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Recent advances in momentum-resolved electron energy-loss spectroscopy (MEELS) and resonant inelastic
x-ray scattering (RIXS) now allow one to access the charge response function with unprecedented versatility
and accuracy. This allows for the study of excitations, which were inaccessible recently, such as low-energy and
finite momentum collective modes. The SU(2) theory of the cuprates is based on a composite order parameter
with SU(2) symmetry fluctuating between superconductivity and charge order. The phase where it fluctuates is
a candidate for the pseudogap phase of the cuprates. This theory has a signature, enabling its strict experimental
test, which is the fluctuation between these two orders, corresponding to a charge 2 spin 0 mode at the charge
ordering wave vector. Here, we derive the influence of this SU(2) collective mode on the charge susceptibility
in both strong and weak coupling limits, and discuss its relation to MEELS, RIXS, and Raman experiments. We
find two peaks in the charge susceptibility at finite energy, whose middle is the charge ordering wave vector, and
discuss their evolution in the phase diagram.
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I. INTRODUCTION

Cuprate superconductors exhibit a very rich phenomenol-
ogy. They display an antiferromagnetic phase at low doping,
and a d-wave superconducting phase at higher doping. The
pseudogap phase, detected above this superconducting dome,
corresponds to a partial gapping of the Fermi surface in the
parts of the Brillouin zone furthest away from the nodes of
the d-wave gap, named antinodal regions [1–8]. In the same
doping region, charge order was observed under an applied
magnetic field by quantum oscillations and transport mea-
surements [9–16]. X-ray scattering exposed incipient charge
modulations with incommensurate wave vectors at zero field
[17–30].

The observation of the charge order led to the development
of theories exploring a connection between superconductivity
and charge order as the origin of the pseudogap. In particular,
in the SU(2) theory, a composite order parameter describes
both superconductivity and charge order [31–35]. The pseu-
dogap phase is then the phase in which the composite order
parameter has a finite length but fluctuates between the two
states. It was shown to agree with a range of experimental
responses, including ARPES [36], Raman scattering [37],
inelastic neutron scattering [38], transport measurements [39],
and high magnetic field studies [40].

Out of the large variety of models attempting to de-
scribe the pseudogap, many theories have tried to explain
the partial gapping of the Fermi surface by the presence of
an antiferromagnetic mode [41–46], or the rotation of the
superconducting order parameter to another channel, such
as a staggered-flux phase [47]. In the SO(5) theory, there
is a single order parameter whose coordinates correspond to
antiferromagnetism and superconductivity, and the pseudogap
phase corresponds to the phase in which this order parameter
fluctuates between the two [48–54]. One could, however, also
think that the antiferromagnetic phase could be detached from

the pseudogap, and both these phases could be different types
of condensation at the antiferromagnetic coupling energy
scale J .

In order to check whether the SU(2) theory adequately
describes the pseudogap phase in the cuprates, we need to find
its unique signature, which could be used as an experimental
test of its validity. Because it features a composite order pa-
rameter, which fluctuates, the SU(2) theory has a very specific
signature in the form of a collective mode. Indeed, if a theory
is based on the fluctuations of a composite order parameter,
the collective mode corresponding to these fluctuations can
often be probed directly. Other works have also explored
the connection between superconducting and charge order
parameters, often in the context of competing orders [55,56].
These formalisms do not feature an enhanced symmetry and
therefore do not exhibit the kind of collective modes discussed
here. However, some other works have considered composite
order parameters such as the one we study here, and our work
is therefore potentially relevant to these [57–59].

This collective mode, in the case of the SU(2) theory,
bears charge 2 and spin 0, and thus has to be studied in
the charge channel. Moreover, it peaks at the ordering wave
vector of the charge density wave. Until very recently, a
highly sensitive fully momentum-resolved charge probe did
not exist, and therefore there was no hope to study the signa-
ture mode of the SU(2) theory. Recently, a new experimental
technique named momentum-resolved electron energy-loss
spectroscopy (MEELS) was developed [60,61]. It allows one
to probe the charge response resolved both in momentum and
frequency spaces, with very high resolution. Interestingly for
the study of cuprates, it can probe both normal and super-
conducting states interchangeably. Its versatility has led to
its comparison with ARPES in probing directly fundamental
degrees of freedoms [60].

Resonant inelastic x-ray scattering (RIXS) has recently
also been improved to the point where energy resolution
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has reached 40 meV, making it a great tool for the study
of charge excitations at finite momentum and low energy.
Raman scattering has been used extensively to probe the
charge response in cuprate superconductors. Finally, optical
conductivity has been recently shown to be an interesting tool
to study collective modes in superconductors [62].

Here, we describe the collective mode in the SU(2) theory
of cuprates. This mode bears charge two and spin zero, is
centered on the charge ordering wave vector, and corresponds
to a pair density wave (PDW). It has a finite resonance energy,
and disperses away from it; we give a theoretical estimate
of the slope and find that it fits experiments. Its influence
on the imaginary part of the charge susceptibility is limited
to the superconducting phase, inside the Stoner continuum
region. It peaks at the two crossing points of the dispersion
of the collective mode and of the Stoner continuum, close to
the charge density wave ordering wave vector, at a frequency
close to twice the superconducting gap. These two peaks in the
charge susceptibility go away from each other when applying
a magnetic field. We start by describing the system in the
strong-coupling limit by enforcing an SU(2) constraint on the
charge and superconducting orders, and derive a nonlinear
σ model describing the system. We then turn to the weak
coupling limit and derive the mode using a self-consistent
linear response formalism. Next, we discuss how MEELS,
RIXS, and Raman experiments can access this resonance.
Finally, in the two last sections, we calculate the contribution
of the mode to the charge susceptibility in the strong and weak
coupling formalisms.

II. STRONG-COUPLING BETWEEN CHARGE AND
SUPERCONDUCTING ORDER PARAMETERS

In this section, we describe the strong-coupling regime
of the SU(2) theory of the pseudogap, meaning that we
study a theory where the charge order parameter and super-
conductivity are infinitely coupled. The starting point is to
set an order parameter, displayed on Fig. 1(a), which can
either condense as a superconductor or a charge order, or

FIG. 1. (a) We describe the system by an order parameter n,
which has three components: two associated with superconductivity
and one with charge order. The pseudogap phase is associated
with the phase where this order parameter becomes finite in length
and its phase fluctuates. The fluctuation between the charge order
component n2 and the superconducting components n1 and n3 is the
η mode, corresponding to a PDW, depicted in red. (b) The charge
order parameter Q0, depicted in red, is k-dependent. Here, we choose
to divide the Brillouin zone in eight quadrants, following Ref. [34].

fluctuate between these two orders. The strong-coupling be-
tween these two orders is then obtained by setting a condition
on the magnitude of the order parameter, effectively setting a
relationship between the magnitudes of the two orders. This
allows us to describe the fluctuation of our order parameter in
terms of a nonlinear σ model, which describes the collective
modes corresponding to the angular fluctuations of the order
parameter.

A. Order parameter

In BCS superconductors, the energy scale corresponding
to the formation of Cooper pairs, i.e., the pairing potential,
is associated with the transition temperature Tc. In cuprate
superconductors, one important energy scale is the antifer-
romagnetic coupling constant J . It is of order 1500 K [47],
much larger than the observed Tc. This means that in this case
there are at least two energy scales in the problem: J and
Tc [50]. These two energies can be associated respectively
with the one at which the magnitude of the composite order
parameter chosen for the pseudogap becomes finite and with
the one at which its phase becomes fixed. This means that
at energies between these two the system is fluctuating: it
exhibits a composite order parameter with a finite magnitude
but with a fluctuating phase.

This does coincide with experimental observations in
cuprate compounds. At intermediate doping, the system fea-
tures a high-energy phase, namely the pseudogap phase. It
also features two low-energy phases: the superconducting
phase and the charge ordered phase at high applied magnetic
field. One can, therefore, in the framework of the SU(2)
theory, associate the high-energy scale J with the forming of
either particle-particle or particle hole pairs. The pseudogap
phase then corresponds to fluctuations between two different
types of condensation: superconductivity for particle-particle
pairs and charge order for particle-hole pairs, which happen at
very similar temperatures.

In order to encompass these various possibilities, one can
use an effective model that takes them simultaneously into
account. At sufficiently high doping, one can consider neglect-
ing the antiferromagnetic order, since it only emerges at low
doping. We are therefore left with charge and superconducting
orders, whose relation has been studied intensively in recent
years [31]. A simple model embracing these two orders is one
where we define a composite order parameter describing both
orders. We first need to decide what charge order to consider.
We adopt a very general perspective and only limit ourselves
to orders that will enable us to define a closed algebra. We
define an involution k → k, i.e., a function that is its own
inverse and maps the Brillouin zone on itself, such as

k = k, (−k) = −k, (1)

which we use to define a simple d-wave charge order param-
eter:

χ = 1

2

∑
kσ

dkc
†
kσ

c−kσ , (2)

where dk = cos(2θk ) + cos(2θk ) is a d-wave factor, θk is
the argument of k and σ is a spin index. Note that the
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d-wave factor is invariant both by the involution and by space
inversion k → −k. The charge density wave is the main
observed instability in the under-doped phase of the cuprates,
hence here we choose to rotate from superconductivity to this
frame. But we could as well have enlarged the rotation space
and chosen to rotate as well to incommensurate currents. This
would not change the structure of the collective modes but add
some other channels for collective modes.

The involution used to define the charge order parameter
can be taken to be k = −k + Q0, where the charge ordering
wave vector Q0 connects two hot spots, which are the points
of the Fermi surface where the antiferromagnetic fluctuations
diverge. This expression for k can only be involutive, i.e.,
verify the first equation in Eq. (1), if Q0 is k-dependent. In the
following, we will use a general formalism everywhere possi-
ble, but when necessary we will set Q0 = (±Qx, 0), (0,±Qy )
where Qx and Qy are the distance between two hot spots
for the electronic dispersion we will be considering. The k
dependence is set to be per quadrant as displayed in Fig. 1(b),
following Ref. [34]. Note that other types of involutions, such
as one that maps one opposite sides of the Fermi surface on
each other, have also been considered in previous works [34].

