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Two-particle generalized susceptibilities and their irreducible vertex functions play a prominent role in
the quantum many-body theory for correlated electron systems. They act as basic building blocks in the
parquet formalism which provides a flexible scheme for the calculation of spectral and response functions. The
irreducible vertices themselves have recently attracted increased attention as unexpected divergences in these
functions have been identified. Remarkably, such singularities appear already for one of the simplest strongly
interacting systems: the atomic limit of the half-filled Hubbard model (Hubbard atom). In this paper, we calculate
the analytical expressions for all two-particle irreducible vertex functions of the Hubbard atom in all scattering
channels as well as the fully irreducible two-particle vertices. We discuss their divergences and classify them
by the eigenvalues and eigenvectors of the corresponding generalized susceptibilities. In order to establish a
connection to the recently found multivaluedness of the exact self-energy functional �[G], we show that already
an approximation akin to iterated perturbation theory is sufficient to capture, qualitatively, the divergent structure
of the vertex functions. Finally, we show that the localized divergences in the disordered binary mixture model
are directly linked to a minimum in the single-particle Matsubara Green’s function.
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I. INTRODUCTION

One of the most successful tools for the theoretical de-
scription of strongly correlated electron systems are one- and
many-particle Green’s functions. They give access to a large
number of experimentally measurable observables [1,2], such
as the spectral function, the magnetic susceptibility, and the
optical conductivity, which provide essential insights into the
physics of realistic as well as model many-electron systems.
Unfortunately, the one- and more-particle Green’s functions
are often very challenging to calculate in the presence of
strong interactions between the particles. A breakthrough in
this respect came with the advent of dynamical mean field
theory (DMFT) [3,4] which maps the problem of correlated
electrons on a lattice onto a single Anderson impurity model,
i.e., a site which is embedded self-consistently into a dynamic
bath. The Green’s functions calculated within this approach
include all purely local correlations in the system while nonlo-
cal correlation effects are captured only on a mean field level.
DMFT has been successfully exploited for describing many
fascinating phenomena in correlated materials, such as the
celebrated Mott metal-to-insulator transition [5], the volume
collapse in Ce [5], magnetism in transition metals [6,7], and
electronic entanglement in transition metal oxides [8]. The
coherent potential approximation (CPA) serves a similar role
in noninteracting disordered systems [9].

Self-consistent DMFT and CPA schemes are built around
one-particle quantities, such as the local self-energy �(ν) and
the lattice Green’s function Gk(ν) [4]. Nevertheless, in order
to calculate nonlocal response functions (spin, charge and

pairing susceptibilities, optical conductivity, Hall coefficient,
etc.) in the framework of DMFT and CPA, also the local
two-particle generalized susceptibilities χνν ′ω

r are required as
input to the Bethe-Salpeter (BS) equations [4,10,11]. In addi-
tion, the susceptibilities serve as building blocks for various
diagrammatic extensions of DMFT [12] as the diagrammatic
vertex approximation [13,14] (D�A), the dual fermion (DF)
method [15,16], and the quadruply irreducible local expansion
(QUADRILEX) [17,18] approach.

Recently, a lot of attention has been directed towards the
properties of the generalized susceptibilities as they, unexpect-
edly, can become singular [11,19–24] in the intermediately
to strongly correlated or disordered regime. The singular
points are directly linked to eigenvalues of χνν ′ω

r , for a fixed
bosonic frequency ω, that go from positive to negative when
the interaction or disorder increases, and thus cross zero
[11,22]. This implies that the corresponding local two-particle
irreducible vertex (�νν ′ω

r ) [10,11,25] as well as the local fully
irreducible vertex �νν ′ω of the parquet formalism [26], diverge
at these points. Let us stress that this behavior is not an artifact
of the approximation introduced by the DMFT or CPA method
as it is also observed in the case of infinite dimensions where
these techniques provide an exact solution.

The singularities of �νν ′ω
r and �νν ′ω are typically accom-

panied by crossings [27] of branches of the derivative of
the Luttinger-Ward functional [28,29] �[G], i.e., the self-
energy functional �[G]=δ�[G]/δG. It has been shown [30]
that such crossings lead to divergences in �νν ′ω

r . In this re-
spect, apart from being an indicator for the onset of (strong)
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correlations in a many-electron system, these divergences also
limit the applicability of so-called bold diagrammatic Monte
Carlo methods [31,32] which sample the functional �[G] by
means of a Metropolis algorithm. In addition, the divergences
of the exact fully irreducible vertex �νν ′ω restrict the applica-
bility of diagrammatic extension of DMFT, which are based
on this quantity [33,34], and imply that the parquet approxi-
mation [10,33–37], in which �νν ′ω is replaced by its lowest-
order (static) contribution U , must be applied with care. In
simplified versions of the parquet equations (exploited, e.g.,
by the ladder approximations of D�A and DF [15,38]), which
neglect the mutual screening of the channels, the singularities
of �νν ′ω

r and �νν ′ω can be in principle circumvented. However,
it is currently unknown whether this approximation becomes
less appropriate once the generalized susceptibilities start to
become singular.

A better understanding of the singular structure of the
generalized susceptibilities χνν ′ω

r can help to address these
questions and issues. Unfortunately, it is often difficult to
draw definite conclusions based on purely numerical simu-
lations, as numerical instabilities may hide asymptotic trends.
Moreover, the quality of numerical results for �νν ′ω

r is limited
by systematic truncation errors in the BS equations due to
the restriction to a finite number of fermionic frequencies.
Although recently methods have been suggested [11,39–42]
to improve the treatment of the high-frequency asymptotic
regime in the BS equations, many multiorbital applications
are still limited by the high numerical cost. Hence, analytical
expressions for �νν ′ω

r and �νν ′ω, and in particular for the
eigenvalues and eigenvectors of χνν ′ω

r , are highly desirable.
While for noninteracting disordered systems, such as the

binary mixture (BM) or the Falicov-Kimball model (FKM),
analytical results are indeed available [20,43–46], no exact ex-
pressions are known for interacting systems. In this paper, we
will fill this gap by presenting analytical results for �νν ′ω

r and
�νν ′ω in a prototypical correlated system: the Hubbard model
at half-filling in its atomic limit (referred to as Hubbard atom
or simply AL in the following). Despite its very simple form
this model exhibits complex two-particle correlations that
display the above-mentioned singular structures [19,22,30]. A
subsequent analysis of the derived analytic formulas for �νν ′ω

r ,
directly linked to the eigenvalues and eigenvectors of χνν ′ω

r ,
provides therefore a step towards a deeper understanding of
these divergences and the relation to the multivaluedness of
the functional �[G]. Finally, the results of this paper can
serve as a starting point for approximations to more complex
strongly correlated systems.

The paper is organized as follows: In Sec. II we recall the
basic formalism of two-particle correlation functions for the
Hubbard atom. In Sec. III we present our analytical results
for the two-particle irreducible vertices in all channels, while
in Sec. IV we analyze their divergences in terms of the
eigenvalues and eigenvectors of χνν ′ω

r . In Sec. V we obtain a
direct relation between the singularities of the irreducible ver-
tex and the multivaluedness of the Luttinger-Ward functional
by adopting an approximate expression for the (otherwise
unknown) functional �[G]. In Sec. VI we briefly outline pos-
sible interpretations of the vertex divergences and in Sec. VII
we allow ourselves to briefly speculate on the connection
between the divergences of �νν ′ω

r and specific features of the

single-particle Green’s function. Finally, Sec. VIII is devoted
to the conclusions and an outlook.

II. TWO-PARTICLE CORRELATION FUNCTIONS
FOR THE AL

In the following, we will introduce the one- and two-
particle Green’s functions and the related generalized suscep-
tibilities, as well as the two-particle irreducible vertex func-
tions of a many-electron system. While in Sec. II A the general
definitions of these quantities are given, Sec. II B reviews
the explicit expressions of the generalized susceptibilities of
the half-filled Hubbard atom. As these subjects have been
already discussed extensively in the literature, we will here
just recapitulate the main points which are relevant for this
work. For a more comprehensive discussion of the general
two-particle formalism we refer the reader to the literature,
in particular to Refs. [10–12].

A. General definitions and formalism

The Hubbard atom corresponds to an isolated s orbital with
an effective Coloumb interaction U between the electrons.
The chemical potential is set to U/2 to enforce particle-hole
symmetry and half-filling, and in the absence of a magnetic
field the system is also SU(2) symmetric with respect to the
spin. Its Hamiltonian reads as

Ĥ = Un̂↑n̂↓ − U

2
(n̂↑ + n̂↓), (1)

where n̂σ = ĉ†σ ĉσ and ĉ(†)
σ (creates) annihilates an electron with

spin σ =↑,↓. The one-particle Green’s function of this model
is given by

G(ν) = 1

iν − U 2

4iν

, (2)

where ν = π
β

(2n+1), n∈Z, is a fermionic Matsubara fre-
quency, and β =1/T denotes the inverse temperature. Below,
we will also use bosonic Matsubara frequencies which we
denote as ω= π

β
2m, m∈Z.

The generalized susceptibility which is required for the
calculation of the two-particle irreducible vertex functions is
defined as

χνν ′ω
ph,σσ ′ =

∫ β

0
dτ1dτ2dτ3 e−iντ1ei(ν+ω)τ2e−i(ν ′+ω)τ3

× [〈Tτ c
†
σ (τ1)cσ (τ2)c†σ ′ (τ3)cσ ′ (0)〉

− 〈Tτ c
†
σ (τ1)cσ (τ2)〉〈Tτ c

†
σ ′ (τ3)cσ ′ (0)〉]. (3)

Here, Tτ is the time-ordering operator and 〈. . .〉=
1
Z

Tr(e−βĤ . . .) denotes a thermal expectation value with

Z=Tr(e−βĤ). The assignment of the frequencies ν, ν+ω,
and ν ′+ω to the imaginary times τ1, τ2, and τ3, respectively,
corresponds to the so-called particle-hole (ph) notation [11].
Analogously, one can express the generalized susceptibility
in the particle-particle (pp) representation which is obtained
from the ph one by a frequency shift, here defined as

χνν ′ω
pp,σσ ′ ≡ χ

νν ′(−ω−ν−ν ′ )
ph,σσ ′ . (4)
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The different physical interpretations of these two notations
as particle-hole and particle-particle scattering amplitudes are
discussed in detail in Ref. [11]. Note that with respect to the
latter, here we have defined (for convenience) the pp notation
with an additional minus sign for the bosonic frequency ω.

