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Localized spin waves in isolated kπ skyrmions
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The localized magnon modes of isolated kπ skyrmions on a field-polarized background are analyzed based
on the Landau-Lifshitz-Gilbert equation within the terms of an atomistic classical spin model, with system
parameters based on the Pd/Fe biatomic layer on Ir(111). For increasing skyrmion order k a higher number of
excitation modes are found, including modes with nodes in the radial eigenfunctions. It is shown that at low fields
2π and 3π skyrmions are destroyed via a burst instability connected to a breathing mode, while 1π skyrmions
undergo an elliptic instability. At high fields all kπ skyrmions collapse due to the instability of a breathing mode.
The effective damping parameters of the spin waves are calculated in the low Gilbert damping limit, and they are
found to diverge in the case of the lowest-lying modes at the burst and collapse instabilities but not at the elliptic
instability. It is shown that the breathing modes of kπ skyrmions may become overdamped at higher Gilbert
damping values.
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I. INTRODUCTION

Magnetic skyrmions are localized particlelike spin config-
urations [1], which have become the focus of intense research
activities over the last years due to their promising applica-
tions in spintronic devices [2–5]. While their particlelike prop-
erties make them suitable to be used as bits of information, the
collective excitations of the spins constituting the magnetic
skyrmion, known as spin waves or magnons, open possible
applications in the field of magnonics [6].

These spin wave modes were first investigated theoretically
[7–10] and experimentally [11–13] in skyrmion lattice phases,
where the interactions between the skyrmions lead to the
formation of magnon bands. If a skyrmion is confined in a
finite-sized nanoelement, it will possess discrete excitation
frequencies [14–17]. Although such geometries have also
been successfully applied to the time-resolved imaging of
the dynamical motion of magnetic bubble domains [18,19],
in such a case it is not possible to distinguish between the
excitations of the particlelike object itself and spin waves
forming at the edges of the sample [14]. In order to rule
out boundary effects, the excitations of isolated skyrmions
have to be investigated, as was performed theoretically in
Refs. [20–23]. It was suggested recently [24] that the experi-
mentally determined excitation frequencies in the Ir/Fe/Co/Pt
multilayer system may be identified as spin wave modes of
isolated skyrmions, rather than as magnons stemming from
an ordered skyrmion lattice.

In most investigations skyrmions correspond to simple
domains with the magnetization in their core pointing op-
posite to the collinear background. However, it was shown
already in Ref. [25] that the Dzyaloshinsky-Moriya interac-
tion [26,27] responsible for their stabilization may also lead
to the formation of structures where the direction of the
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magnetization rotates multiple times between the center of
the structure and the collinear region. Such target states or
kπ skyrmions, where k is the number of sign changes of
the out-of-plane magnetization when moving along the radial
direction, have also been investigated in constricted geome-
tries [28–32]. The experimental observation of localized spin
structures with multiple rotations has been mainly restricted
to systems with negligible Dzyaloshinsky-Moriya interaction
so far [19,33,34], where the formation of domain structures is
attributed to the magnetostatic dipolar interaction.

The collapse of isolated kπ skyrmions and their creation
in nanodots by switching the external field direction was
recently investigated in Ref. [35]. It was found that during
the creation process the skyrmions display significant size
oscillations resembling breathing eigenmodes. In Ref. [25],
the stability of kπ skyrmions was studied in a system with a
ferromagnetic ground state, and it was found that applying the
external field opposite to the background magnetization leads
to a divergence of the skyrmion radius at a critical field value,
a so-called burst instability. This instability can be attributed
to a sign change of one of the eigenvalues of the energy
functional expanded around the kπ skyrmion configuration,
intrinsically related to the dynamics of the system. However,
the spin wave frequencies of isolated kπ skyrmions remain
unexplored.

Besides the excitation frequencies themselves, the lifetime
of spin waves is also of crucial importance in magnonics
applications. This is primarily influenced by the Gilbert damp-
ing parameter α [36], the value of which can be determined
experimentally based on resonance lineshapes measured in the
collinear state [11,19,24]. It was demonstrated recently [23]
that the noncollinear spin structure drastically influences the
effective damping parameter acting on the spin waves, leading
to mode-dependent and enhanced values compared to the
Gilbert damping parameter. This effect was discussed through
the example of the 1π skyrmion in Ref. [23], but it is also ex-
pected to be observable for kπ skyrmions with higher order k.
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Here the localized spin wave frequencies of isolated
kπ skyrmions are investigated in a classical atomistic spin
model. The parameters in the Hamiltonian represent the
Pd/Fe/Ir(111) model-type system, where the properties of
skyrmions have been studied in detail both from the experi-
mental [37,38] and from the theoretical [35,39–41] side. The
paper is organized as follows. The classical atomistic spin
Hamiltonian and the method of calculating the eigenmodes
is introduced in Sec. II A, while the angular momentum
and nodal quantum numbers characterizing the excitations
are defined in Sec. II B within the framework of the corre-
sponding micromagnetic model. Eigenfrequencies equal to
or approaching zero are discussed in Sec. II C, and the ef-
fective damping parameters are introduced in Sec. II D. The
eigenmodes of kπ skyrmions with k = 1, 2, 3 are compared
in Sec. III A, the instabilities occurring at low and high field
values are discussed in connection to magnons with vanishing
frequencies in Sec. III B, and the effective damping parame-
ters of the different modes are calculated for vanishing and
higher values of the Gilbert damping in Secs. III C and III D,
respectively. A summary is given in Sec. IV.