Following experimental observations [5], we consider a
d-wave superconducting order parameter:

� = 1√
2

∑
k

dkck↓c−k↑, (3)

which we can now use to define a composite order parameter.
The choice that has been made in Ref. [31] is to use the matrix(

χ
√

2�

−√
2�† χ

)
with 2|�|2 + |χ |2 = 1, (4)

which belongs to the SU(2) group. Here, for convenience, we
set the value of the constraint in the right-hand side of Eq. (4)
to be 1. But more generally, it can take any value and it sets
the energy scale of the pseudogap.

One could also consider other types of low-temperature
orders to which one can associate a component of such
a composite order parameter. In particular, at low doping,
cuprate superconductors feature an antiferromagnetic phase.

We now want to describe the symmetry of this composite
order parameter, and in order to do this, we want to write a Lie
algebra that will act on our order parameter space. It is natural,
in this case, to choose su(2) as the Lie algebra, which will
act on our SU(2) order parameter (by convention, we write
groups in capital letters and Lie algebras in lower-case). It
is also interesting to note that SU(2) is closely related to the
SO(3) group, more particularly by a mapping, which maps one
element of SO(3) on two elements of SU(2), i.e., a covering
map of order 2. However, Lie algebras are local objects, and
because of this, one can always place them in a neighbourhood
of SU(2) where the mapping will be of order one, hence su(2)
and so(3) are isomorphic.

One can therefore define an order parameter on which to
act with an so(3) Lie algebra, which will be simpler to handle
and closer to relate with other phenomenological theories
[50]. so(3), being isomorphic to su(2), will then satisfactorily
preserve the symmetry of the order parameter, i.e., preserve

the condition in Eq. (4). We define the Hermitian order
parameter n:

n1 = 1√
2

(�† + �), (5)

n2 = χ, (6)

n3 = − i√
2

(�† − �). (7)

The state of the system is therefore described by a three-
dimensional vector [Fig. 1(a)]. Two of its components are
associated with superconductivity, while the third one is as-
sociated with charge order. Thus, in the charge ordered phase,
n is along n2, and in the superconducting phase, n is in the
n1-n3 plane. In the pseudogap phase, the length of n is finite,
and its phase fluctuates between these axes. At temperatures
above the pseudogap transition temperature T ∗, n vanishes.

B. Lie algebra

Now that we have defined the order parameter, we can
define a Lie algebra to relate its coordinates to one another.
The Lie algebra will act on the order parameter space via its
adjoint representation, meaning that an element x of the Lie
algebra will transform an element v of the order parameter
vector space following

v → [x, v]. (8)

This defines the action of the Lie algebra on the order pa-
rameter vector space, which is an endomorphism of the order
parameter space. Let us now relate the three coordinates of n
to one another using such commutators. The operators we will
use for this will then be the generators of our Lie algebra, and
will thus define it entirely.

We define, following previous work [34],

η† =
∑

k

c
†
k↑c

†
k↓, (9)

ηz = [η†, η] = 1

2

∑
k

(c†k↑ck↑ + c
†
k↓ck↓ − 1), (10)

which if we use an l = 1 triplet notation, �−1 = �, �0 = χ ,
�1 = �†, η† = η+, and η = η−, verify the relations

[η±,�m] =
√

l(l + 1) − m(m ± 1)�m±1, (11)

[ηz,�m] = m�m. (12)

The two superconducting components n1 and n3 are related
via a U(1) symmetry, whose generator is the total charge:

Q = ηz + 1

2
= 1

2

∑
kσ

c
†
kσ ckσ . (13)

Indeed, we can verify the relationship

[Q,�] = 1

2
√

2

∑
k1k2σ

dk2

[
c
†
k1σ

ck1σ , ck2↓c−k2↑
] = −�, (14)
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which gives us

[Q,n1] = [Q,�†] + [Q,�]√
2

= − [Q,�]† + [Q,�]√
2

= in3,

(15)

which relates n1 and n3, the two superconducting components
of n, via the action of the total charge Q.

The η† operator corresponds to an s-wave pair density
wave: it pairs two electrons of opposite spin at a finite
momentum Q0. Here, it corresponds to the rotation from
the superconducting to the charge order parameter, unlike in
recent works where it is at the origin of the formation of the
charge density wave order [63].

Combining η† with η allows us to relate n1 to n2:[
i
η† − η

2
, n1

]
= in2, (16)[

−i
η† − η

2
, n2

]
= in1, (17)

and similarly for n2 and n3:[
η† + η

2
, n3

]
= in2, (18)[

−η† + η

2
, n2

]
= in3. (19)

We can now gather the generators of our Lie algebra in a
single matrix L:

L =

⎛
⎜⎜⎝

0 i
η†−η

2 Q

−i
η†−η

2 0 − η†+η

2

−Q
η†+η

2 0

⎞
⎟⎟⎠, (20)

which acts on n via the relation

[Lab, nc] = iδacnb − iδbcna. (21)

Note that it satisfies the commutation relation

[Lab, Lcd ] = iδacLbd + iδbdLac − iδadLbc − iδbcLad . (22)

Note that, unlike in other similar theories, the commutation
relation between elements of the Lie algebra and of the vector
space is strictly verified, and one does not need to take a
particular limit such as the continuum limit for the SO(5)
theory [50]. Indeed, in the SO(5) case, the antiferromagnetic
order parameter is related to the d-wave superconducting
order parameter. One therefore needs to take the continuum
limit to take away this d-wave form factor. Here, both orders
are d-wave, hence there is no need to take such a limit.

C. Nonlinear σ model

Now that we have defined the composite order parameter
and the Lie algebra that relates its components to one another,
we can set up the model based on this order parameter. The
central characteristic of this model is that in the pseudogap
phase the order parameter has a fixed length and its phase
fluctuates. We therefore can think of the high energy scale
J as corresponding to a mean-field transition below which
the length of n becomes finite. Below this energy scale, we

neglect changes in the magnitude of the order parameter and
simply take |n| = 1. In order to describe these fluctuations,
it is natural to adopt a model where the kinetic energy is
that of a rotor [Fig. 1(a)], and where the potential energy is
an expansion in the gradient of n. Moreover, we want this
model to describe how the order parameter becomes either
superconducting or charge ordered at low temperature. This
is done by adding a potential term, small compared to J ,
which can vary with tuning parameters such as the applied
magnetic field B. This potential term corresponds to the low
energy scale associated with Tc at low B and the charge order
transition temperature at high B.

We take the kinetic energy to be the one of a rotor:∑
a<b

1
2χ

L2
ab(x), where χ is the moment of inertia of the rotor.

In the long-wavelength limit, one can expand the gradient
dependence of the Hamiltonian and obtain

∑
a<b

ρs

2 v2
ab(x),

where vk
ab = na∇nb − nb∇na is a generalised gradient

term. These considerations lead us to study the following
Hamiltonian density:

H =
∑
a<b

1

2χ
L2

ab(x) +
∑
a<b

ρs

2
v2

ab(x) + V (n), (23)

where V is the potential term. We want to obtain the cor-
responding Lagrangian density L by performing a Legendre
transformation [50]. We start by expressing the components
of L as [64]

Lab = napb − nbpa, (24)

where p denotes the conjugated momentum of n. The Legen-
dre transformation can be written as

L = ṅp − H, (25)

where

ṅp =
∑

a

ṅapa (26)

and

ṅc = ∂H

∂pc

. (27)

We replace H in this latter equation with Eq. (23) in which we
input Eq. (24) and obtain

ṅc =
∑
a �=c

1

χ
na (napc − ncpa ). (28)

We use this expression to rewrite the first term of the Legendre
transformation in Eq. (25), defined in Eq. (26):

ṅp =
∑
a<b

1

χ
(napb − nbpa )2. (29)

We define the angular velocity of the rotor,

ωab = naṅb − nbṅa, (30)

in which we insert Eq. (28) to obtain

ωab = 1

χ
(napb − nbpa ). (31)
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We use this expression in Eq. (29),

ṅp =
∑
a<b

χ (ωab )2, (32)

and this latter expression in Eq. (25) to finally obtain

L =
∑
a<b

χ

2
ω2

ab(x) −
∑
a<b

ρs

2
v2

ab(x) − V (n). (33)

We enforce the condition |n| = 1 by writing the partition
function of the system as

Z =
∫

D[n]δ(n2 − 1)e− ∫ β

0 dτ
∫

dxL. (34)

The potential term V has to be the same for n1 and n3 in order
to preserve the U(1) symmetry of the superconducting state.
However, it can be different for n2:

V (n) = mSC
(
n2

1 + n2
3

) + mCOn2
2, (35)

where mSC is the mass corresponding to the superconducting
coordinates and mCO is the mass corresponding to the charge
order coordinate. In this case, at low temperature, the system
will prefer the order with the larger negative mass. Without an
applied magnetic field, the system is known experimentally to
be superconducting at low temperature, so we choose the mass
of superconductivity to be the larger negative one. Therefore
the system will select the corresponding “easy plane,” i.e.,
at low temperature, it will lay in the n1-n3 plane. The mass
of the superconducting coordinates is renormalized by an
applied magnetic field [40], which eventually will make it
equal to the mass of the charge order coordinate. Beyond this
point, the system will prefer charge order at low temperature:
there is a spin-flop transition from the superconducting “easy
plane” to charge order. This type of transition is very flat and
corresponds very well to the sharp onset of charge order at
high magnetic field in the cuprates [40]. Note that if V goes
beyond second order in the coordinates, the system can also
form a phase where both orders coexist [40].

