cannot be
expressed by single Slater determinant but the exact solution
is multideterminant in nature. In the case of H2V0, when
two electrons occupy a1 level, the electronic state can be
described as singlet 1A1. Nevertheless, one should realize that
b

(2)
1 electron configuration also has A1 symmetry and, hence,

strong Coulomb interaction between these two electronic
states might be expected. Our unrestricted SP-DFT HSE06
calculations of H2V0 lead to the symmetry-broken solution.
As can be seen in Fig. 5, the symmetry-broken Kohn-Sham
wave functions represent the Cs point group, which is lower
than the C2v point group of the defect itself. In this case,
the spin-up and spin-down electrons are entirely localized
on the “left” and “right” dangling bonds, respectively. The
symmetry-restricted Kohn-Sham orbitals that truly represent
the C2v point group of the defect are also shown in Fig. 5.
In the symmetry-broken solution, the character of a1 and b1
states disappears and the exact solution of many-body wave
function is two-determinant open shell singlet for which the
real orbitals are mixture of a1 and b1 states. To properly
describe the electronic structure of H2V0 complex and the
energy order of singlets and triplets, we applied an extended
Hubbard model following the computational procedure pro-
posed by Udvarhelyi et al. for N2V defect [51]. Let us
consider the Kohn-Sham states of the H2V0 depicted in Fig. 6.
There are two defect-related electronic states in the band
gap: the highest occupied state a1 (HOMO) and the lowest
unoccupied state b1 (LUMO). Here, we select the HOMO and
LUMO states as an active space for correlated electrons in
our extended Hubbard model. For the sake of simplicity we
label these two a1 and b1 states a and b. These states can be
derived based on group theory considerations and projection
operator method for symmetry adaptive linear combination
of A and B dangling bond states. The explicit forms of a

and b states are a = 1√
2
(A + B ) and b = 1√

2
(A − B ). Having

the symmetry adaptive basis, we can express the possible
many-electron states as |1A1(g)〉= |a↑a↓〉, |1A1(e)〉= |b↑b↓〉,
and |1B1〉= 1√

2
(|a↑b↓〉 − |a↓b↑〉), and triplet determinants as

|3B1,ms= 1〉= |a↑b↑〉, |3B1,ms= 0〉= 1√
2
(|a↑b↓〉+|a↓b↑〉),

|3B1,ms= −1〉= |a↓b↓〉. The electronic structure of H2V0

defect may be described in Hubbard model with additional
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FIG. 6. HSE06 calculated electronic structure and the lowest
energy excitation of highly correlated H2V0 defect in diamond.
I represents the symmetry-broken solution, II represents the self-
consistent solution with fixed symmetrical orbitals, III represents the
lowest energy optical transition calculated for symmetrical orbitals,
and IV represents the non-highly correlated triplet state of H2V0.

terms by an Hamiltonian operator expressed as

Ĥ = Ĥ0 + U

2

∑
i, σ

n̂iσ n̂iσ ′ − t
∑

〈i, j〉, σ

ĉ
†
iσ ĉjσ

+ C

2

∑
i, σ, σ ′

n̂iσ n̂i ′σ ′ − 2J
∑

i


Si · 
Si ′ , (3)

where ĉ
†
iσ (ĉiσ ) stands for a creation (annihilation) operator

of an electron with spin σ (=↑,↓) at site i (= A,B), and
n̂iσ = ĉ

†
iσ ĉiσ . Ĥ0 is a Hamiltonian for the bath of weakly

interacting electrons. Here t , U , and C represent the hopping
integral, intra-, and inter-orbital direct Coulomb interactions,
respectively. The Heisenberg isotropic exchange interaction
with the exchange (Hund’s rule) coupling of J stands in the
last term. Using the symmetry adaptive basis (see Appendix
A) we can write down Ĥ ′ (Ĥ ′ = Ĥ − Ĥ0) in matrix form:

H ′ =

⎛
⎜⎜⎜⎝

U+C+3J−4t
2

U−C−3J
2

U−C−3J
2

U+C+3J+4t
2

U

C − J

⎞
⎟⎟⎟⎠. (4)

