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Landau diamagnetic response in metals as a Fermi surface effect
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It is demonstrated that the Landau diamagnetism of the free electron gas and a monovalent metal can be
considered as a Fermi surface effect. Only a relatively small number of electron states close to the Fermi
surface are diamagnetically active whereas the majority of the electron states inside the Fermi surface are
diamagnetically inert. This partitioning of the occupied electron states is driven by the structure of Landau levels,
around which one can introduce magnetic tubes in the reciprocal space. Completely filled magnetic tubes do not
change their energy in an applied magnetic field, and only partially occupied magnetic tubes in the neighborhood
of the Fermi surface exhibit a diamagnetic response. Using this partitioning of the occupied electron states we
derive a general expression for the steady diamagnetic susceptibility, for calculation of which one needs to know
the shape of the Fermi surface and the energy gradient on it. The method is applied to alkali metals, whose Fermi
surfaces and energy gradients have been obtained from ab initio band structure calculations. It has been found
that the Landau diamagnetic susceptibility is anisotropic depending on the direction of the applied magnetic
field with respect to the Fermi surface. This effect is more pronounced for Li and Cs, whose Fermi surfaces show
a noticeable deformation from the spherical shape. The method opens a route for ab initio calculations of the
Landau diamagnetism of metals or intermetallic compounds. In the case of free electron gas it is shown that this
approach also fully describes the oscillatory de Haas–van Alphen part of the diamagnetic susceptibility. Small
oscillations of the Fermi energy found in the model are caused by redistribution (inflow or outflow) of electrons
from the equatorial region of the Fermi surface.
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I. INTRODUCTION

When an external magnetic field H is applied to a metallic
solid it induces a closed (orbital) motion of the itinerant
electrons resulting in a net nonvanishing magnetization an-
tiparallel to H , which we call the Landau diamagnetism [1].
In general the Landau diamagnetic susceptibility χL of solids
is small and independent of the temperature. In addition to
the steady diamagnetism, at very low temperatures and strong
magnetic fields there are oscillatory dependencies (χdHvA)
due to the well-known de Haas–van Alphen effect [2–5].

Despite many efforts in the past, an effective method for
ab initio calculations of the Landau diamagnetism even within
the single-electron paradigm has not been established [6,7].
(As summarized in Ref. [6]: “The problem of the low field sus-
ceptibility of electrons is old, interesting, and, unfortunately,
quite complicated.”) This is because the effect is very difficult
from the technical point of view. Even the derivation of this
effect for the free electron gas formulated by Landau [1] is
rather complex.

In his pioneer work Peierls [8] was the first who extended
the Landau treatment to the case of electron band energy
law E(�k) within the tight binding approximation. (Alternative
derivations were proposed by Wilson [9], Hebborn and Sond-
heimer [10], and recently by Briet et al. [11].) Peierls obtained
an expression for the magnetic susceptibility consisting of
three terms,

χ = χ1 + χ2 + χ3, (1)

where χ1 is the diamagnetic susceptibility analogous to that
of isolated metal atoms, χ2 is a term which has no simple
physical interpretation, and the term χ3 at zero temperature
is given by

χ3 = − e2

48π3h̄2c2

∫ {
∂2E

∂k2
x
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∂k2
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−
(
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∂kx∂ky

)2
}

dS

∇kE
.

(2)

Here the integration is taken over the Fermi surface. The term
χ3 was considered as leading in the diamagnetism of conduc-
tion electrons [8,9,12]. For a simple band it reduces to the
Landau-Peierls expression where in the equation for free elec-
tron susceptibility the electron mass is replaced by an effective
mass m∗. In principle, Eq. (2) suggests that the diamagnetic
effect is due to the Fermi surface electron states. However, this
statement cannot be proved or considered rigorous because
of the other contributions [like χ1, χ2 in Eq. (1)] [8–10,12].
In Ref. [12] on the basis of the study of the density matrix
in the magnetic field Wilson, presenting a refined derivation
of Eq. (2), has found that some terms cannot be explicitly
evaluated and some are not expressible in terms of derivatives
of the band energy. More reservations were added by Adams
[13] who claimed that the Landau-Peirels susceptibility was
not always the dominant contribution. Kjeldaas and Kohn
[14] further suggested that the Landau-Peierls approximation
is valid only in the limit of small electron density. This
statement has been proven recently by Briet et al. [11] at the
mathematical level of accuracy. They have also worked out
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all satellite terms which in general accompany Eq. (2) but
disappear for small electron density.

The full quantum treatment of band diamagnetism in a real
solid is a formidable task for a number of reasons. First, the
electron motion in the direction of the magnetic field H differs
from the motion in the perpendicular plane. In a solid on the
other hand, we deal with the translational symmetry which
equally holds in three dimensions. Therefore, on applying the
magnetic field to a solid, its translational symmetry becomes
broken, and accurate description of electron bands and even
their classification within the former first Brillouin zone is
impossible [6,15]. In general in the magnetic field operators
of crystal translation do not commute [6,15]. An effective
magnetic band Hamiltonian can be introduced only when the
magnetic flux through any triangle formed by two successive
translations is a rational number, when expressed in terms
of flux quanta [6,15]. These conditions can be satisfied only
for some fields H called rational by defining a superlattice
structure with a restored vector translation symmetry but a
changed point group symmetry. Superlattice calculations are
more demanding because the number of inequivalent atoms
in the unit cell is several times larger and the first Brillouin
zone is less symmetric. For an arbitrary magnetic field H

the problem can be sorted out by approximating it with some
close rational magnetic field H ′ ≈ H .

Second, although the magnetic coupling is much weaker
than the electric interactions including the mean field, it
is nevertheless responsible for a complete reconstruction of
the energy spectrum. Strictly speaking, we have to calculate
new energy values and find new state functions explicitly
depending on the value of H and populate them accordingly
starting from a state with lowest energy and finishing with
states of highest energy (E′

F ). In this formulation the task has
not been solved. Nevertheless, in the past many bright ideas
and nontrivial theoretical studies have been invested in this
problem [16–21]. For example, one can start with a nearly
free electron gas model assuming that the crystal periodic
potential is weak [19,20]. The other, more strict approach
requires calculated electron bands En(�k) in the absence of
the magnetic field. The full magnetic Hamiltonian Ĥ ( ��) is
an operator depending on �� = �p + e �A/c, whose components
do not commute. The operator Ĥ is a matrix function of ��
with matrix elements depending on the magnetic field. When
written in diagonal form it can be sufficient to approximate
its diagonal elements by the effective Hamiltonian En( ��)
obtained by replacing h̄�k by the operator �� in the energy
band function En(�k). Pursuing this approach one can work
out the explicit form of the effective Hamiltonian which
does not couple different bands and gives the new energy
levels. Although this approximation is considered good for
isolated (nondegenerate) electron bands En, the procedure is
not rigorous. In particular, in its derivation some terms on the
order of (h̄ω/EF )2 ∼ H 2 are omitted [22].

In the effective Hamiltonian treatment, the general effect
of the magnetic field on electron bands [7] is twofold: (1) a
gradual transformation of band parameters (2) breaking up
into a series of discrete states. The latter effect is apparently
a manifestation of emerging Landau levels. In Ref. [7] the
method reached the stage where in principle all necessary
expressions have been derived for the calculation of χL within

a pseudopotential (orthogonalized plane wave) basis set. The
core formalism however has turned out to be complicated
again and the authors use smallness of pseudopotential to
obtain estimates of χL for real metals.

