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Decay of plasmonic waves in Josephson junction chains
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We study the damping of plasma waves in linear Josephson junction chains as well as in two capacitively
coupled chains. In the parameter regime where the ground capacitance can be neglected, the theory of the
antisymmetric mode in the double chain can be mapped onto the theory of a single chain. We consider two
sources of relaxation: the scattering from quantum phase slips (QPS) and the interaction among plasmons related
to the nonlinearity of the Josephson potential. The contribution to the relaxation rate 1/τ from the nonlinearity
scales with the fourth power of frequency ω, while the phase-slip contribution behaves as a power law with a
nonuniversal exponent. In the parameter regime where the charging energy related to the junction capacitance is
much smaller than the Josephson energy, the amplitude of QPS is strongly suppressed. This makes the relaxation
mechanism related to QPS efficient only at very low frequencies. As a result, for chains that are in the infrared
limit on the insulating side of the superconductor-insulator transition, the quality factor ωτ shows a strongly
nonmonotonic dependence on frequency, as was observed in a recent experiment.
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I. INTRODUCTION

Josephson-junction (JJ) chains constitute an ideal play-
ground to study a wealth of fascinating physical effects.
Parameters of these systems can be engineered in a con-
trollable way, leading to the emergence of various physical
regimes. In chains with the charging energy dominating over
the Josephson energy, the Coulomb blockade is observed [1]
and a thermally activated conductance is found [2] at low
bias. Moreover, the critical voltage at which the conduction
sets in, is governed by the depinning physics [3,4]. In the
opposite limit, where the Josephson energy is the dominant
energy scale, superconducting behavior in the current-voltage
characteristics is observed [5,6]. Deep in the superconducting
regime, plasmonic waves (small collective oscillations of the
superconducting phase) are well-defined excitations above
the classical superconducting ground state. The nonperturba-
tive processes in which the phase difference across one of
the junctions changes by 2π—the so-called quantum phase
slips [7–11] (QPS)—are exponentially rare. Upon lowering
the Josephson energy, QPS proliferate and eventually lead to
the superconductor-insulator transition [4,5,7,10,12–17] (SIT)
that occurs when the charging and Josephson energies are of
the same order.

Disorder plays an important role in JJ chains. The effect of
disorder was discussed in the context of the persistent current
in closed JJ rings in Ref. [8]. More recently, the impact of
various types of disorder on the SIT was studied in Ref. [17].
Remarkably, the most common type of disorder, random off-
set charges, works to enhance superconducting correlations.
The mechanism behind this effect is the loss of coherence
of QPS due to a disorder-induced random phase, see also
Ref. [18].

In recent years, properties of JJ chains under microwave
irradiation have attracted considerable interest. Microwave
radiation leads to quantized current steps in the current-
voltage characteristics that were argued to be promising for
metrological applications [19]. Another interesting direction
in this context is the field of circuit quantum electrodynamics
where novel regimes can be reached [20,21]. JJ chains can
be further employed to provide a tunable ohmic environment
[22]. This environment is realized by two parallel chains that
are coupled capacitively to each other, and inductively to
transmission lines.

A similar setup was used in Ref. [23] to probe the reflection
coefficient of a JJ double chain under microwave irradiation.
Two parallel chains are short-circuited at one end, while
being coupled at the other end to a dipole antenna that can
excite antisymmetric plasma waves (i.e., those with opposite
amplitudes in the two chains). The whole sample is placed
in a metallic waveguide, which reduces the influence of ex-
ternal disturbances. Resonances corresponding to individual
plasmonic modes at quantized momenta are clearly observed.
This enables the reconstruction of the energy spectrum of the
plasma waves. Because of finite damping, the resonances in
the reflection coefficient acquire a finite width. By measuring
the modulus and the phase of the reflection coefficient, the in-
ternal damping could be disentangled from the external losses
such as the leakiness of the waveguide or the damping of the
transmission line. For chains with a large Josephson energy,
the experimentally found quality factor (inverse linewidth
multiplied by mode frequency) increased with lowering the
frequency of the microwave radiation. When the Josephson
energy was reduced, the curves became flat and eventually
showed a tendency to drop at low frequencies. This behavior
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was interpreted in Ref. [23] as a signature of the SIT. It was
noted, however, that, in contrast to theoretical predictions, the
observed behavior is controlled by the short-wavelength rather
than the long-wavelength part of the Coulomb interaction in
the chain. In particular, the “superconducting” behavior with
the quality factor growing at low frequencies was observed in
the range of parameters corresponding to the insulating phase
of the chain.

The purpose of this work is to provide theoretical un-
derstanding of the effects related to the internal damping of
plasma waves in JJ chains. We study two models: (i) a single
linear chain, and (ii) a double chain of JJs, as in the experiment
of Ref. [23]. It is shown that the effective theory for the
antisymmetric mode of the double chain can be mapped onto
a theory for a single chain if the capacitance to the ground
can be neglected. We identify two sources that lead to the
decay of plasmons: (i) the scattering of plasmons induced by
QPS and (ii) the interaction of plasmon modes via “gradient”
anharmonicities. We find the contribution to the relaxation
rate of a plasma wave for both kinds of damping mechanisms.
The “gradient” nonlinearities are always irrelevant in the
renormalization-group sense and the corresponding relaxation
rate vanishes as ω4 at low frequencies. From the SIT point of
view, this behavior can be viewed as “superconducting.” On
the other hand, the contribution of QPS processes can show
both “superconducting” and “insulating” trends depending
on the parameters of the model. The QPS contribution is,
however, strongly suppressed if the Josephson energy is much
larger than the charging energy associated with the junction
capacitance that controls the short-wavelength part of the
Coulomb interaction. The combination of the two mecha-
nisms (QPS and “gradient” anharmonicities) can thus lead to a
change of the trend from “insulating” to “superconducting” at
intermediate frequencies. This mimics a SIT in the interme-
diate frequency range, although the system is in fact deeply
in the insulating phase from the point of view of its infrared
behavior.

The paper is structured as follows. In Sec. II, we introduce
lattice models for a single JJ chain and for two capacitively
coupled chains, and derive the effective low-energy field
theory. Section III discusses two mechanisms contributing to
the finite lifetime of the plasmonic waves in JJ chains. The
scattering off QPS is studied in Sec III A, and the decay
because of interactions between plasmonic waves is analyzed
in Sec. III B. We analyze the interplay of both mechanisms in
Sec. III C. In Sec. IV, we summarize the main results of the
paper and compare them to experimental findings. Technical
details can be found in the appendix.

II. LATTICE MODELS AND LOW-ENERGY THEORY

In this work, we consider two closely related systems: a
single linear chain of Josephson junctions depicted in Fig. 1(a)
and a device consisting of two capacitively coupled chains
shown in Fig. 1(b). We are interested in their effective low-
energy description. For a single chain of Josephson junctions
with Coulomb interaction and disorder, Fig. 1(a), the field
theory was constructed previously in Ref. [17]. We briefly
recall this derivation below and extend the theory by including
the terms accounting for gradient nonlinearities. We then

FIG. 1. Schematic representation of the two devices under con-
sideration: (a) a single chain of Josephson junctions. The capacitance
to the ground is denoted by C0, and the junction capacitance by
C1. The canonically conjugated variables are the superconducting
phase θi and the number of Cooper pairs Ni of the ith island.
(b) Two capacitively coupled chains. Here, the capacitance to the
ground is denoted by Cg and the interchain capacitance by C0. The
additional index ↑,↓ discriminates between the variables of the two
chains.

show that, up to numerical coefficients, the same effective
description applies to the antisymmetric mode of the double
JJ chain of Fig. 1(b), provided that Cg � C0.

