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We explore a method for regulating 2+1D quantum critical points in which the ultraviolet cutoff is provided by
the finite density of states of particles in a magnetic field rather than by a lattice. Such Landau-level quantization
allows for numerical computations on arbitrary manifolds, like spheres, without introducing lattice defects. In
particular, when half-filling a Landau level with N = 4 electron flavors, with appropriate interaction anisotropies
in flavor space, we obtain a fully continuum regularization of the O(5) nonlinear sigma model with a topological
term, which has been conjectured to flow to a deconfined quantum critical point. We demonstrate that this
model can be solved by both infinite density-matrix renormalization group (DMRG) calculations and sign-free
determinantal quantum Monte Carlo. DMRG calculations estimate the scaling dimension of the O(5) vector
operator to be in the range �V ∼ 0.55–0.7, depending on the stiffness of the nonlinear sigma model. Future
Monte Carlo simulations will be required to determine whether this dependence is a finite-size effect or further
evidence for a weak first-order transition.
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I. INTRODUCTION

Understanding the space of two-plus-one dimensional con-
formal field theories (CFT) remains a central challenge in
strongly interacting physics. In contrast to two-dimensions
[1], comparatively little is known about the space of possible
fixed points beyond large-N , supersymmetric, and pertur-
bative approaches. Where available, our knowledge relies
heavily on numerical Monte Carlo simulations, and more
recently, the conformal bootstrap, making it possible to com-
pare numerical estimates of scaling exponents with rigorous
analytic bounds. A class of particular interest is the deconfined
quantum critical points (DQCP), which are of interest both
to condensed matter, where they arise as Landau-forbidden
phase transitions between magnetic orders with differing or-
der parameters, and high energy, where they are thought to
provide realizations of the noncompact CP1 nonlinear sigma
model and QED3 [2–5]. While numerics support the basic
picture of an emergent SO(4) or SO(5) symmetry larger than
the microscopic one [6–8], it has proven difficult to obtain
converged scaling exponents, or even conclusively determine
whether the transition is a CFT [7,9–11]. Perplexingly, nu-
merical estimates of the vector operator’s scaling dimension
appear to contradict bounds from the conformal bootstrap
[12–14].

Previous numerical studies of the DCQP considered lattice
models of spins [6,15–24], 3D loop models [7,8,11], hard-
core bosons [25], or fermions [26,27]. In these models, many
of the symmetries, both internal and space-time, emerge only
in the IR. In this paper, we consider a continuum regular-
ization of the DQCP and other 3D CFTs which preserve
these symmetries exactly in the UV; rather than discretizing

space, the Hilbert space is made finite by Landau-level (LL)
quantization. The idea is to embed the critical fluctuations
into an N -component “flavor” degree of freedom carried
by itinerant fermions in the continuum [28]. The motion of
the fermions is then quenched by a strong magnetic field.
When the fermions fill N/2 of the N -fold degenerate LLs
(“half-filling”), fluctuations in the flavor-space give rise to a
nonlinear sigma model (NLSM). This is the famous problem
of quantum Hall ferromagnetism [29] realized experimentally
both in GaAs (N = 2) and graphene (N = 4). In the N = 4
case, the resulting SO(5) NLSM has the Wess-Zumino-Witten
term thought to stabilize a DQCP [30–33]. We demonstrate
that this model can be studied with both density-matrix renor-
malization group calculations and sign-free determinantal
quantum Monte Carlo (DQMC).

Models with exact UV symmetries have several potential
numerical advantages. The continuum formulation allows for
the model to be defined on any manifold, such as a sphere,
without introducing lattice defects. This should enable scaling
dimensions to be measured using the operator-state correspon-
dence, as well as explorations of the F -theorem [34]. Second,
this realization of the DQCP has an exact SO(4) or SO(5)
symmetry, whereas on a lattice it putatively emerges only in
the IR at the critical point. Because the model is essentially an
explicit regularization of an SO(5)-NLSM, it straightforward
to identify the microscopic operators corresponding to the
stiffness, vector, and symmetric-tensor perturbations of the
NLSM. As such, the DQCP should exist as a phase, e.g., with-
out tuning, which greatly simplifies scaling collapses, and the
chief question is whether the model actually flows to a CFT.

The paper is structured as follows. In Sec. II, we review
the model of electrons in graphene with N = 4 flavors, its
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Neél and valence bond solid (VBS) ordered phases, and the
SU(N ) anisotropies that drive the transition between them.
Section III contains the results of infinite density matrix renor-
malization group (DMRG) simulations, which are consistent
with a direct, continuous transition between a Néel and VBS
phase up to the largest system sizes. However, our estimate
of the SO(5) vector operator’s scaling dimension ranges from
�V ∼ 0.55 − 0.7 (with 2�V = 1 + η), depending on model
parameters (essentially the stiffness of the NLSM). Due to
the limited DMRG system size (cylinder circumference L �
12�B ), it is unclear whether this is a finite-size artifact or
a signature of a weak first-order transition. In Sec. IV, we
show that the model can be solved with sign-free determi-
nantal quantum Monte Carlo, allowing for simulations with
polynomial-complexity in system size, for which we present a
numerical benchmark and discuss the prospects for large-scale
simulations. We conclude by summarizing our results and
discussing future directions in Sec. V.