II. METHODS

A. Atomistic model

The system is described by the classical atomistic model
Hamiltonian

H = −1

2

∑
〈i,j〉

J Si Sj − 1

2

∑
〈i,j〉

Dij (Si × Sj )

−
∑

i

K
(
Sz

i

)2 −
∑

i

μs BSi , (1)

with the Si unit vectors representing the spins in a single-layer
triangular lattice; J , Dij , and K denoting nearest-neighbor
Heisenberg and Dzyaloshinsky-Moriya exchange interactions
and on-site magnetocrystalline anisotropy, respectively, while
μs and B stand for the spin magnetic moment and the external
magnetic field. The Pd/Fe/Ir(111) system selected for the in-
vestigations presented here belongs to the C3v symmetry class
due to the fcc stacking of the atomic layers and the breaking
of inversion symmetry at the surface. Following the symmetry
rules established by Moriya [42], the Dij vectors must lie in
the mirror plane perpendicular to the nearest-neighbor bonds
on the lattice. Only the in-plane components of these vectors
will be considered here, being sufficient for explaining the
formation of kπ skyrmions, while the out-of-plane compo-
nents only appear as higher-order terms in the corresponding
micromagnetic energy functional [43]. The numerical val-
ues of the parameters are taken from Ref. [35], being J =
5.72 meV,D = |Dij | = 1.52 meV,K = 0.4 meV, and μs =
3 μB. These were determined based on measuring the field
dependence of 1π skyrmion profiles in the system by spin-
polarized scanning tunneling microscopy in Ref. [38].

During the calculations the external field B is oriented
along the out-of-plane z direction. The equilibrium kπ

skyrmion structures are determined from a reasonable initial
configuration by iteratively rotating the spins Si towards the
direction of the effective magnetic field Beff

i = − 1
μs

∂H
∂ Si

. The
iteration is performed until the torque acting on the spins,

T i = −Si × Beff
i , becomes smaller at every lattice site than a

predefined value, generally chosen to be 10−8 meV/μB. The
calculations are performed on a lattice with periodic boundary
conditions, with system sizes up to 256 × 256 for the largest
kπ skyrmions in order to avoid edge effects and enable the
accurate modeling of isolated skyrmions.

Once the equilibrium configuration S(0)
i is determined, the

spins are rotated to a local coordinate system S̃i = Ri Si using
the rotation matrices Ri . In the local coordinate system the
equilibrium spin directions are pointing along the local z axis,
S̃

(0)
i = (0, 0, 1). The Hamiltonian in Eq. (1) is expanded up

to second-order terms in the small variables S̃x
i , S̃

y

i as (cf.
Ref. [23])

H ≈ H0 + 1
2 (S̃

⊥
)T HSW S̃

⊥

= H0 + 1
2 [S̃

x
S̃

y
]

[
A1 A2

A†
2 A3

][
S̃

x

S̃
y

]
. (2)

The matrix products are understood to run over lattice site
indices i, with the matrix components reading

A1,ij = −J̃ xx
ij + δij

(∑
k

J̃ zz
ik − 2K̃xx

i + 2K̃zz
i + μsB̃

z
i

)
, (3)

A2,ij = −J̃
xy

ij − δij 2K̃
xy

i , (4)

A3,ij = −J̃
yy

ij + δij

(∑
k

J̃ zz
ik − 2K̃

yy

i + 2K̃zz
i + μsB̃

z
i

)
. (5)

The energy terms in the Hamiltonian are rotated to the lo-
cal coordinate system via J̃ ij = Ri[J I − Dij×]RT

j , K̃ i =
Ri K RT

j , and B̃i = Ri B, where I is the 3 × 3 identity matrix,
Dij× is the matrix describing the vector product with Dij ,
and K is the anisotropy matrix with the only nonzero element
being Kzz = K .

The spin wave frequencies are obtained from the linearized
Landau-Lifshitz-Gilbert equation [36,44]

∂t S̃
⊥ = γ ′

μs
(−iσ y − α)HSW S̃

⊥ = DSW S̃
⊥
, (6)

with σ y = [ 0 −iI s
iI s 0

]
the Pauli matrix in Cartesian com-

ponents and acting as the identity matrix I s in the lattice
site summations. The symbol γ ′ denotes the gyromagnetic
ratio γ = ge

2m
divided by a factor of 1 + α2, with g the

electron g factor, e the elementary charge, m the electron’s
mass, and α the Gilbert damping parameter. Equation (6) is
rewritten as an eigenvalue equation by assuming the time de-
pendence S̃

⊥
(t ) = e−iωq t S̃

⊥
q and performing the replacement

∂t → −iωq .
Since the kπ skyrmions represent local energy minima,

HSW in Eq. (2) is a positive semidefinite matrix. For α = 0
the ωq frequencies of DSW are real and they always occur
in ±ωq pairs on the subspace where HSW is strictly positive,
for details see, e.g., Ref. [23]. In the following, we will only
treat the solutions with Re ωq > 0, but their Re ωq < 0 pairs
are also necessary for constructing real-valued eigenvectors of
Eq. (6). The zero eigenvalues are discussed in Sec. II C.