For the SU(2) symmetric case considered here, it is con-
venient to use the spin-diagonalized versions of the gener-
alized susceptibilities in the particle-hole as well as in the
particle-particle notation. This corresponds to defining the
r = d(ensity),m(agnetic), s(inglet), t(riplet) generalized sus-
ceptibilities1:

χνν ′ω
d = χνν ′ω

ph,↑↑ + χνν ′ω
ph,↑↓, (5a)

χνν ′ω
m = χνν ′ω

ph,↑↑ − χνν ′ω
ph,↑↓, (5b)

χνν ′ω
s = ( − χνν ′ω

pp,↑↑ + 2χνν ′ω
pp,↑↓ − 2χνν ′ω

0,pp

)
/4, (5c)

χνν ′ω
t = (

χνν ′ω
pp,↑↑ + 2χνν ′ω

0,pp

)
/4, (5d)

where the bare particle-hole and particle-particle susceptibili-
ties are defined as2

χνν ′ω
0,d/m = χνν ′ω

0,ph = −βG(ν)G(ν + ω)δνν ′ , (6a)

χνν ′ω
0,s/t = χνν ′ω

0,pp = −β

2
G(ν)G(−ν − ω)δνν ′ . (6b)

The irreducible vertex functions �νν ′ω
r in all four channels

(d,m, s, t) can be obtained from the generalized and bare
susceptibilities by means of the BS equations [11]

±χνν ′ω
r = χνν ′ω

0,r − 1

β2

∑
ν1ν2

χ
νν1ω
0,r �ν1ν2ω

r χν2ν
′ω

r , (7)

where on the left-hand side of this equation one has to take
the plus sign for r = d,m, t while for r =s the minus sign

has to be considered. Equation (7) can be interpreted as a
matrix equation for a fixed value of the bosonic frequency ω

where the (discrete) fermionic frequencies ν and ν ′ represent
the matrix indices. It can be solved for �νν ′ω

r by means of a
matrix inversion with respect to ν and ν ′ which yields

�νν ′ω
r = β2

(
χ−1

r ∓ χ−1
0,r

)νν ′ω
, (8)

where for r =d,m, t the minus sign and for r =s the plus sign
has to be taken.

As χνν ′ω
0,r is a diagonal matrix with only nonzero entries, its

inverse is finite. Consequently, all divergences in �νν ′ω
r must

originate from the inversion of χνν ′ω
r which will be analyzed

explicitly in Sec. III.

B. Explicit expressions for the atomic limit

As shown in Appendix A, the particle-hole and spin SU(2)
symmetry of the Hubbard atom entail the relation

χνν ′ω
σσ ′ = χ

(−ν−ω)(−ν ′−ω)ω
σσ ′ , (9)

in both the particle-hole and particle-particle notations. The
generalized susceptibilities can therefore be decomposed into
a symmetric (χνν ′ω

r,S ) and an antisymmetric (χνν ′ω
r,A ) part with re-

spect to the transformation ν →−ν − ω. In the following, it is
also convenient to explicitly keep track of the diagonal terms
proportional to δνν ′ and δν(−ν ′−ω). A particular feature of the
atomic limit at half-filling is that its nondiagonal contributions
can be factorized with respect to ν and ν ′. Hence, the general
expression for the generalized susceptibility can be written in
a unified form for all four channels as (see Refs. [11,25,47])

diagonal︷ ︸︸ ︷
χνν ′ω

r = aνω
0,r [δνν ′ − δν(−ν ′−ω)]︸ ︷︷ ︸+ bνω

0,r [δνν ′ + δν(−ν ′−ω)] +
∑2

l=1
bνω

l,r b
ν ′ω
l,r︸ ︷︷ ︸ . (10)

antisymmetric, χνν ′ω
r,A symmetric, χνν ′ω

r,S

The functions aνω
0,r , bνω

0,r , bνω
1,r , and bνω

2,r are defined as

aνω
0,r = Ar

0
β

2

[
ν(ν + ω) − A2

r

](
ν2 + U 2

4

)[
(ν + ω)2 + U 2

4

] , (11a)

bνω
0,r = Br

0
β

2

[
ν(ν + ω) − B2

r

](
ν2 + U 2

4

)[
(ν + ω)2 + U 2

4

] , (11b)

bνω
1,r = Br

1

√
U

(
1 − Cω

r

)[
ν(ν + ω) − Dω

r

]
(
ν2 + U 2

4

)[
(ν + ω)2 + U 2

4

] , (11c)

1Note that the definitions for the singlet (s ) and triplet (t ) suscepti-
bilities differ slightly from the corresponding ones given in Ref. [11]
[Eqs. (B19) therein] in order to render the BS equations uniform in
all channels.

bνω
2,r = Br

2

√
U 3

4

√
U 2

1−Cω
r

+ ω2(
ν2 + U 2

4

)[
(ν + ω)2 + U 2

4

] , (11d)

where Dω
r is given by

Dω
r = U 2

4

1 + Cω
r

1 − Cω
r

. (12)

The channel-dependent prefactors Ar
0, Br

0, Br
1, and Br

2 as
well as the channel-dependent constants Ar , Br , and Cω

r

2A factor 1
2 is included in the bare particle-particle susceptibility

in order to take into account the indistinguishability of two particles
which requires exactly such prefactor in the BS equation in the pp
channel (see Appendix B in Ref. [11]). Hence, the transformation
between the bare particle-hole and particle-particle susceptibility
requires, in addition to the frequency shift discussed above for the
full generalized susceptibilities, an additional factor 2.
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TABLE I. Prefactors Ar
0, Br

0, Br
1, and Br

2 and constants Ar, Br ,
and Cω

r for the definition of the generalized susceptibilities χνν′ω
r in

the four channels r = d,m, s, t . i denotes the imaginary unit which
appears in Br

1 and Br
2 due to a negative sign of a factorized term [see

last two summands in the definition of χνν′ω
r in Eq. (10)].

d m s t

Ar
U

2

√
3 i U

2 0 i U

2

Br
U

2

√
−1+3eβU/2

1+eβU/2 −U

2

√
−1+3e−βU/2

1+e−βU/2
U

2

√
−1+3eβU/2

1+eβU/2 0

Cω
r

βU

2
δω0

1+eβU/2 − βU

2
δω0

1+e−βU/2
βU

2
δω0

1+eβU/2 0

Ar
0 1 1 1

2 − 1
2

Br
0 1 1 1

2 − 1
2

Br
1 i 1 i√

2
0

Br
2 1 i 1√

2
0

(which depends on ω only via δω0) are given in Table I. Here,
we note that the factor

√
3 in Ad arises from the addition

of the antisymmetric parts of χνν ′ω
ph,↑↑ and χνν ′ω

ph,↑↓ in Eq. (5a)

and, hence, reflects the spin- 1
2 nature of the particles (see also

Sec. V).

III. ANALYTICAL CALCULATION OF �r

Due to the special structure (10) of χνν ′ω
r , the matrix

inversion in Eq. (8) can be performed analytically via the
Woodbury matrix identity [48]. In the following we will
go through the explicit inversion procedure as the actual
calculation highlights how the divergences of different types
(localized vs global) develop in (χ−1

r )νν ′ω.
The defining equation of the inverse susceptibility, which

we will denote by χνν ′ω
r ≡ (χ−1

r )νν ′ω in the following, is
given by ∑

ν1

χνν1ω
r χν1ν

′ω
r = δνν ′ . (13)

Inserting the explicit expression for χνν ′ω
r in Eq. (10) into

Eq. (13) and the corresponding relation for χ (−ν−ω)ν ′ω
r yields

the following two equations for χνν ′ω
r and χ (−ν−ω)ν ′ω

r :

δνν ′ = (
aνω

0,r + bνω
0

)
χνν ′ω + (−aνω

0,r + bνω
0,r

)
χ (−ν−ω)ν ′ω

+
2∑

l=1

bνω
l,r Q

ν ′ω
l,r , (14a)

δ(−ν−ω)ν ′ = (
aνω

0,r + bνω
0,r

)
χ (−ν−ω)ν ′ω + (−aνω

0,r + bνω
0,r

)
χνν ′ω

+
2∑

l=1

bνω
l,r Q

ν ′ω
l,r , (14b)

where we have defined

Qν ′ω
l,r =

∑
ν1

b
ν1ω
l,r χν1ν

′ω
r , (15)

and used the symmetries of the quantities aνω
0,r , bνω

0,r , and bνω
l,r

under the (fermionic) frequency transformation ν ↔−ν−ω.
The two Eqs. (14) can be combined to yield

χνν ′ω
r = 1

4aνω
0,r

[δνν ′ − δν(−ν ′−ω)] + 1

4bνω
0,r

[δνν ′ + δν(−ν ′−ω)]

− 1

2bνω
0,r

2∑
l=1

bνω
l,r Q

ν ′ω
l,r . (16)

The remaining task is now to determine Qν ′ω
l,r . To this end, we

substitute Eq. (16) into (15) to obtain a system of two linear
equations for the two unknowns Qν ′ω

1,r and Qν ′ω
2,r :

2∑
l=1

M
r,ω
kl Qν ′ω

l,r = bν ′ω
k

2bν ′ω
0,r

, (17a)

M
r,ω
kl = δkl +

∑
ν

bνω
k,rb

νω
l,r

2bνω
0,r

. (17b)

Equation (17a) is solved straightforwardly by inverting the
matrix M

r,ω
kl (see Appendix C). The final expression for the

inverse of the generalized susceptibility then reads as

χνν ′ω
r = 1

4aνω
0,r

[δνν ′ − δν(−ν ′−ω)] + 1

4bνω
0,r

[δνν ′ + δν(−ν ′−ω)]

− 1

4bνω
0,rb

ν ′ω
0,r

2∑
k,l=1

bνω
k,rM

r,ω

kl bν ′ω
l,r , (18)

where M
r,ω = (Mr,ω )−1 is the inverse of Mr,ω. The matrix

M
r,ω
kl in Eq. (17b) can be obtained using the explicit def-

initions of bνω
0,r , bνω

1,r , and bνω
2,r [see Eqs. (11)]. The actual

calculations involve lengthy, but analytically evaluable, sums
over fermionic Matsubara frequencies which have been per-
formed using Mathematica [49]. The corresponding explicit
calculations and results are reported in Appendix B as well as
the Supplemental Material (SM) [50] where the Mathematica
notebooks, which have been employed for this task, are given.