Diamagnetic response in a metal can be obtained by meth-
ods of quantum field theory [23–25]. In Ref. [23] Fourier
components of the induced current are calculated through the
evolution of the single-particle density matrix. The orbital
susceptibility χdia (q, ω) is found as a prefactor for q2 (q is the
wave vector, ω is the field frequency). The Landau suscep-
tibility χL of free electrons is restored at ω = 0 and q → 0
as a result of cancellation of two terms which diverge as
1/q2. In Refs. [25] and [24] a model of conduction electrons
interacting with an electromagnetic field is considered. Of par-
ticular interest is the electron interaction via current-current
potential arising from the exchange of transverse photons.
When Dyson equations for complete two-point correlation
functions are solved, the Landau susceptibility appears in the
corresponding polarization operator [25]. The diamagnetic
response comes from the states at the Fermi surface and in
general contains terms with the derivatives of the density of
states. For arbitrary dispersion however, such terms cannot be
expressed as derivatives of the fermionic energy.

There is another approach to the problem based on the
semiclassical treatment of the problem [2–5,26]. For example,
it has proven to be highly effective in describing the de Haas–
van Alphen oscillatory part of the magnetic susceptibility.
Onsager [2] and Lifshitz [3], based on the semiclassical
description of the movement of an electron in a magnetic field,
showed that the change in 1/H is determined by extremal
cross sections of the Fermi surface in a plane normal to the
magnetic field. A good historical and theoretical review of
the effect is given in the book of Shoenberg [4]. Although
the de Haas–van Alphen effect can be understood within the
quantum theory [1,24], the full quantum consideration is not
extended to real crystals and in practice the description of the
de Haas–van Alphen oscillations relies on the semiclassical
theory [4].

From the semiclassical equations it follows that the compo-
nent of �k (in the reciprocal space) parallel to �H and the elec-
tron energy E(�k) are both constants of the electron motion.
Therefore, in k space electrons move along curves defined
by the intersection of isoenergetic surfaces [E(�k) = E0] with
planes perpendicular to the magnetic field; i.e., the scalar
potential associated with the electron mean field in solids is
unchanged. This is a reasonable assumption especially in the
limit of small magnetic fields h̄ω/EF → 0, which is the case
of our consideration.

Electron movement along a closed trajectory (orbit) is a
subject of the quantization conditions, Eqs. (5), (6) below.
Although these quantization conditions are familiar from the
semiclassical approach, they also can be derived from an
equation-of-motion method [26,27]. In this paper we will use
this semiclassical approach to obtain a very simple expression
for the Landau diamagnetic susceptibility of real metals at
zero temperature (although the method can be extended to the
case of a finite temperature). The elementary unit in our ap-
proach is a magnetic tube of finite width and length, contain-
ing a certain Landau level inside it. The occupied tubes whose
electron states are completely filled are diamagnetically inert.
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Only partially occupied tubes located in the neighborhood of
the Fermi surface contribute to the diamagnetic effect.

Two important consequences follow from our approach.
First, at zero temperature the Landau diamagnetic suscepti-
bility is caused by electron states near the Fermi energy. It
is worth noting that the oscillatory part of the diamagnetic
susceptibility giving rise to the de Haas–van Alphen effect
has been related to the extremal orbits of the Fermi surface
for many years. Here we accomplish the relation by ascribing
also the steady diamagnetism to the Fermi surface states. The
leading role of the Fermi surface in diamagnetism is in accord
with the other properties of conduction electrons (for example,
the Pauli paramagnetism) which also depend on the peculiari-
ties of electron states near the Fermi energy [28]. Second, the
presented method can be applied to ab initio calculations of
the steady diamagnetic susceptibility of real metals. In this
paper we consider the simplest case, which is the case of
monovalent alkali metals. We hope that in principle based on
our simple expression (55) below, the Landau susceptibility
can be added to a list of physics quantities available from
first-principles calculations.

We should also mention the important question of the
Fermi energy (EF ) change in the applied magnetic field. This
is a very weak effect, considered first in detail by Kaganov
et al. [29]. Some consequences of the phenomenon including
weak oscillations of the density of states at the Fermi level
are further discussed by Shoenberg in Ref. [4]. Below we
will unveil a mechanism of this effect for the free electron
gas case. It is caused by peculiarities of electron population in
the equatorial region of the Fermi sphere. Depending on the
applied magnetic field there can be a small inflow or outflow
of electrons from the equatorial region to other states of the
Fermi surface.

The paper is organized as follows. In Sec. II we demon-
strate the method for the free electron gas. There, we intro-
duce a central object for our method—a magnetic tube—and
consider its properties. The most important one is that the tube
whose electron states are completely occupied does not con-
tribute to magnetic response. Then we select diamagnetically
active tubes near the Fermi surface and calculate their steady
diamagnetic susceptibility χL. The oscillatory (de Haas–van
Alphen) contribution (χdHvA) is considered in Sec. II D. Here
the analytical calculations become more involved although
the general physical picture remains clear and transparent.
The description of the steady diamagnetism of real metals,
Sec. III, follows the same lines. As in the case of the Fermi
gas, we first consider magnetic tubes of real systems and then
calculate their steady diamagnetic response. The application
of the method for calculations of χL for various magnetic field
directions is given in Sec. IV. Finally, in Sec. V we summarize
the main conclusions.

II. FREE ELECTRON GAS

A. Magnetic tubes in �k space

In an external magnetic field �H directing along the z axis,
the energy of the free electron is given by [1]

E = h̄ω

(
n + 1

2

)
+ h̄2k2

z

2m
, (3)

where n is integer (numbering the Landau levels), kz is the z

component of the wave vector �k, and the cyclotron frequency

ω = eH

mc
. (4)

Here m and e are the electron mass and charge; c is the speed
of light. In correspondence with Eq. (3) the energy of the
electron is presented by two contributions, the contribution
E⊥ from the movement in the plane, perpendicular to �H [i.e.,
in the plane (kx, ky )], and the contribution Ez = h̄2k2

z /2m

from the movement parallel to �H (i.e., along the z axis). In
the following we consider only the component E⊥, because
the parallel component E‖ = Ez is unchanged in the magnetic
field.

Although Eq. (3) is obtained within the fully quantum
treatment, below we will follow the widely used semiclassical
representation of electron orbits in the real and momentum
(h̄�k) space [2,3,5,26], which gives exactly the same energy
spectrum. The electron movement in the magnetic field in
the (x, y) plane along the radial direction q = r or along
the q = x or y axis (depending on the choice of the vector
potential gauge) is described by a quantized orbit,∮

pq dq = 2πh̄(n + γ ), (5)

which corresponds to the nth Landau level with the factor γ .
In the Wentzel, Kramers, and Brillouin (WKB) method for
nonsingular integrable orbits γ = μ/2 [26], where μ is the
Maslov index. In our case μ = 2 and γ = 1/2 [26]. In the
(kx, ky ) momentum plane the electron orbit defined by Eq. (5)
is visualized as a circle whose area An is given by

An = 2πeH

ch̄

(
n + 1

2

)
, (6)

and its energy is

E⊥,n = h̄ω
(
n + 1

2

)
. (7)

It is well known that the average density of electron states
in the �k space remains the same as without magnetic field. To
understand better the reconstruction of the electron structure
in the magnetic field H , we select in the �k space a tube
whose number of electron states and in which the energy of
all states do not change in the presence of H , Fig. 1. For that
we consider auxiliary electron orbits of the area

Aaux
n = 2πeH

ch̄
n (8)

with energies

Eaux
n = h̄ωn. (9)

Note the the nth Landau orbit defined by Eqs. (6), (7) is
situated between the auxiliary orbits n and n + 1, Fig. 1 (left
panel), and its energy En lies between Eaux

n and Eaux
n+1. Below

we show that the number of electron states with energies
Eaux

n � E � Eaux
n+1 without field equals the number of electron

states condensing on the nth Landau level in the presence of
the field. The same holds for their total energies.
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FIG. 1. Magnetic tube and the corresponding Landau level. On
the left: The (kx, ky ) tube cross section and the nth Landau orbit
(the solid circle with the in-plane energy En). The dashed circles
correspond to the auxiliary orbits with energies Eaux

n and Eaux
n+1. On

the right: The tube in the �k space. Without magnetic field electron
states are distributed throughout the whole tube; in the presence of
field, only on the Landau orbit in the middle.