Thanks to distinguishing between high and low energy
scales, we can therefore give a full picture of the phase
diagram of the cuprates in the magnetic field (B)-temperature
(T ) plane. Antiferromagnetic correlations in the system, cor-
responding to the high energy scale J , cause either particle-
particle or particle-hole pairing, which we describe with a
fixed-magnitude order parameter. Below the higher energy
scale but above the lower one, the pairs “hesitate” between
a zero-charge but finite momentum pairing (charge order)
and a 2e-charge zero-momentum pairing (superconductivity),
i.e., the phase of this composite order parameter is left free
and fluctuates between the two orders. Below the lower
energy scale, depending on the magnetic field, the system
then chooses one state, where the phase does not fluctuate
anymore. The fact that this phase can fluctuate means that
there are collective modes, which correspond to all the ways
these fluctuations can take place.

D. Collective modes

Now that we have written the nonlinear σ -model for our
order parameter n [Eq. (33)], we can study how it fluctu-
ates. Each type of fluctuation will correspond to a bosonic

collective mode. In a BCS superconductor, there is only one
mode associated with the phase fluctuation of the supercon-
ducting order parameter, whose energy is pushed up to the
plasma frequency by a long-range Coulomb interaction [65].
In our case, the order parameter has another coordinate, which
means that there will also be a collective mode associated with
the rotation between the superconducting coordinates and the
charge order coordinate. We will call this mode the η mode,
in analogy with the name of the ladder operator relating these
two orders [Eq. (9)]. Since the η operator corresponds to a
PDW, the η mode can be seen as a PDW mode. It is depicted
in Fig. 1. Another way of picturing this η mode is to say that it
changes simultaneously the amplitudes of both the charge and
the superconducting orders. As such, it can be seen as two
amplitudes related by the constraint in Eq. (4).

We start by transforming Eq. (33),

L =
∑
a<b

χ

2
(na∂tnb − nb∂tna )2

−
∑
a<b

ρs

2
(na∇nb − nb∇na )2 − V (n), (36)

by expanding the first term:∑
a<b

χ

2
(na∂tnb − nb∂tna )2

=
∑
a<b

χ

2

[
n2

a (∂tnb )2 + n2
b(∂tna )2 − 2na∂tnanb∂tnb

]
.

(37)

Since the norm of n is fixed, we can use the two identities

n2 = 1 and n · ∂tn = 0, (38)

which enable us to simplify the first term to∑
a<b

χ

2
(na∂tnb − nb∂tna )2 =

∑
b

χ

2
(∂tnb )2. (39)

Using the same procedure for the second term of Eq. (36)
gives us the following O(3) nonlinear σ model:

L =
∑

b

[
χ

2
(∂tnb )2 − ρs

2
(∇nb )2

]
− V (n). (40)

In order to study the collective modes in this model, we place
ourselves in the pure superconducting state n1:

L =
∑
b �=1

[
χ

2
(∂tnb )2 − ρs

2
(∇nb )2

]
− V (n). (41)

Minimizing with respect to the two other coordinates n2 and
n3, and setting χ = 1, gives us equations corresponding to two
collective modes:

∂2
t n2 = ρs∇2n2 + (mCO − mSC)n2, (42)

∂2
t n3 = ρs∇2n3. (43)

The first one corresponds to rotating from n1 to n2, i.e., from
superconductivity (which is the ground state we are in) to
charge order: it is the η mode. If mSC < mCO, it becomes
massive. If mSC > mCO, the mass is negative, which is normal
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since we expanded around n1, which in this case is not the
ground state. The second collective mode corresponds to ro-
tating from n1 to n3, i.e., from one superconducting coordinate
to the other: it is the Goldstone boson of superconductivity.
Note that it is massless.

We can also place ourselves in the pure charge ordered state
n2 and obtain a very similar nonlinear σ model:

L =
∑
b=1,3

[
χ

2
(∂tnb )2 − ρs

2
(∇nb )2

]
− V (n). (44)

Minimizing with respect to the two other coordinates, and set-
ting χ = 1 gives us equations corresponding to two collective
modes:

∂2
t n1 = ρs∇2n1 + (mSC − mCO)n1, (45)

∂2
t n3 = ρs∇2n3 + (mSC − mCO)n3. (46)

They correspond to rotating from n2, the charge order coor-
dinate, to n1 and n3, respectively, the two superconducting
coordinates: both correspond to the η mode. They are de-
generate since the two superconducting coordinates are at the
same energy. If mSC > mCO, both modes become massive. If
mSC < mCO, charge order is no longer the ground state and
therefore the two modes acquire negative masses.

One can calculate the renormalized parameter of a general
version of the nonlinear σ -model at finite temperature and
applied magnetic field:

L =
3∑

b=1

[
(∂tnb )2 − ρs (∇nb )2 − κ2

0 n2
b

]
, (47)

where κ2
0 = mSC − mCO is the bare anisotropy and ρs is the

stiffness. Note that here we consider a simply quadratic poten-
tial term V , which means that there is no uniform coexistence
phase, and that the transitions towards superconductivity and
charge order meet at a critical point on the zero-temperature
axis. The renormalization was done in a previous work [40],
and the renormalized anisotropy was calculated to be

κ2 = κ2
0

[
1 − T

2πρs

ln

(
�√

κ0 + B

)]
, (48)

where κ0 is the bare anisotropy, T the temperature, ρs the stiff-
ness associated with spatial variations of the order parameter,
� the upper momentum cutoff, and B the applied magnetic
field. We show the evolution of κ in the B-T phase diagram
in Fig. 2. The main feature of this evolution is that κ softens
when applying magnetic field, up to the transition to charge
order, and then hardens again. It is zero at the quantum critical
point at field B = BCO, because the symmetry is rigorously
valid there.

This anisotropy κ is key since it enters all the equations
for the η modes as its mass. The softening of κ pictured in
Fig. 2 under applied magnetic field therefore means that the
mass of the collective modes will also soften when increasing
magnetic field, up to the point where there is a transition to the
charge ordered state, at which this mass will start hardening.

One can also, as stated above, consider a case where the
phase diagram displays a coexistence phase. This coexistence
corresponds to a PDW phase, and since the η mode is a

 0 Tc
T

 0

BCO

B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6
κ

FIG. 2. (Left) Evolution of the mass of the η mode κ with tem-
perature (T ) and applied magnetic field (B) in the superconducting
and charge order phases. BCO is the onset magnetic field for the
charge ordered phase, and Tc is the superconducting temperature at
zero field. (Right) Evolution of κ with magnetic field at the tem-
perature corresponding to the dashed grey line in the left-hand side
plot. The mass softens at the transition between the two orders. This
softening very specifically corresponds to the nature of the η mode,
which rotates from superconductivity to charge order. As such, it is
a signature of the SU(2) order parameter. In the case where the two
phases coexist, the η mode, which corresponds to a PDW, condenses
and forms an ordered PDW state showing supersolidity [40].

PDW mode, the coexistence phase is a condensation of the
η mode. Within this phase, the ground state is a mixture of
superconducting and charge orders, and therefore the order
parameter is not aligned with either axes. Its rotation towards
pure superconducting and pure charge order states is massive,
but this mass goes to zero at the tetracritical point where the
symmetry is rigorously valid.

We can notice that the various equations that we derived
for the η mode in this section all have the same magnitude
for the mass, namely the anisotropy κ . Moreover, the sign is
also identical as long as we are deriving the modes close to
the ground state of the system. Finally, the two modes derived
close to n2 [Eqs. (45) and (46)] are identical. The propagator
for the η mode therefore is

D(q, ω) = 1

ω2 − ρsq2 − κ2
, (49)

where ρs is the stiffness, q the momentum close to Q0, and
ω the frequency. In the following, we use an anisotropy of
10 meV, a residual scattering of 2 meV, and a temperature of
1 meV. A value for the stiffness was calculated in the frame-
work of the eight-hot-spots model studied in Ref. [66]. There,
the stiffness obtained is ρs = 3α

16π
T ∗
T

, where α ≈ 1. If one sets
the temperature T to a tenth of the pseudogap temperature T ∗,
one obtains ρs = 0.597. We use this value in the following.

We have laid out Eqs. (42), (43), (45), and (46) for the
collective modes present in the system. There are two types
of collective modes: the rotation between the two coordinates
of superconductivity and the η mode corresponding to the
fluctuation of the order parameter between charge order and
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superconductivity. We showed that the evolution of the mass
of the η mode, shown in Fig. 2 in the case where there is
no phase, where charge order and superconductivity coexist,
features a softening induced by the magnetic field at the
transition from superconductivity to the charge order. This is
due to the fact that the SU(2) symmetry is verified exactly
at this point of the phase diagram. We have shown that
the mode corresponding to the rotation between charge and
superconductivity corresponds to the η operator defined in
Eq. (9). We now turn to a self-consistent linear response
formalism to study this mode in the weak-coupling limit.

III. WEAK-COUPLING REGIME

In the previous section, we derived the shape of the η mode
in the strong-coupling limit. Here, we derive it in a weak
coupling formalism. We follow closely the self-consistent
linear response formalism previously used in the context
of the negative-U Hubbard model and of the SO(5) theory
[49,67]. The η operator [see Eq. (9)] has charge 2, therefore
we expect that the η mode will only be excited within the
superconducting phase. We will therefore consider a simple
model taking only short-range antiferromagnetic correlations
into account, and suppose that it has a superconducting ground
state. We then apply a small perturbation on the density.