From Eq. (18) we can now easily derive the explicit ana-
lytical expressions for the irreducible vertex functions �νν ′ω

r

by subtracting the inverse of χνν ′ω
0,r according to Eq. (8). This

finally yields

�νν ′ω
r = βA2

r

2Ar
0

(
ν2 + U 2

4

)(
(ν + ω)2 + U 2

4

)[
ν(ν + ω) − A2

r

]
[ν(ν + ω)]

[δνν ′ − δν(−ν ′−ω)] + βB2
r

2Br
0

(
ν2 + U 2

4

)(
(ν + ω)2 + U 2

4

)[
ν(ν + ω) − B2

r

]
[ν(ν + ω)]

[δνν ′+δν(−ν ′−ω)]

−U

∣∣Br
2

∣∣2(
Br

0

)2

U 2

4

[
U 2

4

( 4B2
r

U 2 + 1
)2 + ω2

]
U tan[ β

4 (
√

4B2
r +ω2+ω)]√

4B2
r +ω2

± 1

1

ν(ν + ω) − B2
r

1

ν ′(ν ′ + ω) − B2
r

−
(Br

1

Br
0

)2

U, (19)
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where the plus sign in the denominator of the first term of
the second line corresponds to r =d, s while the minus sign
has to be taken for r =m. The choice of sign does not affect
the triplet vertex �νν ′ω

t since Bt
2 =0 (see Table I). The terms in

the first line of Eq. (19) represent the diagonal contributions
to the vertex irreducible in channel r while the lower line
corresponds to the contributions which factorize with respect
to the fermionic Matsubara frequencies ν and ν ′.

A. Divergences of �r

The explicit expression for the irreducible vertex �νν ′ω
r in

Eq. (19) allows us now to identify and classify all divergences
of this function in all channels. Obviously, a singularity in
�νν ′ω

r has to be expected when one of the denominators in
Eq. (19) vanishes. If this happens for a single frequency
ν (and its crossing-symmetric counterpart −ν−ω), we are
dealing with a localized divergence while the vanishing of a
ν-independent denominator gives rise to a global divergence
(for a fixed value of ω). A closer inspection of Eq. (19)
indicates three possible types of divergences:

(i) The denominator of the first summand in the first line
of Eq. (19) vanishes if

ν(ν + ω) = A2
r , (20)

which corresponds to aνω
0,r =0 in Eq. (18). This condition gives

clearly rise to a localized divergence in the ν, ν ′ frequency
space since, for a given value of Ar and β, it can be fulfilled by
only one Matsubara frequency ν∗ and its symmetric conjugate
−ν∗− ω. For the density, magnetic, and triplet channels (r =
d,m, t), Eq. (20) can be fulfilled for specific values of U if
ω �=0. For the singlet channel, this is never possible at finite
temperature since As =0 (see Table I). For the special case of
ω=0, on the other hand, a solution to Eq. (20) can be found
only for the density channel since Ar is imaginary (and, hence,
A2

r is negative) for the magnetic and triplet channels. This
leads to localized divergences in �

νν ′(ω=0)
d at frequencies ν∗ =

±U
2

√
3 which have already been reported in Refs. [19,22,25].

(ii) From the second and the third summands of �νν ′ω
r

in Eq. (19) we would expect the emergence of localized
divergences if

ν(ν + ω) = B2
r . (21)

However, the rule of l’Hôpital yields that the divergences
in the two terms cancel. The analysis of the eigenvalues of
χνν ′ω

r in the next section shows that the cancellation of these
divergences is not accidental, but is directly linked to the
shape of the eigenvectors.

(iii) Finally, �νν ′ω
r will diverge when the ν-independent

denominator in the second line of Eq. (19) vanishes, i.e., if3

fr (βU/2, ω) ≡ U tan
[

β

4 (
√

4B2
r + ω2 + ω)

]√
4B2

r + ω2
± 1 = 0, (22)

3Note that for ω=0 this relation slightly differs from the corre-
sponding one reported in Ref. [22] [see Eq. (49) therein] for the
density channel due to a typo in the latter: In fact, the term βU on the
left-hand side of Eq. (49) in Ref. [22] has to be replaced by 1/(βU ).

FIG. 1. Function fd,s (βU/2) (upper panel) and fm(βU/2)
(lower panel) for the first three bosonic Matsubara frequencies
ω=0, 2π/β, 4π/β. The crossings of the curves with the abscissa
indicate a global divergence of the corresponding vertex.

where the upper (plus) sign has to be taken for the den-
sity and singlet (r =d, s) and the lower (minus) one for
the magnetic (r =m) channel, respectively. For the triplet
channel there is obviously no global divergence since
the corresponding χνν ′ω

t consists of diagonal terms only.
Equation (22) corresponds to a singularity of the matrix Mr,ω

in Eq. (17b), i.e., to the vanishing of the determinant of this
matrix [see Eqs. (18) and (C2) in Appendix C]. Condition (22)
obviously gives rise to a global divergence of �νν ′ω

r since it is
associated with a divergence of the prefactor in the second line
of Eq. (19) which does not depend on the fermionic Matsubara
frequencies ν and ν ′.

Equation (22) represents a transcendental equation for the
quantity βU

2 (cf. the definitions of Br in Table I), which can
be solved numerically. fr (βU/2, ω) is plotted in Fig. 1 in the
density and singlet (upper panel) as well as for the magnetic
channel (lower panel). A divergence occurs whenever a curve
crosses 0.

For the density and the singlet channels we find crossings
of fd,s with the x axis for each ω if U > 0. The periodicity of
the tan function in Eq. (22) then implies an infinite number of
such global divergences, as predicted already in Ref. [22]. For
the magnetic channel (lower panel in Fig. 1), on the contrary,
fm(βU/2) �=0 for all values of U > 0, β, and ω. Hence, we
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conclude that there are no global divergences for �νν ′ω
m in

the half-filled repulsive Hubbard atom. Let us mention that
for fm no periodic behavior can be observed (for U > 0)
since the argument of the tan function becomes imaginary
at βU

2 = log[3 + (ω/U )2] − log[1 − (ω/U )2] and, hence, the
tan turns into tanh.

Let us give an estimate for the divergence condition in
Eq. (22) for the density/singlet channel in the limit βU

2 →∞
for U > 0 and a fixed ω. A corresponding analysis has been
already performed at ω = 0 in a previous work [22] where,
unfortunately, an incorrect result has been presented. We can
rewrite Eq. (22) as

−2ν∗ + ω

2U
= 1

2U

√
4B2

r + ω2 − h(ω), (23)

h(ω) ≡ π

βU
+ 2

βU
arctan

(
∓ 1

U

√
4B2

r + ω2

)
, (24)

where the fermionic frequency ν∗ takes into account the in-
finitely many branches of the arctan function in h(ω). Taking
the square of both sides of Eq. (23)4 leads to the condition

ν∗(ν∗ + ω)

U 2
= B2

r

U 2
− h(ω)

U

√
4B2

r + ω2 + h(ω)2 (25)

for the occurrence of a global divergence. When βU

2 →∞
(i.e., T → 0) the value of Bd = Bs reduces to U

2

√
3 and

h(ω) → 0. Hence, Eq. (25) for the global divergences of
�νν ′ω

d and �νν ′ω
s approaches the condition for the emergence

of a localized divergence of type (i) in the charge channel
[Eq. (20)]. At fixed U , the loci of both types of singularities
become infinitely dense for T → 0 which makes T = 0 a
cluster point of singularities.

Let us finally remark that Eq. (25) seems to define an
energy scale ν∗, as it has been observed for localized sin-
gularities [see Eq. (20)]. The two situations are, however,
different: While ν∗ in the context of the localized singularities
indeed defines an energy scale, i.e., a Matsubara frequency,
at which a divergence occurs in �νν ′ω

d , this is not true for
the global singularities where the divergence takes place at
all frequencies for all T > 0. It is, hence, not clear how the
(“artificial”) Matsubara frequency ν∗ in Eq. (23) could be
interpreted in the latter case. In this respect, it should be said
that it is currently also unclear whether taking the limit T → 0
yields the same result for �νν ′ω

r as the direct calculation at
T = 0. Moreover, at this point a spontaneous breaking of the
SU(2) spin symmetry might occur which alters the formal
structure of the BS equation as the spin-singlet (r = d, s)
and spin-triplet (r = m, t) channels are not well defined any
more. Whether this leads to a mitigation of singularities in
the two-particle correlation functions is an interesting future
research direction.

4Note that this operation does not introduce new solutions since
both sides of Eq. (23) are real valued and the frequency transforma-
tion ν∗ → −ν∗ − ω can simply change the sign of the left-hand side.