In the case of a single chain, we denote by C1 and C0 the
junction capacitance and the capacitance to the ground, re-
spectively. Tunnel barriers between the islands allow for hop-
ping of Cooper pairs along the chain. The number of Cooper
pairs Ni and the superconducting phase θi of the ith island
satisfy the canonical commutation relation, [Ni , θj ] = iδi,j .
Besides the Josephson energy EJ that quantifies the hopping
strength of Cooper pairs, there are the two charging energy
scales E0 = (2e)2/C0 and E1 = (2e)2/C1, where e denotes
the elementary charge. The charging energy E1 quantifies the
strength of the Coulomb interaction at short scales, while
the energy E0 controls the Coulomb-interaction strength in
the infrared and, in particular, determines the position of the
SIT [12,17]. The lattice Hamiltonian for this system has the
form

H = E1

2

∑
i,j

s−1
i,j NiNj + EJ

∑
i

[1 − cos(θi+1 − θi )], (1)

where

si,j = Ci,j

C1
=

(
2 + 1

�2

)
δi,j − δi,j+1 − δi,j−1 (2)

is the dimensionless capacitance matrix and � = √
C1/C0 is

the screening length for the 1D Coulomb interaction.
In the low-energy limit, it is legitimate to replace the lattice

Hamiltonian (1) by an effective continuum model. The latter
is conveniently written [17] in terms of the field φ(x) related
to the density of Cooper pairs N (x) by ∂xφ(x) = −πN (x).
The action of the model reads [17]

S = S0 + Sps. (3)
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The quadratic part of the action (in the imaginary-time repre-
sentation, with temperature T and Matsubara frequencies ωn)

S0 = 1

2π2u0K0
T

∑
ωn

∫
dq

2π

[
ω2

n + ε2(q )
]|φ(q, ωn)|2 (4)

describes the plasma waves with the energy spectrum

ε(q ) = ωp|q|√
q2 + α/�2

, ωp =
√

EJE1. (5)

To facilitate our future discussion of the effective theory for
the double chain setup of Fig. 1(b), we have introduced here
a numerical coefficient α; in the present case of a single chain
we have α ≡ 1. The parameters u0 and K0 in Eq. (4) are given
by

u0 =
√

EJE0

α
, K0 =

√
EJ

α E0
. (6)

Here, u0 is the velocity of low-energy plasmons with momen-
tum q � 1/� and K0 is the corresponding Luttinger constant.
Note that we measure all distances in units of the lattice
spacing and set h̄ = 1, so that the velocity has the dimension
of energy.

The second ingredient in Eq. (3), Sps, describes QPS. In the
absence of disorder it is given by [17]

Sps = yu0

∫
dxdτ cos [2φ(x, τ )], (7)

where τ is the imaginary time and y is the (ultraviolet)
value of the QPS amplitude that is usually called “fugacity.”
This terminology is related to the fact that QPS can be
considered as vortices in the Euclidean version of the 1 + 1-
dimensional quantum theory. The fugacity y for phase slips is
exponentially small in the regime EJ � min(E1, E0) where
the superconducting correlations are (at least locally) well
developed,

y ∝ e−ζK, K =
√

EJ

α E0
+ EJ

α2 E1
. (8)

Here, K plays the role of the Luttinger constant for the
ultraviolet plasmons (with q ∼ 1), and ζ is a numerical factor
that depends on the screening length � and also on details
of the ultraviolet cutoff scheme. Estimates for ζ in several
limiting cases can be found in Refs. [7,8,10,12,18].

Among various types of disorder that are present in ex-
perimental realizations of the JJ chains, the strongest and
the most important one is the random stray charges. Random
stray charges Qi modify the kinetic energy term in the lattice
Hamiltonian, Eq. (1), according to∑

i,j

s−1
i,j NiNj −→

∑
i,j

s−1
i,j (Ni − Qi )(Nj − Qj ). (9)

The wave function of the system accumulates then an extra
phase in the course of a QPS due to the Aharonov-Casher
effect [8,24,25]. Accordingly, the QPS action in the effective
theory in the presence of charge disorder takes the form

Sps = yu0

∫
dxdτ cos [2φ(x, τ ) − Q(x)], (10)

where

Q(x) = 2π

∫ x

−∞
dx ′ Q(x ′). (11)

For simplicity, we assume Gaussian white noise disorder,

〈Q(x)〉Q = 0, 〈Q(x)Q(x ′)〉Q = DQ

2π2
δ(x − x ′). (12)

In the Hamiltonian language, action (3) corresponds to

H = H0 + Hps, (13)

where the quadratic part is of the form

H0 = 1

2π2

∫
dq

2π

[
ε2(q )

u0K0
|φ(q )|2 + u0K0q

2|πθ (q )|2
]
, (14)

and the QPS contribution reads

Hps = yu0

∫
dx cos[2φ(x) − Q(x)]. (15)

Equations (3), (4), and (10) [the latter one reduces to
Eq. (7) in the clean case] constitute the low-energy description
of a JJ chain as derived in Ref. [17]. Several remarks are in
order here. First, in this work, we will be interested in the
physics at moderate wavelengths q � 1/� and will approxi-
mate the dispersion relation (5) by its expansion at small q:

ε(q ) ≈ u0(1 − q2l2)|q|, (16)

l = �/
√

2α. (17)

Here, the length l (that differs from � only by a numerical
coefficient) sets the scale for the bending of the plasmonic
dispersion relation.

Second, the only nonlinearity in our effective action at this
stage is due to the QPS. In the ultimate infrared limit q �
1/� (or, in fact, for all q in the case of short-range charge-
charge interaction, � � 1), the effective action (3), (4), and
(7) reduces to the standard sine-Gordon theory and describes
the superconductor-insulator transition (SIT) that occurs [12]
at K0 = 2/π . The SIT is driven by the QPS and in this
sense they constitute the most important anharmonicity in the
system. Other nonharmonic terms are, however, also possible.
For example, the expansion of the Josephson coupling in
Eq. (1) to the next-to-leading order provides the following
contribution to the effective Hamiltonian:

Hnl = − EJ

α3 4!

∫
dx(∂xθ )4, (18)

which is associated with the action

Snl = − α

4!π4E3
J

∫
dxdτ (∂τφ)4. (19)

In contrast to the QPS term (15), the nonlinearity (18)
and all other nonlinear terms that can be added to the ef-
fective Hamiltonian are built out of the local charge N ∝
∂xφ and current J ∝ ∂xθ densities. Therefore they always
contain high powers of gradients and are irrelevant in the
renormalization-group sense. We will occasionally refer to
the anharmonicities of these types as to “gradient” anhar-
monicities to distinguish them from the QPS. The gradient
anharmonicities are always unimportant at lowest energies.
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Yet, as we will see in Sec. III B, they can control the decay
of plasmons at sufficiently high frequencies if the bare value
of the QPS amplitude y is small.

We thus conclude that the effective action describing a
chain of Josephson junctions is given by

S = S0 + Sps + Snl. (20)

Here, S0 and Sps are given by Eqs. (4) and (10), respectively.
As for the “gradient” anharmonicities represented by Snl, we
will use Eq. (19) as a specific form. We argue in Sec. III B that
our main conclusions are insensitive to this particular choice.

