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Disordered flat bands on the kagome lattice
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We study two models of correlated bond and site disorder on the kagome lattice considering both translation-
ally invariant and completely disordered systems. The models are shown to exhibit a perfectly flat ground-state
band in the presence of disorder for which we provide exact analytic solutions. Whereas in one model the
flat band remains gapped and touches the dispersive band, the other model has a finite gap, demonstrating that
the band touching is not protected by topology alone. Our model also displays fully saturated ferromagnetic
ground states in the presence of repulsive interactions, an example of disordered flat band ferromagnetism.
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I. INTRODUCTION

The physics of flat bands has generated considerable ex-
citement over the years [1–3]. In a flat band, the kinetic
energy is completely suppressed; thus, transport is hindered
by a vanishing group velocity, and any kind of interaction is
nonperturbative in nature and can mix the extensive number of
degenerate states in the flat band, with the potential to create
complex many-body states and phenomena. One well-known
example of this mechanism at work is the fractional quan-
tum Hall effect, where interactions induce highly nontrivial
behavior of the electrons in the degenerate Landau levels of a
magnetic field.

Thus, flat band systems are well suited for producing
unconventional phenomena [2,4,5]. For both fermions and
bosons, they allow us to realize the fractional quantum hall
effect in absence of a magnetic field [6–9], i.e., fractional
Chern insulators, and at potentially high temperatures [10].
Other contexts include high-temperature superconductivity
[11,12], Wigner crystallization [13,14], realizing higher-spin
analogs of Weyl-fermions [15], bands with chiral character
[16], lattice supersolids [17], fractal geometries [18], magnets
with dipolar interactions [19], and Floquet physics [20,21].
Flat bands of magnons also play a crucial role in determining
the behavior of quantum magnets in magnetic fields [22–25].

Interest in flat band physics is not restricted to the presence
of interactions, but also extends to their response to disorder,
as the flat band states can turn out to be critical displaying
multifractality [26], or unconventional localization behavior
[27–29]. They also appear in purely classical mechanical
systems [30], and in the field of photonics [31,32]. Quite
recently, flat bands have been experimentally demonstrated
in a realistic kagome material [33] as well as in optical
lattices [34].

In this work we consider noninteracting nearest-neighbor
hopping models on the kagome lattice with correlated bond
and site-disorder, as illustrated in Fig. 1. The simple nearest-
neighbor hopping model on the kagome lattice is known
to host a degenerate flat band [35–39] with a quadratic
band touching point believed to be topologically protected
[40]. However, in interacting many-body physics it is often

preferable to work with a gapped flat band to protect it
from “Landau-level mixing,” i.e., from interactions with the
dispersive bands.

Here, we explicitly construct a gapped flat band on the
kagome lattice. The simplest setting in which it appears con-
tains modulated bond and site disorder, both in the presence of
translational symmetry (where one can speak of a band) and
in the absence of it, i.e., in the presence of random disorder,
where one may still identify an extensive manifold of degen-
erate states. In fact, we find that a local perturbation to the
Hamiltonian can open a gap above the flat band. This indicates
that the band touching is protected not just by topology but
requires also symmetry.

We obtain exact solutions for the flat band s tates of all
of these models, facilitating a clear interpretation of why
the chosen type of correlated site-bond disorder does not
lift the extensive degeneracy of the flat band, and providing
insight into the stability of the flat bands and the protection
of the quadratic band-touching point. Our study also adds
an example where compactly localized Wannier states can be
explicitly constructed for a disordered flat band model.

Our treatment extends previous observations on the flat
band in kagome, such as the observed stability of the flat band
and band-touching points to breathing anisotropy [41], and
opens up interesting perspectives: We show how to selectively
gap out the flat band, or the Dirac cones, or all bands. Thus,
our results reinforce the role of the kagome lattice as a
platform for the study of topological physics and flat band
physics in general, in particular the physics of perturbations
and disorder in flat bands.