B. Fully irreducible vertex �r

The analytical expression for �νν ′ω
r and χνν ′ω

r can be in-
serted into the parquet equations [10,11,26,51] to yield an
analytic expression also for the fully irreducible vertex �νν ′ω

r

in the atomic limit. In their SU(2) symmetric form, these
equations can be written as

�νν ′ω
d = �νν ′ω

d − 1
2�

ν(ν+ω)(ν ′−ν)
d − 3

2�ν(ν+ω)(ν ′−ν)
m

+ 1
2�νν ′(−ν−ν ′−ω)

s + 3
2�

νν ′(−ν−ν ′−ω)
t − 2Fνν ′ω

d , (26a)

�νν ′ω
m = �νν ′ω

m − 1
2�

ν(ν+ω)(ν ′−ν)
d + 1

2�ν(ν+ω)(ν ′−ν)
m

− 1
2�νν ′(−ν−ν ′−ω)

s + 1
2�

νν ′(−ν−ν ′−ω)
t − 2Fνν ′ω

m , (26b)

�νν ′ω
s = �νν ′ω

s + 1
2�

νν ′(−ν−ν ′−ω)
d − 3

2�νν ′(−ν−ν ′−ω)
m

+ 1
2�

ν(−ν ′−ω)(ν ′−ν)
d − 3

2�ν(−ν ′−ω)(ν ′−ν)
m − 2Fνν ′ω

s ,

(26c)

�νν ′ω
t = �νν ′ω

t + 1
2�

νν ′(−ν−ν ′−ω)
d + 1

2�νν ′(−ν−ν ′−ω)
m

− 1
2�

ν(−ν ′−ω)(ν ′−ν)
d − 1

2�ν(−ν ′−ω)(ν ′−ν)
m − 2Fνν ′ω

t ,

(26d)

where the full two-particle scattering amplitude Fνν ′ω
r is given

by

Fνν ′ω
r = − χνν ′ω

r ∓ χνν ′ω
0,r

1
β2

∑
ν1ν2

χ
νν1ω
0,r χ

ν2ν ′ω
0,r

, (27)

where the minus sign has to be used for r = d,m, t and the
plus sign for r = s. Here, �νν ′ω

s and �νν ′ω
t as well as Fνν ′ω

s and
Fνν ′ω

t are represented in particle-particle notation. Since �νν ′ω
r

and Fνν ′ω
r contain all fully two- and one-particle irreducible

diagrams, respectively, the index r refers only to the specific
spin combination and the frequency notation in which the
vertex is given rather than to a specific scattering channel.
Hence, �νν ′ω

s and �νν ′ω
t can be expressed in terms of the �νν ′ω

d

and �νν ′ω
m :

�νν ′ω
s = 1

2�
νν(−ν−ν ′−ω)
d − 3

2�νν ′(−ν−ν ′−ω)
m ,

�νν ′ω
t = 1

2�
νν(−ν−ν ′−ω)
d + 1

2�νν ′(−ν−ν ′−ω)
m , (28)

and the same relations hold for Fνν ′ω
s and Fνν ′ω

t .
The fully irreducible vertices �νν ′ω

r can be now straight-
forwardly obtained by inserting the expressions for �νν ′ω

r

in Eq. (19) and Fνν ′ω
r in Eq. (27) into Eqs. (26). However,

although �νν ′ω
r represents just a subset of the scattering pro-

cesses found in �νν ′ω
r , no appreciable simplification of the

analytical expressions occur and, hence, for the final rather
lengthy results we refer the reader to the SM [50] (cf. the
corresponding Mathematica notebook therein). In particular,
the diverging terms of the different �νν ′ω

r ’s do not cancel out
but remain in �νν ′ω

r .

IV. ANALYSIS OF THE EIGENVECTORS

As shown in Sec. II A, all divergences in �νν ′ω
r must

originate from the inversion of χνν ′ω
r . A divergence will there-

fore occur when one of the eigenvalues of the matrix χνν ′ω
r
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vanishes, and the diverging component will take the shape of
the outer product of the corresponding eigenvectors. To gain
a deeper understanding of the divergences in �νν ′ω

r we, hence,
consider the eigenvalue equation∑

ν ′
χνν ′ω

r V ν ′ω
r = λω

r V νω
r , (29)

where λω
r denotes the eigenvalue and V νω

r is the corresponding
eigenvector.

In order to solve the eigenvalue equation (29), let us
first recall that the generalized susceptibility χνν ′ω

r can be
decomposed into an antisymmetric (χνν ′ω

r,A ) and a symmetric
(χνν ′ω

r,S ) part [see Eq. (10)] with respect to the transformation
ν (′) →−ν (′)−ω. This observation implies that the eigenvector
V νω

r is either antisymmetric (V νω
r,A) or symmetric (V νω

r,S ), where

V
(−ν−ω)ω
r,A/S =∓V νω

r,A/S. Consequently, the eigenvalue problem
splits into ∑

ν ′
χνν ′ω

r,A V ν ′ω
r,A = λω

r,AV νω
r,A, (30a)

∑
ν ′

χνν ′ω
r,S V ν ′ω

r,S = λω
r,SV

νω
r,S . (30b)

We will analyze these two eigenvalue problems separately in
the following two subsections.

A. Antisymmetric eigenvectors of χνν′ω
r

The eigenvalue equation [Eq. (30a)] for the antisymmetric
eigenvector explicitly reads as [see Eq. (10)]∑

ν ′
aνω

0,r [δνν ′ − δν(−ν ′−ω)]V
ν ′ω
r,A = λω

r,AV νω
r,A . (31)

Using the symmetry properties of aνω
0,r and V νω

r,A under the
transformation ν →−ν − ω one obtains the relation

2aνω
0,rV

νω
r,A = λω

r V νω
r,A, (32)

which corresponds to an eigenvalue equation of an already
diagonal matrix. The normalized eigenvectors read as

V νω
r,A = 1√

2
[δνν∗ − δν(−ν∗−ω)] (33)

and the corresponding eigenvalues for the fixed frequency ν∗
are given by [see Eq. (11a)]

λω
r,A ≡ λν∗ω

r,A = 2aν∗ω
0,r = Ar

0β
[
ν∗(ν∗ + ω) − A2

r

][
(ν∗)2 + U 2

4

][
(ν∗ + ω)2 + U 2

4

] .

(34)

The eigenvalue λν∗ω
r,A clearly vanishes if ν∗(ν∗+ ω)= A2

r ,
and the outer product of the eigenvector V νω

r,A is indeed identi-
cal to the shape of the corresponding localized divergences in
�νν ′ω

r discussed in Sec. III A.

B. Symmetric eigenvectors of χνν′ω
r

The calculation of the symmetric eigenvectors V νω
r,S and

the corresponding eigenvalues λω
r,S is more difficult than in

the antisymmetric case since the symmetric part of the sus-
ceptibility χνν ′ω

r,S exhibits nondiagonal terms. However, since

its nondiagonal contribution corresponds to a matrix of only
rank 2, we can follow a similar strategy as for the inversion of
χνν ′ω

r . The explicit eigenvalue equation [Eq. (30b)] is given by

∑
ν ′

{
bνω

0,r [δνν ′ + δν(−ν ′−ω)] +
2∑

l=1

bνω
l,r b

ν ′ω
l,r

}
V ν ′ω

r,S = λω
r,SV

νω
r,S .

(35)

Using the symmetry of both bνω
0,r and V νω

r,S under the transfor-
mation ν →−ν − ω one obtains the equivalent relation

2∑
l=1

bνω
l,r P

ω
l,r = ( − 2bνω

0,r + λω
r,S

)
V νω

r,S , (36a)

P ω
l,r ≡

∑
ν ′

bν ′ω
l,r V ν ′ω

r,S . (36b)

Assuming that we know P νω
l,r and λω

r,S, the eigenvector V νω
r,S is

in general given as

V νω
r,S = P

[∑2
l=1 P ω

l,rb
νω
l,r

λω
r,S − 2bνω

0,r

]
+ δ

(
λω

r,S − 2bνω
0,r

)
cνω
r , (37)

where P takes the principal value, i.e., excludes any point for
which λω

r,S = 2bνω
0,r , and cνω

r is a constant to be determined.
Let us first consider the triplet channel r = t . In this case

bνω
1,r =bνω

2,r ≡0, which implies that P ω
l,r = 0. The symmetric

eigenvectors of χνν ′ω
t are, hence, given by

V νω
t,S = 1√

2
[δνν∗ + δν(−ν∗−ω)], (38)

and the corresponding eigenvalue λω
t,S reads as

λω
t,S ≡ λν∗ω

t,S = 2bν∗ω
0,t = −βν∗(ν∗ + ω)

2
[
(ν∗)2 + U 2

4

][
(ν∗ + ω)2 + U 2

4

] ,

(39)

which is always different from zero.
Now, we consider Eq. (36) for the remaining cases r =

d,m, s where bνω
1,r , b

νω
2,r �=0. Let us first analyze the case when

λω
r,S �= 2bνω

0,r . This condition simplifies the eigenvector to the
form

V νω
r,S =

∑2
l=1 P ω

l,rb
νω
l,r

λω
r,S − 2bνω

0,r

. (40)

In order to determine the values of the quantities P ω
l,r we

substitute this expression into Eq. (36b), which yields the
following homogeneous linear equation for P ω

l,r :

2∑
l=1

L
r,ω
kl

(
λω

r,S

)
P ω

l,r = 0, (41a)

L
r,ω
kl

(
λω

r,S

) = δkl +
∑

ν

bνω
k,rb

νω
l,r

2bνω
0,r − λω

r,S

. (41b)

Clearly, Eq. (41a) has only a nontrivial solution if L
r,ω
kl (λω

r,S)
becomes singular. Formally, this corresponds to the condition
Det[Lr,ω

kl (λω
r,S)]=0 which represents a transcendental equa-

tion for λω
r,S. After the value of λω

r,S has been determined by
means of this equation, Eqs. (41) can be solved for P ω

l,r (or,
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more precisely, for the ratio P ω
1,r/P

ω
2,r ) which yields the final

expression for V νω
r,S in Eq. (40).

The matrix L
r,ω
kl (λω

r,S) is similar to M
r,ω
kl in Eq. (18) and can

be in principle calculated analytically. However, for λω
r,S �=0

the structure of the poles of the summand in the Matsubara
frequency sum in Eq. (41) is considerably more complicated
compared to the corresponding expression for M

r,ω
kl and we,

hence, refer the reader to Appendix D for the final (rather
lengthy) results.