Let us now turn to the discussion of the double-chain
setup of Fig. 1(b). In this case, we denote by Cg and C0

the capacitance to the ground and the interchain capacitance,
respectively. The lattice Hamiltonian for the double chain
reads

H = E1

2

∑
i,j

∑
σ,σ ′=↑,↓

[S−1]σ,σ ′ (i, j )Ni,σNj,σ ′

+EJ

∑
i,σ

[1 − cos(θi+1,σ − θi,σ )], (21)

with

S (i, j ) = s̃i,j

(
1 0
0 1

)
+ C0

C1
δi,j

(
1 −1

−1 1

)
(22)

and

s̃i,j = (2 + Cg/C1)δi,j − δi,j+1 − δi,j−1. (23)

Here, the indices ↑,↓ refer to the two chains.
In the Gaussian approximation the spectrum of the Hamil-

tonian (21) consists of two modes, symmetric and antisym-
metric, that are analogous to the charge and spin modes
in a spinful Luttinger liquid. In this work, we are inter-
ested in the physics of the antisymmetric mode that can be
excited in the system by coupling to a dipole antenna [23].
To simplify the analysis, we assume further that Cg � C0.
It is not clear to us how well is this assumption satisfied in
the experiments of Ref. [23]; we believe it to be, however,
of minor importance for our results. Specifically, our analysis
should remain applicable, up to modifications in numerical
coefficients of order unity, also for Cg ∼ C0. The condition
Cg � C0 corresponds to sufficiently well coupled chains,
with large splitting between the symmetric and antisymmetric
modes.1

In full analogy to the spin-charge separation in quan-
tum wires, the (low-momentum) velocity of the symmetric
(“charge”) mode, uch = 2

√
e2EJ/Cg greatly exceeds, under

the assumption Cg � C0, the velocity of the antisymmetric
(“spin”) mode, us =

√
2e2EJ/C0. This observation allows

one to integrate out the charge mode and formulate the effec-
tive description of the system in terms of the antisymmetric

1The opposite case, C0 � Cg , corresponds to nearly decoupled
chains, in which case the physics is more naturally described in terms
of modes corresponding to individual chains rather than in terms
of symmetric and antisymmetric modes. In the limit C0 = 0, the
decoupling is complete, and the analysis for a single chain applies,
with Cg playing the role of C0.

mode alone. Details of this derivation are presented in Ap-
pendix A. It turns out that, just as in the case of a single JJ
chain, the effective theory is given by Eqs. (20), (4), (10) and
(19), with the parameters given by Eqs. (16), (17), and (6).
The only difference is the value of the numerical factor α that
should now be set to 2.

Equations (20), (4), (10), and (19) constitute the starting
point for our analysis of the decay of plasmonic excitations in
the setups of Fig. 1. We carry out this analysis in Sec. III.

III. RELAXATION OF PLASMONIC WAVES

Plasmonic waves, which are long-wavelength excitations
above the superconducting ground state, are subjected to
interaction. As a result, once excited by, e.g., a microwave, a
plasma wave can decay into several plasmons of lower energy.
The two anharmonic terms in the action (20) provide two
mechanisms for the decay of plasmons: interaction with QPS
and “gradient” anharmonicities. We analyze these channels of
plasmon decay one by one in Secs. III A and III B, respec-
tively. The interplay of the two mechanisms is discussed in
Sec. III C.

A. Relaxation due to phase slips

We start with the discussion of the relaxation processes
related to the scattering off QPS. Our analysis follows closely
the one of Refs. [26,27]. The curvature of the plasmonic
spectrum, as quantified by the length l in Eq. (16) is of
minor importance here and for the purpose of this section we
approximate the plasmonic spectrum by

ε(q ) = u0|q|. (24)

Correspondingly, the Gaussian action takes the form

S0 = 1

2π2u0K0

∫
dxdτ

[
u2

0(∂xφ)2 + (∂τφ)2]. (25)

A formal expansion of the QPS action, Eq. (7), in powers
of φ shows that the plasmon can decay into an arbitrary large
number of low-energy plasmons. We will determine directly
the sum of all those contributions. This decay rate can be
conveniently calculated from the imaginary part of the self-
energy (of the Fourier transform) of the correlation function

G(r) = 〈〈φ(r)φ(0)〉S〉Q, (26)

where r = (x, τ ) and 〈·〉S denotes the average with respect
to the full action, S = S0 + Sps. On the Gaussian level, the
imaginary-time Green function reads, in Fourier space,

G0(q) = π2u0K0

ω2
n + u2

0q
2
, q = (q, ωn), (27)

where ωn is the Matsubara frequency. With the help of the
self-energy, the full Green function can be expressed as

G(q) = 1

G−1
0 (q) − �(q)

= π2u0K0

ω2
n + u2

0q
2 − π2u0K0�(q)

.

(28)

The inverse lifetime of an excitation with energy ω is related
to the imaginary part of the retarded self-energy on the mass
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shell:

1

τ (ω)
= π2K0u0

2ω
Im �R (q = ω/u0, ω). (29)

In the following, we calculate the self-energy perturbatively in
the QPS fugacity y. The self-energy in the Matsubara space-
time, �(r), can be extracted from the perturbative expansion
of the Green function, Eq. (26),

G(r) = G0(r) +
∫

d2r1d
2r2G0(r − r1)�(r1 − r2)G0(r2),

(30)

with the following result:

�(r) = 2y2u2
0

[
e−2C0(r)−DQ|x| − δ(r)

×
∫

d2r0e−2C0(r0 )−DQ|x0|
]

+ O(y4). (31)

Here, the exponential contains the correlation function

C0(r) = 2

βNx

∑
q

(1 − cos qr)G0(q) (32)

= πK0

2
ln

[
u2

0β
2

π2
sinh (z+) sinh (z−)

]
(33)

with

z± = π

u0β
(x ± iu0τ ), (34)

Nx � 1 denotes the number of junctions, and β is the inverse
temperature. The result for the self-energy in the imaginary
time τ should be analytically continued to real time t and
then Fourier-transformed. The τ dependence of the first term
in Eq. (31) is determined by the following Matsubara time-
ordered correlation function

χT (x, τ ) = e−2C0(x,τ ). (35)

The retarded version of this correlation function can be ob-
tained in the standard way [28]. We find

χR (x, t ) =
2�(t )�(u0t − |x|) sin(π2K0)

(
π

βu0

)2πK0∣∣ sinh π
u0β

(x + u0t ) sinh π
u0β

(x − u0t )
∣∣πK0

, (36)

where � denotes the Heaviside step function. In order to
extract the lifetime, we need to know the imaginary part of
the self-energy in Fourier space. The second term on the RHS
of Eq. (31) does not contribute to the imaginary part of �. The
imaginary part of the self-energy in Fourier space can thus be
obtained via

Im �R (q, ω) = 2u2
0y

2 Im
∫

dxdt e−i(qx−ωt )χR (x, t )e−DQ|x|.

(37)

It is convenient to switch to the light-cone variables z± =
π (u0t ± x)/(u0β ):

Im �R (q, ω)=2u0y
2 sin(π2K0)

(
π

u0β

)2πK0−2

× Im
∫ ∞

0
dz+

∫ ∞

0
dz−

exp
[
i

β

2π
(ω − u0q )z+

]
(sinh z+)πK0

× exp
[
i

β

2π
(ω + u0q )z−

]
(sinh z−)πK0

e− DQu0β

2π
|z+−z−|. (38)

Equations (29) and (38) give the decay rate of plasma
waves due to QPS. They can be further simplified in various
limiting cases that we analyze below.

1. Clean case

In the regime DQ � min(q, T /u0), we can set DQ = 0,
and the integrations decouple. Performing the integrations, we
obtain

Im �R (q, ω)=2u0y
2 sin(π2K0)

(
2π

u0β

)2πK0−2

× Im

{
B

(
1 − πK0,

πK0

2
− i

β

4π
(ω + u0q )

)

× B

(
1 − πK0,

πK0

2
− i

β

4π
(ω − u0q )

)}
,

(39)

where

B(x, y) = �(x)�(y)

�(x + y)
(40)

is the Euler beta function. Making use of Eq. (29), we extract
the relaxation rate,

1

τ (ω)
∼ u0y

2

⎧⎨
⎩

(
2πT
u0

)2πK0−3
, ω � T ,

T
u0

(
2πωT

u2
0

)πK0−2
, ω � T .