II. MODEL

We study noninteracting particles on the kagome lattice:

H =
∑
〈i,j〉

(tij ĉ
†
i ĉj + c.c.) +

∑
i

μi n̂i , (1)

with nearest-neighbor (complex) hoppings tij between sites
i, j and site-dependent chemical potentials μi at site i. In
the models we consider that μi is given as a function of the
couplings tij . The specific correlation between the hopping
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FIG. 1. Kagome lattice with lattice vectors a1 and a2. Shown is
a finite-size lattice with Lx = Ly = 3; opposite edges are identified
for periodic boundary conditions. The model contains site-dependent
nearest-neighbor tunnelings tij and chemical potentials μk . The
highlighted sites correspond to a zero-energy flat band state of the
MCM, hexagon, and system-spanning loop (dark gray) or the BDM,
double hexagon (black).

and potential terms is motivated by a connection to bond-
disordered Heisenberg models [42] where it naturally arises
via an exact rewriting of the Hamiltonian.

The Hamiltonian can be compactly written via its matrix
elements Hij as H = ∑

ij c
†
i Hij cj . Noting that this only con-

nects nearest neighbors, and that every nearest-neighbor pair
belongs either to an up or down triangle of the kagome lattice,
we rewrite the Hamiltonian in the following way:

H = H� + H� (2)

H
�/�
ij =

{
γ̄
�/�
i γ

�/�
j + |γ�/�

i |2δij , for i, j ∈ α,

0, otherwise,
(3)

where we first split it into its contribution on the up and down
triangles, and then define all couplings within a triangle α via
site and triangle dependent (complex) factors γ

�/�
i .

This form makes the correlation between the hoppings and
chemical potentials explicit. Specifically, we have tij = γ̄ α

i γ α
j

for sites i, j in the triangle α and μi = |γ�
i |2 + |γ�

i |2. In
the presence of lattice-inversion symmetry H� = H� and
these factors become solely site dependent. We will refer to
the model with lattice inversion symmetry as the maximal
Coulomb model (MCM), and with broken lattice inversion
symmetry as the bond-disordered model (BDM).

This also allows us to make an insightful connection to
the Hamiltonian of the nondisordered model; essentially the
disordered model can be understood as a rescaling of the clean
model by the γ factors. Using that the Hamiltonian is fully
specified by its matrix elements Hij , we can further split them
as a product of three matrices as

H�/� = �̄�/�H
�/�
0 ��/� (4)

with �
�/�
ij = δij γ

�/�
i , a diagonal matrix containing the scal-

ing factors, and H0 the matrix of the clean system with γ α
i ≡

1, describing the nearest-neighbor hopping on the kagome
lattice.

Making use of the form H = ∑
ij c

†
i Hij cj the action of the

Hamiltonian on single-particle states |�〉 = ∑
i ψic

†
i |vac〉 is

simply

H|�〉 =
∑

i

Hikψkc
†
i |vac〉 =

∑
i

(Hψ )ic
†
i |vac〉. (5)

From this we obtain the expectation value as

〈�|H|�〉 =
∑
ij

ψ̄iHijψj =
∑

α

∣∣∣∣∣
∑
i∈α

γ α
i ψi

∣∣∣∣∣
2

=
∑

α

|ψα|2,

(6)
where in the second equality we used the explicit form of the
Hamiltonian, Eq. (3), which splits into a sum over triangles α,
and in the last equality defined the sum of scaled amplitudes
within a triangle ψα = ∑

i∈α γ α
i ψi .

Thus, exact zero modes are states with ψα = 0 on all trian-
gles α. This condition is typically referred to as a ground-state
constraint in the theory of frustrated magnets and is intimately
connected to height mappings and emergent gauge theory
descriptions of the ground-state phase. For spins the condition
ψα = 0 is more stringent and can only be fulfilled for not too
disparate bond values due to the unit length constraint which
is found to lead to a phase transition of the model. In contrast,
here it can be fulfilled for arbitrary choices.

III. CONSTRUCTION OF FLAT BAND STATES

A. Exact mapping of flat band for the MCM

The clean system is known to host an exactly flat band at
E = 0 which touches the dispersive band at q = 0 [40].

In the nondisordered model (γ α
i = 1), the ground-state

condition ψα = ∑
i∈α ψi = 0 reduces to the simple sum of

amplitudes in every triangle vanishing. It is easy to check
that the states illustrated in Fig. 1, a hexagon loop with
alternating +,−, and a system-spanning loop with alternating
+,− amplitudes, satisfy this, and (less trivially) that these
yield Ns/3 + 1 linearly independent zero-energy states. Since
the kagome lattice has three sites in the unit cell and thus three
bands, finding Ns/3 + 1 states at the same energy then also
implies the band touching.