The zero-field splitting in the 3B1 state has not been taken
into account. The total energies of �1, �2, �3, and 3B1 states
(defined as 〈a↑a↓|Ĥ |a↑a↓〉, 〈a↑b↓|Ĥ |a↑b↓〉, 〈b↑b↓|Ĥ |b↑b↓〉,
〈a↑b↑|Ĥ |a↑b↑〉, respectively) can be calculated using HSE06
�SCF approach. Having the relative energies of the compo-
nents, one can calculate three combined parameters t , J , and
U − C using the following formulas:

t = E(�3) − E(�1)

4
, (5)

J = E(�1) − E(�2)

2
+ t, (6)

U − C = 2(E(�2) − E(3B1)) − J. (7)

TABLE IV. HSE06 calculated total energies of �2, �3, and 3B1

states relative to total energy of �1 for the neutral H2V defect in
diamond taken from the doubly negative H2V basis states in the
optimized geometry of the neutral H2V by the self-consistent spin-
polarized HSE06 calculation.

Relative energy (eV)

E(�2) − E(�1) 0.750
E(�3) − E(�1) 1.617
E(3B1) − E(�1) −0.494

The proper choice of basis set for the Hubbard Hamiltonian
has to be made carefully to assure reliability of the calculated
eigenvalues. As thoroughly discussed by Udvarhelyi et al.,
[51] the basis functions selected for �SCF calculations have
to give rise to noncorrelated orbitals without spin contamina-
tion. These two demands are satisfied by closed-shell singlet
states; therefore, we selected the basis functions generated
for doubly negative H2V defect. Further clarification on the
choice of proper basis set can be found in Ref. [51]. The
�SCF calculations of �1, �3, 3B1, and �2 multiplets were
carried out using the wave functions generated for H2V2−
defect. Such a procedure guarantees the proper symmetry and
spin state of single-determinant many-body states. Based on
the results summarized in Table IV, the calculated parameters
in the Hubbard model are t = 0.404 eV, J = 0.029 eV, and
U − C = 2.459 eV. Due to small value of J , the singlet-triplet
coupling is weak and the U − C term dominates. Having all
necessary parameters in this extended Hubbard Hamiltonian
determined, we can calculate the energy separation between
the assumed ground state 1A1(g) and three remaining possible
electronic states of H2V0 center in diamond (see Table V). The
second data raw in Table V can be interpreted as vertical ex-
citation energy, whereas the third as ZPL that essentially can
be compared to experiment. Similar to Udvarhelyi et al. [51],
the relaxation energy upon optical excitation for each excited
state was roughly estimated by self-consistent spin-polarized
�SCF calculations of �3, 3B1, and �2 multiplets. We found
the following values of the ionic relaxation: 0.40 eV for 1A1(e),
0.09 eV for 1B1, and 0.09 eV for 3B1. The presented Hubbard
model approach for highly correlated H2V0 defect in diamond
is leading to surprising remarks. The results indicate that the
energy separation between singlet 1A1(g) and triplet 3B1 is only
0.05 eV, which means that under thermodynamic equilibrium
these two states may be degenerate in energy and either can
be the ground state of H2V0. Also the separation between
the corresponding excited singlets 1A1(e) and 1B1 is only 0.06
eV that makes unambiguous assignment of the energy order

TABLE V. Excitation energies of the neutral H2V defect pre-
dicted by extended Hubbard model approach.

Excitation energy (eV)

Electronic transition Unrelaxed Relaxed

1A1(g) → 3B1 0.13 0.05
1A1(g) → 1B1 2.62 2.53
1A1(g) → 1A1(e) 2.87 2.47
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between them challenging. Nevertheless, assuming singlet
ground state, the emission of photon should be observed at
about 2.5 eV. Our detailed analysis reveals a unique electronic
structure of relatively simple H2V0 complex in diamond and
provides a remedy for coping with highly correlated defects
in wide band-gap materials using parameters extracted from
hybrid SP-DFT method.