As is known from previous calculations for 1π skyrmions
[21–23], the localized excitation modes of kπ skyrmions are
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found below the ferromagnetic resonance frequency ωFMR =
γ

μs
(2K + μsB ). During the numerical solution of Eq. (6)

these lowest-lying eigenmodes of the sparse matrix DSW are
determined, as implemented in the MONTECRYSTAL atomistic
spin simulation program [45].

B. Micromagnetic model

The atomistic model described in the previous section
enables the treatment of noncollinear spin structures where the
direction of the spins significantly differs between neighbor-
ing lattice sites. This is especially important when discussing
the collapse of kπ skyrmions on the lattice as was performed
in Ref. [35]. Here we will discuss the micromagnetic model
which on the one hand is applicable only if the characteristic
length scale of noncollinear structures is significantly larger
than the lattice constant, but on the other hand enables a
simple classification of the spin wave modes.

The free energy functional of the micromagnetic model is
defined as

H =
∫

A
∑

α=x,y,z

(∇Sα )2 + K(Sz)2 − MBSz

+ D(Sz∂xS
x − Sx∂xS

z + Sz∂yS
y − Sy∂yS

z)dr, (7)

where for the Pd/Fe/Ir(111) system the following parameter
values were used: A = 2.0 pJ/m is the exchange stiffness,
D = −3.9 mJ/m2 is the Dzyaloshinsky-Moriya interaction
describing right-handed rotation [39], K = −2.5 MJ/m3 is
the easy-axis anisotropy, and M = 1.1 MA/m is the satura-
tion magnetization.

As discussed in, e.g., Refs. [23,25,46], Eq. (7) is char-
acterized by two independent dimensionless parameters, the
anisotropy Kdl = KA

D2 and the magnetic field (MB )dl = MBA
D2 .

Two systems display identical properties at the same values of
these dimensionless parameters after an appropriate rescaling
of the length and time units, thereby enabling a comparison
of the excitation frequencies between different materials. The
dimensionless anisotropy takes the value −Kdl = 0.33 for
the Pd/Fe/Ir(111) system, and a qualitatively similar behavior
of isolated kπ skyrmions is expected for easy-axis systems
with a spin spiral ground state in the absence of an external
magnetic field, 0 � −Kdl � π2

16 ≈ 0.62 [25].
The equilibrium spin structure S(0) = (sin �0

cos �0, sin �0 sin �0, cos �0) of kπ skyrmions will be
cylindrically symmetric, given by �0(r, ϕ) = ϕ + π due
to the right-handed rotational sense and �0(r, ϕ) = �0(r ),
which is the solution of the Euler-Lagrange equation

A
(

∂2
r �0 + 1

r
∂r�0 − 1

r2
sin �0 cos �0

)
+ |D|1

r
sin2 �0

+K sin �0 cos �0 − 1

2
MB sin �0 = 0. (8)

The skyrmion order k is encapsulated in the boundary
conditions �0(0) = kπ,�0(∞) = 0. Equation (8) is solved
numerically in a finite interval r ∈ [0, R] significantly larger
than the equilibrium kπ skyrmion size. A first approximation
to the spin structure is constructed based on the corresponding
initial value problem using the shooting method [25], then

iteratively optimizing the structure using a finite-difference
discretization.

The spin wave Hamiltonian may be determined anal-
ogously to Eq. (2), by using the local coordinate sys-
tem � = �0 + S̃x,� = �0 + (sin �0)−1S̃y . The matrices in
Eqs. (3)–(5) are replaced by the operators

A1 = −2A
(

∇2 − 1

r2
cos 2�0

)
− 2|D|1

r
sin 2�0

− 2K cos 2�0 + MB cos �0, (9)

A2 = 4A 1

r2
cos �0∂ϕ − 2|D|1

r
sin �0∂ϕ, (10)

A3 = −2A
{
∇2 +

[
(∂r�0)2 − 1

r2
cos2 �0

]}

− 2|D|
(

∂r�0 + 1

r
sin �0 cos �0

)

− 2K cos2 �0 + MB cos �0. (11)

Due to the cylindrical symmetry of the structure, the
solutions of Eq. (6) are sought in the form S̃

⊥
(r, ϕ, t ) =

e−iωn,mteimϕ S̃
⊥
n,m(r ), performing the replacements ∂t →

−iωn,m and ∂ϕ → im. For each angular momentum quantum
number m, an infinite number of solutions indexed by n

may be found, but only a few of these are located below
ωFMR = γ

M (−2K + MB ), hence representing localized spin
wave modes of the kπ skyrmions. The different n quantum
numbers typically denote solutions with different numbers
of nodes along the radial direction, analogously to the
quantum-mechanical eigenstates of a particle in a box.