II. MODEL

The model is motivated by the physics of graphene in a
magnetic field, where N = 4 flavors of two-component Dirac
fermion �a, a = 1, 2, 3, 4, arise from the combination of val-
ley and spin degeneracy [33,35–37]. To rough approximation,
they are related by a U(4) flavor symmetry; letting Pauli
matrices τμ act on valley and σμ on spin (μ = 0 indicates
the identity), the generators are the 1 + 15 bilinears τμσ ν .
In reality, the SU(4) part is broken down to spin SO(3)
(generated by σμ) and a near-exact SO(2) valley-conservation
(generated by τ z) [38]. Microscopically, the two strongest
instabilities [35–37,39,40] which may spontaneously break
the SO(3) × SO(2) symmetry are antiferromagnetism, with
three-component Néel vector N = τ zσ , and the Kekule VBS
with order parameter eiφK = τ x + iτ y (because the valleys are
at different momenta, inter-valley coherence produces a VBS
distortion.) Together these form a maximal set of anticom-
muting terms �i = {τ zσ x, τ zσ y, τ zσ z, τ x, τ y}, the Clifford
algebra for SO(5).

For numerical purposes, the Dirac fermions must be regu-
larized, but rather than falling back to the honeycomb lattice,
we instead stick to the continuum and introduce a uniform
background magnetic field B orthogonal to the manifold.
The single-particle spectrum collapses into N = fourfold-
degenerate LLs, with energy spectrum εn = h̄v

�B
sign(n)

√
2|n|,

where �B is the magnetic length and v is the Dirac velocity.
At zero density, the fermions should fill two of the four n = 0
LLs, i.e., half fill the zeroth-LL (ZLL).

When the interactions are weak compared with to the
cyclotron splitting h̄v/�B , we can project them into the ZLL.
A phenomenological model capturing the resulting Néel and
Kekule instabilities is an SU(4)-symmetric contact interaction
U and anisotropies ui ,

HZLL = U

2

[
4∑

a=1

ψ†
a (x)ψa (x)

]2

−
5∑

i=1

ui

2

[
4∑

a,b=1

ψ†
a (x)�i

abψb(x)

]2

. (1)

Here ψa (x) is the field-operator of the ZLL, which can be
decomposed as ψa (x) = ∑Nφ

m=1 φm(x)ĉa,m for LL-orbitals φm

on a system pierced by Nφ = BV/2π�2
B flux quanta [41].

Because each LL has one state per magnetic flux, the Hilbert
space is now completely finite, with NNφ single particle states
on a surface pierced by Nφ flux.

The anisotropies ui favor either Néel (u1 = u2 = u3 =
uN > 0) or Kekule (u4 = u5 = uK > 0) order. A transition
between the two orders is driven by the difference uN −
uK , and for uN = uK there is an exact O(5) symmetry (the
inversion element arises from the antiunitary particle-hole
symmetry ψ → ψ†). Alternatively, taking u3 < u1 = u2, we
have an “easy-plane” model with at-most SO(4) symmetry.

The magnetic field quenches the kinetic energy, driv-
ing quantum Hall (anti)ferromagnetism, ni = 〈ψ†�iψ〉 �= 0
[29,42]. The order parameter n encodes which two of the four
LLs are filled. However, in contrast to the SU(4) symmetric
case (ui = 0), where the order parameter commutes with H
and hence doesn’t fluctuate, the anisotropies lead to fluctua-
tions. Extending the standard N = 2 theory of quantum Hall
ferromagnetism [29] on the O(5) line, these fluctuations are
captured by an SO(5)-NLSM (Euclidean) action [33,37]:

S = 1

2γ

∫
d3r (∂n)2 + SWZW[n] + . . . ,

SWZW[n] = 2πi

vol(S4)

∫
dt d3r εabcdena∂sn

b∂xn
c∂yn

d∂tn
e.

(2)

SWZW is the SO(5) Wess-Zumino-Witten term, whose pres-
ence we explain shortly [33]. Note that with a magnetic field,
the particle-hole symmetry CT still ensures the symmetry
n → −n.

The stiffness 1/γ of the NLSM is controlled by the repul-
sion U ; the exchange energy from large U leads to a stiff
(small γ ) NLSM [29]. Perturbing away from the O(5) line,
uN �= uK , will generate the “symmetric tensor” anisotropies
L � −(

∑
i uini )2. Hence there is a direct correspondence be-

tween the microscopic parameters U, ui and the stiffness and
symmetric-tensor perturbations of the NLSM, respectively.