We start with the t-J model [38] perturbed by an in-
finitesimal external field φq, which couples to the density at
momentum −q:

H =
∑
kσ

ξkc
†
kσ ckσ + 1

2
ρ−qφq

+ 1

2

∑
kk′q′

J (q ′)
∑
αβγ δ

c
†
kα �σαβck+q′β �σγ δc

†
k′+q′γ ck′δ, (50)

where k, k′, and q′ are reciprocal space vectors, α, β, γ , and
δ are spin indices, ξk is the electronic dispersion, J is the
antiferromagnetic coupling, �σ is the vector of Pauli matrices,
and ρq is the density:

ρq↑ =
∑

k

c
†
k+q↑ck↑, (51)

ρq↓ =
∑

k

c
†
k+q↓ck↓. (52)

We want to study the response at q close to the charge ordering
wave vector Q0, which is the vector linking two hot spots. We
use the completeness relation of the Pauli matrices:

�σαβ �σγ δ = 2δαδδβγ − δαβδγ δ, (53)

which gives us the following coupling term:

1

2

∑
kk′q′

J (q ′)
∑
αβ

(c†kαck+q′βc
†
k′+q′βck′α + c

†
kαck+q′αc

†
k′+q′βck′β ).

(54)

We want to study the influence of the external field φq on
the system in the superconducting state. In order to do this,
we assume that this field excites a set of fields at the exci-
tation momentum q. We go beyond standard random phase
approximation methods by both considering the influence of

particle-particle and particle-hole excitations on the response
to φq.

We assume a BCS superconducting ground state, as well
as the fact that the expectation values for density and pairing
at the excitation wave vector q are nonvanishing:

ukvk = 〈c−k↓ck↑〉 = 〈c†k↑c
†
−k↓〉, (55)

η̂∗
q(t ) = 〈η†

q(t )〉, (56)

η̂q(t ) = 〈ηq(t )〉, (57)

ρ̂q↑ = 〈ρq↑〉, (58)

ρ̂q↓ = 〈ρq↓〉, (59)

where the coefficients are given by

u2
k = 1

2

(
1 + ξk

Ek

)
, v2

k = 1

2

(
1 − ξk

Ek

)
,

where Ek = √
ξk + �, ξk is the electronic dispersion in the

normal state and � is the superconducting gap, which we set
to be constant in this section for simplicity. We will consider
a d-wave superconducting gap in the following section.

Linearizing the Hamiltonian with respect to these expecta-
tion values gives

H =
∑
kσ

ξkc
†
kσ ckσ + �

∑
k

(c†k↑c
†
−k↓ + c−k↓ck↑)

− 6J0η̂
∗
q

∑
k

c−k↓ck+q↑ − 6J0η̂q

∑
k

c
†
k−q↑c

†
−k↓

− 6J0

(
ρ̂q↑ + φq

2

) ∑
k

ck−q↓ck↓

− 6J0

(
ρ̂q↓ + φq

2

) ∑
k

ck−q↑ck↑, (60)

where J0 is the antiferromagnetic coupling close to a vector
linking two hot-spots, and where, without loss of generality,
we rescaled φq by a factor 6J0 to make Eq. (60) simpler. Here,
we consider not only the particle-hole channel as usually
done, but also the particle-particle channel corresponding to
the η and η† operators, which is the part that we are most
interested in. We obtain the same expression as the one
obtained in the case of the negative-U Hubbard model [67],
with a 6J0 coefficient instead of U . We obtain a coefficient
6 here due to the fact that we did not include the ninj term
in the Hamiltonian [47]. We assume the BCS self-consistency
relation:

� = 6J0

∑
k

ukvk. (61)

We consider the first line of H , which is a BCS Hamilto-
nian, as the ground-state Hamiltonian H0. The rest is propor-
tional to fields which are proportional to φq, and we will treat
it as a perturbation H1. The response is given by the Kubo
formula:

〈O(t )〉 = −i

∫ t

−∞
dt ′〈[O(t ),H1(t ′)]〉H0 , (62)
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where the operator O can be any of the operators η
†
q, ηq,

ρq↑, or ρq↓. We define the frequency-dependent operators by:
O(ω) = ∫

dteiωtO(t ). Applying this to the operators in our
problem gives

η̂∗
q(ω) = 6J0

∑
kν

Gk(ν)Gk+q(−ν − ω)η̂∗
q(ω) − 6J0

∑
kν

F
†
k (ν)F †

k+q(ν + ω)η̂q(ω)

− 6J0

∑
kν

F
†
k (ν)Gk+q(ν − ω)(ρ̂q(ω) + φq(ω)), (63)

η̂q(ω) = − 6J0

∑
kν

Fk(ν)Fk+q(ν + ω)η̂∗
q(ω) + 6J0

∑
kν

Gk(ν)Gk+q(ω − ν)η̂q(ω)

− 6J0

∑
kν

Fk(ν)Gk+q(ν + ω)(ρ̂q(ω) + φq(ω)), (64)

ρ̂q(ω) = − 6J0

∑
kν

Fk+q(ν)Gk(ν − ω)η̂∗
q(ω) − 6J0

∑
kν

F
†
k+q(ν)Gk(ν + ω)η̂q(ω)

+ 6J0

∑
kν

[Fk(ν)Fk+q(ν + ω) + Gk(ν)Gk+q(ν + ω)](ρ̂q(ω) + φq(ω)), (65)

where G is the normal propagator, F and F † are the anomalous propagators, and ν and ω are fermionic and bosonic Matsubara
frequencies respectively. The calculation of these coefficients follows exactly what was done previously in Ref. [67]. For
completeness, we reproduce the corresponding diagrams in the appendices, see Figs. 17–19. The results can be summarized
in the following matrix equation: ⎛

⎝η̂∗
qω + η̂qω

η̂∗
qω − η̂qω

ρqω

⎞
⎠ =

⎛
⎝t++ t+− m+

t+− t−− m−
m+ m− 6J0χbcs

⎞
⎠

⎛
⎝η̂∗

qω + η̂qω

η̂∗
qω − η̂qω

ρqω + φqω

⎞
⎠, (66)

where the matrix coefficients are

t++ = − 6J0

∑
k

[1 − nF (Ek+q) − nF (Ek )]
Akq(ukuk+q − vkvk+q)2

ω2 − A2
kq

− 6J0

∑
k

[nF (Ek+q) − nF (Ek )]
Bkq(ukvk+q + vkuk+q)2

ω2 − B2
kq

, (67)

t+− = 6J0

∑
k

[1 − nF (Ek+q) − nF (Ek )]
ω

(
1 − v2

k+q − v2
k

)
ω2 − A2

kq

+ 6J0

∑
k

[nF (Ek+q) − nF (Ek )]
ω

(
v2

k+q − v2
k

)
ω2 − B2

kq

, (68)

t−− = − 6J0

∑
k

[1 − nF (Ek+q) − nF (Ek )]
Akq(ukuk+q + vkvk+q)2

ω2 − A2
kq

− 6J0

∑
k

[nF (Ek+q) − nF (Ek )]
Bkq(ukvk+q − vkuk+q)2

ω2 − B2
kq

,

(69)

m+ = − 6J0

∑
k

[1 − nF (Ek+q) − nF (Ek )]
ckq(ukvk + uk+qvk+q)

ω2 − A2
kq

+ 6J0

∑
k

[nF (Ek+q) − nF (Ek )]
ckq(uk+qvk+q − vkuk )

ω2 − B2
kq

,

(70)

m− = 6J0

∑
k

[1 − nF (Ek+q) − nF (Ek )]
ω(ukvk + uk+qvk+q)

ω2 − A2
kq

− 6J0

∑
k

[nF (Ek+q) − nF (Ek )]
ω(uk+qvk+q − ukvk )

ω2 − B2
kq

, (71)

χbcs = −
∑

k

[1 − nF (Ek+q) − nF (Ek )]
Akq(uk+qvk + ukvk+q)2

ω2 − A2
kq

+
∑

k

[nF (Ek+q) − nF (Ek )]
Bkq(ukuk+q − vkvk+q)2

ω2 − B2
kq

, (72)

where nF is the Fermi-Dirac distribution, Akq = Ek+q + Ek,
Bkq = Ek+q − Ek, and ckq = ξk+q + ξk.

We now have a system of coupled equations [Eq. (66)],
which we want to solve in order to find expressions for η̂∗

qω

and η̂qω. In order to do this, we make two approximations:
first, we set T = 0 and thus nF (Ek+q) = nF (Ek ) = 0. This
causes in particular all the coefficients of the matrix in Eq. (66)
to reduce to their first term. We notice that in Eqs. (68)

and (71), ω can be taken out of the sum on k. Moreover, we
know from the case of the Hubbard model [67] that

Akq(ukuk+q − vkvk+q)2 = ckq
(
1 − v2

k+q − v2
k

)
, (73)

which changes the coefficient of Eq. (67). In order to simplify
these coupled equations, we want to take ckq out of the sums
in Eqs. (67) and (70), similarly to what we did for ω.
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FIG. 3. We approximate the electronic dispersion by its variation

close to the hot spots: ξk = vF k‖ + k2
⊥

m∗ . When going from k to
k + Q0, one reverses the component of the dispersion parallel to the
Fermi surface but the component perpendicular to the Fermi surface

does not change. This gives ckQ0 ≈ 2
k2
⊥

m∗ .

We focus on the momentum q = Q0, and approximate the
electronic dispersion for k close to the hot spots with ξk =
vF k‖ + k2

⊥
m∗ , where k‖ and k⊥ are the components of k parallel

and perpendicular to the Fermi surface, respectively, vF is the
Fermi velocity, and m∗ is the curvature of the dispersion close

to the hot spots. This gives us ckQ0 ≈ 2 k2
⊥

m∗ , as can be seen
from plotting these two points on the Fermi surface in Fig. 3.

Knowing that the maximum value of k2
⊥

m∗ is much smaller than

the one of vF k‖, we approximate 2 k2
⊥

m∗ by its maximum, which
we name α. Because we approximate ckQ0 by a constant, we
can now take it out of the sums in Eqs. (67) and (70).