The most interesting case is, however, when λω
r,S =0 which

signals a global divergence of the corresponding vertex �νν ′ω
r .

In this situation, the matrix L
r,ω
kl (λω

r,S =0) becomes equivalent
to M

r,ω
kl whose determinant vanishes when the condition in

Eq. (22) is fulfilled. In fact, all matrix elements L
r,ω
kl (λω

r,S =
0) = M

r,ω
kl become 0 except for L

r,ω
11 (λω

r,S =0) and, hence,
P ω

1,r =0. This is indeed consistent with the requirement that
V νω

r,S should be normalizable which would not be the case for
the term bνω

1,r/b
νω
0,r which appears for λω

r,S =0 in Eq. (40). The
eigenvector to a vanishing eigenvalue is therefore ∝bνω

2,r/b
νω
0,r

and explicitly reads as

V νω
r,S

∣∣
λω

r,S=0 = N

ν(ν + ω) − B2
r

, (42)

where N can be easily obtained from the normalization con-
dition

∑
ν (V νω

r,S )2 =1. The outer product of this eigenvector
indeed reproduces the globally divergent component in �νν ′ω

r

in the second line of Eq. (19).
Let us finally consider the case when λω

r,S = 2bν∗ω
0,r , for

some fixed frequency ν∗. This condition reduces Eq. (36a),
evaluated at ν∗, to the constraint

P ω
2,r = −bν∗ω

1,r

bν∗ω
2,r

P ω
1,r . (43)

Substituting Eqs. (37) and (43) into Eq. (36b) gives now
two (nontrivial) linear equations (l = 1, 2) but only one free
parameter cν∗ω

r /P ω
1,r . This implies that there are in general no

solutions fulfilling λω
r,S = 2bν∗ω

0,r for a fixed frequency ν∗ and
interaction strength U . Instead, any valid solution of this type
can be reached by intersecting the condition in Eq. (43) with
the closure of the solutions with λω

r,S �= 2bν∗ω
0,r . In particular,

for λω
r,S = 0 there are no solutions for the condition (22) in

the neighborhood of bν∗ω
0,r = 0, for any finite frequency ν∗.

This implies that χνν ′ω
r,S has no zero at the points bν∗ω

0,r = 0 and,
hence, any divergence in �νν ′ω

r at these points must cancel (cf.
Sec. III A).

V. APPROXIMATE SELF-ENERGY FUNCTIONAL �[G]

In DMFT the lattice problem is mapped onto an Anderson
impurity model through the noninteracting one-particle bath
Green’s function G0. The impurity solver can formally be
seen as functional G[G0] that for each G0 returns the cor-
responding fully interacting local Green’s function G. This
functional is in general not injective [27,30], i.e., there are
several different noninteracting bath Green’s functions G0

that can produce the same interacting Green’s function G.
This implies a multivaluedness [22,27,52–54] of the inverse
functional G0[G] and, via the Dyson equation, of the self-

energy functional �[G]. Fortunately, there can be at most
one of these G0’s, which we will call the physical G

phys
0 , that

corresponds to a noninteracting impurity problem [55,56].
In Refs. [27,30] it has been numerically shown for the

AL that at specific values of U, G
phys
0 and another G0 be-

come identical (cross) and that such a crossing implies the
divergence of the irreducible density vertex �d (see SM in
Ref. [30]).

Analytically, such a scenario has been first demonstrated
for the simple cases of the one-point model [52,53] and disor-
dered systems [20,22] such as the BM in infinite dimensions,
where explicit expressions for the functional G[G0] and the
irreducible vertices �r are available.

On the contrary, for the AL of the Hubbard model no
analytical expression for the exact functional G[G0] is known.
In Ref. [30], some of the present authors used a numerically
exact quantum Monte Carlo solver to obtain the different
G0’s which yield the physical G of Eq. (2). In this paper
we will follow a complementary path. Instead of adopting a
numerically exact solver, we will use the Dyson equation

G[G0] = (
G−1

0 −�[G0]
)−1

, (44)

and approximate the self-energy functional �[G0] by the
general form of the iterated perturbation theory [4,5] (IPT)
expression (which is the same as for the full Hubbard model)

�a
σ [G0](ν)

= −U

2
+ U

β

∑
ν1

G0,(−σ )(ν1)

− U 2

β2

∑
ν1ω

G0,(−σ )(ν1)G0,(−σ )(ν1 + ω)G0,σ (ν + ω). (45)

�a
σ [G0](ν) yields the exact self-energy of the Hubbard atom

when it is evaluated with G
phys
0 (ν)=1/iν. Within DMFT, it

captures strong-coupling phenomena such as the Mott metal-
to-insulator transition [4]. The analytical form allows us to
investigate which ingredients cause the emergence of different
types of divergences in �r . In particular, we will stress the
differences between disordered and fully interacting systems
such as the Hubbard atom with respect to these singularities.
In the following, we will restrict ourselves, for simplicity, to
the case of a spin independent G0,σ (ν)=G0(ν) without any
anomalous contributions, as in the numerical calculations of
Ref. [30]. This limits the following analysis to the density
channel.5

A. Unphysical G0 solutions for the IPT functional

Substituting Eq. (45) into (44) gives N coupled fourth-
order equations in G0(ν) where N is the number of Matsubara
frequencies which we consider. Hence, one has to expect
4N solutions for G0(ν) for a given G(ν). For the numeri-
cal calculation we have fixed G(ν) to the physical Green’s

5The calculation of a response function χr by means of the func-
tional derivative δG/δG0 [see Eqs. (46)] requires the introduction of
a symmetry-breaking field in channel r .
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FIG. 2. First two crossings of the physical G
phys
0 (ν ) with two

unphysical ones [G(1)
0 (ν ) and G

(2)
0 (ν )] as a function of U at the first

two Matsubara frequencies (ν1 =±π/β and ν2 =±3π/β). The imag-
inary part is normalized by ImG

phys
0 (ν ). Note that for the red solution

[G(1)
0 (ν )] the relation [G(1)

0 ]∗(ν )=G
(1)
0 (−ν )=−G

(1)
0 (ν ) holds and,

hence, the results for positive and negative Matsubara frequencies
are the same. For the orange solution G

(2)
0 (ν ) this is only true after

the crossing with the physical G
phys
0 (ν ) where it, however, acquires

a real part. ImG
(1)
0 (ν = ±3π/β )/ImG

phys
0 (ν = ±3π/β ) in the upper

panel has been rescaled by a factor of 10 for a better visibility. β =2.

function [Eq. (2)], N =8, 0<U <2.6, β =2, and set G0(ν)
for all frequencies |ν|>15π/β to its physical value 1/iν. In
order to obtain different solutions of Eq. (44) we start with an
initial guess for G0(ν). By means of a Metropolis search we
find an improved guess around which we repeatedly linearize
Eq. (44) [together with Eq. (45)] until a G0(ν) is found which
reproduces the physical G(ν) up to a given accuracy. This
way, it is possible to identify different unphysical G0(ν) with
a 1/iν asymptotic high-frequency behavior.

For the U range considered in our numerical calculations,
we find two unphysical G

(1)
0 (ν) and G

(2)
0 (ν) which become

identical to (cross) the physical G
phys
0 (ν) at U (1)

c =π/
√

3 and
U (2)

c =π/2, respectively. The unphysical nature of G
(1)
0 (ν)

and G
(2)
0 (ν) is reflected in an increase of double occupancy

with increasing U as shown in Appendix E. The direct
comparison of the physical with the two unphysical G0(ν)’s
in Fig. 2 is similar to the corresponding results of Ref. [30]
(where an exact Monte Carlo solver has been used for the

functional G[G0]), except for the value of U (2)
c . In the upper

panel we show the imaginary part of G
(1)
0 (ν) normalized

by the imaginary part of the physical G
phys
0 (ν) for the first

two Matsubara frequencies as a function of U . While for
ν =±π/β the unphysical G

(1)
0 (ν) crosses the physical one

linearly in U−U (1)
c , for the higher Matsubara frequencies

the crossing occurs quadratically. Let us note that G
(1)
0 (ν) is

purely imaginary and fulfills the standard relation for complex
conjugation which renders the result for the positive and
negative frequencies equivalent. In the lower panel of Fig. 2,
G

(2)
0 (ν) is shown as a function of U for the two lowest

Matsubara frequencies. The imaginary part is again normal-
ized by ImG

phys
0 (ν) while the real part is plotted in absolute

values. G
(2)
0 (ν) crosses the physical G

phys
0 (ν) at U (2)

c ≈π/2.
Before this crossing the relation G∗

0(ν)=G0(−ν) is violated
for G

(2)
0 (ν) and, hence, we obtain different results for positive

and negative Matsubara frequencies. For U >U (2)
c , on the

other hand, this relation is fulfilled but G
(2)
0 (ν) acquires a

finite real part. Our numerical results indicate that for G
(2)
0 (ν)

the crossing with G
phys
0 (ν) is proportional to

√
U − Uc for all

frequencies, within the imposed numerical accuracy.
Let us stress that our findings coincide (at least qual-

itatively) with the numerically exact results of Ref. [30].
This demonstrates the applicability of our approximate IPT
functional to analyze the multivaluedness of G0[G] and its
connection to the divergences of �r in the Hubbard atom.