For the MCM all these zero modes of the clean system can
be mapped to zero modes of the disordered model via

�FB
MCM = �−1�FB

0 , (7)

which follows directly from H� = H� in the MCM together
with Eqs. (4) and (5), e.g., the observation that the disordered
model can be understood as a rescaling of the clean model.
Thus, we obtain an exactly flat band at E = 0. This further
implies that the band touching point is preserved as well.

The flat band states of the MCM can therefore be charac-
terized the same way as in the clean system [40]: the MCM (a)
Ns/3 + 1 zero modes, (b) of which (Ns/3 − 1) can be chosen
as linearly independent localized hexagon loop modes and 2
as system-spanning delocalized loops (both types arising via
the mapping from the zero modes of the clean system), and (c)
the flat band is gapless touching the dispersive band. The two
different types of states are schematically illustrated in Fig. 1.

We emphasize that this is completely independent of the
specifics of γi , e.g., it holds true for translationally invariant,
completely disordered, positive, negative, and sign-changing,
and real or complex choices. In fact, it holds true for a slightly
more general model, where �� = c �� which in particular
includes the model with breathing anisotropy.
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FIG. 2. A double hexagon of the kagome lattice. The wave
function of a BDM zero energy state is localized on the black sites.
Note that the state occupies 11 sites, and is part of 10 triangles, thus,
there are 11 degrees of freedom and 10 constraints, in addition to the
wave-function normalization, implying that there is a unique solution
for such a localized state.

B. Construction of flat band for BDM

We note that such a mapping is not possible for the BDM
where � differs nontrivially between up and down triangles.
Thus, it is not immediately obvious that the BDM should host
an extensively degenerate ground-state band and if so whether
the band-touching point is preserved.

We first summarize the findings and then provide a con-
struction of the flat band states. We find that (a) the BDM has
Ns/3 exact zero modes/flat band, (b) the flat band states states
can all be localized, and (c) the flat band is generically gapped.

We emphasize the last point, stating that it is possible to
maintain the flatness of the band while gapping it from the
dispersive bands in contrast to the claimed topological protec-
tion [40]. We will analytically show this in the next section
for the translationally invariant model, and provide numerical
evidence for disordered systems. In fact, it is sufficient to
break inversion symmetry by changing a single coupling γ�

i

to create a gap to the flat band.
We now explicitly construct the Ns/3 linearly independent

localized states forming the degenerate flat band. To do so,
we consider a double hexagon of the kagome lattice shown
with our conventions for the site labels in Fig. 2. We note
that such a state occupies 11 sites and these sites are part of
ten triangles of the kagome lattice. Each triangle contributes
one scalar constraint �α = 0, in addition to one normalization
constraint, thus we might expect a unique solution on every
hexagon pair.

The resulting linear system of equations can be solved
explicitly [see the Supplemental Material (SM) [43]], and the
wave-function amplitudes may be written as a function of the
coupling terms γ α

i as �i = �1 fi (γ α
i )/D(γ α

i ). This solution
is only valid if the determinant D given by

� = γ�
3 γ�

5 γ�
7 γ�

9 γ�
11 γ�

2 γ�
4 γ�

6 γ�
8 γ�

10 − (� ↔�) , (8)

is nonzero. This manifestly vanishes in the presence of in-
version symmetry (γ� = γ�), but is nonzero if inversion
symmetry is broken (γ� �= γ�). Therefore, in the BDM there
is a unique localized state on every double hexagon.

We have checked (numerically) that taking L2 such double
hexagons tiling the full kagome lattice does yield L2 inde-
pendent states, thus providing a full basis for the zero-energy
states of the BDM, in contrast to the MCM and the clean
system which requires the system spanning loop states [40].

It is also easy to show that no such solution for a localized
state is possible on a single heaxagon (see the Supplemental

Material [43]), thus, proving that these found states indeed
form a maximally localized basis of the flat band manifold.