The SO(5)-NLSM with topological term has been argued
to flow to the DCQP—unless it is too stiff, in which case the
SO(5) may break spontaneously [31,32]. So we conjecture a
two-parameter phase diagram in uN/U and uK/U , shown in
Fig. 1(a). Away from the O(5) line, the anisotropies reduce
the fluctuations and render the WZW term inoperative, so
we expect Néel or Kekule order. The O(5) line is a direct
transition between the two, which may either be first or second
order. If the NLSM is stiff (small ui/U ), the O(5) symme-
try will be spontaneously broken [37], which corresponds
to a first-order spin-flop transition. If the NLSM is floppy
(large ui/U ), the putative existence of DQCP could lead to
a continuous transition which will manifest as a critical line
uN/U = uK/U > u∗/U , described by an O(5)-symmetric
CFT on which the scaling dimensions are constant.

In contrast, the conventional Landau-Ginzburg-Wilson the-
ory of phase transitions requires either a first-order transition
or two independent continuous transitions. The two transitions
will generically be separated either by a region of phase
coexistence with both Néel and Kekule order or by a gapped
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FIG. 1. Schematics of two possible phase diagrams of the model.
(a) DQCP scenario. The AF and VBS orders are separated by a
line (uN = uK ) with manifest O(5) symmetry. For ui/U < w, the
symmetry is spontaneously broken, giving a first-order “spin-flop”
transition (solid line); for ui/U > w, there is a continuous transition
characterized by an O(5)-symmetric CFT (dotted line). This line
realizes the DQCP. Alternatively, it may be that a true CFT does
not exist and the transition is weakly first order for all U . (b) A
Landau-allowed scenario. For ui/U > w, the AF and VBS phases
are separated by two independent continuous transitions (dotted
lines) to a gapped paramagnetic phase, with a multicritical point at
uN = uK = wU .

(possibly topologically ordered) symmetric paramagnet, a
possibility illustrated in Fig. 1(b). The transitions can only
coincide when fine-tuned to a multicritical point. As we will
see, the numerics are in fact consistent with a direct transition
along the whole O(5) line, though (at present) we cannot
precisely determine whether the transition at high ui is truly
continuous or just weakly first order.

The presence of the SWZW term can be inferred by extend-
ing the theory of N = 2 ferromagnetic skyrmions [29,43] to
N = 4 [33]. When half-filling N = 2 flavors, it is well known
that skyrmions in the ferromagnetic O(3) order parameter n =
ψ†σψ carry electrical charge [29]. This response is captured
by the topological term Ltopo = A(n) · ∂tn + εμνρ

8π
Aμn · ∂νn ×

∂ρn, where A is the vector-potential of a monopole and A

is a probe U(1) gauge field. Moving on to N = 4, consider
a skyrmion in the antiferromagnetic order N = ψ†τ zσψ .
The antiferromagnet has filling ν = 1 in each valley, but
with opposite spin. So the N = 4 skyrmion is equivalent to
an N = 2 skyrmion in each valley independently, but with
opposite handedness (due to τ z). Thus, in contrast to a fer-
romagnetic skyrmion, the total charge is zero, but there is
valley-polarization 1 − (−1) = 2 under τ z, the generator of
the symmetry relating τ x/y . More generally, we invoke SO(5)
to conclude a skyrmion in any three of the five components
induces charge under the remaining two, and a vortex (meron)
under two of the five components carries spin-1/2 under
the remaining three. This is the physics of SWZW. A second
consequence of antiferromagnetism is the cancellation of the
A · ∂tn term to leading order, with fluctuations generating
(∂tn)2 [44].

III. INFINITE DMRG SIMULATIONS

In this section, we study the model on an infinitely long
cylinder of circumference L to use infinite density matrix

renormalization group (iDMRG) [45] numerical simulations.
The difficulty of the DMRG blows up exponentially with the
circumference, which (relative to the UV cutoff �B) restricts
us to smaller system sizes (L ∼ 12�B) than previous lattice
Monte Carlo simulations. Nevertheless, our results appear
consistent with the conjectured phase diagram of Fig. 1(a).

A. Method

After projecting the Hamiltonian in Eq. (1) into the
n = 0 LL, the contact interactions become familiar Haldane
V0 pseudopotentials. We then solve for the ground state on an
infinitely long cylinder of circumference L using the iDMRG
algorithm developed for multicomponent quantum Hall states
[46,47]. Our numerics exactly conserve the quantum numbers
of charge, spin, and valley, while the rest of the O(N ) symme-
try becomes manifest as the numerics converge.