We start by summing the first row in Eq. (66) times ω and
the second row times α. We use the identity

Akq
(
1 − v2

k+q − v2
k

) = ckq(ukuk+q + vkvk+q)2 (74)

to simplify the term α × t−− and obtain

ω
(
η̂∗

Q0ω
+ η̂Q0ω

) = [−α + 6J0(1 − n)]
(
η̂∗

Q0ω
− η̂Q0ω

)
, (75)

where n = 2
∑

k v2
k is the density. We want to transform

the third equation in Eq. (66). We start by transforming our
expression for χbcs by using the identity

Akq(vkuk+q + ukvk+q)2 =
(

A2
kq − ω2

2�
+ ω2 − c2

kq

2�

)

× (ukvk + uk+qvk+q) (76)

and obtain

χbcs = −
∑

k

ukvk + uk+qvk+q

ω2 − A2
kq

ω2 − c2
kq

2�
+ 1

6J0
. (77)

We add to the third row of Eq. (66) times 2� with this
expression for χbcs the first row times α and the second row

times ω, which gives

ω
(
η̂∗

Q0ω
− η̂Q0ω

) = [−α + 6J0(1 − n)]
(
η̂∗

Q0ω
+ η̂Q0ω

)
+ 2�φQ0ω. (78)

The two equations (75) and (78) form a system. Their sum and
difference give us, respectively,

η̂∗
Q0ω

= �

ω + κ
φQ0ω, (79)

η̂Q0ω = − �

ω − κ
φQ0ω, (80)

where

κ = α − 6J0(1 − n) (81)

is the resonance energy. These two equations describe the η

mode, which corresponds to the rotation between the charge
and superconducting order parameters, as discussed in the pre-
vious section. Similarly to the previous section, in Eqs. (79)
and (80), the resonance diverges at a finite resonance energy
κ , which is the weak-coupling equivalent of the κ defined in
the strong-coupling section in Eq. (48). In the strong-coupling
model, we took the magnetic field into account, and obtained
the magnetic field dependence of κ . Here, we did not take
the magnetic field into account, but directly linked κ to the
electronic density n. It is 1 at half-filling, and then decreases
when the system is hole-doped. Therefore κ decreases when
the hole-doping increases.

Equations (79) and (80) are proportional to �, meaning
that they are only finite in the superconducting state. This is in
line with the fact that because these operators bear charge 2,
they can only be excited in the superconducting condensate,
where there is an electron-hole symmetry.

In this section, we have derived the shape of the η-mode in
the weak coupling limit using a self-consistent linear response
formalism. We found that it diverges at the charge ordering
wave vector Q0 and at the resonance energy κ , similarly
to what was obtained in the previous section in the strong-
coupling formalism. It can be contrasted to what was obtained
in the SO(5) theory, based on a composite order parameter
rotating from antiferromagnetism to charge order [54]. There,
the mode diverges at the antiferromagnetic ordering wave vec-
tor (π, π ) and at a finite energy, which goes to zero at around
5% doping, where the system goes from antiferromagnetism
to superconductivity. In the following sections, we discuss
how the η mode can be seen in the imaginary part of the charge
susceptibility.

IV. STRONG-COUPLING BETWEEN CHARGE AND
SUPERCONDUCTING ORDER PARAMETERS:

CHARGE SUSCEPTIBILITY

In Secs. II and III, we have derived the η mode at momen-
tum Q0 using strong and weak coupling formalisms. Here, we
use the strong-coupling formalism to derive the influence of
the η mode on the imaginary part of the charge susceptibility.
In particular, we want to find the resonant contribution of
this mode, meaning the contribution peaked at the resonance
frequency and at the resonance wave vector.
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FIG. 4. Diagram for the resonant contribution of the η mode to
the charge susceptibility in the superconducting phase χη. D is the
bosonic propagator corresponding to the η mode. Note that the two
bottom propagators are anomalous propagators, nonvanishing only
in the superconducting phase.

The central feature of our strong-coupling model is the
definition of a composite order parameter that embraces both
charge and superconducting orders. In Sec. II, we discussed
how this naturally causes the rise of the η mode corresponding
to the rotation between these two orders. This bosonic mode is
unique to this model in that it only exists because charge order
and superconductivity are gathered in a single order parameter
n and linked by the SU(2) symmetry. As such, it forms the
most direct signature of the SU(2) symmetry and therefore of
this model.

Because it corresponds to the rotation between charge
order and superconductivity, the η mode is charge 2. This can
be seen by the fact that, for example, the operator linking n1

and n2 is L12 = i
η†−η

2 . The operators η† and η, indeed, bear
two electronic charges. This mode therefore acts on particle
pairs, which means that it will be much more visible in the
superconducting state.

The bare polarization bubble in a superconductor can be
put in this form [68,69]:

χbcs (ω, q) =
∑

k

[
(ukuk+q + vkvk+q)2 nF (Ek+q) − nF (Ek )

ω − Ek+q + Ek

+ (ukvk+q −vkuk+q)2 1 − nF (Ek+q) − nF (Ek )

ω + Ek+q + Ek

+ (ukvk+q − vkuk+q)2

× nF (Ek+q) + nF (Ek ) − 1

ω − Ek+q − Ek

]
. (82)

It is the bare contribution of the electronic sector to the
charge susceptibility in a superconductor. In the presence of

an interaction, it can be renormalized, as done, for example,
in the random phase approximation formalism [69].

Here, we want to study the contribution of the η mode to
the charge susceptibility. It will sum up with other contri-
butions, such as the one from the electrons of Eq. (82). We
place ourselves in the superconducting state in the Nambu
formalism, which gives us the usual two normal and two
anomalous propagators.

We name the main resonant contribution to the charge
susceptibility χη in the superconducting phase, and represent
it by the diagram in Fig. 4. This contribution of the collective
mode to the charge susceptibility only appears in the super-
conducting phase, and we therefore expect a sharp change
at the superconducting transition. The full diagram χη (see
Fig. 4) is given by

χη(q, ω) = |B(q, ω)|2D(q, ω), (83)

where B is the contribution of the fermions and D is the
bosonic propagator.

A. Fermionic polarization

Here we calculate the left-hand side polarization of χη

(Fig. 4), which we name B(q, ω). We discuss its evolution
in frequency on the axis of the Brillouin zone, its evolution in
momentum, and finally how it changes with the location in the
phase diagram. We start by giving its expression:

B(q, ω) =
∑
kε

F †(k, ε)[G(−k + q,−ε + ω)

− G(−k + q, ε − ω)], (84)

where G and F † are normal and anomalous propagators,
respectively, k and q are reciprocal space vectors, and ε and ω

are fermionic and bosonic frequencies, respectively. The two
terms in Eq. (84) correspond to the two Nambu indices. Since
the second term is the opposite of the complex conjugate of
the first, their sum is twice their imaginary part. This is a
consequence of the symmetry between the propagators in the
two Nambu indices: G11(ω) = −G∗

22(−ω). Because F † is an
anomalous propagator, B = 0 outside of the superconducting
phase. Summing over fermionic frequencies ε gives

B(q, ω) = 2
∑

k

u2
−k+qukvkIm

(
1 − nF (Ek ) − nF (E−k+q)

iω − E−k+q − Ek
+ nF (E−k+q) − nF (Ek )

iω − E−k+q + Ek

)

+ 2
∑

k

v2
−k+qukvkIm

(
nF (E−k+q) − nF (Ek )

iω + E−k+q − Ek
+ 1 − nF (Ek ) − nF (E−k+q)

iω + E−k+q + Ek

)
, (85)

where nF is the Fermi-Dirac distribution, Ek = √
ξk + �k,

ξk is the electronic dispersion in the normal state, �k is the
superconducting d-wave gap and Im is the imaginary part.
We use a dispersion ξk obtained from angle-resolved pho-
toemission data in [69]: ξk = t0 + t1/2[cos(kx ) + cos(ky )] +

t2 cos(kx ) cos(ky )+t3/2[cos(2kx )+ cos(2ky ))]+t4/2[cos(2kx )
cos(ky )+ cos(kx ) cos(2ky )]+t5 cos(2kx ) cos(2ky ), where the
hopping parameters are t0 = 0.1305 eV, t1 = −0.5951 eV,
t2 = 0.1636 eV, t3 = −0.0519 eV, t4 = −0.1117 eV. and
t5 = 0.0510 eV. It corresponds to a hole doping of 17% [70],
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FIG. 5. |B|2 as a function of frequency along the axis of the
Brillouin zone. The white solid lines are the top and bottom of the
Stoner continuum. |B|2 is maximum on a straight line at about 50 eV.

and to a distance between hot-spots of Qx = Qy = 1.12 in
reciprocal lattice units, which means that it is not close to a
van Hove singularity.

One can notice that B is formed of products of one normal
propagator with one anomalous propagator. This is unlike χbcs

[Eq. (82)], which is formed of products of either two normal
or two anomalous propagators. From the numerators of the
four terms in Eq. (85), we can already see that the dominant
contribution of B will come from the first term. Indeed, at zero
temperature, the Fermi functions vanish, and we are left only
with the first and the last term. Moreover, for an infinitesimal
scattering, these terms are Dirac functions at ω = E−k+q +
Ek and ω = −E−k+q − Ek, respectively. Given that Ek > 0,
the first term dominates for positive frequencies and will only
be sizable above the lower bound of the Stoner continuum:
mink (E−k+q + Ek ). We discuss the physical interpretation of
the shape of this line in details in Appendix C.

We show the frequency evolution of |B(q, ω)|2 along
the axis of the Brillouin zone in Fig. 5. It is clearly
delimited by the lower bound of the Stoner continuum:
mink (E−k+q + Ek ), which is plotted in the same figure. Most
of the weight is condensed on a very flat line around 50 meV

and close to the origin of the Brillouin zone. This energy is
of the order of twice the superconducting gap. Indeed, given
that Q0 links two hot spots, if k is at a hot spot, we get
ξ−k+Q0 = ξk = 0, and mink (E−k+Q0 + Ek ) = 2�Q0 .