Because of the property HSW(m) = H∗
SW(−m) and HSW

being self-adjoint, the eigenvalues of HSW(m) and HSW(−m)
coincide, leading to a double degeneracy apart from the m =
0 modes. The ±ωq eigenvalue pairs of DSW discussed in
Sec. II A for the atomistic model at α = 0 in this case can
be written as ωn,m = −ωn,−m.

The operator A2 in Eq. (10), appearing due to the non-
collinear structure of kπ skyrmions, depends on the sign of m

or −i∂ϕ . Considering only the modes with Re ωn,m > 0, this
leads to ωn,m �= ωn,−m indicating nonreciprocity or an energy
difference between clockwise (m < 0) and counterclockwise
(m > 0) rotating modes [17,23].

For finding the eigenvectors and eigenvalues of the micro-
magnetic model, Eq. (6) is solved using a finite-difference
method on the r ∈ [0, R] interval. For treating the Laplacian
∇2 in Eqs. (9) and (11) the improved discretization scheme
suggested in Ref. [47] was applied, which enables a more
accurate treatment of modes with eigenvalues converging to
zero in the infinite and continuous micromagnetic limit. The
spin wave modes of the atomistic model discussed in Sec. II A
were assigned the (n,m) quantum numbers, which are strictly
speaking only applicable in the micromagnetic limit with
perfect cylindrical symmetry, by visualizing the real-space
structure of the numerically obtained eigenvectors.
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C. Goldstone modes and instabilities

The translations of kπ skyrmions on the collinear back-
ground in the two-dimensional plane along the x or y

directions represent continuous symmetries of the system,
which are spontaneously broken by the presence of the kπ

skyrmions. The Goldstone modes appearing due to this sym-
metry breaking are represented by two eigenvectors of the
spin wave Hamiltonian HSW belonging to zero eigenvalue.
Within the micromagnetic description of Sec. II B, these may
be expressed analytically as [21–23]

(S̃x, S̃y ) = e−iϕ

(
−∂r�0, i

1

r
sin �0

)
, (12)

(S̃x, S̃y ) = eiϕ

(
−∂r�0,−i

1

r
sin �0

)
. (13)

Equations (12) and (13) represent eigenvectors of the dy-
namical matrix DSW as well. From Eqs. (2) and (6) it follows
that the eigenvectors of HSW and DSW belonging to zero
eigenvalue must coincide, HSW S̃

⊥ = 0 ⇔ DSW S̃
⊥ = 0, be-

cause (−iσ y − α) in Eq. (6) is an invertible matrix. Since we
will only keep half of the solutions of the equation of motion
(6), namely the ones satisfying Re ωn,m > 0, the eigenvectors
from Eqs. (12) and (13) will be denoted as the single spin
wave mode ω0,−1 = 0.

Since the eigenvectors and eigenvalues are determined
numerically in a finite system by using a discretization pro-
cedure, the Goldstone modes will possess a small finite fre-
quency. However, these will not be presented in Sec. III A
together with the other frequencies since they represent a
numerical artifact. For the 1π and 3π skyrmions the ω0,1

eigenmode has a positive frequency and an eigenvector clearly
distinguishable from that of the ω0,−1 translational mode.
However, for the 2π skyrmion both the ω0,−1 and the ω0,1

eigenfrequencies of DSW are very close to zero, and the cor-
responding eigenvectors converge to Eqs. (12) and (13) as the
discretization is refined and the system size is increased. This
can occur because DSW is not self-adjoint and its eigenvectors
are generally not orthogonal. In contrast, the eigenvectors of
HSW remain orthogonal, with only a single pair of them taking
the form of Eqs. (12) and (13).

In contrast to the Goldstone modes with always zero en-
ergy, the sign change of another eigenvalue of HSW indicates
that the isolated kπ skyrmion is transformed from a stable
local energy minimum into an unstable saddle point, leading
to its disappearance from the system. Such instabilities were
determined by calculating the lowest-lying eigenvalues of
HSW in Eq. (2). Due to the connection between the HSW

and DSW matrices expressed in Eq. (6), at least one of the
precession frequencies ωq will also approach zero at such an
instability point.

D. Effective damping parameters

For finite values of the Gilbert damping α, the spin waves
in the system will decay over time as the system relaxes to the
equilibrium state during the time evolution described by the
Landau-Lifshitz-Gilbert equation. The speed of the relaxation
can be characterized by the effective damping parameter,

which for a given mode q is defined as

αq,eff =
∣∣∣∣ Im ωq

Re ωq

∣∣∣∣. (14)

As discussed in detail in Ref. [23], αq,eff is mode dependent
and can be significantly higher than the Gilbert damping
parameter α due to the elliptic polarization of spin waves,
which can primarily be attributed to the noncollinear spin
structure of the kπ skyrmions. For α � 1, αq,eff may be
expressed as

αq,eff

α
=

∑
i

∣∣S̃ (0),x
q,i

∣∣2 + ∣∣S̃ (0),y
q,i

∣∣2

∑
i2 Im

[(
S̃

(0),x
q,i

)∗
S̃

(0),y
q,i

] , (15)

where the eigenvectors in Eq. (15) are calculated at α = 0
from Eq. (6). Equation (15) may also be expressed by the axes
of the polarization ellipse of the spins in mode q, see Ref. [23]
for details.