Infinite-cylinder DMRG has two IR cutoffs: the cylinder
circumference L, and the finite “bond-dimension” χ (e.g.,
accuracy) of the DMRG numerics. The latter is the dimen-
sion of the matrices used in the matrix product state (MPS)
variational ansatz, which limits the amount of entanglement
in the state to S ∼ log χ , while the computation time goes as
χ3. By construction, an MPS with finite χ has exponentially
decaying correlations, 〈O(r )O(0)〉 � ae−r/ξ at large r for
some ξ called the MPS correlation length. Thus, at a 1+1D
critical point, where the system has algebraic correlations
〈O(r )O(0)〉 ∼ r−�O along the length of the cylinder, the MPS
ansatz can only capture the power-law decay out to a finite
length ξ (χ ). This leads to the idea of finite-entanglement
scaling (FES) [48,49]: near a critical point, the bond dimen-
sion χ introduces an additional χ -dependent length scale ξ ,
which can then be factored into any scaling collapse. In the
present case, the putative 2+1D critical point does not actually
dimensionally reduce to a 1+1D critical point on the cylinder
(see below). Nevertheless, at finite χ and large L, the ξ of
the MPS is not that of the true ground state, so we extract
properties from two-parameter scaling collapses in L and ξ .

B. Cylinder diagnostics of the 2D phases

The 2+1D phases we wish to distinguish are (1) an ordered
phase in which SO(2) is spontaneously broken (e.g., VBS,
XY, or Kekule order), (2) an ordered phase in which an
SO(N ) symmetry for N = 3, 4, or 5 is broken, (3) a gapped
paramagnetic phase, and (4) an SO(N ) CFT. The subtlety,
however, is that for fixed cylinder circumference L, each of
2, 3, 4 dimensionally reduces to a 1+1D gapped, symmetric
paramagnet, so we must elucidate how we distinguish them
within our numerics.

To do so, we place the O(N )-NLSM of Eq. (2) on a
cylinder. If the symmetry is spontaneously broken in 2+1D,
then we can take ∂yn ∼ 0 where y runs around the cylinder,
and obtain

Scyl = L

2γ

∫
dxdt (∂n(x, t ))2 + · · · . (3)

Here ∂ is the derivative in 1+1D, and the WZW term vanishes
because ∂yn = 0 (the skyrmions are gapped on the cylinder).
This is a 1+1D O(N ) NLSM without a topological term, and
with stiffness L/γ . For N > 2, this model is gapped, with a
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FIG. 2. Correlation length as a function of cylinder circumfer-
ence L and bond dimension χ , obtained from numerical iDMRG
simulations. (a) On the O(5) line, with small stiffness: U = 2, ū =
u3 = 1, m = 0. As χ is increased, ξ approaches a linear dependence
on size, ξ ∼ αL (dashed line), consistent with a CFT on the cylinder.
(b) On the O(5) line, with large stiffness: U = 10, ū = u3 = 1, m =
0. ξ (L) is concave-up (dashed line is an exponential fit to the first
four points at largest χ ), consistent with a weak first-order transi-
tion. (c) On the VBS side: U = 2, ū = 1, u3 = 0, m = −0.1. The
correlation length in the valley channel ξV diverges exponentially
with L (inset shows a semilogarithmic plot), clearly indicating a
symmetry-broken state.

finite correlation length ξ1D ∼ ae
2π N

N−2
L
γ [50]. For N = 2, the

system will have algebraic order, unless L/γ is small enough
to drive a Berezinskii-Kosterlitz-Thouless transition into a
disordered phase. Hence for cases (1) and (2), 2+1D sponta-
neous symmetry breaking will manifest as a ξ1D, which scales
exponentially with L (N > 2) or may be infinite (N = 2).

In contrast, for case (3), a 2+1D gapped paramagnet, the
ξ1D will saturate with L to the true ξ of the 2+1D phase.

Finally, for case (4) the system is a 2+1D CFT and we
cannot approximate ∂yn = 0. Scale invariance instead dictates
that ξ1D ∝ L, and the behavior of other observables can be
determined by conformal finite-size scaling in L.

C. Continuous transition

To assess the plausibility of the scenario shown in Fig. 1(a),
we first measure the scaling of ξ1D with L. We set u1 = u2 =
ū + m and u4 = u5 = ū − m, so that the AF-VBS transition
is driven by m (m = 0 defines the critical point), while u3 � ū

can be used to introduce easy-plane anisotropy. The repulsion
U sets the overall spin stiffness. In Fig. 2, we show the
correlation length ξ , defined by the dominant eigenvalue of
the MPS transfer matrix [51], for several representative points.
For m = 0 and small U (i.e., on the putative critical line), the
scaling of ξ ∝ L is perfectly linear. In contrast, for m �= 0
(i.e., in an ordered phase), or for m = 0 and large U (i.e., on

the putative first-order transition line), ξ grows superlinearly
and is well fit by an exponential dependence in both cases.
For m �= 0, the the exponential form is clear over more than a
decade, while for m = 0, large U , we can really only detect a
positive curvature, or concavity.