For that we calculate the density of electron states N⊥ in
the (kx, ky ) plane,

N⊥ = dN⊥
dE⊥

= 2m

h̄2

LxLy

2π
, (10)

and notice that N⊥ is independent of the energy E⊥. (Here
Lx, Ly , and Lz are distances of the free electron gas box in
x, y, and z directions, respectively.) Using (10), we find the
number of electron states in the nth tube without field, i.e., in
the energy range Eaux

n � E � Eaux
n+1,

�Nn(H = 0) =
∫ Eaux

n+1

Eaux
n

N⊥ dE⊥ = N⊥ h̄ω = 2Np. (11a)

Here Np is the spatial degeneracy of the Landau levels (with-
out spin polarization),

Np = Ly

2π

mω

h̄
Lx = LxLy

2π

eH

ch̄
. (11b)

Calculating the total energy of these states without field,

En(H = 0) =
∫ Eaux

n+1

Eaux
n

N⊥E⊥dE⊥

= 1

2

[(
Eaux

n+1

)2 − (
Eaux

n

)2]N⊥ = E⊥,n�Nn, (11c)

we find that it coincides with the energy of all electron tube
states condensed on the nth Landau level in the presence of
the field. Thus, we have proven that

�Nn(H = 0) = �Nn(H �= 0) = 2Np, (12a)

En(H = 0) = En(H �= 0) = h̄ω
(
n + 1

2

)
2Np. (12b)

So far our consideration has been limited by the (kx, ky )
plane. However, since Eqs. (12a) and (12b) hold for any kz

component, they are fulfilled for the whole tube n, Fig. 1. In
other words, if without field, a tube contains electron states
which satisfy the inequality Eaux

n � E⊥ � Eaux
n+1 for all kz in

the range k(1)
z � kz � k(2)

z , then in the presence of the mag-
netic field all these states condense on the nth Landau level,
that is, E⊥(kz) = E⊥,n(kz) throughout the kz region, Fig. 1.

FIG. 2. Magnetic tubes and the Fermi surface (FS); the (kx, kz )
cross section in the �k space. The tubes inside the Fermi sphere, shown
as dashed area on the left panel, are completely filled and diamagneti-
cally inert. Inset: 1, completely occupied tube n; 2, partially occupied
tube n; 3, completely occupied tube (n − 1).

Furthermore, the total electron energy of the tube remains
unchanged, which bears some resemblance to the Bohr–van
Leeuwen theorem in classical physics. The upper k(2)

z and
lower k(1)

z boundary of the tube can be taken as arbitrary. For
practical reasons for each tube n we define the kz boundary by
its intersection with the Fermi surface, Fig. 2. We then obtain
two nth tubes: the first tube (denoted by 1 in the inset of Fig. 2)
lies entirely inside the Fermi surface and being completely
occupied does not exhibit diamagnetism. The second tube
(denoted by 2 in the inset of Fig. 2) being only partially filled
below the Fermi surface results in a diamagnetic response. We
consider this effect in the following sections.

It is also worth noting that the �k-space partitioning depends
on the value of the magnetic field, since ω ∼ H , and the tube
boundaries are defined by ω, Eq. (9).

B. Diamagnetically active electron states

Consider the Fermi surface and define necessary magnetic
tubes parallel to the z axis (in the direction of the magnetic
field H ), Fig. 2, as discussed in Sec. II A. Boundary conditions
defined by in-plane circular orbits, Eq. (8), specify a set
of concentric cylindrical surfaces, which intersect the Fermi
surface in circles perpendicular to the z axis. We then draw the
planes of the circles and use them to construct a set of tubes,
limited by the planes and the cylindrical surfaces, which lie
inside the Fermi sphere. The (kx, kz) cross section of these
tubes is schematically shown in Fig. 2. The fully occupied
tubes are shown as the dashed area. The electron states of
the completely filled tubes do not change their energy in a
magnetic field. Therefore, the whole effect is due to the states
lying in the partially occupied tubes. Their cross sections in
the (kx, kz) plane look like a chain of triangles, Fig. 2.

Consider a typical partially occupied tube, whose triangle
cross section in the (kx, kz) plane is shown in Fig. 3. We
denote two legs of the triangle by �k⊥ and �kz. Taking into
account that the area of the (kx, ky ) cross section of the nth
tube is �A = Aaux

n+1 − Aaux
n = 2πeH/ch̄, and that h̄ω � EF ,

we obtain

�k⊥ = �A

2πk⊥
= mω

h̄kF

1

sin �
. (13)
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FIG. 3. A typical (kx, kz ) cross section of a partially occupied
tube near the Fermi surface. The triangle size is greatly exaggerated,
since �kF = mω/h̄kF � kF .

(Here � is the polar angle, Figs. 2, 3.) Therefore, the narrow
surface region of the partially occupied tube is defined by the
wave vector quantity �kF shown in Figs. 2 and 3,

�kF = �k⊥ sin � = mω

h̄kF

. (14)

It is remarkable that �kF is independent of �. Therefore, the
radius kF − �kF determines an auxiliary internal sphere in
the �k space, which can be used for drawing the stepwise line
shown in Figs. 2 and 3, separating the fully occupied tubes
from the partially occupied ones.

For the angle �� shown in Fig. 3, we obtain

�� = �kF

kF

1

cos � sin �
. (15)

Notice, that Eq. (13) has a singularity at � = 0, and Eq. (15)
at � = 0 and π/2. Therefore, the polar and equatorial region
of the Fermi sphere should be considered more attentively; see
Sec. II D below.

Now we find the number of active electron states in the
partially occupied tubes,

N =
M∑

n=1

�Nn, (16)

where �Nn ≡ �N (kz, kz + �kz) is the number of the elec-
tron states in the nth partially filled tube, whose kz component
lies between kz,n ≡ kz and kz,n+1 ≡ kz + �kz. Using the in-
finitesimal property of the (kx, ky ) cross section we find

�N = 2v�Vk = 2πv
eH

h̄c
�kz, (17)

where �Vk is the volume of the partially occupied tube in k

space and v = V/(2π )3 (in the general case �N is calculated
in Appendix A).