For higher values of α, the complex frequencies ωq have
to be determined from Eq. (6), while the effective damping
parameters can be calculated from Eq. (14). Also for finite
values of α for each frequency with Re ωq > 0 there exists
a pair with Re ωq ′ < 0 such that ωq ′ = −ω∗

q [23]. The spin

waves will be circularly polarized if A1 = A3 and A†
2 = −A2

in Eq. (2), in which case the dependence of ωq on α may
simply be expressed by the undamped frequency ω(0)

q as

Re ωq (α) = 1

1 + α2
ω(0)

q , (16)

∣∣Im ωq (α)
∣∣ = α

1 + α2
ω(0)

q . (17)

These relations are known for uniaxial ferromagnets; see,
e.g., Ref. [48]. In the elliptically polarized modes of non-
collinear structures, such as kπ skyrmions, a deviation from
Eqs. (16) and (17) is expected.

III. RESULTS

A. Eigenmodes

The frequencies of the localized spin wave modes of the
1π , 2π , and 3π skyrmion, calculated from the atomistic
model for α = 0 as described in Sec. II A, are shown in Fig. 1.
For the 1π skyrmion six localized modes can be observed
below the FMR frequency of the field-polarized background
in Fig. 1(a), four of which are clockwise rotating modes
(m < 0), one is a gyration mode rotating counterclockwise
(m = 1), while the final one is a breathing mode (m = 0).
The excitation frequencies show good quantitative agreement
with the ones calculated from the micromagnetic model for
the same system in Ref. [23]. Compared to Ref. [21], the
additional appearance of the eigenmodes with m = 1,−4,−5
can be attributed to the finite value of the anisotropy parameter
K in the present case. Increasing the anisotropy value makes
it possible to stabilize the skyrmions at lower field values,
down to zero field at the critical value in the micromagnetic
model |Kc| = π2D2

16A , where the transition from the spin spiral
to the ferromagnetic ground state occurs at zero external field
[46]. Since the excitation frequencies decrease at lower field
values as shown in Fig. 1(a), this favors the appearance of
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FIG. 1. Frequencies of localized spin wave modes at α = 0 for
(a) the 1π , (b) the 2π , and (c) the 3π skyrmion. Selected spin
wave modes are visualized in contour plots of the out-of-plane spin
component and denoted by open symbols connected by lines in the
figure, the remaining modes are denoted by connected dots.
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FIG. 2. Comparison between the 3π skyrmion profile (left verti-
cal axis) and the eigenvectors of the breathing modes (m = 0) with
different numbers of nodes n = 0, 1, 2 (right vertical axis). The cal-
culations were performed using the micromagnetic model described
in Sec. II B at B = 1 T, the lattice constant is a = 0.271 nm. Double
arrows between vertical dashed lines indicate the extensions of the
domain walls in the structure.

further modes. Simultaneously, the FMR frequency increases
with K , meaning that modes with higher frequencies become
observable for larger uniaxial anisotropy. For each angular
momentum quantum number m, only a single mode (n = 0)
appears.

In the case of the 2π skyrmion an increased number
of eigenmodes may be seen in Fig. 1(b). This can mainly
be attributed to the appearance of spin waves with higher
angular momentum quantum numbers both for clockwise (up
to m = −17) and counterclockwise (up to m = 12) rotational
directions. Furthermore, in this case modes with n = 1 node
in the eigenfunction can be observed as well. The same trend
continues in the case of 3π skyrmions in Fig. 1(c), the large
number of internal eigenmodes can be attributed to angular
momentum quantum numbers ranging from m = −22 to m =
16, as well as to spin wave eigenvectors with up to n = 2
nodes. The different rotational directions and numbers of
nodes are illustrated in Supplemental Videos 1–4 [49] via the
square-shaped modes (n = 0, 1; m = ±4) of the 3π skyrmion
at B = 0.825 T.

The increase of possible angular momentum quantum
numbers for higher skyrmion order k as well as for decreas-
ing magnetic field B may be qualitatively explained by an
increase in the skyrmion size. Modes with a given value of m

indicate a total of |m| modulation periods along the perimeter
of the skyrmion; for larger skyrmion sizes this corresponds to
a modulation on a longer length scale, which has a smaller
cost in exchange energy.