The linear-L behavior for small U is consistent with sce-
nario Fig. 1(a), though we cannot rule out a gapped paramag-
net, Fig. 1(b), with a correlation length ξ2D � 12�B greater
than the circumference we can access. Likewise, while the
superlinear behavior for large U indicates a region of first-
order behavior, we cannot rule out a transition which is weakly
first order along the whole m = 0 line. As U varies along
the m = 0 line, the curvature in ξ (L) onsets smoothly, and
becomes clear in our numerics for U � 5ū.

D. Scaling dimensions

To investigate the intriguing possibility of a CFT in the
small-U regime, we attempt to measure the scaling dimension
�V of the vector operator ni (r ) = ψ†(r )�iψ (r ). Assuming
conformal invariance, on the plane the two-point function is

Cij (r ) = 〈ni (r ) nj (0)〉 ∝ δij r
−2�V ,

where �V is the scaling dimension. Since the SO(5) symme-
try is exact in our numerics, we can restrict to a single Cii (for
SO(4), i �= 3). On the cylinder, we measure �V via the total
squared “magnetization” Mi ,

M2
i (L) ≡

∫
R

dx

∫ L

0
dy Cii (x, y). (4)

The dependence on the cylinder circumference L is easily
isolated via scaling collapse:

M2
i (L) = L2−2�V M2

i (1). (5)

Thus, in principle, �V can be extracted from M2
i (L) using a

one-parameter finite-size scaling collapse.
This picture is complicated by the finite bond dimension

χ in our iDMRG numerics, which, as discussed earlier, in-
troduces a second length cutoff in the problem in the form
of a finite correlation length ξ . So we calculate M2

i (L) for a
range of values of L and χ , with the latter parameterized via
the MPS correlation length ξ , and collapse the data using the
scaling form

M2
i (L, ξ ) = L2−2�V f (ξ/L). (6)

For large enough circumference (L � 8�B), we find that there
exists a value of �V , typically determined to within ±0.01,
such that the data for different L up to 12�B collapse onto
the scaling form of Eq. (6). An example is shown in Fig. 3.
Similar behavior is found across much of the parameter space
(we sit at the critical point, m = 0, and assume ū > 0, leaving
the two independent parameters U/ū and u3/ū).

In Fig. 4, we show the variation of the estimated �V along
two cuts in parameter space, one on the O(5) line and one
in the SO(4) region. The value of the scaling dimension �V

(as well as the accuracy of the collapse) drifts with U, u3,
with large U having lower �V and worse collapse. The con-
jectured O(N )-symmetric CFT should yield one well-defined
value for �V for N = 4, 5, respectively, so the dependence
we observe is either a finite-size artifact or evidence that a
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FIG. 3. Two-parameter scaling collapse of M2
i on the SO(5)

line, ui ≡ ū, with U = 0.5ū. The data is obtained from iDMRG
simulations with bond dimensions χ ranging from 2000 to 32 000
(leftmost to rightmost points at each size). The solid line shows a
polynomial fit to data points with L � 8�B and represents the scaling
function f (ξ/L) in Eq. (6); �V is chosen so as to minimize the
error of the fit. Inset: Data for U = 10ū (large stiffness) show poor
collapse and returns an estimate of �V in severe violation of the
unitarity bound, �V > 0.5.

weak -first-order transition persists to higher ui/U that can
be detected from the superlinear scaling of ξ . Indeed, at large
U, �V violates the unitarity bound �V � d

2 − 1 = 1
2 , while

lowering U takes �V up to ∼0.7 (U can be reduced down to
U � −2.6ū, at which point the attractive interaction leads to

FIG. 4. Measured scaling dimension �V along two cuts in pa-
rameter space at m = 0 and ū = 1: u3 = 1 (O(5) symmetry) and
u3 = 0.9 (SO(4) symmetry). Note that while we refer to U/ui as
the stiffness, making the region U < 0 seem unphysical, the ui

themselves lead to a repulsive interaction, which prevents phase-
separation for U � −2.6. For u3 > 1, the system polarizes into an
easy-axis Néel state.

phase separation). Due to the limited system size, it is difficult
to determine where (if anywhere) the weak first-order line
becomes a CFT.

The easy-plane anisotropy (u3 < ū) breaks O(5) down to
SO(4) and makes the model stiffer. A moderate value like
u3 = 0.9ū (used in Fig. 4) lowers �V slightly, while a large
anisotropy like u3 = 0 makes the transition strongly first
order.

In conclusion, while iDMRG simulations do not provide a
definitive numerical prediction for the scaling dimension �V ,
they are consistent with a continuous transition characterized
by an exponent �V somewhat larger than the unitarity bound,
in agreement with earlier calculations on the cubic dimer
model [52,53], the JQ model [16,54–56], loop models [8],
or large-N expansion of the CPN−1 field theory [57], all of
which place the vector dimension �V in the range 0.57 to
0.68.