B. IPT susceptibilities

The generalized susceptibility in the density channel at
the bosonic Matsubara frequency ω=0 (χνν ′(ω=0)

d ) can be

calculated from G[G0] in Eq. (44) as6 χ
νν ′(ω=0)
d = β

δG↑(ν)
δG−1

0,↑(ν ′ )
+

β
δG↑(ν)

δG−1
0,↓(ν ′ )

. Using the Dyson equation (44) and the IPT self-

energy functional in Eq. (45), these derivatives can be
straightforwardly performed. Since we are interested in the
divergences of the physical branch, we evaluate the resulting
expressions at the spin-independent physical G

phys
0 (ν) and

G(ν) which yields

δG↑(ν)

δG−1
0,↑(ν ′)

= −G2(ν)

[
1 + U 2

4
G2

0(ν)

]
δνν ′ , (46a)

δG↑(ν)

δG−1
0,↓(ν ′)

= −U 2

4
G2

0(ν)G2(ν)[δνν ′ − δν(−ν ′ )]

− U

β
G2(ν)G2

0(ν ′), (46b)

6Note that this result yields the same �d as it would be ob-
tained from the functional derivative δ�/δG (we neglect frequency
and spin arguments for the sake of simplicity). In fact, invert-
ing the functional G[G0] and using the Dyson equation (44), we
have �[G] = G−1

0 [G] − G−1. Taking the derivative with respect
to G yields δ�/δG = G−2 + δG−1

0 /δG = G−2 + [δG/δG−1
0 ]−1 =

β(−χ−1
0 + χ−1) = �/β as defined in Eq. (8).
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where we have used that at half-filling G0(−ν)2 =G0(ν)2.
The nondiagonal term on the right-hand side of Eq. (46b)
arises directly from the (bare) Hartree contribution in �a

σ [G0].
χ

νν ′(ω=0)
d now becomes

χ
νν ′(ω=0)
d = −β

G2(ν)

2

[
1 + 3U 2

4
G2

0(ν)

]
[δνν ′ − δν(−ν ′ )]

−β
G2(ν)

2

[
1 + U 2

4
G2

0(ν)

]
[δνν ′ + δν(−ν ′ )]

−UG2(ν)G2
0(ν ′). (47)

One can clearly see that this susceptibility has the form of
Eq. (10) with the only difference that it consists of only one
nondiagonal term. Furthermore, we see that the generalized
susceptibility produced by IPT is not symmetric with respect
to ν ↔ν ′, which means it violates time-reversal symmetry.
We can, nevertheless, use Eq. (18) to calculate the inverse of
χ

νν ′(ω=0)
d , as given in Eq. (47), which yields

χ
νν ′(ω=0)
d = − 1

2βG2(ν)

1

1 − 3U 2

4ν2

[δνν ′ − δν(−ν ′ )]

− 1

2βG2(ν)

1

1 − U 2

4ν2

[δνν ′ + δν(−ν ′ )] (48)

+ U

β2

1

1 − tan( βU

4 )

[
G0(ν ′)
G(ν)

]2 1

1 − U 2

4ν2

1

1 − U 2

4ν ′2
.

Let us now analyze the possible divergences in Eq. (48):
(i) In the first line of Eq. (48) we encounter a local

divergence when ν =ν∗ = U
2

√
3 which is equivalent to the one

found by the exact calculation for the atomic limit in Eq. (20).
Hence, the approximate self-energy functional of IPT indeed
reproduces correctly the localized divergences in the AL at
ω=0. Moreover, consistent with the proof in Ref. [30], the
divergence occurs only for the frequencies for which the
crossing of the physical and unphysical G0’s is of lowest
order, in this case linear. Just as for the exact susceptibility, the
factor

√
3 originates from adding the two spin combinations

↑↑ and ↑↓ in Eqs. (46). Let us remark that this result can
be even obtained from a perturbative low-order expansion of
χνν ′ω

d in U as long as the SU(2) symmetry of the system is
correctly taken into account.

(ii) In lines two and three of Eq. (48) we would expect
a divergence at ν = U

2 , analogous to an apparent singularity
at Br for the exact solution in Eq. (21) (which actually be-
comes Br → U

2 in the perturbative limit U → 0). As discussed
already in Sec. III, these divergences cancel. This is also
consistent with the fact that no unphysical G0 crosses the
physical G0 at U =π for β =2.

(iii) If tan( βU

4 )=1 in the denominator in the last line
of Eq. (48) we will get a global divergence of χd . This
expression is not the same as the exact result in Eq. (22),
but instead consistent with the observed crossing of G0’s
in the lower panel of Fig. 2 obtained from IPT. The global
nature of the divergence is also consistent with the fact that
the corresponding crossing seems to happen for all Matsub-
ara frequencies in the same way (∝√

U − Uc). Following
Eqs. (47) and (48), we can trace the origin of the global
divergence back to the Hartree term in Eq. (45). In fact, global

singularities can only arise from nondiagonal contributions to
the generalized susceptibility χνν ′ω

r which originate from the
functional derivative of the Hartree term in the third line of
Eq. (47). In this respect, a global vertex divergence of �νν ′ω

r

marks an important difference between fully interacting and
disordered systems, where due to the absence of an interaction
among the particles itself no global divergence can be found
[20,22]. Let us point out that this is, however, only true when
the local potential is considered to be random but fixed, i.e., a
static (quenched) disorder. On the contrary, for systems with
annealed disorder, such as the Falicov-Kimball model, the
value of the local potential depends on the state of the system
which implies that χr has nondiagonal terms [22].

VI. INTERPRETATION OF THE VERTEX DIVERGENCES

Let us briefly recall possible interpretations of the diver-
gences of �νν ′ω

r , the corresponding vanishing of an eigenvalue
λω

r of the generalized susceptibility χνν ′ω
r and the multivalued-

ness of the functional �[G] (or G0[G]). Formally, the appear-
ance of the first singularity in �νν ′ω

r marks the point where any
finite-order perturbation expansion for the two-particle vertex
functions leads to, even qualitatively, wrong results (see, e.g.,
Fig. 1 in Ref. [19]). At the same time, so-called “bold”
diagrammatic methods (e.g., diagrammatic Monte Carlo [31])
which self-consistently evaluate �[G] (or G0[G]) can con-
verge to the unphysical branch of this functional which might
restrict such approaches to the weak-coupling regime (for
possible solutions of this problem, see Ref. [57]). From a
physical perspective, the emergence of singularities in �νν ′ω

r

has been associated [19] with the formation of Hubbard
subbands in the spectral function, the emergence of “kinks” in
the electronic self-energy [58], or a change in the relaxation
mechanisms after a quench of the Hubbard interaction [59].
All these attempts to explain the singularities rely, however,
more or less on the observation that the interaction values at
which these phenomena occur coincide with the appearance of
divergences, rather than establishing a causal relation between
these findings. In Ref. [30], on the other hand, the emergence
of negative eigenvalues in the charge channel in the DMFT
solution of the 2d half-filled Hubbard model was shown to
suppress the local charge susceptibility (see also Ref. [21]).

While no comprehensive physical interpretation of the
individual eigenvalues of the generalized susceptibilities, and
the corresponding vertex divergences, has been found so
far, the question remains nevertheless very important. Indeed,
if the eigenvalues have a physical interpretation, it becomes
important to use approximations that preserve their character,
i.e., (implicitly) allow for vertex divergences. On the other
hand, if only a few linear combinations of the eigenvalues
carry physical information, such as their total sum, then a
wider set of approximations which suppress singularities of
the vertex might become applicable.

VII. RELATION TO G(ν ) IN THE BINARY MIXTURE

In this section, we want to comment briefly on the con-
nection between the divergences of �νν ′ω

d and the minimum
of the single-particle Green’s function G(ν) in the disordered
binary mixture model. It has been demonstrated [22] that
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in the BM a localized vertex divergence in �
νν ′(ω=0)
d occurs

at a frequency ν∗
BM =νmin

BM =U/2 where the corresponding
single-particle Matsubara Green’s function GBM(ν) exhibits a
minimum. To prove this connection in a more general way, we
note that the self-energy functional of the BM model is local in
Matsubara frequencies, i.e., �BM(ν)=�BM[GBM(ν)]. Conse-
quently, the functional derivative δ�BM[GBM(ν)]/δGBM(ν)=
1
β
�

νν(ω=0)
d,BM corresponds to a normal derivative. Considering the

Dyson equation for the BM in its atomic limit

GBM(ν) = 1

iν + μ − �BM[GBM(ν)]
, (49)

and differentiating this relation with respect to ν, we obtain

∂GBM

∂ν
(ν) = −G2

BM(ν)

[
i − 1

β
�

νν(ω=0)
d,BM

∂GBM

dν
(ν)

]
. (50)

Solving this equation for ∂GBM/∂ν yields

∂GBM

∂ν
(ν) = − i

G−2
BM(ν) − 1

β
�

νν(ω=0)
d,BM

. (51)

Obviously, for a divergence of �
νν(ω=0)
d,BM at ν =ν∗

BM the
right-hand side of this equation vanishes which implies
that ∂GBM/dν(ν∗

BM)=0. This proves that the single-particle
Green’s function of the BM exhibits an extremal point, in this
case a minimum, exactly at the frequency νmin

BM =ν∗
BM where

the corresponding density vertex diverges. This holds also in
the case of a finite dispersion when the system is treated in the
framework of CPA (see Appendix F and Ref. [22]).

Finally, on a more speculative note, let us point out that the
second derivative of GBM(ν) = G(ν) [Eq. (2)] with respect to
ν, in the atomic limit, gives

∂2GBM

∂ν2
(ν) = −iν

ν2 − 3U 2

4(
ν2 + U 2

4

)3 . (52)

It vanishes precisely at ν infl =ν∗ =√
3U/2, which coincides

with the energy scale of χ
νν ′(ω=0)
d of the Hubbard atom

in Eq. (20). An interesting future research question is how
well this “accidental” relation between the inflection point
of GBM(ν) and χ

νν ′(ω=0)
d holds in the case of finite band-

width [23].