The breathing modes of the 3π skyrmion with different
numbers of nodes are visualized in Fig. 2 at B = 1 T. The
results shown in Fig. 2 are obtained from the micromagnetic
model in Sec. II B, which is in good quantitative agreement
with the atomistic calculations at the given field. All the
eigenmodes display three peaks of various heights, while they
decay exponentially outside the 3π skyrmion. As can be seen
in Fig. 2, the peaks are localized roughly around the regions
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where the spins are lying in-plane, indicated by the domain
walls (DW) between pairs of dashed lines. The widths of
the domain walls were determined by approximating the 3π

skyrmion profile with linear functions close to the inflection
points rj ,�0,j , j = 1, 2, 3 where the spins are lying in-plane,
and calculating where these linear functions intersect integer
multiples of π in �0. Thus, the domain walls are located be-
tween the inner Rin,j = rj + [∂r�0(rj )]−1[(4 − j )π − �0,j ]
and outer Rout,j = rj + [∂r�0(rj )]−1[(3 − j )π − �0,j ] radii.
Such a description was used to calculate the skyrmion radius
in, e.g., Ref. [46], and it was also applied for calculating the
widths of planar domain walls [50].

The nodes of the eigenmodes are located roughly be-
tween these domain walls, meaning that typically excita-
tion modes with n = 0, . . . , k − 1 nodes may be observed
in kπ skyrmions, in agreement with the results in Fig. 1.
A higher number of nodes would require splitting a single
peak into multiple peaks, the energy cost of which gen-
erally exceeds the FMR frequency, thereby making these
modes unobservable. The sign changes in the S̃x

n,m eigen-
vectors mean that the different modes can be imagined as
the domain walls breathing in the same phase or in opposite
phase, as can be seen in Supplemental Videos 5–7 [49].
Note that eigenmodes with higher n quantum numbers may
also be observed for skyrmions confined in nanodots [14–16]
where the peaks of the eigenmodes may also be localized at
the edge of the sample, in contrast to the present case where
isolated kπ skyrmions are discussed on an infinite collinear
background.

It is also worth noting that the lowest-lying nonzero gy-
ration mode is n = 0,m = 1 for the 1π and 3π skyrmions,
while it is n = 1,m = 1 for the 2π skyrmion, see Fig. 1. As
already mentioned in Sec. II C, numerical calculations for the
2π skyrmion indicate both in the atomistic and the micro-
magnetic case that by increasing the system size or refining
the discretization the eigenvectors of both the n = 0,m = −1
and the n = 0,m = 1 modes of DSW in Eq. (6) converge to the
same eigenvectors in Eqs. (12) and (13) and zero eigenvalue,
which correspond to the translational Goldstone mode in the
infinite system. This difference can probably be attributed
to the deviation in the value of the topological charge, be-
ing finite for 1π and 3π skyrmions but zero for the 2π

skyrmion [35].

B. Instabilities

Skyrmions with different order k deviate in their low-
field behavior. Since the considered Pd/Fe/Ir(111) system
has a spin spiral ground state [38], decreasing the mag-
netic field value will make the formation of domain walls
energetically preferable in the system. In the case of the
1π skyrmion this means that the lowest-lying eigenmode of
HSW in Eq. (2), which is an elliptic mode with m = ±2,
changes sign from positive to negative, occurring between
B = 0.650 T and B = 0.625 T in the present system. This
is indicated in Fig. 1(a) by the fact that the frequency of
the n = 0,m = −2 eigenmode of DSW in Eq. (6) converges
to zero. This leads to an elongation of the skyrmion into a
spin spiral segment which gradually fills the ferromagnetic
background, a so-called strip-out or elliptic instability already
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FIG. 3. Frequency of the breathing mode n = 0, m = 0 of the
1π skyrmion close to the collapse field. Calculation data are
shown by open symbols, red line denotes the power-law fit f0,0 =
Af (Bc,1π − B )βf .

discussed in previous publications [21,46]. In contrast, for the
2π and 3π skyrmions the lowest-lying eigenmode of HSW is
a breathing mode with m = 0, which tends to zero between
B = 0.800 T and B = 0.775 T for both skyrmions. This is
indicated by the lowest-lying n = 0,m = 0 mode of DSW in
Fig. 1(b) for the 2π skyrmion, which is the second lowest
after the n = 0,m = 1 mode for the 3π skyrmion in Fig. 1(c).
This means that the radius of the outer two rings of 2π

and 3π skyrmions diverges at a finite field value, effectively
decreasing the skyrmion order k by 2 and leading to a burst
instability. A similar type of instability was already shown
to occur in Ref. [25] in the case of a ferromagnetic ground
state at negative field values, in which case it also affects 1π

skyrmions.
At the burst instability, modes with n = 0 and all angular

momentum quantum numbers m appear to approach zero be-
cause of the drastic increase in skyrmion radius decreasing the
frequency of these modes as discussed in Sec. III A. A similar
effect was observed for the 1π skyrmion in Ref. [22] when
the critical value of the Dzyaloshinsky-Moriya interaction,
|Dc| = 4

π

√
A|K|, was approached at zero external field from

the direction of the ferromagnetic ground state. In contrast,
the elliptic instability only seems to affect the n = 0,m =
−2 mode, while other m values and the nonreciprocity are
apparently weakly influenced.