IV. SIGN-FREE DETERMINANTAL
QUANTUM MONTE CARLO

We now show that the model is amenable to sign-free
determinantal quantum Monte Carlo, due to a combination
of particle-hole and flavor symmetry, leading to an algorithm
with polynomial complexity in system size.

We consider a quantum Hall Hamiltonian of the general
form

H = 1

2

∑
i

∫
d2r ni (r)Ui (r − r′)ni (r′) (7)

= 1

2V

∑
i

∫
d2q ni

−qU
i (q)ni

q (8)

in real and Fourier space, respectively (V is volume). On the
sphere, the Fourier transformation can be replaced by a spher-
ical harmonic decomposition. Here ni (r) = ψ†(r)Oiψ (r),
where O acts on the flavor index. Without loss of generality,
we take O = O†, so that n is Hermitian. After LL projection
on a circumference L cylinder in Landau gauge, the single
particle orbitals are labeled by their momenta around the
cylinder, k = 2π

L
m for m ∈ Z, and flavor index a. The density

operators are expanded in annihilation operators ĉk,a as [58]

ni
q = e−q2�2

B/2
∑
a,b,k

e−ikqx�
2
B ĉ

†
k+qy/2,aO

i
abĉk−qy/2,b. (9)

On the torus, the same form carries through after identifying
k ∼ k + L/�2

B , up to exponentially small terms in �B/L.
In the auxiliary field method, the interactions are decoupled

using bosonic Hubbard-Stratonovich fields “φ.” There are a
variety of possible channels for this decomposition, including
the Cooper channel, but as a proof-of-principle we present
here the obvious choice nqi - n−qi . We introduce Hermitian
Hubbard-Stratonovich fields φqi = φ̄−qi for each operator
type, so that a small time step can be decomposed as

e−dτH ∼
∏
i,q′

∫
dφqi e

−dτ |φqi |2+dτ
√

−Ui (q)/V

(
ni

qφ̄qi+H.c.

)
, (10)

up to normalization and the usual Trotter errors. Note that
because of LL projection, [ni (r), ni (r′)] �= 0. Multiplying
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over imaginary time steps and integrating out the fermions,
we obtain an auxiliary field path integral of the general form

Z = Tr(e−βH ) =
∫

D[φ]e−S[φ]M[φ], (11)

S[φ] =
∑
i,q

∫
dτ |φqi (τ )|2, (12)

where M[φ] is the fermion determinant for auxiliary field
space-time configuration φq(τ ).

The problem is sign free if M[φ] � 0 for all φ. A suffi-
cient criteria for a sign-free determinant is the existence of
two antiunitary symmetries T1, T2 such that T 2

1 = T 2
2 = −1

and T1T2 = −T2T1. The symmetry must exist for any auxil-
iary field configuration [59–61]. Time reversal is broken by
the magnetic field, but at half-filling there is an antiunitary
particle-hole operation PH, which exchanges empty and filled
states of the LL:

PH αψa (r ) PH−1 = ᾱψ†
a (r ), (13)

PHĉkaPH−1 = ĉ
†
ka. (14)

For Hermitian ni, PH acts as PH ni (r) PH−1 = −ni (r), or
PH ni

q PH−1 = −ni
−q. (If Tr(Oi ) �= 0, the operators first need

to be shifted according to ni (r) → ni (r) − Tr(Oi ); we leave
this shift implicit). PH can be combined with a unitary trans-
formation X acting on the flavor index, and we will take
Tg = XgPH, g = 1, 2. The symmetry condition is

Oi = sign(Ui (q))XgO
iX†

g. (15)

For a repulsive channel (Ui > 0), Oi must be even under
Xg , while for an attractive one (Ui < 0), Oi must be odd.
To be sign-free, we must have T 2

g = XgXg = −1 and T1T2 =
X1X2 = −X2X1 = −T2T1. Note that PH is different than
time reversal in this respect; the first condition can always be
satisfied by a phase redefinition Xg → iXg .

For the problem at hand, it seems we have Oi = �i , i =
1, · · · , 5 with Ui (q) = −ui < 0, plus the density channel
O0 = 1. But with this decomposition, it is impossible to
find the two required Xg , because the � are by definition
a maximally anticommuting set. Fortunately, for contact in-
teractions we may use a Fierz identity (see Appendix) and
instead consider [37]

H = g

2
(ψ†ψ )2 + 1

2

∑
μ=x,y,z

gμ(ψ†τμψ )2, (16)

where g = U + uN, gx = −uN − u4, gy = −uN − u5, and
gz = 2uN . The region of interest is g, gz > 0 and gx, gy < 0.
Decomposing in the density channels associated to these g,
it is now easy to verify that X1 = iτ zσ x and X2 = iτ zσ y

satisfies the sign-free condition. To handle the SO(4) case, we
can reduce |g4| from its SO(5) value.