(41)

2. Disordered case

In the limit of strong disorder, DQ � max(q, T /u0), the
main contribution of the integrations in Eq. (38) comes from
the region close to z+ = z−. We find

Im �R (q, ω) � 8u0
y2

DQ

sin(π2K0)

(
2π

u0β

)2πK0−1

× Im B

(
1 − 2πK0, πK0 − i

βω

2π

)
(42)

for the imaginary part of the self-energy, which is independent
of momentum. This leads to the following scaling of the relax-
ation rate in the case of strong disorder, DQ � max(q, T /u0):

1

τ (ω)
∼ u0

y2

DQ

⎧⎨
⎩

(
2πT
u0

)2πK0−2
, ω � T ,(

ω
u0

)2πK0−2
, ω � T .

(43)

For a moderate disorder strength, we need to consider two
cases. If q � DQ � T/u0, the clean result given by the first
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FIG. 2. Scaling behavior of the inverse relaxation time of plas-
monic waves due the scattering from QPS in different regimes in
the frequency-temperature plane. For each regime, the behavior of
1/(τu0y

2) is indicated.

line of Eq. (41) remains valid. For T/u0 � DQ � q, the
integration over z− in Eq. (38) is cut at the upper limit by
πT/u0q � 1. We can further neglect z− in the exponential
function related to DQ. This leads to the following behavior
of the relaxation rate:

1

τ (ω)
∼ u0y

2 DQ

(
DQω

u0

)πK0−2

, T � u0DQ � ω.

(44)

Equations (41), (43), and (44) give the relaxation rate of
plasma waves due to QPS in different regimes and constitute
the main result of this section. They are summarized in
Fig. 2. The relaxation rate exhibits power-law scaling with
frequency, temperature and the disorder. The corresponding
exponents are nonuniversal and are determined by the value
of the Luttinger parameter K0. Deep in the superconducting
phase of the JJ chain, K0 � 1, the relaxation rate vanishes at
low frequencies, while the opposite trend is predicted in the
insulating phase with sufficiently small K0.

B. Relaxation due to “gradient” nonlinearities

Let us now turn to the analysis of “gradient” anharmonici-
ties described by the term Snl in the effective action (20). They
are irrelevant from the point of view of the renormalization
group. However, at intermediate energy scales they contribute
to the decay of the plasma waves on equal footing with QPS.
We consider here the nonlinearity (18) corresponding to the
correction (19) of the action, which arises as the quartic term
of the expansion of the Josephson potential.

Perturbative treatment of the decay of plasmons caused by
“gradient” anharmonicities was discussed in other contexts
in Refs. [29–31]. The perturbation theory turns out to be
ill-defined in the case of a linear plasmonic spectrum and in
this section we use the dispersion relation (16) taking into
account its finite curvature.

In order to calculate the relevant matrix element for the re-
laxation process, it is convenient to express the superconduct-
ing phase θ through bosonic creation (b†q) and annihilation

FIG. 3. Dominant relaxation process mediated by nonlinearities
for a right moving plasmon with momentum q1.

operators (bq), that obey the standard bosonic commutation
relations. This decomposition is of the form [28]

θ (x) = i

√
π

2Nx

∑
q �=0

sign(q )√|q| e−a|q|/2eiqx (b†q − b−q ), (45)

where a is the ultraviolet cutoff that can be send to zero in this
calculation, and Nx is the number of junctions per chain. Our
analysis below largely follows the approach of Ref. [31]. The
relaxation rate can be calculated using the diagonal part of the
linearized collision integral,

1

τ (q1)
= 1

2

∑
q2,q

′
1,q

′
2

W
q ′

1,q
′
2

q1,q2 {NB (εq2 )[1 + NB (εq ′
1
) + NB (εq ′

2
)]

−NB (εq ′
1
)NB (εq ′

2
)}, (46)

where the transition probability is

W
q ′

1,q
′
2

q1,q2 = 2π |〈0|bq ′
2
bq ′

1
Hnlb

†
q1

b†q2
|0〉|2δ(Ei − Ef ), (47)

and Ei(f ) denotes the total energy of the initial (final) states.
The modulus of the matrix element is given by

|〈0|bq ′
2
bq ′

1
Hnlb

†
q1

b†q2
|0〉|

= π2EJ

4α3Nx

√
|q1q2q

′
1q

′
2|δq1+q2,q

′
1+q ′

2
. (48)

A right moving plasmon with momentum q1 > 0 can relax via
this nonlinearity by the scattering off a left moving thermal
plasmon with momentum q2 < 0 (see Fig. 3). According
to the conservation laws, the momentum of the left-moving
particle

q2 = − 3
2q1q

′
1q

′
2l

2 + O
(
q5

1 l4
)

(49)

is much smaller than the momentum q1. With the help of the
momentum conservation we can perform the sum over q ′

2.
The delta function related to the energy conservation can be
written in the form

δ(Ei − Ef ) = 2

3u0(q1 + q2)|q ′
1,+ − q ′

1,−|l2
δ(q ′

1 − q ′
1,+),

(50)
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where

q ′
1,± � q1

2
±

√
q2

1

4
+ 2q2

3q1l2
. (51)

Requiring q ′
1,± to be real restricts the range of q2 to the interval

q∗ < q2 < 0, q∗ = −3

8
q3

1 l2. (52)

In the continuum (long-chain) limit, the remaining
summations over momenta transform into integrations,
N−2

x

∑
q2,q

′
1
→ ∫

dq2dq ′
1/(2π )2. Performing the integration

over q ′
1, we find

1

τ (q1)
= π3E2

J q1

96α6

∫ 0

q∗
dq2

q ′
1,+q ′

1,−|q2|
u0(q1 + q2)|q ′

1,+ − q ′
1,−|l2

×{NB (εq2 )[1 + NB (εq ′
1,+ ) + NB (εq ′

1,− )]

−NB (εq ′
1,+ )NB (εq ′

1,− )}. (53)

The q2 dependence in the denominator of the integrand can
be neglected compared to q1. We assume now that the en-
ergy of the particle with momentum q1 is much larger than
temperature but not too large such that βu0q

3
1 l2 � 1. In this

case, the Bose function of the particle with momentum q2 can
be replaced by 1/βu0|q2|, and the Bose function related to
the particle with momentum q ′

1,+ can be neglected. The Bose
function related to the particle with momentum q ′

1,− can be
replaced by 1/βu0q

′
1,− for −3q2

1 l2/2βu0 < q2 < 0 and ne-
glected for q∗ < q2 < −3q2

1 l2/2βu0. The main contribution
to the integral in Eq. (53) originates from the latter range
of q2. After performing the integration, we find (under the
assumptions βu0q1 � 1, q2

1 l2 � 1, and βu0q
3
1 l2 � 1) the

following behavior of the relaxation rate:

1

τ (q1)
� π3E2

J T q4
1

768α6u2
0

= π3

768α5

EJ

E0
T q4

1 . (54)

Equation (54) constitutes the main result of this section.
It predicts ω4 scaling of the relaxation rate of plasmons due
to the “gradient” anharmonicity. The relaxation rate vanishes
at low frequencies reflecting the irrelevant character of the
gradient anharmonicities.