Notice that from Eq. (17) it follows that �N/�kz =
constant. Furthermore, �N/�kz is independent of m, which
will be fully appreciated in the general case considered below
in Sec. III B. Since for usual magnetic fields �kF , �kz �
kF , in Eq. (16) we can substitute the summation with the

FIG. 4. The (kx, kz ) cross section of a partially occupied tube
near the Fermi level. On the left (a): Dashed area shows the occupied
electron states without magnetic field, �H = 0. On the right (b):
Bold vertical line shows the occupied electron states (1D gas) in
the magnetic field �H �= 0. EF is the Fermi energy of the one-
dimensional electron gas (along the z axis), whose transverse energy
En is determined by the nth Landau energy.

integration

N =
∫

dN =
∫ kmax

z

kmin
z

(
�N

�kz

)
dkz. (18)

For the free electron gas kmin
z = −kF , kmax

z = kF . Using (17),
(18) we arrive at

N = 2πv
eH

h̄c
�z, (19)

where �z ≡ kmax
z − kmin

z = 2kF is defined exclusively by the
projection of the Fermi surface along the direction of the
applied magnetic field. Therefore, N ∼ H . Since the per-
turbation energy for each electron state can be estimated
with h̄2kF �kF /m = h̄ω ∼ H , the total energy change in the
magnetic field ∼H 2, which leads to the constant magnetic
susceptibility χ . (The rigorous computation of χ is given in
the next section.)

C. Steady diamagnetic susceptibility

A remarkable property of partially occupied tubes near
the Fermi surface is that application of a magnetic field
does not lead to electron transitions between different tubes
(with the exception of a small number of electrons in the
equatorial region). Therefore, upon applying the field, there
is a redistribution of electron states only within each partially
filled tube.

To demonstrate this, we consider in detail the transforma-
tion of electron states in the tube n when the magnetic field
is switched on. [Without field the number of electron states
�N is given by Eq. (17).] The occupation of electron states
for two cases (H = 0 and H �= 0) is shown schematically in
Fig. 4. When H �= 0, all electrons of the tube are on the nth
Landau level with the transverse energy En, and occupy the
lowest kz states, as shown in Fig. 4. If all electrons remain in
the tube, then the highest energy level with the wave vector
δkz (with respect to kz of the nth tube, Fig. 3) is found from
the following relation:

2δkzNplz = �N. (20)

We recall that Np is the in-plane (or transverse) folding of the
nth Landau level, while lz = Lz/2π is the density of electron
states along kz. Substituting in Eq. (20) Eq. (11b) for Np and
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Eq. (17) for �N , we obtain

δkz = 1
2�kz. (21)

(The result for the infinitely small triangle cross section can
be foreseen from the geometrical reasons.)

Equation (21) leads to an important consequence. The
energy of the highest occupied electron level coincides with
EF and the wave vector kF lies on the Fermi surface even
in the applied magnetic field H �= 0. Since the conclusion
holds for all partially occupied tubes (with the exception of
few equatorial tubes), the highest energy of the occupied
electron states, EF , is conserved as the Fermi energy for all
tubes and there are no electron transitions between tubes. (The
exceptional case of the equatorial region is considered later in
Sec. II D.) Therefore, in the following we can calculate the
energy change for each tube separately.

Keeping in mind that in the magnetic field there are two
energy contributions—E⊥ in the (kx, ky ) plane and Ez at kz—
we obtain for the energy change of the partially filled tube n

�E = �E
H �=0
⊥ + �EH �=0

z − �EH=0. (22)

The notation � on the right-hand side is an indication that
the corresponding energy refers to the partially filled tube n,
whose kz values are in the range from kz,n to kz,n+1 = kz,n +
�kz, Fig. 2, 3. The quantities �E

H �=0
⊥ , �E

H �=0
z , and �EH=0

therefore refer to energy components of the tube with (H �= 0)
and without (H = 0) magnetic field.

The detailed simple calculations of all components are
performed in Appendix B (with respect to the energy Eref ,
Fig. 4). As a result, we get

�EH=0

�N
= 2

3

h̄2

m
kF �kF = 2

3
h̄ω (23)

for the energy components without magnetic field and

�E
H �=0
⊥

�N
= 1

2
h̄ω, (24a)

�E
H �=0
z

�N
= 1

4
h̄ω (24b)

in the applied magnetic field. In fact, taking into account
that �N stands for the number of electrons, the right-hand
sides of Eqs. (23), (24a), and (24b) represent average energy
values independently of the tube under consideration. The
substitutions of Eqs. (23), (24a), and (24b) in Eq. (22) yields

�E = 1
12 h̄ω�N > 0. (25)

Note that Eq. (25) refers to any partially filled tube. There-
fore, making the summation over all tubes and using Eq. (19)
with �z = 2kF , we find

E = 1

12
h̄ωN = 1

3
πvkF

e2H 2

mc2
. (26)

For the magnetic susceptibility χ we finally have

χ = −d2E(H )

dH 2
= −2

3
πvkF

e2

mc2
= − e2kF V

12π2mc2
. (27)

This is the celebrated expression obtained by Landau for the
diamagnetic susceptibility of the free electron gas.

FIG. 5. First equatorial tube. Landau states (shown by the bold
line) are occupied if �k⊥,e,1 = h > �kF /2 (or r > 1/2), and empty
if h < �kF /2 (r < 1/2).

D. Oscillatory (equatorial) diamagnetic susceptibility

Earlier (Sec. III C) we have obtained the diamagnetic ef-
fect based of calculations of the energy of active electrons
in the partially occupied tube of general form. Deviations
from the general situation are possible for boundary cases,
which are the polar region (� = 0) with the Landau level
n = 0, and the equatorial region (� = π/2). In Appendix C
we analyze the polar region and show that it complies with the
general case. In the equatorial region however the situation is
very different.

The problem is that the stepwise line shown in Fig. 2 can
terminate at the equatorial point with � = π/2 in any place
with k⊥,e lying in the interval kF − �kF � k⊥,e � kF , and
the equatorial point does not necessarily lie on the internal
sphere of the radius kF − �kF , which is the case for all
other tubes, Fig. 5. This equatorial tube is truncated because
its upper energy boundary Eaux

n+1, defined by (9), in general
lies outside the (kx, ky ) equatorial cross section of the Fermi
sphere and cannot be reached. We define this irregular tube
with k⊥ � k⊥,e as the first equatorial tube. Notice that when
k⊥,e → kF , the area of the (kx, kz) cross section of this tube
approaches zero. In that case one has to resort to the preceding
tube (that is, with k⊥ < k⊥,e), which also makes an irregular
contribution to energy. We define it as the second equatorial
tube. The other tubes essentially follow the general dependen-
cies considered in Sec. III C.

For the first equatorial tube we define the quantity
�k⊥,e,1 = kF − k⊥,e, Fig. 5, for which we shall also use
a short notation h = �k⊥,e,1. The subscripts e, 1 and e, 2
refer to the first and second equatorial tubes, respectively.
As discussed above, h ranges from 0 to �kF . Consider the
important dimensionless parameter

r = h

�kF

. (28)
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Clearly, 0 < r < 1. Note that by varying H we change the
structure of all magnetic tubes, and, consecutively the param-
eter r , defined by the geometry of the last tube. Therefore,
r implicitly depends on H . It can be shown that in a first
approximation r is proportional to 1/H .

For �kz,e,1 we obtain

�kz,e,1 =
√

2kF h =
√

2r
eH

h̄c
. (29)

Calculating the number of states in the first equatorial tube
without magnetic field, we find

�NH=0
e,1 = 8π

3
rv

eH

h̄c
�kz,e,1. (30)

Based on the analysis of the Cornu spiral sum, Pippard esti-
mated that the relative weight of the extremal region should be
�Ne/N ∼ √

H (Eq. (33) of Ref. [30]). This conclusion is in
agreement with Eq. (30) since �NH=0

e,1 /N ∼ �kz,e,1 ∼ √
ω ∼√

H .
Notice that already in obtaining �NH=0

e,1 we have a devia-
tion from the general case, Eq. (30), and

�NH=0
e,1

��e,1
= 4r

3

�N

��
. (31)

Here ��e,1 defines the angular size of the first equatorial
triangle in the (kx, kz) cross section. Deviations are also
present for the transverse and z energy contributions.