E. Quantum tunneling of hydrogen atom in HV center

Quantum tunneling of H atom in the vacancy-related com-
plexes in diamond has been already reported in the literature
[52–54]. This phenomena can manifest itself in the high sym-
metry EPR signal of certain point defects that exhibit statically
lower symmetry. The high-symmetry signal can be observed
when the relative timescales of the microwave field applied to
flip the electron spin in the EPR experiment are longer then
the tunneling period between the symmetrically equivalent
distorted structures. Following the procedure suggested by
Thiering et al. [54], we investigate the quantum tunneling
effect in HV0 and HV1− complexes in diamond. In the case
of HV0, the C3v symmetry implies hydrogen atom residing
on the [111] principle axis. The total energy of HV0 in C3v

symmetry is 0.86 eV higher than the corresponding energy in
the Jahn-Teller distorted Cs configuration. This energy, �E ,
denotes the Jahn-Teller energy. We also determined the reori-
entation energy barrier between the symmetrically equivalent
Cs configurations using the nudge elastic band method (NEB)
and HSE06 functional. The calculated reorientation energy
barrier of H in HV0 defect is 0.65 eV, which is lower than
the Jahn-Teller energy. In this Jahn-Teller system described as
E × e, the e vibrational modes dynamically drive the system
from C3v to lower Cs symmetry. As shown in Ref. [54], one
can determine the tunneling rate, �E , using the following
formula:

�E = 9κ�E

h
exp

(
− 6�Eλ

h̄ωA(1 + 3λ)

)
, (8)

κ =
(

16λ

3λ2 + 10λ + 3

)2 9 + 54λ − 6λ3 − λ4

2(9 − λ2)(1 + 3λ)2
, (9)

λ = ωB

ωA

, (10)

where γA and γB denote the vibrational frequencies present in
the Jahn-Teller distortion as obtained in the Cs configuration.
The calculated tunneling rate of H is 36 THz, which is
about three orders of magnitude faster than the X band at
∼10 GHz or the Q band at ∼34 GHz used in EPR absorption
measurements.

Similar analysis was applied to HV1− defect. In this case,
the static symmetry is C3v and we can assume that H can jump
between all four dangling bonds, averaging out the symmetry
to Td . This Jahn-Teller system can be described as T × t with
the tunneling rate:

�T = 2�T

h
exp

(
− 1.24

�T

h̄ωt

)
, (11)

where �T is the Jahn-Teller energy and ωt denotes the
frequency of quasilocal vibrational mode that dynamically
drives the system from Td to lower C3v symmetry. We found

significantly higher �T value of 1.59 eV than the H re-
orientation barrier of 0.79 eV for HV1− center. Finally, the
tunneling rate, �T , of 4 THz is again fast enough to influence
the EPR measurements. Based on these results, both, the
HV0 and HV1− defects in diamond exhibit very fast quantum
tunneling effect of hydrogen that should be considered, when
the hyperfine structure from the EPR is analyzed.

IV. CONCLUSION

Using spin-polarized, hybrid DFT method, we analyzed
the electronic structure, electrical, and magneto-optical prop-
erties of various hydrogen single-vacancy complexes in di-
amond. We presented strong thermodynamic preference for
the formation of HnV clusters up to entire passivation of
vacancy-related dangling bonds. To thoroughly characterize
the complexes, we provided hyperfine structure, quasilocal
vibrational modes and optical signatures at fully ab inito
level. One of the investigated defects of the H2V0 turned
out to be very challenging for standard DFT calculations
due to its highly correlated electronic structure. To handle
this problem, we introduced an extended Hubbard model and
showed how to provide the parameters to the model based
on spin-polarized HSE06 calculations. Our theoretical results
confirmed that quantum tunneling of hydrogen in HV center
is very fast and has to be taken into account when the EPR
signals are analyzed. We concluded that the HV1− center
should be reinvestigated by means of optically detected EPR
spectroscopy to verify whether the optical polarization cycle
can be achieved for the defect and, ultimately, whether it can
act as a qubit similar to NV1−.
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APPENDIX: DETAILS CONCERNING THE APPLIED
EXTENDED HUBBARD MODEL

In this section, we write down the applied formulas to
obtain the presented form of the Hubbard Hamiltonian, and
hence the excitation energies.