In the atomistic model, skyrmions collapse when their
characteristic size becomes comparable to the lattice con-
stant. The collapse affects only the innermost rings of kπ

skyrmions, thereby decreasing the skyrmion order k by 1. It
was investigated in Ref. [35] that for the 1π , 2π , and 3π

skyrmions the collapse of the innermost ring occurs at Bc,1π ≈
4.495 T, Bc,2π ≈ 1.175 T, and Bc,3π ≈ 1.155 T, respectively.
As can be seen in Figs. 1(b), 1(c), and 3, this instability
is again signaled by the n = 0,m = 0 eigenfrequency going
to zero, but in contrast to the burst instability, the other
excitation frequencies keep increasing with the field in this
regime. Figure 3 demonstrates that close to the collapse field
the excitation frequency may be well approximated by the
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FIG. 4. Effective damping parameters calculated according to
Eq. (15) for the eigenmodes of the (a) 1π , (b) 2π , and (c) 3π

skyrmions, plotted on a logarithmic scale. The corresponding excita-
tion frequencies are shown in Fig. 1.

power law f0,0 = Af (Bc,1π − B )βf , with Af = 175.6 GHz
Tβf

,
Bc,1π = 4.4957 T, and βf = 0.23.

C. Effective damping parameters in the limit of low α

The effective damping parameters αn,m,eff were first cal-
culated from the eigenvectors obtained at α = 0 following
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FIG. 5. Effective damping parameter α0,0,eff of the breathing
mode n = 0, m = 0 of the 1π skyrmion close to the collapse field.
The corresponding excitation frequencies are shown in Fig. 3. Calcu-
lation data are shown by open symbols, red line denotes the power-
law fit α0,0,eff/α = Aα (Bc,1π − B )−βα .

Eq. (15). The results for the 1π , 2π , and 3π skyrmions are
summarized in Fig. 4. As discussed in Ref. [23], the αn,m,eff

values are always larger than the Gilbert damping α, and they
tend to decrease with increasing angular momentum quantum
number |m| and magnetic field B. The spin wave possessing
the highest effective damping is the n = 0,m = 0 breathing
mode both for the 1π and 2π skyrmion, but it is the n =
0,m = 1 gyration mode for the 3π skyrmion for a large part
of the external field range where the structure is stable. Exci-
tation pairs with quantum numbers n,±m tend to decay with
similar αn,m,eff values to each other, with αn,|m|,eff < αn,−|m|,eff,
where clockwise modes (m < 0) have lower frequencies and
higher effective damping due to the nonreciprocity.

The effective damping parameters drastically increase and
for the lowest-lying modes apparently diverge close to the
burst instability, while no such sign of nonanalytical behavior
can be observed in the case of the 1π skyrmion with the
elliptic instability. For the same n,m mode, the effective
damping parameter tends to increase with skyrmion order k

away from the critical field regimes; for example, for the n =
0,m = 0 mode at B = 1.00 T one finds α0,0,eff,1π/α = 2.04,
α0,0,eff,2π/α = 5.87, and α0,0,eff,3π/α = 10.09.

Close to the collapse field, the effective damping param-
eter of the n = 0,m = 0 breathing mode tends to diverge
as shown in Figs. 4(b), 4(c), and 5 for the 2π , 3π , and
1π skyrmions, respectively. Similarly to the eigenfrequency
converging to zero in Fig. 3, the critical behavior of the
effective damping may be approximated by a power-law fit
α0,0,eff/α = Aα (Bc,1π − B )−βα as shown in Fig. 5, this time
with a negative exponent due to the divergence. The fitting
yields the parameters Aα = 0.96 Tβα , Bc,1π = 4.4957 T, and
βα = 0.23. Naturally, the critical field values agree between
the two fits, but interestingly one also finds βf = βα up to
two digits precision. Rearranging Eq. (14) yields

α0,0,eff

α
Re ω0,0 = 1

α
|Im ω0,0|, (18)
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FIG. 6. (a) Frequency f0,0 = Re ω0,0/2π and (b) inverse lifetime
|Im ω0,0| of the n = 0, m = 0 breathing mode of the 1π skyrmion
at B = 1 T as a function of the Gilbert damping parameter α. The
solutions of Eq. (6) for the elliptically polarized eigenmode of the 1π

skyrmion are compared to Eqs. (16) and (17) which are only valid for
circularly polarized modes.

where the left-hand side is proportional to (Bc,1π − B )βf −βα

which is approximately constant due to the exponents can-
celing. This indicates that while Re ω0,0 diverges close to the
collapse field, |Im ω0,0|/α remains almost constant at low α

values.