Now we consider the situation in the magnetic field H �=
0. We start as in Sec. III C with finding the wave vector δkz

of the highest occupied electron state along the z axis under
assumption that all electrons belonging to the first equatorial
tube do not leave it. By means of Eq. (20) we get

δkz,e,1 = 2
3 r�kz,e,1. (32)

Now however the energy of the highest occupied state in
general differs from EF , and therefore from the energy of
the highest occupied states in other tubes, Eq. (21). Below
we consider the situation for two different cases: 0 � r < 1/2
(case a) and 1/2 � r < 1 (case b).

In case a the energy of the Landau level of the first equato-
rial tube En − E

e,1
ref = h̄ω/2, Fig. 5, is higher than EF even at

kz = 0. Therefore, all electrons from this tube move to other
tubes where they occupy free states above EF . As a result, a
small rise in EF should occur, but since �Ne,1 � N , it is on
the order of h̄ω�Ne,1/N � h̄ω. Since EF − E

e,1
ref = r h̄ω, the

energy of the promoted electrons is �EH �=0,a/�NH=0
e,1 = r h̄ω

(with respect to E
e,1
ref ).

In case b the Landau level at kz = 0 lies below EF and in
the magnetic field it becomes partially occupied by electrons
with kz > 0. The maximal z-wave vector δkz

F of the 1D
electron state lying on the Fermi sphere can be found by
requiring its energy to be equal to EF ,

δkz
F =

√
2kF

(
h − 1

2
�kF

)
= �kz,e,1

√
r − 1

2

r
. (33)

FIG. 6. The number of electrons [in units of 8πv(eH/h̄c)3/2]
promoted from the equatorial range to other tubes, �Neq =
�NH=0

e − �NH �=0
e , expressed in terms of the dimensionless param-

eter r ∼ 1/H . Negative values imply that electrons move to the
equatorial tube. The dashed line stands for the contribution from
the first equatorial tube; the solid line, from the first and second
equatorial tubes. The same plot [in units of (eH/h̄c)3/2h̄2/mkF ] de-
scribes a small oscillatory dependence of the Fermi energy (chemical
potential).

The number of the occupied electron states in the tube,
�N

H �=0,b

e,1 , is determined by

�N
H �=0,b

e,1

�NH=0
e,1

= 3

2r3/2

√
r − 1

2
. (34)

The condition �NH=0
e,1 > �N

H �=0,b

e,1 in terms of r means

1/2 � r <
√

3 sin π/9, while �NH=0
e,1 � �N

H �=0,b

e,1 results in√
3 sin π/9 � r < 1. Therefore, if 1/2 � r < 0.529, elec-

trons from the first equatorial tube partially move to other
(regular) tubes as happens in case a. For 0.529 � r < 1 the
opposite happens, that is, a small number of electrons from
all regular tubes move to the equatorial tube. The change of
the number of electrons in the equatorial region is shown in
Fig. 6.

To single out the irregular contribution explicitly, we
rewrite it in the following form,

E = EL + �Eeq. (35)

Here EL is the diamagnetic (regular) contribution, Eq. (26),
and �Eeq stands for the irregular term from the equatorial
region. If only the first equatorial tube is accounted for, then
�Eeq = �Eeq,1, where

�Eeq,1 = �E
H �=0
⊥,e,1 + �E

H �=0
z,e,1 − �EH=0

e,1

+�Epr,1 − �Ecorr,1. (36)

Here �Epr,1 is the energy of the promoted electrons (trans-
ferred to or from regular tubes), while �Ecorr,1 stands for the
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FIG. 7. The oscillatory behavior of the irregular contribution to
energy, �Eeq ∼ feq (r ), from the equatorial region, expressed in
terms of the dimensionless parameter r ∼ 1/H . The dashed line
stands for the contribution from the first equatorial tube; the solid
line, from the first and second equatorial tubes.

regular diamagnetic contribution of the equatorial region,

�Ecorr,1

�NH=0
e,1

= 1

16 r
h̄ω. (37)

Collecting all energy terms together, we arrive at

�Eeq = 2
mπv

15
√

2
ω2

√
m

h̄
ω feq (r ). (38)

(The factor 2 stands for two equivalent contributions from the
upper and lower Fermi semisphere.) For the first equatorial
tube we have feq (r ) = feq,1(r ), and the function feq,1(r ) has
different dependencies for cases a and b, described earlier. In
case a (0 � r < 1/2) feq,1(r ) = f a

eq,1(r ),

f a
eq,1(r ) = √

r (32r2 − 5); (39a)

in case b (1/2 � r < 1) feq,1(r ) = f b
eq,1(r ),

f b
eq,1(r ) = √

r (32r2 − 5) − 80
(
r − 1

2

)3/2
. (39b)

The dependence of �Eeq,1 ∼ feq,1(r ) on r is shown in Fig. 7.
Note that �Eeq,1(r = 0) �= �Eeq,1(r = 1), although r = 0
and r = 1 refer to the same physical situation. Below we shall
see that by including two equatorial tubes, the equality of the
energy at r = 0 and r = 1 is restored.

In calculating the magnetic susceptibility χeq one has to
keep in mind that �Eeq depends on H through ω explicitly
and on r implicitly. It can be shown that the contribution from
the derivative of r (H ) with respect to the magnetic field H is
dominant. Finally, we obtain

χeq = −
√

2mπv

15
ω2

√
m

h̄
ω

∂2feq (r )

∂r2

(
∂r

∂H

)2

. (40)

The plot of χeq (r ) is reproduced in Fig. 8. It is worth noting
that χeq,1 diverges at r → 0+ (the divergence disappears when
the second equatorial tube is accounted for) and at r →

FIG. 8. The oscillatory dependence of the magnetic susceptibil-
ity χeq ∼ −f ′′

eq (r ) from the equatorial region expressed in terms of
the dimensionless parameter r ∼ 1/H (see text). The dashed line
stands for the contribution from the first equatorial tube; the solid
line, from the first and second equatorial tubes.

(1/2)+. The latter persists in a more refined calculation with
two or more equatorial tubes, because it is connected with the
onset of the occupation of a new Landau level in the (kx, ky )
equatorial plane.

Notice that if we limit ourselves to the case of only the
first equatorial tube, then in correspondence with Eqs. (39a)
and (39b), the energy values at r = 0 and r = 1 are different,
namely �Eeq,1(0) = 0, �Eeq,1(1) �= 0, Fig. 7. In reality the
physical situation is the same; the condition r = 0 simply
implies that the first equatorial tube is absent, while the second
equatorial tube plays the role of the first. The inconsistence
exists for the other quantities, for example, for the magnetic
susceptibility, Fig. 8. Therefore, to make the values at r =
0 and r = 1 consistent, we have to take into account the
irregular term from the second equatorial tube. Then the
contribution from the equatorial region �Eeq , described by
(38), changes,

�Eeq = �Eeq,1 + �Eeq,2, (41)

and the function feq (r ) in (38) becomes

feq (r ) = feq,1(r ) + feq,2(r ). (42)

Numerical results for two equatorial tubes are shown by solid
lines in Figs. 6, 7, and 8. It is worth noting that except for
the range around r = 0 and r = 1, the inclusion of the second
equatorial tube plays only a minor role.