Typically, in the presence of interactions the size of the
maximally localized basis states strongly affects the behavior
of the model, and here we find that this size doubles in the
presence of infinitesimal disorder. In fact, the existence of a
compactly localized basis for flat bands is an open question of
research with relations to the topology of the corresponding
Bloch bands [44–46].

IV. GAPPED FLAT BANDS

It remains to show that the BDM flat band states are indeed
gapped and do not touch the dispersive bands, which we will
show in the next sections both for translationally invariant and
generic disordered models.

A. Translationally invariant systems

We begin by considering translationally invariant systems
with real couplings. In that case the model has six (three) free
parameters γ

�/�
A,B,C for BDM (MCM), e.g., the couplings on

the three sites (A,B,C) in a triangle of the kagome lattice, with
different couplings on the up and down triangle for the BDM
model.

In this case, one can analyze the model in momen-
tum space, and analytical results can be obtained (see the
SM [43]). We find that for every q there is exactly one zero
mode, i.e., we find a flat band at E = 0 for both the BDM
and MCM as anticipated from the construction of the zero
modes above. Importantly, this allows us to obtain an analytic
expression for the gap of the BDM, thus proving our claim
that the BDM flat band can indeed be gapped.

We will consider illustrative examples for the gap below;
please see the Supplemental Material [43] for the general
expression of the gap. As the simplest model consider just
γ�

A �= 1, then the gap scales as

�gap = 1
2

(
5 + γ�

A

2 −
√(

γ�
A

2 + 1
)2 + 16γ�

A + 16
)

(9)

showing a quadratic scaling for small deviations away from
the homogeneous system.

A more symmetric arrangement can be obtained by consid-
ering γ�

A = 1
γ�

A

= γ�
B = 1

γ�
B

= x, which yields the gap to the
flat band as

�gap = x2 + x−2 − 2. (10)

We note that this allows us to cleanly separate the flat band
by an (arbitrarily) large gap from all dispersive bands, making
the kagome lattice a prime platform to study physics in flat
bands.

We show dispersion relations along high-symmetry lines
in the Brillouin zone for the clean model, the MCM, and the
BDM in Fig. 3. We emphasize that clearly both models retain
an exactly flat band at E = 0. As discussed above the MCM
always retains the band-touching point at q = 0 (� point), but
the Dirac points can be gapped for large perturbations (not
shown).

In contrast in the BDM, the flat band is always gapped as
seen in the lower panel of Fig. 3, already for infinitesimal
changes in the couplings. Just changing a single coupling
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FIG. 3. Dispersion along high-symmetry lines in the Brillouin
zone. From top left to bottom right: clean system, MCM with γA =
γ �

A = γ �
A <

√
2, BDM with γA = 2, and BDM with γ �

A = 1
γ�
A

=
γ �

B = 1
γ�
B

= 0.5.

generically gaps both the flat band and the Dirac points (lower
left panel). For the symmetric choice described above, the flat
band is gapped, but the Dirac points remain gapless (lower
right panel).

In summary, we have shown that we can selectively gap out
the flat bands and keep the Dirac cones or gap out the Dirac
cones, but keep the quadratic band touching point, or gap out
all bands.

B. Local perturbation

Before considering fully disordered models it is insightful
to understand the effect of a local perturbation to the system.
For a topologically protected band crossing one would expect
the resulting gap to scale to zero exponentially in system size.

We modify the Hamiltonian locally by changing a single
coupling γ� affecting one site potential μ and two tunnel
couplings t . As a result, in Fig. 4(a) we observe a linear
decrease of the gap with inverse number of sites ∼N−1

s ,
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FIG. 4. (a) Gap of the flat band in presence of a local perturbation
vs inverse number of sites Ns on a log-log scale showing a linear
scaling with inverse number of sites ∼N−1

s . (b) Gap of the flat
band for the fully disordered system vs inverse number of sites for
different disorder strengths δ.

consistent with the gap closing in the thermodynamic limit.
However, the decay is clearly not exponential as would be
expected for a topologically protected degeneracy.

C. Disordered systems

Next, we consider fully disordered models with random
choices for γ

�/�
i . As an example we consider a box-uniform

distribution γ ∈ [1 − δ, 1 + δ]. However, we emphasize that
this specific choice is not relevant and the conclusions hold
true for any generic disorder distribution.