The sign-free condition can be seen more explicitly from
Eq. (16) because the determinant M factorizes by spin,
M[φ] = M↑[φ]M↓[φ]. This is because the Oi are all diagonal
in spin along direction σ z, so the densities decompose as ni =
ni

↑ + ni
↓, [ni

↑, n
j

↓] = 0. The spin-exchanging antiunitaries Tg

ensure M↑ = M∗
↓, so the partition function can be evaluated

by restricting to the ↑ orbitals,

Z =
∫

D[φ]e−S[φ]|M↑[φ]|2. (17)

This restriction reduces the dimension of the linear algebra
routines from 4Nφ → 2Nφ .

Note the same reasoning carries through for projector (zero
temperature) DQMC. Restricting to spin ↑, an admissible
starting state |�〉 is a single filled-LL pointing along an
arbitrary direction in valley space.

Implementation

The structure of the determinant is rather different than
the Hubbard model’s, so we discuss and demonstrate a naive
implementation of the DQMC as a proof of principle. An
optimized large-scale implementation will be presented in
future work.

We first analyze the number of fields φi
q required for each

time step. On an L × L torus pierced by Nφ = L2/2π�2
B flux,

the fields ni
q in principle run over the infinite set of momenta

q ∈ 2π
L

(m, n) (though only N2
φ of these are linearly inde-

pendent). However, from Eq. (9) we see that the interaction
strength is effectively

Ui
LLL(q) ≡ Ui (q)e− 1

2 q2�2
B . (18)

Thus the component of the interaction with q < ��−1
B is cut

off and we can safely keep only Nq = Nφ� of the modes with
an error that decreases exponentially with �. There are now
O(Nφ ) auxiliary fields per time slice, just as there would be in
the Hubbard model.

However, in contrast to the real-space density operators of
the Hubbard model, the single-particle operators ni

q are full
rank. For low-rank operators, the Sherman-Morrison formula
can be used to update each of the Nφ HS fields in time N2

φ ,
while for a generic full-rank update takes time N3

φ . As a
result, for inverse temperature β and system size V = 2Nφ ,
the highly naive implementation we demonstrate here (a brute
force recalculation of the determinant via an LU decomposi-
tion!) scales as O(βV 4) per sweep, while the usual Hubbard
DQMC scales as O(βV 3) [59]. Although slow, this single
spin-flip DQMC allows for the use of discrete fields and can
be implemented in the ALF package [62].

However, the ni
q do have special structure—they can be

diagonalized by a fast-Fourier transform—which allows for
matrix-vector products in time Nφ log(Nφ ) rather than the
generic N2

φ . As a consequence, computing the forces required
for a Langevin or hybrid Monte Carlo step [63] has a cost
of O(βV 3). At face value, Langevin and hybrid Monte Carlo
sampling seem more efficient, but can suffer from singularities
in the forces as well as ergodicity issues [64]. A detailed
analysis of the most efficient way to implement the DQMC
for the present problem is left for future work.

As a simple test of the proposal, we consider the 2+1D
transverse field Ising model, which can be embedded into
the N = 4 model by choosing U = 0, u1 = u2 = u3 = u4 =
0, u5 = J , and introducing an additional transverse field
hψ†τ xψ (fields along τ x/y preserve the sign-free condition).
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FIG. 5. DQMC result for the embedding of the transverse field
Ising model into the half-filled Landau level. We plot the squared
Ising magnetization M2 at transverse field h = 0.1, as a function of
the Ising coupling J . Data is scaled by L2�−2, where � ∼ 0.259
is the known scaling dimension of the Ising magnetization. As
expected, the data shows a crossing around J ∼ 1.

The ratio h/J should tune an ordered-disordered transition
with Ising order parameter M = 〈n5〉.

We present the results of a small projector DQMC simula-
tion in Fig. 5. Rather than extrapolate to zero temperature, we
evolve a transverse-polarized state |→〉 to finite β ∝ √

Nφ ,

e.g., |β〉 = e−βĤ |→〉. In units with �B = e2

4πε0�b
= 1, we

take β = 5
√

Nφ and �τ = 0.25 with a second-order Trotter
decomposition and measure the total magnetization-squared
M2 = 〈(n5

q=0)
2〉Nφ

. After scaling, the data show the crossing
predicted by an Ising transition.

In addition, we have also checked the energy against exact
diagonalization for Nφ � 3 for both the Ising model and for
SO(5)-symmetric ui .

V. DISCUSSION

In this paper, we have discussed how several 2+1D quan-
tum phase transitions, including DQCP, can be realized in
half-filled continuum LLs which exactly preserve internal
and spatial symmetries, which would otherwise be realized
only in the IR. The approach can be understood as a fully
continuum regularization of an O(N ) nonlinear sigma model.
These models can be studied using DMRG, and despite the
broken time reversal, sign-free determinantal quantum Monte
Carlo.