III. MONOVALENT METAL

A. Magnetic tubes and their properties

In an externally applied magnetic field �H pointing along
the z axis, the energy spectrum of the occupied electron states
of real metals is completely changed. Here and below we
follow the semiclassical representation of electron orbits in
the real and momentum (h̄�k) space as briefly described in
Sec. II A. It is worth mentioning that the semiclassical picture
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for itinerant electrons has been supported by the equation-of-
motion method of Ref. [27], provided that in the quantization
condition, Eq. (5), γ = 1/2 + h�1 + h2�3 ≈ 1/2 (here h =
eH/c). Notice however that in the limit of small magnetic
field h → 0 and γ → 1/2. Therefore, in the following we will
still use γ = 1/2, although this is not critical for the method;
see details in Appendix D.

In the momentum space the nth Landau orbit in the (kx, ky )
plane is defined by the area An Eq. (6), and the orbital motion
is associated with the energy E⊥,n, Eq. (7). The real-space
orbit defined by Eq. (5) is no longer a circle, but a closed
curve corresponding to the �k orbit in the (kx, ky ) plane rotated
through π/2 about the field direction and scaled by h̄c/eH . In
real metals, in contrast to the free electron gas, Eq. (D4), the
cyclotron frequency ω is given by

ω = eH

c m∗ , (43)

where the effective cyclotron mass m∗ is defined as

m∗ = h̄2

2π

∂A

∂E
. (44)

Here A is the area of the electron orbit in the (kx, ky ) plane
of the �k space. In practice, ∂A/∂E is found from the contour
integral

∂A

∂E
=

∮
dk∣∣( ∂E

∂ �k
)
⊥
∣∣ . (45)

From Eq. (45) we conclude that in general for different
Landau levels n and m with energies En �= Em we have
(∂A/∂E)n �= (∂A/∂E)m and consequently m∗

n �= m∗
m, ωn �=

ωm. For real metals for neighboring Landau levels like n and
n′ = n ± 1 since h̄ω � EF we still have m∗

n ≈ m∗
m, ωn ≈

ωm.
So far, it has been implied that kz = 0. Since kz is a

constant of the electron motion [5], we can easily extend
our consideration to the general case with kz �= 0 as has
been done in Sec. II A for the free electron gas. The most
important difference with the Fermi gas is that the quantities
An, ∂A/∂E, and hence m∗ and ω depend on kz. Thus, in
general the total electron energy is given by

E = E⊥,n + Ez(kz), (46)

where Ez(kz) is the electron energy associated with the one-
dimensional (1D) electron band describing the electron mo-
tion in the z direction. Notice that at kz = 0 we have Ez = 0.
Therefore, in general Ez(kz) = E(�k) − E⊥,n(�k), provided that
�k lies on the Landau level n. In the free electron case Ez(kz) =
h̄2k2

z /2m.
As in the case of the Fermi gas, we select in the �k space a

tube whose main property will be that its number of electron
states and energy of all states do not change in the presence of
the external magnetic field. At each component kz we consider
auxiliary quantized electron orbits On with areas

Aaux
n = 2πeH

ch̄
(n + δ) (47)

in the (kx, ky ) plane, where δ ∼ H is a small parameter (δ �
1) which is discussed in detail in Appendix D. Its choice is

FIG. 9. Magnetic tube and the corresponding Landau level. On
the left (a): The (kx, ky ) tube cross section and the nth Landau level
(the solid line Ln). The dashed circles correspond to two auxiliary
quantized orbits: On and On+1; see text for details. On the right
(b): The tube in the �k space, kz1 � kz � kz2. Without magnetic field
electron states are distributed throughout the whole tube; in the
presence of field, they are condensed on the Landau level in the
middle.

determined by imposing the equality of energy [see Eq. (51b)
below] to a very high accuracy. At fixed value of H, Aaux

n

is a constant area throughout kz although the shape of the
orbit can vary with kz. We associate with Aaux

n a certain
energy of the electron movement in the (kx, ky ) plane, which
we denote as Eaux

n . At kz = 0 this energy coincides with the
orbital band energy, i.e., Eaux

n = E(�k), where �k lies on the
On orbit. For kz �= 0 using the proximity to E⊥,n we have
Eaux

n ≈ h̄ω(n + δ), Appendix D.
Note that at any fixed kz the nth Landau level Ln whose

area is given by Eq. (6) is sandwiched between auxiliary
orbits On and On+1, Eq. (47), as shown in Fig. 9. Moreover,
for a band with dispersion the Landau energy E⊥,n, Eq. (7),
lies between Eaux

n and Eaux
n+1. Since Eaux

n+1 − Eaux
n ≈ h̄ω � EF ,

within the interval (Aaux
n , Aaux

n+1) between the auxiliary orbits
n and n + 1 we deal with an infinitesimal situation. Below
we show that in the (kx, ky ) plane the number of electron
states with energies Eaux

n � E � Eaux
n+1 without magnetic field

equals the number of electron states condensing on the nth
Landau level in the presence of the field. The same holds
for their total energy. We start by noting that the density of
electron states N⊥(E) in the (kx, ky ) plane is

N⊥(E⊥) = dN⊥
dE⊥

= 2
LxLy

(2π )2

∂A

∂E
= 2m∗

h̄2

LxLy

2π
. (48)

(Here the double spin degeneracy is taken into account.) Using
Eqs. (48) and (44), we find that the number of electron states
in the nth tube without field, i.e., in the energy range Eaux

n �
E � Eaux

n+1, is

�Nn(H = 0) =
∫ Eaux

n+1

Eaux
n

N⊥(E⊥)dE⊥

= 2LxLy

(2π )2

(
Aaux

n+1 − Aaux
n

) = 2Np, (49)

where Np is the spatial degeneracy of the Landau levels,
Eq. (11b). Calculating the energy of these states without field
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FIG. 10. Magnetic tubes and the Fermi surface (FS) in a mag-
netic field in the (kz, ek⊥ ) cross section in the �k space. All electron
states within the tubes inside the Fermi surface, shown as the dashed
area on the left, are completely filled, and their full energy does
not change in the magnetic field. The diamagnetic effect is due
to the electron states of partially occupied tube states (like tube 2
in the inset), making a steplike structure near the Fermi surface.
Inset: 1, completely occupied tube n; 2, partially occupied tube n;
3, completely occupied tube n − 1.

to an accuracy of (h̄ω/EF )3�Nn, Appendix D, we obtain

En(H = 0) =
∫ Eaux

n+1

Eaux
n

N⊥(E⊥)E⊥dE⊥ = E⊥,n�Nn. (50)

That is, En(H = 0) coincides with the energy of these states
on the nth Landau level in the presence of the field. Thus, we
have proven that

�Nn(H = 0) = �Nn(H �= 0) = 2Np, (51a)

En(H = 0) = En(H �= 0) = h̄ω
(
n + 1

2

)
2Np. (51b)

Equations (51a) and (51b) are valid for any kz component,
and therefore for the whole tube n, Fig. 9, defined by its upper
(k(2)

z ) and lower (k(1)
z ) boundaries, k(1)

z � kz � k(2)
z . As for the

free electron gas, k(2)
z and k(1)

z are conveniently defined by the
intersection of a tube with the Fermi surface, Fig. 10. As a
result, we have two nth tubes: the first tube (denoted by 1
in the inset of Fig. 10) lies entirely inside the Fermi surface
and does not exhibit diamagnetism, while the second tube
(denoted by 2 in the inset of Fig. 10) is only partially filled
and results in a diamagnetic response. We consider this effect
in the following sections.