The gap to the flat band versus inverse system size for a
range of values of δ is shown in Fig. 4(b). It extrapolates
to a finite value in the thermodynamic limit for δ < 1, and
scales as δ2 for small disorder strengths. Thus, we conclude
that disorder of this type gaps out the flat band, even for
infinitesimal disorder strength.

We also note in passing that the finite gap implies that the
projector into the flat band decays exponentially for the BDM
model, but decays algebraically for the gapless MCM.

D. Flat band ferromagnetism in a disordered model

Flat bands are known to host ferromagnetic phases in the
presence of repulsive interactions [35–39,47]. The presence of
a gap to the flat band in our model ensures that the many-body
ground state at filling n = 1/6 is the unique fully saturated
ferromagnetic state.

To see this in our model of disordered flat bands, we con-
sider a fermionic version with repulsive Hubbard interactions,

H =
∑

〈i,j〉,σ
(tij ĉ

†
iσ ĉjσ + c.c.) +

∑
i

μi n̂i + U
∑

i

n↑n↓; (11)

for spin-1/2 fermions, ni = ni↑ + ni↓, tij and μi are chosen
as above, and we consider the BDM to have a flat gapped
noninteracting band.

Since for U > 0 the interaction term is positive, and the
kinetic energy is positive-definite by construction, many-body
states with E = 0 are necessarily ground states.

One ground state is easily obtained by filling the nonin-
teracting flat band completely with polarized spins which do
not interact. Thus, we have at filling n = 1/6 a ferromag-
netic ground state with maximal spin S = L2/2, with the
full 2S(2S + 1) degeneracy due to the SU(2) symmetry of
the model. The main question to obtain ferromagnetism is
whether this ground state is unique, or if there are additional
nonmagnetic states as well. Here, it turns out that the ground
state is gapped, since the noninteracting band structure has a
finite gap for the BDM.

We performed exact diagonalization of the Hubbard model,
Eq. (11), on small finite-size kagome clusters (2 × 2, 2 × 3)
to confirm that the ground state is indeed of the described
form.

Finally, due to the presence of a spectral gap, we expect
the ferromagnetism to be stable to finite perturbations and
fluctuations in the particle number. Indeed, ferromagnetism
is expected to be enhanced compared to the usual kagome
case, since the localized noninteracting states now contain two
hexagons.
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V. OUTLOOK

Demonstrating that the flat bands of the kagome lattice can
be gapped opens up the kagome lattice as a prime platform
for the clean, i.e., isolated from the dispersive bands by an
arbitrarily large gap, study of topological and more general
flat band phenomena.

In addition, the presence of a flat band in a disordered
model is highly nontrivial and of general interest even if it
requires fine-tuning between the hopping and site-potential
terms.

In terms of realizations of the specific type of couplings,
we recall that this model is naturally realized in the large-N
limit [48,49] of a classical nearest-neighbor bond-disordered
Heisenberg (anti)ferromagnet, where the correlation between
site and bond disorder arises from the spin length constraint.
In other settings it is unlikely that bond- and site-disorder is
correlated in the required way, thus, the system would need to
be specifically designed. In this case we envision that it would
be considerably easier to realize the translationally invariant
model reducing the required number of parameters that have
to be tuned. (For the minimal model we would require tuning
one site potential and two tunneling couplings in each unit
cell.) This might be feasible in cold-gas setups where control
over individual sites and bonds is possible by the use of
quantum gas microscopes.

In terms of topological properties of the flat band, we note
that fluxes in the MCM model are trivial by construction
(since they can be removed by a unitary gauge transforma-
tion). The BDM model in contrast supports nontrivial fluxes
along the hexagon loops of the lattice. However, since in the
BDM model all states of the flat band can be chosen local-
ized, the noninteracting model is necessarily topologically
trivial [50].

Our model also presents a natural realization of flat band
ferromagnetism on the kagome lattice, where the gap of
the single-particle spectrum results in a unique gapped fully
saturated ferromagnetic many-body state in the presence of
repulsive on-site interactions. We reserve the further discus-
sion of interacting many-body phases in the gapped flat band
and the effects on the magnon bands of magnets for future
work.

It might also be interesting to explore the effect of longer-
range interactions on the flat bands of this model which
have recently been found to be remarkably stable for the
nondisordered model [19].
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