The general form of the Hubbard Hamiltonian presented
in the main text as Eq. (3) can be decomposed into bath
of weakly interacting electron, on-site, hopping, Coulomb
repulsion, and Heisenberg exchange terms and rewritten as

Ĥ = Ĥ0 + Ĥon-site + Ĥhopping + ĤCoulomb + Ĥex.

The eigenvalue of the first term is the total energy of the bath
of weakly interacting electron (E0). On-site and hopping parts
are included in the standard Hubbard model [55] and one can
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express them for A and B dangling bond states, from main
text, as follows:

Ĥon-site = U

2

∑
i, σ

n̂iσ n̂iσ ′ = U (n̂A↑n̂A↓ + n̂B↑n̂B↓), (A1)

Ĥhopping = −t
∑

〈i, j〉, σ
ĉ
†
iσ ĉjσ

= −t (ĉ†A↑ĉB↑ + ĉ
†
A↓ĉB↓ + ĉ

†
B↑ĉA↑ + ĉ

†
B↓ĉA↓). (A2)

The Coulomb repulsion for H2V0 is

ĤCoulomb = C

2

∑
i, σ, σ ′

n̂iσ n̂i ′σ ′

= C(n̂A↑n̂B↑ + n̂A↑n̂B↓ + n̂A↓n̂B↑ + n̂A↓n̂B↓).

(A3)

The scalar product in the last term of the Hamiltonian one can
rewrite in terms of the shift operators:


Si · 
Sj = Ŝi
x Ŝ

j
x + Ŝi

y Ŝ
j
y + Ŝi

zŜ
j
z

= Ŝi
+Ŝ

j
− + Ŝi

−Ŝ
j
+

2
+ Ŝi

zŜ
j
z , (A4)

where Ŝi
+(−) = ĉ

†
i↑(↓)ĉi↓(↑), Ŝi

z = n̂i↑−n̂i↓
2 and then the Heisen-

berg isotropic exchange interaction one can formulate as

Ĥex = −2J
∑

i


Si · 
Si ′

= −2J (ĉ†A↑ĉA↓ĉ
†
B↓ĉB↑ + ĉ

†
A↓ĉA↑ĉ

†
B↑ĉB↓)

− J (n̂A↑n̂B↑ − n̂A↑n̂B↓ − n̂A↓n̂B↑ + n̂A↓n̂B↓). (A5)

The three-singlet and one-triplet states described in the main
text formulated in terms of a and b orbitals can be expressed

TABLE VI. Matrix elements of the extended Hubbard Hamil-
tonian acting on symmetry adaptive basis in dangling bonds
representation.

|A↑A↓〉 |A↑B↑〉 |A↑B↓〉 |A↓B↑〉 |A↓B↓〉 |B↑B↓〉
〈A↑A↓| U 0 −t t 0 0
〈A↑B↑| 0 C − J 0 0 0 0
〈A↑B↓| −t 0 C + J −2J 0 −t

〈A↓B↑| t 0 −2J C + J 0 t

〈A↓B↓| 0 0 0 0 C − J 0
〈B↑B↓| 0 0 −t t 0 U

in terms of dangling bond states as

|1A1(g)〉= 1
2 (|A↑A↓〉 + |A↑B↓〉 + |B↑A↓〉 + |B↑B↓〉), (A6)

|1A1(e)〉= 1
2 (|A↑A↓〉 − |A↑B↓〉 − |B↑A↓〉 + |B↑B↓〉), (A7)

|1B1〉 = 1√
2

(|A↑A↓〉 − |B↑B↓〉), (A8)

|3B1,ms = 1〉 = |A↑B↑〉, (A9)

|3B1,ms = 0〉 = 1√
2

(|B↑A↓〉 − |A↑B↓〉), (A10)

|3B1,ms = −1〉 = |A↓B↓〉. (A11)

Then one can calculate the excitation energies as an energy
difference between eigenvalues of presented Hubbard Hamil-
tonian, which are

E(1A1(g) )=E0 + C + 3J + U

2

−
√

4t2 + (C − U + 3J )2

2
,

(A12)

E(1A1(e) )=E0 + C + 3J + U

2

+
√

4t2 + (C − U + 3J )2

2
,

(A13)

E(1B1) = E0 + U, (A14)

E(3B1) = E0 + C − J. (A15)
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