B. Diamagnetically active electron states

Consider the Fermi surface and define magnetic tubes in an
externally applied magnetic field H pointing in the positive z

direction, Fig. 10. As has been discussed in Sec. III A, each
magnetic tube n at kz is sandwiched between two boundary
electron orbits On and On+1 in the (kx, ky ) plane whose areas
Aaux

n and Aaux
n+1 are defined by Eq. (47). As a result we obtain

a set of boundary surfaces that intersect the Fermi surface
in orbits perpendicular to the z axis. The intersection orbits
unlike simple circles for the Fermi gas, Sec. II, are rather
complicated, and below we describe them in detail. These
orbits lie in (kx, ky ) planes and we can use them to define
two kz boundary conditions, k(n,1)

z and k(n,2)
z , in such a way

that the magnetic tube n lies entirely inside the Fermi surface.

FIG. 11. The (kz, ek⊥ ) cross section of a partially occupied tube
n near the Fermi surface. FS stands for the Fermi surface, LL′

for Landau orbits Ln, O ′
n and O ′

n+1 for auxiliary quantized orbits.
R is the energy reference point, Eref = E(R) = EF − h̄ω, E(L) =
Eref + h̄ω/2, �lF = |O ′

n O ′
n+1|, �kF = |RR′|.

The fully occupied tubes are schematically shown in Fig. 10.
In Sec. III A we have seen that the electron states of the
completely filled tubes do not change their energy in magnetic
field. Therefore, the whole effect is due to the states lying in
the partially occupied tubes passing through the Fermi surface
(like tube 2 in the inset of Fig. 10).

Consider a boundary orbit On,F [defined by Aaux
n =

constant, Eq. (47)] in the (kx, ky ) plane lying on the Fermi
surface. It defines a certain value of kz which we denote by
kz,n. The electron energy band gradient, ∂E(�k)/∂ �k, on On,F

is perpendicular to the Fermi surface and hence to the orbit.
In addition, we will use the projection of the gradient in the
plane of the orbit, (∂E/∂ �k)⊥, which is also perpendicular to
On,F , Figs. 9, 11. The normalized vector in the direction of
(∂E/∂ �k)⊥ will be denoted by ek⊥ . Notice that plane (kz, ek⊥ )
is normal to On,F . Cross sections of magnetic tubes passing
through the Fermi surface are schematically shown by hori-
zontal dotted lines in Fig. 10. [In general, Fig. 10 should be
understood as composed of many different panels—at most
one panel for each tube cross section, because the energy
gradient ∂E/∂ �k and hence (kz, ek⊥ ) planes still can have
different orientations.]

Consider a typical partially occupied tube n whose triangle
cross section in the (kz, ek⊥ ) plane is shown in Fig. 11. Points
O ′

n and O ′
n+1 are defined by the intersection of the (kz, ek⊥ )

plane with the orbits On,F and On+1,F , respectively. The side
O ′

n,O
′
n+1 is the intersection with the Fermi surface, the side

O ′
n, R is the intersection with the Aaux

n boundary surface, and
the side O ′

n+1, R is the intersection with the (kx, ky ) plane of
the orbit On+1,F . It is convenient to count energy from Eref =
E(R) = EF − h̄ω. The vector �RR′ being perpendicular to
O ′

n,O
′
n+1 is collinear with the energy gradient ∂E/∂ �k. Finally,

the line L,L′ is given by the intersection of Landau orbits
Ln at various kz, Eq. (6), with the (kz, ek⊥ ) plane. Since we
consider the limit of small magnetic fields, i.e., h̄ω/EF →
0, the triangle is assumed infinitesimal allowing for linear
dependencies of relevant quantities. In particular, the line
L,L′ is parallel to R,O ′

n, etc., and we can take δ = 0 in
Eq. (47), γ = 1/2 in Eq. (5), Appendix D.

In the following we will need �k⊥, �kz, �kF expressed
in terms of (∂E/∂ �k)F , (∂E/∂ �k⊥)F , (∂A/∂kz)F calculated at
the Fermi surface. Details of these calculations are given in
Appendix A.
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FIG. 12. The (kz, ek⊥ ) cross section of a partially occupied tube n

near the Fermi level. On the left (a): Occupied electron states without
magnetic field, �H = 0. On the right (b): The occupied electron states
on Landau levels (the LL′ bold line) in the magnetic field �H �= 0.
EF is the Fermi energy of the one-dimensional electron states, whose
transverse energy En is determined by the nth Landau energy, En =
En,⊥(L).

Now in accordance with Eq. (16) we can find the number
of the active electron states in all partially occupied tubes.
We recall that in Eq. (16) �Nn ≡ �N (kz, kz + �kz) is the
number of the electron states in the nth partially filled tube,
whose kz component lies between kz,n ≡ kz and kz,n+1 ≡ kz +
�kz. The calculation of �N carried out in Appendix A results
in Eq. (17), that is,

�N

�kz

= 2πv
eH

h̄c
= constant. (52)

Notice that the right-hand side of Eq. (52) is independent of
the effective mass m∗ and ∂A/∂E. It should be emphasized
that the polar and equatorial regions of the Fermi surface are
special cases, which are discussed in Sec. III D. It turns out
that the polar regions fully comply with the general expression
(52), while the equatorial regions [where ∂A(kz)/∂kz = 0]
give rise to the well-known de Haas–van Alphen oscillations
of the magnetic susceptibility, which is not the subject of the
present study.

For small magnetic fields when �kz � kF , in Eq. (16) we
can substitute the summation with the integration, Eq. (18). In
Eq. (18) kmin

z (kmax
z ) is the minimal (maximal) kz component

of the vectors �k lying on the Fermi surface. Using (52) [or
Eq. (17)] we arrive at Eq. (19), where �z ≡ kmax

z − kmin
z is

defined exclusively by the projection of the Fermi surface
along the direction of the applied magnetic field. Notice
however that unlike for free electron gas, now in general
kmin
z �= −kF , kmax

z �= kF . Furthermore, as discussed later in
Sec. IV in real metals �z depends on the orientation of the
applied magnetic field with respect to the Fermi surface.

Thus, the number of active electron states N ∼ H , their
total energy change in the magnetic field ∼H 2, which gives a
constant diamagnetic susceptibility χ .

C. Landau diamagnetic susceptibility

The transformation of the electron states of a partially
occupied tube is schematically shown in Fig. 12. In the applied
magnetic field H �= 0 all electrons of the partially occupied
tube are on the nth Landau orbits with the transverse energy
En, and occupy the lowest in energy kz states, as shown in
Fig. 12.

As we have seen in Sec. II C for the free electron gas the
highest occupied energy in the presence of the field coincides
with the Fermi energy EF obtained in the absence of the field.

FIG. 13. Calculated Fermi surfaces of alkali metals.

For the real metal the (kz, ek⊥ ) cross section of a partially
occupied tube n, Figs. 11 and 12, in general is very different
from the (kz, kx ) cross section of the Fermi gas shown in
Figs. 3 and 4. However, the highest occupied energy is still
EF . This follows from Eq. (20), written for the partially
occupied tube n for real metal. In terms of the z projection
δkz of the wave vector �kL′ shown in Fig. 11, it implies δkz =
�kz/2 just as for the Fermi gas, Eq. (21). Therefore, there
are no electron transitions between different tubes and we can
calculate the energy change for each tube separately and then
sum all contribution for the final result.