Before closing this section let us discuss the universality
of the result (54) with respect to the particular form of the
Hamiltonian Hnl given by Eq. (18). On phenomenological
grounds various terms of the form (∂xφ)n(∂xθ )m are allowed
in the effective Hamiltonian. For n + m > 4 such terms are
less relevant than the (∂xθ )4 term considered here and, thus,
contribute less to the lifetime of plasmons. On the other hand a
cubic-in-density interaction, (∂xφ)3, is more relevant in terms
of the scaling dimension. However, the energy and momentum
conservations forbid the decay of a single plasmon into two
particles. Correspondingly, a cubic nonlinearity should be
taken in the second-order perturbation theory to produce a
finite decay rate. The resulting process is again the one of
Fig. 3 and leads to the same ω4 scaling of the relaxation rate
[29–31].

FIG. 4. Schematic behavior of the quality factor as a function of
the rescaled frequency ω/ωp in a double-log scale in the insulating
regime, E0 � EJ. The arrows indicate the change under an increase
of EJ (thin lines correspond to a larger value of EJ). The frequency
scale of the crossover between the regime of dominant relaxation
due to QPS (red lines) and that of dominant relaxation due to the
nonlinearity (blue lines) is exponentially small in the parameter√

EJ/E1. A further increase of EJ into the superconducting regime
leads to a monotonic dependence of the quality factor (not shown in
the figure). The scaling of the QPS and the “gradient” anharmonicity
contributions indicated near the corresponding lines is based on
Eqs. (41) and (54), respectively, with an assumption ω � T . For
the QPS contribution, the formula corresponds to the clean case.
In the disordered case, the scaling of the QPS contribution can be
inferred from Eqs. (43) and (44); this does not affect the qualitative
appearance of the plot.

C. Interplay of QPS and “gradient” anharmonicities

In Secs. III A and III B, we have analyzed the decay of
plasmon excitations due to QPS and the “gradient” anhar-
monicities, respectively. While the relaxation rate due to
“gradient” anharmonicities follows universal ω4 scaling, the
QPS contribution is characterized by a nonuniversal exponent
and reflects the SIT controlled by the value of K0. Let us
now discuss the interplay of the two relaxation channels. We
assume for definiteness that frequencies of interest are larger
than temperature.

It is convenient to characterize the strength of the plasmon
decay by a dimensionless parameter ωτ . This parameter is
expected to be proportional to the quality factor studied in
Ref. [23]. Deep in the superconducting regime, K0 � 1, the
relaxation of plasmons is always dominated by the “gradient”
anharmonicities and the quality factor ωτ scales as ω−3, see
Eqs. (41), (43), (44), and (54). Upon decreasing the Luttinger
parameter K0, the QPS start to be visible in the quality factor.
Specifically, the QPS dominate the low-frequency behavior of
the quality factor under the condition πK0 < 6 (respectively,
πK0 < 3), yielding its ω3−πK0 (respectively, ω3−2πK0 ) scaling
in the cases of weak (respectively, strong) disorder. Further-
more, as a result of QPS, for sufficiently small K0 (πK0 < 3
for weak and πK0 < 3/2 for strong disorder), the quality
factor goes down as frequency decreases. The resulting fre-
quency dependence of ωτ will then be nonmonotonic with a
maximum around a crossover frequency where the QPS set in,
as illustrated in Fig. 4.

In the discussion of the overall frequency dependence
of the quality factor, it is important to keep in mind the
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exponential smallness of the fugacity y, Eq. (8). Due to
this fact, the frequency below which QPS dominate over
“gradient” nonlinearities is exponentially small for EJ � E1.
As a result, even deep in the insulating regime, K0 � 1, the
quality factor is dominated by the gradient nonlinearities and
thus grows with lowering the frequency in a wide frequency
range if EJ � E1. Only at exponentially small frequencies
this “superconducting” behavior crosses over to the decrease
of the quality factor reflecting the insulating character of the
system in the infrared limit. Our results compare well with
the experimental findings of Ref. [23], as we discuss in more
detail in Sec. IV.

IV. SUMMARY AND DISCUSSION

We have studied the decay of plasmonic waves in JJ chains.
Motivated by a recent experiment [23], we have considered,
besides a single one-dimensional chain, also a model of two
capacitively coupled linear chains. It has been shown that in
the parameter regime where the capacitance to the ground
(Cg) can be neglected, the theory for the antisymmetric mode
in the double chain can be mapped onto a theory for a
single chain. This was possible because the symmetric mode
acquired a fast velocity due to the strong Coulomb interaction.

Two sources for the relaxation of plasma waves have been
considered. First, the damping originating from the scattering
generated by QPS leads to a relaxation rate that scales with
frequency as a power law with a nonuniversal exponent that
depends on the parameter K0 = √

EJ/E0. The scaling behav-
ior of the relaxation rate related to QPS in different parameter
regimes is summarized in Fig. 2. Since the QPS amplitude
is exponentially small in the parameter

√
EJ/E1, the rate is

very sensitive to this parameter. The second mechanism for
the relaxation of plasma waves is the interaction of them
mediated by other nonlinear terms. As an example, we have
considered the lowest-order nonlinearity coming from the
Josephson potential. This term leads to a relaxation rate that
scales as the fourth power of frequency. The vanishing of the
relaxation rate at low frequencies reflects the irrelevance of
this term in the renormalization group sense. Nevertheless,
for a small phase-slip amplitude (fugacity), the contribution
originating from this nonlinearity may be dominating in a
wide range of frequencies.

Comparing our findings to the experiment of Ref. [23], we
find a very good qualitative agreement between our theory
and experimental observations. All of the samples shown
in Fig. 3(b) of Ref. [23] are nominally in the insulating
regime. Specifically, values of the Luttinger constant K0 that
are extracted from the measured values of the impedance
Z (proportional to 1/K0) make one to expect the insulating
behavior. However, the samples with a large ratio of EJ/E1

show an increase of the quality factor when lowering the
frequency. This behavior suggests that the systems are in
the superconducting regime. This apparent contradiction is
resolved by noting that the crossover scale below which the
QPS effects show up is exponentially small in the square
root of EJ/E1. As a result, the downturn of the quality
factor indicating insulating behavior occurs below the lowest
measured frequencies. For devices with a lower value of
both K0 and EJ/E1, the authors of Ref. [23] observe a flat

behavior at intermediate frequencies with a tendency to drop
at lowest measured frequencies. This behavior is qualitatively
consistent with our prediction on the frequency dependence of
the quality factor that is dominated by QPS in the insulating
regime at low frequencies. For a more quantitative compari-
son, the extension of the experimental measurement method
to lower frequencies and the investigation of the temperature
dependence would be beneficial.

Let us discuss in more detail experimental observations on
dependencies of the quality factor on various input parame-
ters. We consider first the more insulating chains. The authors
of Ref. [23] point out a stronger sensitivity of the quality factor
to the parameter EJ/E1 compared to the parameter Z ∝ 1/K0

for their weakest junctions (large Z and low EJ/E1)—an
observation that is immediately understood within our theory.
In these devices, the parameter K0 is very small such that
the exponent for the power law of the phase-slip contribution
to the quality factor is only slightly modified when changing
K0. Even relatively large changes of the order of 20% (as in
the experiment) have only a small effect, since the value of
K0 is still small and modifies the exponent only weakly. On
the other hand, the fugacity of QPS depends exponentially on
the square root of EJ/E1, which explains the observed strong
dependence of the quality factor on this parameter.