While the DMRG system size (L = 12�B) is much smaller
than previous QMC results, we do see behavior in rough
agreement. Specifically, in QMC exponents drift slowly with
system size (�V flows downward), indicating that the transi-
tion is either weakly first order or has unconventional correc-
tions to scaling [8]. While we cannot detect such a finite-size
drift given our small L, we do observe a complementary
phenomenon. Our model allows us to tune a parameter, the

stiffness U , which (if the DCQP exists) should be irrelevant.
The estimate of the scaling dimension �V instead changes
with U ; for large U, �V is reduced and eventually violates
the unitarity bound before the transition becomes clearly
first order. The largest value we observe is �V ∼ 0.7, or
η ∼ 0.4. This estimate still slightly violates the best bounds
from conformal bootstrap when assuming SO(5) symmetry
[12–14].

Going forward, the crucial question is whether sign-free
DQMC simulations will be able to reach the system sizes
required to shed new light on this issue. If so, the continuum
realization may have significant advantages because we can
directly identify the NLSM stiffness, SO(5) vector opera-
tor, and symmetric-tensor perturbations without tuning. This
should greatly simplify the scaling analysis to investigate,
for instance, whether a nearby nonunitary CFT generates a
conformal window at scales above the first-order transition
[5,7,11,65]. The stiffness U could be used to control how long
the flow stays in the conformal window.

A second question is which other CFTs might be realized in
this fashion. When half-filling N = 4 LLs, we have a sign-free
realization of the O(M ) Wilson-Fisher fixed point for M =
1, 2, 3 and O(M ) DCQPs for M = 4, 5. It will be interesting
to investigate what other models are sign-free when using
N > 4LLs, or even attacking five-dimensional CFTs using the
quantum Hall effect in 4 + 1 dimensions.
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APPENDIX: EQUIVALENT PARAMETRIZATIONS
OF SU(4) ANISOTROPIES

Here we review the Fierz identities used to relate the two
parametrizations of SU(4) anisotropies used in this paper, e.g.,
that Eq. (1) is equivalent to

H = H0 + 1

2

∑
μ=x,y,z

gμ(ψ†τμψ )2 ,

with gx = gy ≡ g⊥. This parametrization allows a more direct
conversion to experimental parameters [39,40], and is cru-
cial in the implementation of sign-free determinant quantum
Monte Carlo in Sec. IV.

The equivalence can be proven by making use of a version
of the Fierz identities, which we derive in the following.
We start by considering the set of matrices {Oi} = {σaτ b},
with a, b ∈ {0, 1, 2, 3}. These form a basis of 4 × 4 matri-
ces. Therefore, the tensor products {Oi ⊗ Oj } form a basis
of 16 × 16 matrices, and one can perform the following
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decomposition:

Oi
αβOi

γ δ =
∑
j,k

bijkO
j

αδO
k
γβ , (A1)

where the greek indices run over electron flavors and b is a
matrix of coefficients. We insert Om

δαOn
βγ on both sides of

Eq. (A1) and contract all flavor indices, obtaining

Tr(OiOnOiOm) =
∑
j,k

bijkTr(OjOm)Tr(OkOn) .

The Oi are trace orthogonal, with Tr(OiOj ) = 4δij . More-
over, any two O operators either commute or anticommute,
and each O squares to the identity. Using these facts, we
obtain

bimn = 1
16 Tr(OiOmOiOn) = ± 1

16 Tr(OmOn) = ± 1
4δmn ,

with the ± sign decided by whether Oi and Om commute or
anticommute. We can finally rewrite Eq. (A1) as

(ψ†(x)Oiψ (x))2 = −
∑

j

bij (ψ†(x)Ojψ (x))2 , (A2)

bij =
{

+1/4 if OiOj = OjOi ,

−1/4 if OjOi = −OiOj .
(A3)

The extra sign comes from the Fermi statistics of the ψ

operators.
Direct application of Eq. (A2) shows that

(ψ†τ zψ )2 −
∑
a=4,5

(ψ†�aψ )2 + (ψ†ψ )2

= −(ψ†τ zψ )2 −
∑

a=1,2,3

(ψ†�aψ )2 ,

which implies

(ψ†τ zψ )2 = −1

2
(ψ†ψ )2 − 1

2

∑
a=1,2,3

(ψ†�aψ )2

+ 1

2

∑
a=4,5

(ψ†�aψ )2. (A4)

This identity allows us to map the two parametrizations:

V

2
(ψ†ψ )2 + g⊥

2

∑
μ=x,y

(ψ†τμψ )2 + gz

2
(ψ†τ zψ )2

= U

2
(ψ†ψ ) − uN

2

∑
a=1,2,3

(ψ†�aψ )2 − uK

2

∑
a=4,5

(ψ†�aψ )2

(A5)

with

U = V − 1
2gz, uN = 1

2gz, uK = −g⊥ − 1
2gz . (A6)
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