D. Damping for higher α values

Due to the divergences of the effective damping param-
eters found at the burst instability and collapse fields, it is
worthwhile to investigate the consequences of using a finite
α value in Eq. (6), in contrast to relying on Eq. (15) which is
determined from the eigenvectors at α = 0. The α dependence
of the real and imaginary parts of the ω0,0 breathing mode
frequency of the 1π skyrmion is displayed in Fig. 6, at a
field value of B = 1 T far from the elliptic and collapse
instabilities. As shown in Fig. 6(a), unlike circularly polarized
modes described by Eq. (16) where Re ωq decreases smoothly
and equals half of the undamped value at α = 1, the Re ω0,0

value for the elliptically polarized eigenmode displays a much
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0

5

10

15

20

0.85 0.90 0.95 1.00 1.05 1.10 1.15
0.00

0.02

0.04

0.06

0.08

0.10

FIG. 7. (a) Frequency f0,0 = Re ω0,0/2π and (b) inverse lifetime
|Im ω0,0| of the n = 0, m = 0 breathing mode of the 2π skyrmion at
α = 0.1 as a function of the external magnetic field B. The solutions
of Eq. (6) for the elliptically polarized eigenmode of the 2π skyrmion
are compared to Eqs. (16) and (17) which are only valid for circularly
polarized modes.

faster decay and reaches exactly zero at around α ≈ 0.58.
According to Eq. (14), this indicates that the corresponding
effective damping parameter α0,0,eff diverges at this point.

Since the real part of the frequency disappears, the ωq ′ =
−ω∗

q relation connecting Re ωq > 0 and Re ωq ′ < 0 solutions
of Eq. (6) discussed in Sec. II D no longer holds, and two
different purely imaginary eigenfrequencies are found in this
regime as shown in Fig. 6(b). This is analogous to overdamp-
ing in a classical linear harmonic oscillator, meaning that the
purely precessional first-order differential equation describing
circularly polarized modes is transformed into two coupled
first-order differential equations [23] with an effective mass
term for the breathing mode of kπ skyrmions. This implies
that when performing spin dynamics simulations based on
the Landau-Lifshitz-Gilbert equation, the value of the Gilbert
damping parameter has to be chosen carefully if the fastest
relaxation to the equilibrium spin structure is required. The
high effective damping of the breathing mode in the α � 1
limit [cf. Fig. 4(a)] ensures that the inverse lifetime of the
elliptically polarized excitations remains larger for a wide
range of α values in Fig. 6(b) than what would be expected
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for circularly polarized modes based on Eq. (17). Note that
contrary to Sec. III B, Re ω0,0 becoming zero in Fig. 6(a)
does not indicate an instability of the system, since stability
is determined by the eigenvalues of the matrix HSW in Eq. (2)
which are independent of α.

Since the disappearance of Re ω0,0 and the bifurcation of
|Im ω0,0| occurs as the excitation frequency becomes smaller,
it is expected that such an effect may also be observed at
a fixed α value as the external field is decreased. This is
illustrated for the n = 0,m = 0 breathing mode of the 2π

skyrmion in Fig. 7 at α = 0.1. For this intermediate value
of the damping, the breathing mode becomes overdamped
around B = 0.875 T, which is significantly higher than the
burst instability between B = 0.775 T and B = 0.800 T [cf.
Fig. 1(b) and the circularly polarized approximation in
Fig. 7(a)]. This means that the lowest-lying breathing mode
of the 2π skyrmion cannot be excited below this external field
value. In Fig. 7(b) it can be observed that contrary to the cir-
cularly polarized approximation Eq. (17) following the field
dependence of the frequency, for the actual elliptically polar-
ized eigenmode |Im ω0,0| is almost constant for all field values
above the bifurcation point. Although a similar observation
was made at the end of Sec. III C as the system approached
the collapse field at α = 0, it is to be emphasized again that
no instability occurs where Re ω0,0 disappears in Fig. 7(a).

IV. CONCLUSION

In summary, the localized spin wave modes of kπ

skyrmions were investigated in an atomistic spin model,
with parameters based on the Pd/Fe/Ir(111) system. It was
found that the number of observable modes increases with
skyrmion order k, firstly because of excitations with higher
angular momentum quantum numbers m forming along the
larger perimeter of the skyrmion, secondly because of nodes
appearing between the multiple domain walls. It was found

that the 2π and 3π skyrmions undergo a burst instability
at low fields, in contrast to the elliptic instability of the 1π

skyrmion. At high field values the innermost ring of the
structure collapses in all cases, connected to an instability of
a breathing mode.

The effective damping parameters of the excitation modes
were determined, and it was found that for the same n,m

mode they tend to increase with skyrmion order k. The
effective damping parameter of the n = 0,m = 0 breathing
mode diverges at the burst and collapse instabilities, but no
such effect was observed in case of the elliptic instability. For
higher values of the Gilbert damping parameter α a deviation
from the behavior of circularly polarized modes has been
found, with the breathing modes becoming overdamped. It
was demonstrated that such an overdamping may be observ-
able in 2π and 3π skyrmions for intermediate values of the
damping significantly above the burst instability field where
the structures themselves disappear from the system.

The results presented here are expected to hold qualita-
tively for all systems where kπ skyrmions may be stabilized,
as long as the ground state is a spin spiral in the absence
of an external magnetic field. Therefore, they may motivate
further experimental and theoretical studies on kπ skyrmions,
offering a wider selection of localized excitations compared
to the 1π skyrmion, thereby opening further possibilities in
magnonics applications.
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