Further, we compare the scaling predicted in our work
to the experimental observations in low-impedance chains
shown in Fig. S 4 in the Supplementary Material of Ref. [23].
All these samples are characterized by a large ratio of EJ

over E1 such that the QPS effects should be negligibly small
in the range of measured frequencies. Indeed, the curves
show an increasing behavior when lowering the frequency.
More specifically, the corresponding frequency scaling of the
quality factor is consistent with the theoretical expectation
ω−3 from the decay due to the nonlinearity. Discussing the
dependence on other parameters, we notice that the charging
energy E0 experiences a particularly strong variation in the ex-
periment (within a factor of ∼75), while the variation of other
device parameters is smaller. All experimental curves appear
to collapse reasonably well when plotted as a function of the
rescaled frequency ω/ωp. On the other hand, our prediction
shows a strong power-law dependence (E3

0) on the charging
energy E0. We speculate that a different kind of nonlinearity
may be responsible for the explanation of this discrepancy.
It might originate from some kind of nonlinear capacitances
and result in a different prefactor in the frequency dependence
of the quality factor that does not depend so strongly on the
charging energy E0. The identification and analysis of other
types of nonlinearities constitutes an interesting prospect for
future research.

Before closing this paper, we add two more comments on
possible extensions of this work. First, we assumed that the
Josephson and charging energy are constant for the whole
chain. In principle, one can generalize the model by including
spatial fluctuations of them. This will make the Luttinger-
liquid constant K0 randomly space dependent, K0 → K0(x),
and result in a possibility of elastic backscattering of plasmons
that gets stronger with increasing frequency [32,33]. In the
experiment of Ref. [23], this disorder appears to be very weak,
as can be inferred from regularly spaced resonances at higher
frequencies. One can imagine, however, chains with a stronger
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K0(x)-type disorder. An investigation of the combined effect
of such a disorder and interaction on plasmon spectroscopy is
an interesting prospect for future research.

Second, our analysis of the width of the plasmonic reso-
nances which relies on the golden rule assumes a continuous
spectrum. This is justified if the obtained rate is larger than
the level spacings of final states to which a plasmon decays.
In particular, for the gradient-anharmonicity decay, these are
three-particle states: the final states for a decay of a plas-
mon with momentum q1 are characterized by three momenta
q ′

1, q2, and q ′
2, see Fig. 3. The corresponding three-particle

level spacing is much smaller than the single-particle level
spacing in a long chain since it scales as 1/N3

x with the
length Nx . Thus the analysis remains applicable despite the
discrete single-particle spectrum. The situation changes in
shorter chains where one might be able to reach a regime in
which the golden-rule rate is smaller than the three-particle
level spacing. In this case, effects of localization in the Fock
space may become important. For a related discussion in the
context of electronic levels in quantum dots see Refs. [34–37].
While preparing this paper for publication, we learnt about a
related unpublished work [38].

Note added in proof. Recently, a preprint [39] appeared
where a similar problem was addressed. The results of Ref.
[39] for plasmon decay due to QPS are consistent with our
findings; gradient anharmonicities were not considered there.
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APPENDIX: DERIVATION OF LOW-ENERGY
FIELD THEORY

This appendix is devoted to the derivation of the low-
energy field theory for the antisymmetric mode of the double-
chain system. Our starting point is the lattice Hamiltonian
(21). We denote by Eg, E0, and E1 the charging energies
associated with the capacitance Cg, C0, and C1, respectively,
and Ei = (2e)2/Ci .

The basic idea is that in the limit of small capacitance Cg

the associated charging energy Eg suppresses the charge fluc-
tuations in the symmetric mode (at least at long scales) leaving
us with the antiymmetric mode as the only dynamical degree
of freedom. This observation was previously employed in the
literature to obtain the low-energy theory of the antisymmetric
mode, see Refs. [40,41]. Here we generalize the results of
Refs. [40,41] to the case when the Coulomb interaction is
long-ranged (C1 � C0) and charge disorder is present in the
system. We show that the effective theory takes the form of
the sine-Gordon model, Eqs. (3), (4), and (10) supplemented
by a “gradient” nonlinearity term, Eq. (19).

The posed goal can be achieved in two different ways.
In Sec. A 1, we present a semi-quantitative derivation of our
results from the field-theory description of the symmetric

and antisymmetric modes in the double chain. A more mi-
croscopic analysis of the initial lattice model (leading to the
same results) is carried out in Secs. A 2 and A 3 for the cases
of short-range (C1 = 0) and long-range (C1 � C0) Coulomb
interactions, respectively.

1. Heuristic derivation from the continuum field theory

We start our discussion of the effective theory for the
antisymmetric mode in the double chain from a heuristic
derivation based on the field-theory description of the lattice
model (21). The latter is derived in full analogy to the case
of a single JJ chain. To this end, we introduce two fields φ↑
and φ↓ related to the charge in the lower and upper chain via
∂xφσ = −πNσ , as well as their combinations:(

φs

φa

)
= 1

2

(
1 1
1 −1

)(
φ↑
φ↓

)
. (A1)

In terms of these fields, the quadratic part of the action
corresponding to the lattice model (21) reads

S0 = 1

π2

∫
dq

2π

dω

2π

{[
(2e)2q2

Cg + C1q2
+ ω2

EJ

]
|φs (q)|2

+
[

(2e)2q2

2C0 + Cg + C1q2
+ ω2

EJ

]
|φa (q)|2

}
. (A2)

The QPS can be accounted for by

Sps = yu0

∫
dxdτ {cos[2φ↑+Q↑(x)] + cos[2φ↓ + Q↓(x)]},

(A3)

where

Qσ (x) = 2π

∫ x

−∞
dx ′Qσ (x ′) (A4)

and Q↑(↓)(x) is the random charge in the upper (lower) chain.
Note that in Eq. (A3) we consider QPS as happening indepen-
dently in the upper and lower chains. This is justified provided
that E1 ≡ (2e)2/C1 � Eg,E0 ≡ (2e)2/C0. The fugacity y is
then exponentially small in the parameter

√
EJ/E1.

In the long-wave-length limit, q � √
Cg/C1 � √

C0/C1,
the quadratic action (A2) reduces to the Luttinger-liquid form:

S0 =
∑

ρ=s,a

1

2π2u0,ρK0,ρ

∫
dxdτ

[
u2

0,ρ (∂xφρ )2 + (∂τφρ )2
]
,

(A5)

with

u0,s = √
EJEg, u0,a =

√
EJE0/2,

K0,s = 1

2

√
EJ

Eg

, K0,a =
√

EJ

2E0
. (A6)

Let us now consider the perturbative expansion of the par-
tition function Z in the fugacity y. The lowest nonvanishing
correction arises in the second order and reads

δZ = y2u2
0

4

∫
d2r1d

2r2
1

|r1 − r2|2πK0,s

×〈cos[2(φa (r1) − φa (r2)) + Q↑(x1) − Q↑(x2)]

+ cos[2(φa (r1) + φa (r2)) + Q↑(x1) − Q↓(x2)]
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+ cos[2(φa (r1) + φa (r2)) − Q↓(x1) + Q↑(x2)]

+ cos[2(φa (r1) − φa (r2)) − Q↓(x1) + Q↓(x2)]〉0,a.

(A7)

Here, r = (x, u0,aτ ). In Eq. (A7), we have performed explicit
averaging over the symmetric mode φs but kept the correlation
functions of φa in the unevaluated form. Introducing

Qs (x) = Q↑(x) + Q↓(x), Qa (x) = Q↑(x) − Q↓(x),

(A8)

we find

δZ = y2u2
0

∫
d2r1d

2r2
cos[Qs (x1) − Qs (x2)]

|r1 − r2|2πK0,s

×〈cos[2φa (r1) + Qa (x1)] cos[2φa (r2) + Qa (x2)]〉0,a.