The evolution of |B(q, ω)|2 in the Brillouin zone is dis-
played in Fig. 6. It is d-wave, which follows logically from
the fact that the superconducting parameter �k is d-wave,
and that it is a prefactor of the anomalous propagator F † and
therefore also of B [see Eq. (84)].

We now discuss the evolution of |B(q, ω)|2 in the phase
diagram. Since the maximum weight of |B(q, ω)|2 is located
close to the lower boundary of the Stoner continuum, we
can focus our discussion on this boundary. Outside of the
superconducting phase, the lower boundary of the Stoner
continuum is zero. Inside the superconducting phase, it gets
larger when the gap grows. For example, the boundary of the
Stoner continuum at Q0 is strictly proportional to the gap:
mink (E−k+Q0 + Ek ) = 2�Q0 . We illustrate the variation of
|B(q, ω)|2 with the size of the superconducting gap in details
in Fig. 14 in Appendix B.

B. Contribution of the η mode to the charge susceptibility

Here, we calculate the imaginary part of the total contribu-
tion of the η mode to the charge susceptibility Im(χη ). We then
discuss its evolution in the Brillouin zone, in frequency, and
its dependence on the mass of the collective mode. Finally, we
examine the magnitude of the response.

The evolution of Im(χη ) in the Brillouin zone at several fre-
quencies is represented in Fig. 7. We can see that the response
is precisely located at the resonance energy at the charge
ordering wave vectors. Away from the resonance energy, the
response disperses but with a much smaller magnitude, and
follows the shape of B (Fig. 6), i.e., the shape of the electronic
dispersion, which is also responsible for specific patterns in,
for example, the spin response [69]. We discuss the link
between the evolution of B and Im(χη ) in the Brillouin zone
in Appendix A.

The variation of Im(χη ) in frequency along the axis of the
Brillouin zone is displayed on Fig. 8. The response is limited
to the region between the two continuum boundaries, and
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0 πqx
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ω = 10 meV ω = 30 meV ω = 50 meV
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FIG. 6. |B|2 in the Brillouin zone at four different frequencies. The red color is for B positive and the blue color is for B negative. Note
that B has d-wave symmetry, since an anomalous propagator enters its expression [Eq. (84)]. |B|2 is much larger above 50 meV, due to the
fact that the Stoner continuum is approximately at this energy for the momenta with the largest response.
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FIG. 7. Imaginary part of the contribution of the collective mode to the charge susceptibility χη, plotted in the Brillouin zone for four
different frequencies. It peaks at the charge ordering wave vectors Q0, situated on the axes. Note that we are considering the same logarithmic
scale for all four plots, as indicated on the right hand side. This shows that for a set frequency, the peak in χη is always situated close to Q0,
and that the strength of this peaks grows larger when crossing the Stoner continuum, at about 50 meV. Moreover, the texture of the continuum
B is clearly visible, and much smaller in magnitude.

therefore is zero below the Stoner continuum bottom edge,
as shown on Fig. 8. This is due to the fact that |B(q, ω)|2 is
a factor of Im(χη ), and therefore of the fact that Im(χη ) can
only be observed in the superconducting state, and inside the
Stoner continuum. The mass of the mode κ can therefore be
smaller than the peaks appearing in Im(χη ).

The mass of the collective mode depends, as discussed
above, on the temperature and the applied magnetic field,
but it is also material and doping-dependent. We display the
evolution of the response Im(χη ) for different masses in Fig. 8.
The collective mode disperses following a large slope, as
discussed in Sec. II D. The two branches of the dispersion are
therefore close together. For κ lower than the continuum edge,
the dispersion of the bosonic mode crosses the continuum
edge twice. The response peaks close to these two points,
and extends above, following the bosonic divergence line. The
response is maximal for κ close to the continuum edge, and
consists of only one peak. For κ higher than the continuum

edge, the response is mostly following the parabolic bosonic
divergence line, with some extra weight close to the contin-
uum edge where B is largest. The overall response is much
weaker than for the two previous cases. In order to track the
separation of these two peaks more precisely, in Fig. 9 we plot
the evolution of Im(χη ) along the axis of the Brillouin zone at
ω = 50 meV for different masses. We see clearly that for κ

of the order of the continuum edge the two peaks merge into
one, which collapses when the mass increases more.

Finally, Fig. 9 allows us to clearly see the magnitude of the
peaks at 50 meV. We notice that the peak closer to the center
of the Brillouin zone is about twice as large as the one closer
to the edge of the Brillouin zone. We can compare the contri-
bution to the imaginary part of the charge susceptibility from
the η mode to the bare contribution from the superconducting
condensate χbcs . The maximum of the latter is of the order
of 1, and is therefore two orders of magnitude smaller than
the contribution of the η mode χη. Moreover, given that χη
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FIG. 8. Frequency dependence of the imaginary part of χη along the axis of the Brillouin zone, for a range of bosonic masses. We use
the same logarithmic scale for all four plots, as indicated on the right hand side. In grey are also plotted the bottom and top of the Stoner
continuum, along with the line where the bosonic propagator diverges. Note that for low masses, the response peaks at two spots just above the
continuum bottom line. These two spots merge when the mass is raised. The structure of the continuum B, as well as the fennel of the bosonic
mode, are visible and lower in magnitude.
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FIG. 9. Momentum dependence of the imaginary part of χη

along the axis of the Brillouin zone, at ω = 50 meV, for a range
of bosonic masses. This frequency corresponds to the edge of the
continuum, as plotted on Fig. 5. Note that for low masses, the
response consists in two peaks. When the mass is raised, these two
peaks get closer and finally merge at a mass close to the frequency of
the edge of the continuum. When the mass is raised further, the peak
becomes much smaller.

is only visible inside the superconducting phase, it is possible
to isolate it experimentally by substracting the susceptibilities
inside and outside the superconducting phase.

C. Evolution in the phase diagram

We now discuss the evolution of Im(χη ) in the phase dia-
gram of the cuprates: first, its evolution with magnetic field,
then with doping and temperature, and finally its relationship
to other observables.

In Sec. II, we showed that κ , the mass of the η mode,
softens at the transition between charge and superconducting
orders under magnetic field. This softening is due to the fact
that at the transition magnetic field, the SU(2) symmetry
between these two orders is exact. The evolution of χη with
magnetic field allows us to track the softening of κ , which
is a unique feature of our model: the signature of the SU(2)
symmetry. At low field, κ is large and Im(χη ) features either
one or two nearby peaks, depending on the exact value of
κ . When increasing the applied magnetic field, κ is lowered
and the peak in Im(χη ) splits in two peaks, which separate
more and more when increasing the applied magnetic field.
The middle of the two peaks remains centered on the charge
order wave vector Q0.

The resonance is centered on Q0, which connects two
hot-spots. It therefore follows the evolution of the electronic
dispersion with doping: when increasing doping, one gets
closer to the van Hove singularity, and Q0 gets smaller. It
has been measured that in some compounds the van Hove
singularity coincides with the end of the pseudogap [71].
In our model, this is visible when measuring the resonance,
which converges to zero momentum at high doping when the
van Hove singularity coincides with the end of the pseudogap.
Moreover, we know experimentally that 12% doping is the

FIG. 10. Resonance close to Q0 measured by RIXS on an under-
doped Bi2Sr2CaCu2O8+δ (Bi2212) sample, of doping p = 8%–9%
[73]. The black line is the dispersion of the collective mode fitted to
this experiment. The black line is solid when inside the continuum,
and dashed when outside of the continuum. Note that this fitting does
not strongly constrains the value of the mass of the mode, but that it
gives an order of magnitude for the stiffness of the mode.

doping at which charge order is the closest, i.e., where we
need to apply less magnetic field to reach it. In our model, this
means that it is the doping at which κ is minimal at zero field.
The distance between the two peaks in Im(χη ) at zero field
should therefore be minimal at that doping.

When increasing the temperature while staying inside the
superconducting phase, the superconducting gap is lowered.
As discussed in Sec. IV A, when the superconducting gap is
lowered, the lower boundary of the Stoner continuum goes to
lower energies. Therefore the frequency at which the η mode
is observed in Im(χη ) also gets smaller. This could mean that
the charge susceptibility would feature a soft mode at a finite
wave vector, indicating the rise of a charge density wave order.
However, the magnitude of B will also go to zero at Tc, which
will prevent the η mode from causing such a condensation.
Moreover, we stress that the evolution of κ with temperature is
very steep, as plotted in Fig. 2. Experimentally, the softening
of κ close to Tc will therefore be hard to measure.

Finally, the charge susceptibility, beyond its direct con-
nection to the MEELS response, also enters other important
observables. In particular, it renormalizes the electron-phonon
coupling [72]. Therefore the resonance we calculated in the
charge susceptibility can cause the electron-phonon coupling
to diverge at specific momenta and to enhance the phonon
response measured by probes such as RIXS. This is in line
with RIXS measurements, which found that the resonance
displayed in Fig. 10 was peaked on a known phonon line in
this material [73,74]. If this RIXS resonance is, indeed, due
to the renormalization of the electron-phonon coupling by the
η mode, its evolution in temperature will not be the same as
the one of the susceptibility: it should remain at the same
frequency above Tc, and decrease in intensity. Lastly, since
the η mode softens, its crossing with the phonon line should
happen at momenta further away from Q0, so the resonance
momentum should move slightly away from Q0.

In this section, we derived the influence of the η mode, cor-
responding to the rotation from superconductivity to charge
order, on the imaginary part of the charge susceptibility inside
the superconducting phase in the strong-coupling formalism.
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We found that it peaks just above the continuum edge. For
high κ it peaks only at one point, while for κ below the con-
tinuum edge it splits in two peaks which separate further and
further when κ decreases. Since we showed that κ decreases
with applied magnetic field (Fig. 2), the peaks split when
applying magnetic field (Fig. 9), while their middle always
remains centered on the charge ordering wave vector Q0. This
splitting is maximum at the transition between charge and
superconducting orders, which is a signature of the SU(2)
symmetry, which is exact there. We now check the consistency
between strong and weak coupling formalisms and discuss
how this resonance is seen in the charge susceptibility in the
weak coupling formalism, developed in Sec. III.