VIII. CONCLUSIONS AND OUTLOOK

In this work, we have presented analytical expressions
for the irreducible vertex �νν ′ω

r , the fully irreducible vertex
�νν ′ω, and the eigenvalues and eigenvectors of the generalized
susceptibilities χνν ′ω

r , of the half-filled Hubbard atom. In spite
of its simple Hamiltonian, the corresponding vertices exhibit
a complex frequency structure and even capture the low-
frequency singularities which have been discovered already
for the DMFT solution of the Hubbard model. In order to gain
further insight into the origin of these divergences, we have
classified all eigenvalues and eigenvectors of the generalized
susceptibilities in all parquet channels (r) and for all bosonic
Matsubara frequencies ω. The low-frequency divergences of
�νν ′ω

r occur when these eigenvalues pass through zero while
their frequency dependence is determined by the outer product

of the corresponding eigenvectors. Specifically, we have iden-
tified vanishing eigenvalues associated with antisymmetric
eigenvectors which correspond to localized singularities of
�νν ′ω

r at ν(ν + ω)=A2
r and, hence, set an energy scale at

which a perturbative treatment breaks down [22]. Vanishing
eigenvalues with symmetric eigenvectors correspond to global
divergences of the irreducible vertex. Nevertheless, a defi-
nite physical interpretation of both types of singularities of
�νν ′ω

r and the corresponding crossing of eigenvalues of χνν ′ω
r

through 0 has not been achieved so far. However, we have
shown that the divergences of �νν ′ω

r in the Hubbard atom can
be modeled qualitatively by using the self-energy functional
of iterated perturbation theory. In this way, we could identify
the (bare) Hartree term to be essential for the emergence of
global divergences. This also marks an important difference to
systems with quenched disorder such as the BM where the in-
teraction between the particles and, hence, global divergences
in �νν ′ω

r , are absent.
We hope that our analytical results can guide the de-

velopment of new approximation schemes for the vertex
functions and the BS equations of more complex correlated
systems, such as the Hubbard model, and possibly allow
for a more comprehensive understanding of strong-coupling
phenomena in many electron models and correlated materials.
For instance, one might use the spectral representation of
the irreducible vertex, truncated at a finite (low) number of
eigenvalues, to solve the BS equation for obtaining the gener-
alized susceptibilities and corresponding response functions
in a semianalytical way, following the procedure shown in
Sec. III.

Our analytical derivations have been simplified by the
particle-hole symmetry of the half-filled Hubbard atom. In
realistic material calculations, it is, however, rare that particle-
hole symmetry is fulfilled, which makes a study of the Hub-
bard atom away from half-filling an interesting future research
direction. In addition, if the system undergoes a spontaneous
SU(2) symmetry breaking, the BS equations cannot be decou-
pled into spin-singlet and spin-triplet (i.e., density and spin
as well as particle-particle singlet and particle-particle triplet)
components. Whether such a symmetry breaking can mitigate
the emergence of divergences in the irreducible vertex is an
open question which also requires further investigation. The
analytical formulas for the two-particle Green’s function in
Ref. [60] can serve as an excellent starting point for both these
studies.
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APPENDIX A: SYMMETRY DECOMPOSITION

Table II contains a set of common symmetries that the
generalized susceptibility may respect. In the following, we
will derive which of these symmetries are needed for χνν ′ω

r

to fulfill Eq. (9) in the main text. Already from the onset it is
clear that the “swapping” symmetry, which corresponds to the
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TABLE II. Symmetry relations of the generalized susceptibilities
χνν′ω

σσ ′ . The particle-hole and particle-particle notations are only indi-
cated when the results differ. Note that the frequency shift needed to
switch between the particle-hole and the particle-particle notation is
defined as ω → −ω − ν − ν ′.

Symmetry Relation

Complex conjugation χνν′ω
σσ ′ = (χ (−ν′ )(−ν )(−ω)

σ ′σ )∗

Swapping (ph) χνν′ω
ph,σσ ′ = χ

(ν′+ω)(ν+ω)(−ω)
ph,σ ′σ

Swapping (pp) χνν′ω
pp,σσ ′ = χ

(−ν−ω)(−ν′−ω)ω
pp,σ ′σ

Spin SU(2) χνν′ω
σσ ′ = χνν′ω

σ ′σ = χνν′ω
(−σ )(−σ ′ )

Time reversal χνν′ω
σσ ′ = χν′νω

σ ′σ

Particle hole χνν′ω
σσ ′ = (χνν′ω

σσ ′ )∗

double application of the crossing symmetry, is of fundamen-
tal importance. It corresponds to swapping the particle labels
of both the incoming and the outgoing electrons (two swaps),
which according to the Pauli principle should leave the state of
the system completely unchanged. It is respected by the bare
susceptibility as well as the vertical/crossed term given by the
third line in Eq. (3) by construction, which implies that it is

preserved by the BS equations (7) and its inverse relation in
Eq. (8).

The generalized susceptibility in the particle-particle no-
tation only needs to respect spin-SU(2) (su) symmetry, in
addition to the swapping symmetry (ss), in order to fulfill
Eq. (9):

χνν ′ω
pp,σσ ′

ss= χ
(−ν−ω)(−ν ′−ω)ω
pp,σ ′σ

su= χ
(−ν−ω)(−ν ′−ω)ω
pp,σσ ′ . (A1)

The generalized susceptibility in the particle-hole notation on
the other hand does not require spin-SU(2) symmetry to con-
form with Eq. (9), but instead requires complex conjugation
(cc) and particle-hole (ph) symmetry,

χνν ′ω
ph,σσ ′

ss= χ
(ν ′+ω)(ν+ω)(−ω)
ph,σ ′σ

cc= (
χ

(−ν−ω)(−ν ′−ω)ω
ph,σσ ′

)∗

ph= χ
(−ν−ω)(−ν ′−ω)ω
ph,σσ ′ . (A2)

To conclude, in order for all the parquet channels to decom-
pose into a symmetric and an antisymmetric part, the systems
need to be paramagnetic and particle-hole symmetric.

APPENDIX B: THE MATRIX Mr,ω

In this appendix, we will give the explicit results for the matrix elements of the matrix Mr,ω defined in Eq. (17a) for the
density, magnetic, and singlet channels. Inserting the explicit expressions for bνω

0,r , bνω
1,r , and bνω

2,r into this definition, one obtains
for the matrix elements M

r,ω
ij

M
r,ω
11 = 1 +

(
Br

1

)2

Br
0

(
1 − Cω

r

) 1

β

∑
ν

[
ν(ν + ω) − Dω

r

]2[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

][
ν(ν + ω) − B2

r

] , (B1a)

M
r,ω
12 = M

r,ω
21 = Br

1Br
2

Br
0

U 2

2

√
U 2 + ω2

1

β

∑
ν

ν(ν + ω) − Dω
r[

ν2 + U 2

4

][
(ν + ω)2 + U 2

4

][
ν(ν + ω) − B2

r

] , (B1b)

M
r,ω
22 = 1 +

(
Br

2

)2

Br
0

U 3

4

(
U 2

1 − Cω
r

+ ω2

)
1

β

∑
ν

1[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

][
ν(ν + ω) − B2

r

] , (B1c)

where all constants are defined in Table I and Eq. (12), respectively, and we have used that ω2Cω
r ≡0 since Cω

r ∝δω0. The
prefactors (Br

1)2/Br
0, Br

1Br
2/Br

0, and (Br
1)2/Br

0 evaluate to mere phase factors being −1, i, and 1 for the density and singlet
(r =d, s) channels while they correspond to 1, i, and −1 for the magnetic channel (r =m), respectively. Moreover, as one can
infer from the corresponding definitions of Br and Cω

r in Table I, the matrix elements for the density and the singlet channel
are entirely equivalent. We can, hence, restrict ourselves to the calculation of the matrix elements M

r,ω
ij for the density and the

magnetic channel in the following.
The frequency sums in Eqs. (B1) can be evaluated analytically by means of standard methods. Since either ω or Cω

r is nonzero
(but not both at the same time), it is convenient to consider the cases ω=0 and ω �=0 separately, for both the density and the
magnetic channel. In spite of these simplifications, the actual explicit calculations are still rather involved and, hence, have been
carried out with Mathematica [49] scripts (see the SM [50]).

APPENDIX C: NONDIAGONAL TERMS OF χνν′ω
r

For the calculation of the inverse of the generalized susceptibility in Eq. (18), the inverse of the matrix Mr,ω is required, which
reads as

(Mr,ω )−1 = 1

det Mr,ω

(
M

r,ω
22 −M

r,ω
12

−M
r,ω
12 M

r,ω
11

)
, (C1)
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where det Mr,ω =M
r,ω
11 M

r,ω
22 − (Mr,ω

12 )2 is explicitly given by

det Mr,ω = U 2 + ω2

4U 2(1 + e∓βU/2)−2 + ω2

(
1 ± U tan

[
β

4 (
√

4B2
r + ω2 + ω)

]√
4B2

r + ω2

)
. (C2)

Here, the plus sign has to be adopted for r =d, s and the minus sign for r =m. The last contribution in Eq. (18) in the main text
can be now explicitly written as

1

4bνω
0,rb

ν ′ω
0,r

2∑
k,l=1

bνω
k,rM

r,ω

kl bν ′ω
l,r = 1

4bνω
0,rb

ν ′ω
0,r

[
bνω

1,rM
r,ω
22 bν ′ω

1,r − bνω
1,rM

r,ω
12 bν ′ω

2,r − bνω
2,rM

r,ω
12 bν ′ω

1,r + bνω
2,rM

r,ω
11 bν ′ω

2,r

]
/ det Mr,ω, (C3)

where we recall that M
r,ω = (Mr,ω )−1 [see Eq. (18)]. Although the actual expressions for the matrix elements Mr,ω are rather

complicated, some simplifications are possible for Eq. (C3). First, we note that the denominator (ν2+ U 2

4 )[(ν+ω)2+ U 2

4 ] appears
in bνω

0,r as well as in bνω
i,r , i =1, 2, and, hence, cancels. This observations suggests the following definitions:

b̃νω
0,r = Br

0
β

2

[
ν(ν + ω) − B2

r

]
, (C4a)

b̃νω
1,r = Br

1

√
U

(
1 − Cω

r

)[
ν(ν + ω) − Dω

r

] = Br
1

√
U

(
1 − Cω

r

)[ 2

βBr
0

b̃νω
0,r + (

B2
r − Dr

)]
, (C4b)

b̃νω
2,r = Br

2

√
U 3

4

√
U 2

1 − Cω
r

+ ω2. (C4c)