(A9)

Assuming that we are in the regime K0,s � 1, we can
approximate |r1 − r2|2πK0,s by unity. If the charge disorder is
weak, we can further replace cos[Qs (x1) − Qs (x2)] by unity.
In this case, the integrations over r1 and r2 decouple and we
observe that the correction (A9) can be viewed as resulting
from the effective action [cf. Eq. (A2); we take into account
that Cg � C0]

Seff = Seff
0 + Seff

ps , (A10)

Seff
0 = 1

π2

∫
dq

2π

dω

2π

[
(2e)2q2

2C0 + C1q2
+ ω2

EJ

]
|φa (q)|2,

(A11)

Seff
ps =

√
2yu0

∫
d2r cos[2φa (r) + Qa (x)], (A12)

which (up to a redefinition of the fugacity y by an unimportant
numerical factor) reproduces Eqs. (3), (4), and (10) of the
main text with α = 2.

If the charge disorder is strong, we expand the cosine in
Eq. (A9),

cos[Qs (x1) − Qs (x2)] = cos[Qs (x1)] cos[Qs (x2)]

+ sin[Qs (x1)] sin[Qs (x2)].

(A13)

Both terms in Eq. (A13), when substituted into Eq. (A9),
give equivalent contributions, if the disorder Qs is strong. In
the opposite limit of weak disorder (small Qs), the second
term would be much smaller than the first one. Thus, keeping
only the first term will always yield a correct result, up to a
coefficient of order unity. Proceeding in this way, we again
find an effective action for QPS that is of first order in y [cf.
discussion of the weakly disordered case],

Seff
ps =

√
2yu0

∫
d2r cos[Qs (x)] cos[2φa (r) + Qa (x)].

(A14)

For strong charge disorder we find, besides the random
phase, also a random amplitude of the QPS action. As shown
in Ref. [17], the QPS action without a random amplitude,

Eq. (10), automatically generates a QPS term with a random
amplitude if the charge disorder is strong. The phase-slip
action Eq. (10) hence adequately describes the effects of
QPS on the antisymmetric mode in the double chain in the
disordered case.

Let us now discuss the “gradient” anharmonicity correction
to the effective action of the antisymmetric mode. Taking into
account the “gradient” anharmonicity arising from the quartic
expansion of the Josephson coupling in each of the two chains
one finds

Snl = −1

12π4E3
J

∫
dx[(∂τφa )4+(∂τφs )4+6(∂τφs )2(∂τφa )2].

(A15)

We now average (A15) over fluctuations of φs . Omitting a
trivial constant term arising from the first term in Eq. (A15)
and a renormalization of the Josephson energy in Eq. (A11)
by a numerical factor arising from the last term we get

Seff
nl = − 1

12π4E3
J

∫
dxdτ (∂τφa )4, (A16)

and reproduce Eq. (19) with α = 2.

2. Elimination of symmetric mode at the level of the lattice
model: the case of local Coulomb interaction

In this appendix, we assume local Coulomb interaction
(C1 = 0) and derive the effective theory of the antisymmetric
mode by integrating out the symmetric mode directly in the
lattice model (21). We closely follow here the derivation of
the effective theory for a single chain outlined in Appendix
of Ref. [17]. The generalization of this derivation to the case
C1 � C0 will be presented in Sec. A 3.

We start by constructing the path-integral representation of
the partition function for the system. To this end, we discretize
the (imaginary) time τ ∈ [0, β ) in Nτ steps with spacing �τ

(the precise value will be discussed later). For concreteness,
we assume periodic boundary conditions along the chains,
with Nx grains in each chain. In the following, n and i are the
indices of the lattice point in τ and x directions, respectively,
and σ =↑,↓ discriminates between the two chains. At each
vertex of the space-time lattice (n, i, σ ), a resolution of unity
of the form

1 =
∑
N↑,N↓

∫ 2π

0

dθ↑
2π

∫ 2π

0

dθ↓
2π

|N↑,N↓〉〈θ↑, θ↓|

× e−iθ↑N↑ e−iθ↓N↓ (A17)

is inserted. This results in the action

S = −i
∑
n,i,σ

N n
i,σ (∂τ θ )ni,σ + EJ�τ

∑
n,i,σ

(
1 − cos

[
(∂xθ )ni,σ

])

+ (2e)2�τ

2

∑
n,i,σ,σ ′

(C−1)σ,σ ′
(
N n

i,σ − Qi,σ

)(
N n

i,σ ′ − Qi,σ ′
)
,

(A18)

where we have introduced the lattice derivatives

(∂xθ )ni,σ = θn
i+1,σ − θn

i,σ and (∂τ θ )ni,σ = θn+1
i,σ − θn

i,σ ; (A19)

224513-10



DECAY OF PLASMONIC WAVES IN JOSEPHSON … PHYSICAL REVIEW B 98, 224513 (2018)

by Qi,σ we denote the stray charges and the inverse capaci-
tance matrix in the local case reads

C−1 = 1

Cg (Cg + 2C0)

(
Cg + C0 C0

C0 Cg + C0

)
. (A20)

To perform the summation over the charge variables N n
i,σ ,

it is convenient to introduce the symmetric and antisymmetric
combinations of charges and phases:

N n
i,s = N n

i,↑ + N n
i,↓

2
, N n

i,a = N n
i,↑ − N n

i,↓
2

, (A21)

Qi,s = Qi,↑ + Qi,↓
2

, Qi,a = Qi,↑ − Qi,↓
2

, (A22)

θn
i,s = θn

i,↑ + θn
i,↓

2
, θn

i,a = θn
i,↑ − θn

i,↓. (A23)

According to (A21), the charges N n
i,s and N n

i,a are either both
integer or both half-integer. Note also the absence of 1/2 in
the definition of θn

i,a .
The partition function reads now

Z =
∑

{N n
i,s ,N n

i,a}

∫ 2π

0
Dθ↑Dθ↓e− ∑

i,n Sn
i , (A24)

with

Sn
i = −2iN n

i,s (∂τ θ )ni,s − iN n
i,a (∂τ θ )ni,a

+ (2e)2�τ

[(
N n

i,s − Qi,s

)2

Cg

+
(
N n

i,a − Qi,a

)2

2C0 + Cg

]

+EJ�τ
∑

σ

{
1 − cos

[
(∂xθ )ni,σ

]}
. (A25)

We observe that in the limit of a small capacitance
Cg, (2e)2/Cg � EJ, E0, the dynamics of the charges Ni,s

is frozen out and their values are pinned to the background
charges Qi,s ,2

N n
i,s = 1

2�2Qi,s�, (A26)

where �·� stands for the integer part. The first term in
Eq. (A25) is then a total derivative and can be dropped
due to periodic boundary conditions in the imaginary time.
Moreover, it is easy to see that, upon the proper redefinition of
the stray charges Qi,a , one can regard the summation over N n

i,a

in the partition function as running over integers irrespective
of the (integer or half-integer) value of Ni,s . We thus conclude
that, with the charges Ni,s being frozen out, the dynamics of
the system is governed by the action

S =
∑
n,i

{
−iN n

i,a (∂τ θ )ni,a + (2e)2�τ

(
N n

i,a − Qi,a

)2

Cg + 2C0

+ 2EJ�τ
(
1 − cos

[
(∂xθ )ni,s

]
cos

[
(∂xθ )ni,a

/
2
])}

. (A27)

The last step one needs to perform in order to derive from
Eq. (A27) the effective action for the antisymmetric mode is

2In the case of strong charge disorder, we neglect here the rare sites
in the chain where 2Qi,s is half-integer.

the integration over the phases θn
i,s . To this end, we assume

open boundary conditions in the space direction and introduce
new integration variables

θ̃ n
i = θn

i,s − θn
i−1,s , i � 2. (A28)

The relevant factor in the partition function takes then the
form

Nx−1∏
i=1

Nτ∏
n=1

(∫ 2π

0
dθ̃n

i+1,s exp
{ − 2EJ�τ

× (
1 − cos

[
(∂xθ )ni,a

/
2
]

cos
[
θ̃ n
i+1,s

])})