V. WEAK COUPLING: CHARGE SUSCEPTIBILITY

Here, we derive the charge susceptibility in a weak cou-
pling formalism. In Sec. III, we have derived a system of
equations, Eq. (66), which enabled us to calculate expressions
for η̂∗

Q0ω
and η̂Q0ω in Eqs. (79) and (80). We now input these

expressions into the third row of Eq. (66). This directly gives
us the charge susceptibility:

χ (Q0, ω) = ρQ0ω

φQ0ω

= χ1(Q0, ω) + χ2(Q0, ω), (86)

where

χ1(Q0, ω) = − 2χbcs

1 − 6J0χbcs

, (87)

χ2(Q0, ω) = − 4�Jω

1 − 6J0χbcs

ω2 + ακ

ω2 − κ2
, (88)

and

Jω =
∑

k

ukvk + uk+Q0vk+Q0

ω2 − A2
kQ0

. (89)

The obtained charge susceptibility is strikingly the sum of a
renormalized BCS susceptibility, χ1(Q0, ω), and of a specific
contribution due to the presence of the finite expectation val-
ues for the η operators: χ2(Q0, ω). This second contribution
has a factor Jω, which has poles at AkQ0 = Ek+Q0 + Ek,
which is exactly the definition of the Stoner continuum as
discussed in the previous section.

We take Eq. (77) at q = Q0 and use the approximation,
discussed in Sec. III, that ckQ0 = α is a constant to obtain

1 − 6J0χbcs = 6J0
ω2 − α2

2�
Jω, (90)

which we input in the denominator of Eq. (88), giving

χ2(Q0, ω) = − 4�2

3J0(ω2 − α2)

ω2 + ακ

ω2 − κ2
. (91)

We decompose this fraction into fractions with single poles
and isolate the part that diverges at κ:

χ (Q0, ω) = �2

9J 2
0 (1 − n)

1

ω − κ
+ χrest (Q0, ω), (92)

where χrest (Q0, ω) is the sum of the contributions that do not
diverge at κ , which in particular includes χ1.

The result in Eq. (92) does not feature poles at AkQ0 ,
which define the Stoner continuum, unlike Eq. (88) where Jω

and χbcs enter the equation. These two contributions canceled
following the use of the identity (90). The self-consistency
imposed by the method kills this Stoner continuum. We
believe that the self-consistence imposes too strict a condition
at this stage.

The strength of the response is proportional to �2, as
shown in Eqs. (92) and (85). Therefore in this formalism,
similarly to what we calculated in the previous section, the
resonance is only present in the superconducting state.

Here we calculated the charge susceptibility in the weak
coupling formalism developed in Sec. III. Similarly to what
we calculated in the strong-coupling regime in the previous
section, the charge susceptibility diverges at the charge or-
dering wave vector Q0 and resonance energy κ due to the
contribution of the η mode. This contribution scales with the
square of the superconducting gap, which means that it is only
present in the superconducting phase.

VI. DISCUSSION OF EXPERIMENTS

In the previous sections, we discussed the resonance aris-
ing from the excitation of the η mode, corresponding to the
rotation between charge and superconducting orders, and its
resonant contribution to the imaginary part of the charge
susceptibility. Here we discuss how to experimentally access
this resonance. Since it is charge two, spin zero, and at finite
momentum, we turn to charge probes that can access fi-
nite q: momentum-resolved electron energy-loss spectroscopy
(MEELS) and resonant x-ray scattering (RIXS). We also
discuss the case of Raman scattering and optical conductivity.

A. Momentum-resolved energy-electron loss spectroscopy

MEELS was developed recently by combining electron
energy-loss spectroscopy (EELS) with angular aligment tech-
niques used in neutron or x-ray scattering experiments [60]. It
directly probes the imaginary part of the charge susceptibility.
The use of EELS enables us to probe the charge response with
a very good energy resolution: it was claimed that for a beam
energy of 50 eV the resolution in energy is below 0.5 meV
[60]. Using these alignment techniques led to achieving a
resolution in momentum of 0.06 Å−1 [60]. Since the beam
energy has to be small for achieving good energy resolution,
MEELS uses a reflection geometry, which makes it a surface-
sensitive probe, similarly to ARPES. Finally, it can probe
both normal and superconducting states, and is therefore
particularly interesting for the study of superconductors.

Two MEELS experiments have already been performed,
unfortunately, neither can address the topic of the collective
mode yet. The first measurement was done as a proof of
concept in the paper presenting the details of the experimen-
tal technique [60]. Spectra at finite energies between zero
and 120 meV were measured, but they are dominated by
the contribution coming from the diagonal, which strongly
obscures the features, for example, on the axes of the Bril-
louin zone. This measurement was, however, performed on
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Bi2Sr2CaCu2O8+x (Bi2212) whose samples are known to
feature dislocations along the (π, π ) direction [75], which
could be responsible for the large response along the diago-
nal. More detailed work was subsequently performed on the
same material but focused on the detection of a plasmonic
resonance close to 1 eV [61].

B. Resonant x-ray scattering

Comparisons between theory and experiment can already
be drawn with recent resonant x-ray scattering results. RIXS
measures the total electronic density susceptibility. This is
different from the charge susceptibility since it includes all
electrons, while the charge is only the difference between the
densities of positive and negative charges. Indeed, a neutral
material bears a zero charge but a finite electronic density.
RIXS is therefore much more sensitive to displacements of
large quantities of electrons, like plasmons, while MEELS is
more sensitive to charge variations. Nevertheless, we expect
RIXS to be sensitive to the collective mode of the model
presented above since it bears a finite charge. So far, the
energy resolution that has been achieved in RIXS experiment
is around 40 meV, which is higher than the one in MEELS but
still could enable one to see the influence of the collective
mode on the electronic density response. Moreover, it can
measure inside and outside of the superconducting phase, and
therefore check our prediction that there is a change in the
contribution of the η mode at the superconducting transition.

A resonance at around 60 meV was detected using RIXS
at doping p = 8%–9%, along the axis of the Brillouin zone,
slightly further away from the origin than the charge ordering
wave vector [73,74]. It is shown in Fig. 10. This peak has
been interpreted as the signature of a phonon and modeled
in the normal state [76]. However, it has not yet been seen
using other experimental techniques and is weakened outside
the superconducting state.

This resonance does correspond in energy and momentum
to the response derived in the previous sections. Fitting this
RIXS resonance to the bosonic dispersion for the η mode
calculated in Sec. II D does not give us much information
about the mass of the collective mode, since there is only one
point to be fitted. However, it can give us information on the
order of magnitude of its stiffness. For a mass of 10 meV, we
obtain a stiffness of 0.597, while for zero mass we obtain a
stiffness of 0.617. The latter result is plotted in Fig. 10 along
with the experimental data. These fitted value is very close to
the value of the stiffness obtained theoretically in Sec. II D.

Time-resolved resonant soft x-ray scattering has also been
performed on La2−xBaxCuO4 just above the superconducting
transition temperature and found overdamped excitations at
very low energies, below 2 meV [77]. Such a low excitation
energy corresponds to the mass of the collective mode derived
in the previous sections. Moreover, the very high damping
could be due to the fact that the measurement was conducted
outside of the superconducting phase.

C. Raman scattering and optical conductivity

Raman scattering detected a resonance at 41 meV in the
A1g channel at optimal doping [78–82]. It is not seen in either

FIG. 11. The Raman response was derived in the context of the
SU(2) theory, in the case where charge order and superconduc-
tivity coexist, using this diagram [37]. There are two anomalous
propagators corresponding to the superconducting order, and two
anomalous propagators corresponding to the charge order. The latter
shift the resonance at Q0 to zero momentum, and it was shown that
it appears in the A1g channel of the Raman response, similarly to the
experimental observations.

the B1g or B2g channels. This A1g resonance is measured at
doping up to the edge of the pseudogap phase, and down to
12%. This means that it is not found at the doping where
the RIXS experiment detailed in the previous section was
performed. It was shown that long-range Coulomb interac-
tions screen the 2� contribution to the A1g channel, meaning
that it cannot be simply explained by the presence of the
superconducting condensate.

The Raman response is more difficult to derive, since it
measures the charge susceptibility at q = 0, and because we
want to obtain the resonant contribution of the η mode, which
is peaked at Q0. We therefore need to shift this momentum to
q = 0. One solution that was explored was to insert a charge
order in the model, but this had the inconvenience to impose
the coexistence between charge and superconducting orders
[37]. In this case, the presence of long-range charge order
at Q0 shifts the resonance to zero momentum, as shown in
Fig. 11, and the resonance appears in the A1g channel of the
Raman response [37]. Other solutions that do not necessitate
coexistence exist, in particular by considering disorder or
the presence of phonons. They would apply a drag to the
collective mode, meaning that the observed frequency would
be the sum of the ones of the phonon and the collective
mode, and that the response function would be brought
back to q = 0. These possibilities will be explored in a
future publication.

Finally, the η mode could be seen experimentally in probes
that are sensitive to all types of fluctuations. This is in
particular the case of optical conductivity: it was shown
recently that the amplitude mode in a superconductor could
be excited by applying a small ac electric field in the presence
of a supercurrent [62]. This could be used to detect another
collective mode, such as the η mode studied here, also in
relationship with the phonon drag mechanism described in the
previous paragraph. Optical conductivity measurements could
in particular probe our prediction that the contribution of the
η mode must change at Tc, by subtracting measurements on
the two sides of the transition.