We can now replace bνω
0,r , bνω

1,r , and bνω
2,r in Eq. (C3) by b̃νω

0,r , b̃νω
1,r , and b̃νω

2,r , respectively. Moreover, in Eq. (C4b) we have expressed
b̃νω

1,r in terms of b̃νω
0,r plus a constant. This allows us to split the terms in Eq. (C3) into three groups: (i) The first group contains all

terms where both b̃νω
0,r and b̃ν ′ω

0,r are canceled. These terms do not depend on the fermionic Matsubara frequencies ν and ν ′ (but
only on the bosonic transfer frequency ω). (ii) The second group of terms includes contributions which are proportional to either
1/b̃νω

0,r or 1/b̃ν ′ω
0,r , i.e., the fermionic frequency dependence of such contributions is given by 1/[ν(ν + ω) − B2

r ] or 1/[ν ′(ν ′ +
ω) − B2

r ], respectively. (iii) The third class of terms is proportional to 1/[b̃νω
0,r b̃

ν ′ω
0,r ] and, hence, its frequency dependence is given

by 1/([ν(ν + ω) − B2
r ][ν ′(ν ′ + ω) − B2

r ]). More explicitly, we obtain for the three different types of contributions the following
expressions:

1

β2

(
Br

1

)2(
Br

0

)2

U
(
1 − Cω

r

)
M

r,ω
22

det Mr,ω
, (C5a)

1

β2

UBr
1(

Br
0

)2

[
M

r,ω
22

(
1 − Cω

r

)(
B2

r − Dω
r

) − M
r,ω
12 Br

2
U

2

√
U 2 + ω2

]
1

det Mr,ω

[
1

ν(ν + ω) − B2
r

+ 1

ν ′(ν ′ + ω) − B2
r

]
, (C5b)

1

β2

U(
Br

0

)2

[
M

r,ω
22

(
B1

r

)2(
1 − Cω

r

)(
B2

r − Dω
r

)2−M
r,ω
12 Br

1Br
2U

2
√

U 2 + ω2
(
B2

r − Dω
r

) + M
r,ω
11

(
Br

2

)2 U 3

4

(
U 2

1 − Cω
r

+ ω2

)]
1

det Mr,ω

× 1

ν(ν + ω) − B2
r

1

ν ′(ν ′ + ω) − B2
r

. (C5c)

The corresponding prefactors (in front of the ν, ν ′ dependent contributions) have been evaluated with Mathematica (see SM [50]).
For the ν, ν ′ independent term (C5a) this simplifies to U (Br

1)2/[(Br
0)2β2] which corresponds to the constant U term present in the

irreducible vertex functions in the density, magnetic, and singlet channels (with the corresponding channel-dependent numerical
prefactor). The prefactor in Eq. (C5b) vanishes and, hence, there are no terms depending either on ν or ν ′ only. Finally, the ν, ν ′
independent prefactor in Eq. (C5c) evaluates to a finite value giving rise to a term in �r which factorizes with respect to the
fermionic Matsubara frequencies ν and ν ′. The explicit result is given in the final expression for �νν ′ω

r in Eq. (19) in the main
text.

APPENDIX D: THE MATRIX Lr,ω(λω
r,S)

In this appendix, we provide more details about the analytical calculation of the matrix L
r,ω
kl (λω

r,S) in Eq. (41) for λω
r,S �=0. The

explicit expressions for the corresponding matrix elements are similar to M
r,ω
kl , with the only difference of an additional λω

r,S in
the denominator of the terms inside the frequency sums. More specifically, we have

L
r,ω
11 (λ) = 1 +

(
Br

1

)2

Br
0

(
1 − Cω

r

) 1

β

∑
ν

[
ν(ν + ω) − Dω

r

]2[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] 1[
ν(ν + ω) − B2

r

] − λ
[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] , (D1a)
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L
r,ω
12 (λ) = L

r,ω
21 (λ) = Br

1Br
2

Br
0

U 2

2

√
U 2 + ω2

1

β

∑
ν

ν(ν + ω) − Dω
r[

ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] 1[
ν(ν + ω) − B2

r

] − λ
[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] ,

(D1b)

L
r,ω
22 = 1 +

(
Br

2

)2

Br
0

U 3

4

(
U 2

1 − Cω
r

+ ω2

)
1

β

∑
ν

1[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] 1[
ν(ν + ω) − B2

r

] − λ
[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] ,

(D1c)

where we have used the definition λ≡λω
r,S/(βBr

0) for convenience. In principle, the Matsubara sums in Eqs. (D1) can be
performed analytically. However, in view of their complexity it is advantageous to split up the respective second terms inside the
ν sum (i.e., the ones which contain the λ) by means of a partial fraction decomposition which gives

1[
ν(ν + ω) − B2

r

] − λ
[
ν2 + U 2

4

][
(ν + ω)2 + U 2

4

] = −1

λ
[
ν(ν + ω) − Gω

r,+
][

ν(ν + ω) − Gω
r,−

]
= −1

λ
(
Gω

r,+ − Gω
r,−

)[
1

ν(ν + ω) − Gω
r,+

− 1

ν(ν + ω) − Gω
r,−

]
, (D2)

where the poles Gω
r,± of the denominators are given by

Gω
r,± = U 2

4

[
−1 + 2

λU 2
± 2

λU 2

√
1 − λ

(
U 2 + 4B2

r

) − λ2U 2ω2

]
. (D3)

Inserting the partial fraction composition in Eq. (D2) into Eqs. (D1), one obtains ν sums which are completely analogous to
the ones for M

r,ω
kl in Eqs. (B1) with the only difference that Br is replaced by Gω

r,±. The actual expressions are rather lengthy
transcendental functions of λ and can be evaluated with Mathematica with slightly modified versions of the scripts given in the
SM [50]. The condition for λ being an eigenvalue is given by Det[Lr,ω

kl (λ)]=0. For a vanishing eigenvalue λ=0 this relation
reduces to Eq. (22) which defines the Uβ/2 values at which a global divergence of �νν ′ω

r occurs.

APPENDIX E: UNPHYSICAL BEHAVIOR OF THE
DOUBLE OCCUPANCY

In this appendix, we show the unphysical behavior of the
double occupancy when calculated using one of the unphysi-
cal solutions G

(1)
0 (ν) or G

(2)
0 (ν) discussed in Sec. V A.

The double occupancy has been obtained by the Galitskii-
Migdal formula [2] where the corresponding unphysical self-
energies �(i)(ν)= [G(i)

0 (ν)]−1−G−1(ν) have been extracted
from the corresponding G

(i)
0 (ν) [and the physical G(ν) in

Eq. (2)] via the Dyson equation (44). The results are shown
in Fig. 3 as a function of U . The results obtained from G

(1)
0 (ν)

−0.05

 0

 0.05

 0.1

 0.15

 1.4  1.6  1.8  2  2.2  2.4  2.6

Uc
(1)≈1.81≈π/√⎯3

Uc
(2)≈1.57≈π/2

R
e 

Tr
 Σ

G
/(β

U
)

U

Σphys(ν)
Σ(1)(ν)=1/G0

(1)(ν)−1/G(ν)
Σ(2)(ν)=1/G0

(2)(ν)−1/G(ν)

FIG. 3. Double occupancy calculated from the Galitskii-Migdal
formula [2] 〈n̂↑n̂↓〉=Tr(�G)/(Uβ ) where Tr(�G)=∑

ν �(ν )G(ν )
and G(ν ) is given in Eq. (2). β =2.

(red) and G
(2)
0 (ν) (orange) show an unphysical increase of

the double occupancy with increasing U . Consistent with the
analysis in Fig. 2, they cross the physical line (gray) at specific
values of U where the G

(i)
0 (ν) cross G

phys
0 (ν) (see Sec. V A).

APPENDIX F: VERTEX DIVERGENCES IN
THE BM IN DMFT

In this appendix, we will demonstrate that the relation
between the (localized) divergence of the irreducible density
vertex in the BM (�νν ′ω

d,BM) and a corresponding minimum in the
single-particle Green’s function is valid, more generally, for
the case of finite bandwidth, when the system is treated in the
framework of CPA. To this end, we rewrite the single-particle
Green’s function as

G(z) = 1

z − �(G(z))
, (F1)

where z = iν − �(ν) with the hybridization function �(ν)
describing the CPA bath. We have used that for the BM
the self-energy � can be recast as a function of g = G(z)
by appropriately choosing the physical solution of the corre-
sponding self-energy functional of the system [22]:

�±(g) = ±
√

1 + U 2g2 − 1

2g
, (F2)

where for a given value of the disorder strength U , one has
to choose the respective physical branch ± (for details see
Ref. [22]).
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The derivative of the Green’s function with respect to its
frequency argument ν can be written using the chain rule as

d

dν
G(ν) = G(2)(iν − �(ν))

(
i − d

dν
�(ν)

)
, (F3)

where G(2)(z) ≡ d
dz

G(z). It is clear that G(ν) must have
an extremal point, irrespective of the lattice structure, when
G(2)(iν − �(ν)) is zero.

To evaluate G(2), we first take the ordinary derivative of
Eq. (F1) and solve for G(2)(z):

G(2)(z) = −
[
g−2 − d

dg
�(g)

]−1

g=G(z)

, (F4)

where the derivative of the self-energy is given by

d

dg
�(g) =

√
1 + U 2g2 ∓ 1

2g2
√

1 + U 2g2
. (F5)

The derivative d
dg

�(G(iν − �(ν))) coincides with the diago-

nal vertex function 1
β
�

νν(ω=0)
d,BM δνν ′ and diverges when

1 + U 2G(iν − �(ν))2 = 0. (F6)

Considering d
dg

�→∞ in Eq. (F4) shows that G(2) and thus
d
dν

G go to zero when �d diverges.
Let us finally stress that the above analysis based on

ordinary derivatives does not apply to the Hubbard atom.
The ordinary derivative d

dg
� cannot even be defined in this

case as the self-energy is not just a function of G(ν), but
an (unknown) functional of G evaluated at ν. While G(2)(z)
and d

dg
� can be redefined in terms of functional derivatives,

the chain rule applied to d
dν

G(ν) does not produce these
functional derivatives, but only ordinary derivatives.
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