∝ exp

{
−�τ

Nx−1∑
i=1

Nτ∑
n=1

g
[
(∂xθ )ni,a

]}
. (A29)

Here we have dropped an irrelevant normalization factor, and
the function g(γ ) can be expressed in terms of the modified
Bessel function I0(γ ):

g(γ ) = − 1

�τ
ln I0

(
2EJ�τ cos

γ

2

)
. (A30)

The function g(γ ) is 2π periodic in its argument. Thus we
can regard the effective action of the antisymmetric mode,

S =
∑
n,i

{
− iN n

i,a (∂τ θ )ni,a + (2e)2�τ

(
N n

i,a − Qi,a

)2

Cg + 2C0

+�τ g
[
(∂xθ )ni,a

]}
, (A31)

as describing a chain of JJs with the effective Josephson
coupling given by g(∂xθ ) and proceed in close analogy with
Ref. [17]. We develop the theory starting from the supercon-
ducting ground state. As we will see later, this means that we
are in the limit EJ�τ � 1. In this limit, the main contribution
comes from the region close to ∂xθa = 0 (mod 2π ). Thus we
can employ the Villain approximation that reads

exp [−�τ g(∂xθa )] ∝
∑

h

e− EJ�τ

4 (∂xθa−2πh)2
. (A32)

Fixing the time step �τ to

�τ =
√

2

EJE0
=

√
2C0

(2e)2EJ
, (A33)

and following the derivation of the sine-Gordon theory dis-
cussed in Ref. [17], we find (skipping the index “a”)

S = 1

2π2K0

∫
dxdτ

[
u2

0(∂xφ)2 + (∂τφ)2
]

+ yu0

∫
dxdτ cos[2φ(x, τ ) + Qa], (A34)

where

K0 =
√

EJ

2E0
, u0 =

√
EJE0/2. (A35)

Equation (A34) is equivalent to Eqs. (3), (4), and (10) in
the limit � = ∞. To complete our analysis we thus only need
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to extract the “gradient” anharmonicity term. It arises from
the fourth-order expansion of the effective Josephson coupling
(A30) and reads

Hnl = − EJ

192

∫
dx(∂xθa )4. (A36)

This result coincides with the “gradient” anharmonicity term
stated in the main text, Eq. (18), with α = 2.

3. Elimination of symmetric mode at the level of the lattice
model: the case of long-range Coulomb interaction

Let us now discuss the derivation of the effective theory
in the case of the long-range Coulomb interaction, C0 � C1.
Throughout this section we take the limit of Cg = 0.

It is convenient to represent the partition function as a path
integral over the phases θi,σ (τ ),

Z =
∫ ∏

i,σ

Dθi,σ (τ )e−S, (A37)

with the action

S =
∫

dτ

{∑
i,σ

[
[(∂xθ̇ )i,σ ]2

2E1
− EJ cos[(∂xθ )i,σ ]

+ iθ̇i,σQi,σ

]
+

∑
i

(θ̇i,↑ − θ̇i,↓)2

2E0

}
. (A38)

The action Eq. (A38) is equivalent to the Hamiltonian (21) in
the limit Cg = 0. The first term in the second line describes the
effect of random stray charges. The quantization of the grain
charges Ni,σ is reflected in the boundary condition along the
imaginary time:

θi,σ (β ) = θi,σ (0) + 2πni,σ , (A39)

where β is the inverse temperature and ni,σ are integers.
In the considered limit of Cg = 0, the dependence of the

action on the symmetric combination of phases, θi,s ≡ (θi,↑ +
θi,↓)/2 is through its spatial gradient only. We thus introduce

�i,s = (∂xθ )i,↑ + ∂x (θ )i,↓
2

, θi,a = θi,↑ − θi,↓, (A40)

as new integration variables and find

S =
∫

dτ
∑

i

{
�̇2

is

E1
+ [(∂xθ̇ )i,a]2

4E1
+ 2i�̇i,sQi,s

+ iθ̇i,aQi,a − 2EJ cos[�i,s] cos

[
(∂xθ )i,a

2

]
+ θ̇2

i,a

2E0

}
.

(A41)

Here,

Qi,s =
∑
j<i

Qj,s (A42)

and the symmetric and antisymmetric combinations of the
stray charges, Qi,s and Qi,a , are defined according to
Eq. (A22). The boundary conditions in the time direction are

given by

θi,a (β ) = θi,a (0) + 2πni,a , (A43)

�i,s (β ) = �i,s (0) + 2πni,s + πδi , (A44)

where ni,s(a) are integer numbers and

δi = (ni+1,a − ni,a ) mod 2. (A45)

We can now formally perform the functional integration
over the symmetric mode. Indeed, the integrations at different
spatial points decouple. It is then easy to see that the result of
the integration over �i,s (τ ) can be expressed as∫

D�i,s (τ ) exp

(
−

∫
dτ

{
�̇2

is

E1
+ 2i�̇i,sQi,s

−2EJ cos[�i,s] cos

[
(∂xθ )i,a

2

]})

= Tr U (β ) ≡ e−δS[∂xθi,a (τ )], (A46)

where U (τ ) is the (imaginary-time) evolution operator de-
fined by

dU

dτ
= −H[θi,a (τ ) − θi+1,a (τ )]U (τ ), (A47)

with the time-dependent Hamiltonian

H = E1

(
N − 2Qi,s − δi

2

)2

− 2EJ cos

(
� + πδi

τ

β

)
cos

θi+1,a (τ ) − θi,a (τ )

2
.

(A48)

Here, N is the (integer-valued) momentum canonically con-
jugate to the coordinate �.

The contribution δS[∂xθi,a (τ )] to the action of the anti-
symmetric mode defined by Eqs. (A46)–(A48) is generally a
complicated functional of the phase difference ∂xθi,a (τ ). We
are mainly interested, however, in the low-frequency modes
of the field θi,a (with frequencies much less than the plasma
frequency

√
E1EJ). The adiabatic approximation can then be

used for the computation of the evolution operator (A47).
Moreover, for E1 � EJ and low temperature, the dynamics of
� can be determined just by the minimization of the potential
energy in the Hamiltonian (A48). This leads to

δS = −2EJ

∫
dτ

∣∣∣∣cos
(∂xθ )i,a

2

∣∣∣∣. (A49)

Equations (A41) and (A49) give rise to the effective action
for the antisymmetric mode:

S =
∫

dτ
∑

i

{
[(∂xθ̇ )i,a]2

4E1
− 2EJ

∣∣∣∣cos

[
(∂xθ )i,a

2

]∣∣∣∣
+ θ̇i,aQi,a + θ̇2

i,a

2E0

}
. (A50)

The subsequent derivation of the effective sine-Gordon theory
proceeds then along the lines of Ref. [17] and leads to Eqs. (3),
(4), and (10) with α = 2. The fourth-order expansion of the
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Josephson coupling in (A50) gives rise to the “gradient”
anharmonicity, Eq. (18).

Before closing this section, let us comment on the rela-
tion between the presented derivation and the field-theoretic
derivation discussed in Sec. A 1 of the appendix. Both deriva-
tions lead to the effective sine-Gordon model for the an-
tisymmetric mode. It was found in Sec. A 1 that the cor-
responding fugacity y fluctuates in space, see Eq. (A14).

Such fluctuations are not seen in Eq. (A50). We anticipate
that a more accurate treatment of QPS based on Eqs. (A47)
and (A48) will produce a fugacity y that depends on the
configuration of the stray charges Qi,s and fluctuates in space.
Furthermore, as shown in Ref. [17], the random amplitude of
the QPS term is generated under the renormalization-group
transformation. The results of both derivations are therefore
equivalent.
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