Here, we limited ourselves to studying the imaginary part
of the charge susceptibility, in order to make the connection
with the MEELS experiment discussed above. The calculation
of the Raman and optical conductivity responses for this
model will be done in a different work.
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FIG. 12. Imaginary part of the contribution of the collective mode to the charge susceptibility χη, plotted in the Brillouin zone for four
different frequencies, with a very wide scale range. It peaks at the charge ordering wave vector Q0, situated on the edge. Note that we are
considering the same logarithmic scale for all four plots, as indicated on the right hand side. This shows that for a set frequency, the peak
in χη is always situated close to Q0, and that the strength of this peaks grows larger when crossing the Stoner continuum, at about 50 meV.
Moreover, the texture of the continuum B is clearly visible, and much smaller in magnitude.

VII. CONCLUSION

Here, we derived the influence of the fluctuation of the
SU(2) order parameter on the charge susceptibility in the
superconducting phase. First, we used a strong-coupling for-
malism to build a composite order parameter that includes
both superconducting and charge order components and has a
fixed length beneath the pseudogap transition temperature T ∗.
Then we wrote a Lie algebra, which rotates components onto
one another. This enabled us to build a model corresponding to
the rotation of this order parameter, and to obtain the shape of
the collective mode corresponding to these fluctuations. The
renormalization of the mass of this mode at finite temperature
evolves with applied magnetic field. In particular, we find
that the mass of the collective mode softens at the transition
between charge and superconducting orders. This is a unique
feature of the symmetry between these two orders, which

becomes exact at this point of the phase diagram. It is even
more remarkable given that this point can be reached by
tuning two parameters that can be varied continuously ex-
perimentally, that is, temperature and applied magnetic field.
This is an advantage compared to the case, for example, of
the SO(5) symmetry, which becomes exact at a precise hole
doping, which can be difficult to reach experimentally, if not
impossible for specific families of cuprate materials.

We then studied the η mode in the superconducting state
in the weak coupling regime, by using a self-consistent linear
response formalism. We showed that the η mode diverges at
the charge ordering wave vector and at finite frequency.

We derived the resonant contribution of the η mode to the
charge susceptibility. Because this mode has charge 2, we
considered a diagram in the superconducting state including
anomalous propagators. We found that the response is peaked
at the charge ordering wave vector and at the frequency
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FIG. 13. Frequency dependence of the imaginary part of χη along the axis of the Brillouin zone, for a range of bosonic masses. We use
the same logarithmic scale for all four plots, as indicated on the right-hand side. In grey are also plotted the bottom and top of the Stoner
continuum, along with the line where the bosonic propagator diverges. Note that for low masses, the response peaks at two spots just above the
continuum bottom line. These two spots merge when the mass is raised. The structure of the continuum B, as well as the fennel of the bosonic
mode, are visible and lower in magnitude.
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FIG. 14. Continuum bubble squared |B|2 as a function of frequency along the axis of the Brillouin zone, plotted for various values of the
superconducting gap. The white solid lines are the top and bottom of the Stoner continuum, which for clarity we only show for �0 = 30 meV.

corresponding to the lower bound of the Stoner continuum,
and that away from this frequency it disperses away from it.
In order to study the charge susceptibility in the B-T phase
diagram, we studied the frequency-dependent response along
the edge of the Brillouin zone for a range of masses. Above the
lower bound of the Stoner continuum, when the mass is small,
the response follows the two branches of the bosonic propa-
gator and peaks twice just above the continuum line. These
two peaks merge when the resonance frequency is raised and
disappear when it grows much larger than the continuum line.
The separation between these two peaks is magnetic field
dependent and is maximal at high magnetic field, close to
the transition towards the charge ordered phase. This is the
signature of the SU(2) symmetry, which is exact at this point
of the phase diagram. This gives a strong prediction on the
MEELS experimental results, which can be used as a test of
the SU(2) theory. We calculated the charge susceptibility in
the weak coupling regime, and found that it diverges at the
charge ordering wave vector, similarly to what was derived in
the strong-coupling regime.

In the last section, we discussed how the resonant con-
tribution of the η mode to the charge response can be seen
experimentally, and focused on four types of experiments:

FIG. 15. Excitations corresponding to three frequency thresh-
olds. The first two are related to excitations between points on
the Fermi surface, and the third to excitations starting from the
superconducting node, pictured in red.

MEELS, RIXS, Raman scattering, and optical conductivity. In
particular, MEELS can measure directly the imaginary part of
the charge susceptibility, and therefore be directly compared
to the results presented here. Moreover, we compared the
stiffness obtained by theory to the one fitted to recent RIXS
measurements, and found a very close agreement.

In this paper, we derived the η mode of the SU(2) theory
and its influence on the charge susceptibility using two dif-
ferent formalisms. We found that it is charge two, spin zero,
corresponds to a PDW operator, and that it peaks at the charge
ordering wave vector. It disperses away from its resonance
energy following a slope that corresponds very well to recent
RIXS measurements. It can be seen in the superconducting
phase in the imaginary part of the charge susceptibility, inside
the continuum. Moreover, we derived the dependence of its
mass with magnetic field and found a very specific evolution
which is directly linked to the SU(2) symmetry. Our predic-
tions can directly be compared to MEELS and RIXS mea-
surements, and form an experimental test of the SU(2) theory.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 π/2 π

ω
 (

m
eV

)

qx

Ω1
Ω2
Ωg

FIG. 16. Momentum dependence of three frequency thresholds
on the axis of the Brillouin zone. The three thresholds correspond to
the excitations displayed in Fig. 15. The first two relate to excitations
between two points on the Fermi surface, while the third one cor-
responds to excitations starting from the superconducting node. The
black line is the bottom of the Stoner continuum.
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FIG. 17. Diagrams for the scattering in the particle-particle channel, corresponding to Eq. (63). The zigzag line represents the antiferro-
magnetic interaction.
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APPENDIX A: INFLUENCE OF THE
CONTINUUM BUBBLE

Here, we display again the evolution of the contribution
of the collective mode to the charge susceptibility χη in the
Brillouin zone and along the edge with frequency dependence,
but with a much wider scale (Figs. 12 and 13). This allows
us to see more clearly how the shape of B influences χη.
However, such a scale also shows that there is residual weight
below the Stoner continuum. This stems from the fact that
we have used a residual scattering of 2 meV for plotting the
propagators. This means in particular that any weight under
this energy is not physical, and the weight seen under the
Stoner continuum falls into this category. Figures 12 and 13
therefore, allowing to make a connection between the figures
and the mathematical expression for χη, are not to be taken as
actual response plots.

APPENDIX B: EVOLUTION OF THE CONTINUUM
BUBBLE WITH THE SIZE OF THE

SUPERCONDUCTING GAP

Here, we show in more detail the evolution of the contin-
uum bubble when varying the superconducting gap. Figure 14
shows the frequency dependence of |B|2 along the axis of the
Brillouin zone. We see that, as expected from the fact that
the superconducting gap is a coefficient of B, the magnitude
of |B|2 grows with �0. Moreover, as expected, the lower
boundary of the Stoner continuum mink (E−k+q + Ek ) also
rises with �0. Something that would have been more difficult

to directly see from the expression of B is that the maximum
weight of B follows closely this boundary, and therefore that
the peak in χη will also follow the evolution of �0.

APPENDIX C: DECOMPOSITION
OF THE STONER CONTINUUM

The lower boundary of the Stoner continuum can be related
to specific excitations between points on the Fermi surface.
This was studied in particular close to the (π, π ) point of the
Fermi surface, in relation to the neutron resonance measured
at this point [83,84]. More specifically, one can calculate
the value of E−k+q + Ek for k on the Fermi surface, which
gives |�−k+q| + |�k|. We calculated this for two sets of wave
vectors q parallel to the Brillouin zone axis, as displayed on
Fig. 15, and obtained the two corresponding frequencies �1

and �2.
The result for �1 and �2 is shown on Fig. 16, along with

the lower boundary of the Stoner continuum, and we can see
that for high momenta the boundary of the continuum fits �1

very well. The small discrepancy close to the point where �1

softens is due to the discrete sampling of the Brillouin zone
in the minimization procedure. However, at low momenta,
neither �1 nor �2 follow the boundary of the continuum.
This can be understood by simply looking at the shape of
the Fermi surface displayed in Fig. 15. Indeed, if we want
to understand the low momentum limit of Fig. 16, we can
consider asymptotically small vectors linking two points of
the Fermi surface, which would therefore be tangent to it.
Moreover, we want only to consider vectors that are parallel
to the Brillouin zone axis, since it is the plane on which we
are studying the continuum boundary. The only wave vectors
that fit this description are the ones crossing the vertical edges
of the Brillouin zone. There, the superconducting gap is large,
and hence we cannot obtain the continuum line, which goes to
zero at q = (0, 0).

However, it is possible to understand where this part of the
continuum boundary comes from by considering a different
limit. Instead of considering points on the Fermi surface,
where ξk = 0, we can consider points on the diagonal of the

FIG. 18. Diagrams for the scattering in the hole-hole channel, corresponding to Eq. (64). The zigzag line represents the antiferromagnetic
interaction.
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FIG. 19. Diagrams for the scattering in the particle-hole channel, corresponding to Eq. (65). The zigzag line represents the antiferromag-
netic interaction.

Brillouin zone, where the superconducting gap cancels: �k =
0. We therefore take k at a superconducting node (Fig. 15)
and plot �g = |�−k+q| + |�k|, where q is a vector along the
axis of the Brillouin zone. The result is displayed in Fig. 16,
and clearly shows that �3 closely follows the low-momentum
limit of the continuum boundary.

It is clear in Fig. 16 that �2 cannot be related to the shape
of the lower boundary of the continuum. However, we can
clearly see its influence on B. Indeed, Fig. 5 shows that,
at high momentum, |B|2 is very small above the continuum
boundary, and only grows above a line which corresponds
exactly to �2.
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