Keeping in mind that in the magnetic field there are two
energy contributions—E⊥ in the (kx, ky ) plane and Ez at kz,
Eq. (46)—we now calculate the energy change for the tube n

in the applied magnetic field, Eq. (22).
The calculation of all components is performed in

Appendix B (with respect to the energy Eref , Fig. 12), and
results in Eqs. (23), (24a), and (24b). For the total energy
change we get �E = h̄ω �N/12. This is the same expression
as for the free electron gas, Eq. (25), but now the cyclotron fre-
quency ω is different for different tubes, Eq. (43). Therefore,
by means of Eqs. (43) and (52) we rewrite the expression for
�E in terms of �kz:

�E = 1

6
πv

(
eH

c

)2
�kz

m∗ . (53)
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TABLE I. Calculated characteristics of alkali metals: χL is the steady diamagnetic susceptibility (av stands for the averaged value), χP is
the Pauli paramagnetic susceptibility, m∗ is the effective cyclotron mass, kmax

H is the maximal projection of the Fermi surface on the direction
of the applied magnetic field �H, γel is the linear electron specific heat coefficient (in mJ/mole K2), N (EF ) is the electron density of states (in
1/eV). CFS

l (l = 0, 4, 6, 8) are the coefficients describing the shape of the Fermi surface and C
g

l are the coefficients of the expansion of the
modulus of the energy gradient ( �∇kEF ). a is the bcc lattice constant (in Å), and indices [001], [101], or [111] define the direction of �H , at
which the corresponding quantity is calculated; see text for details.

Li Na K Rb Cs

a (Å) 3.50 4.29 5.35 5.585 6.14
χav

L (10−7) −1.753 −2.086 −1.624 −1.515 −1.179
χL[001] (10−7) −1.670 −2.081 −1.631 −1.508 −1.142
χL[101] (10−7) −1.871 −2.090 −1.631 −1.560 −1.308
χL[111] (10−7) −1.714 −2.084 −1.618 −1.485 −1.114
m∗

av 1.517 1.036 1.067 1.097 1.300
m∗

av[001] 1.552 1.038 1.065 1.099 1.310
m∗

av[101] 1.462 1.035 1.065 1.080 1.214
m∗

av[111] 1.527 1.037 1.070 1.107 1.317
kmax

H [001] 0.576 0.480 0.386 0.369 0.333
kmax

H [101] 0.609 0.481 0.386 0.375 0.353
kmax

H [111] 0.582 0.481 0.385 0.366 0.326
N (EF ) 0.486 0.494 0.792 0.888 1.302
γel 1.146 1.166 1.867 2.094 3.068
χP (10−7) 12.207 6.728 5.565 5.487 6.051
CFS

0 2.08862 1.70433 1.36665 1.30909 1.19032
CFS

4 −0.01529 −0.00039 0.00092 −0.00048 −0.00474
CFS

6 −0.02358 −0.00065 −0.00101 −0.00694 −0.02149
CFS

8 0.00660 −0.00001 0.00074 0.00263 0.00914
C

g

0 1.40005 1.64429 1.28035 1.19546 0.94458
C

g

4 0.13752 0.01058 −0.00908 0.00294 0.04106
C

g

6 0.28278 0.01325 0.00441 0.08695 0.24620
C

g

8 −0.10748 −0.00267 −0.00733 −0.05090 −0.12383

Note that Eq. (53) refers to any partially filled tube. There-
fore, making the summation over all tubes we find

E = 1

48

V

π2

(
eH

c

)2 ∫ kmax
z

kmin
z

dkz

m∗(kz)
. (54)

Here, as before, kmin
z (kmax

z ) is the minimal (maximal) kz

component of the Fermi surface. Notice that m∗ found from
Eqs. (44) and (45) for orbits in the (kx, ky ) plane lying on the
Fermi surface is a function of kz. Finally, for the magnetic
susceptibility χ we have

χ = −d2E(H )

dH 2
= −V

1

24

e2

π2c2

∫ kmax
z

kmin
z

dkz

m∗(kz)
. (55)

In the case of the free electron gas the integral on the right-
hand side of (55) is reduced to �z/m = 2kF /m and we arrive
at Eq. (27) for the diamagnetic susceptibility of the Fermi gas.
In general, Eq. (55) differs from the pioneer expression of
Peierls [8], Eq. (2), although for the case of parabolic bands
in terms of kx and ky , Eq. (E1), they give identical results,
Appendix E.

As a final and important remark we note that the density
of electron states, g(EF ), remains unchanged on applying the
magnetic field, although energy gradients at the Fermi surface
change their directions and values. We prove this remarkable
effect in Appendix F.

D. Special cases and extremal cross sections of the Fermi surface

General expressions for �k⊥ and �kz, Eqs. (A1) and
(A2), become indefinite when (∂E/∂ �k)⊥ = 0 or ∂A/∂kz = 0.
The condition (∂E/∂ �k)⊥ = 0 occurs at polar points of the
Fermi surface and the full account of this situation is given
in Appendix C. In that case there are no deviations from the
general final equations (52) and (53).

If ∂A(kz)/∂kz = 0 then from Eq. (A2) it follows that
�kz → ∞, and such an extremal cross section corresponds
to a maximum or a minimum of A(kz) as a function of kz. It
is well known that extremal orbits and extremal regions give
rise to the oscillatory behavior for the diamagnetic response
(de Haas–van Alphen effect), Ref. [4]. In our approach for
the Fermi gas described in detail in Sec. II D, it has also
been demonstrated that the extremal region consisting of
a few tubes in the equatorial region of the Fermi surface
results in the oscillatory behavior of the diamagnetic sus-
ceptibility. This should occur in real metals as well, but
in this paper we consider only the regular contribution to
energy (�EL

eq) leaving the irregular part (�Eirr
eq ) for future

consideration.

IV. APPLICATION TO ALKALI METALS

We have applied the method to calculations of the diamag-
netic response of alkali metals: Li, Na, K, Rb, and Cs, which
are crystallized in the body centered cubic (bcc) lattice and
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FIG. 14. Calculated energy gradient modula of alkali metals. (The order of the elements as in Fig. 13.)

have only one active electron band. As follows from Sec. III
for diamagnetic susceptibility one needs two very important
characteristics: the Fermi surface and the energy gradient ∇�kE
on it. Therefore, we first have performed ab initio density
functional theory (DFT) calculations of the alkali metals
using the Moscow-FLAPW code [31]. The Perdew-Burke-
Ernzerhof (PBE) [32] variant of the generalized gradient
approximation has been employed, with the number of k

points 2470. For the Fermi surface and gradient calculations

we have used the tetrahedron method [33]. In this method the
irreducible part of the Brillouin zone is divided into a set of
tetrahedra and within each tetrahedron the linear dependence
of the band energy E(�k) is assumed. The cross sections of
the constant energy E = EF in the �k space from all relevant
tetrahedra give the pieces forming the Fermi surface. Also, in
each tetrahedron crossing the Fermi surface we find the value
of the energy gradient, ∇�kE, which is unchanged within the
tetrahedron.
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The obtained Fermi surfaces (FS) are shown in Fig. 13.
The important property of the calculated Fermi surfaces is that
the topological space inside each of them is simply (or path)
connected. In other words, the occupied electron states form a
single-piece Fermi surface. (The application of the presented
method to more complicated Fermi surfaces and to completely
filled electron bands requires additional considerations.)

Since the Fermi surface is invariant under all symmetry
operations of the crystal (in our case we deal with the Oh cubic
symmetry), it can be expanded in terms of symmetry-adapted
functions (SAFs) belonging to the fully symmetric (A1g) rep-
resentation of Oh [34]. Such SAFs, known as cubic harmonics
[34], are linear combinations of real spherical harmonics Y

m,τ
l

[where τ = c, s stands for the azimuthal dependence of the
cosine (c) or sine (s) type] with l = 4, 6, 8, …:

K4(θ, φ) =
√

7

12
Y 0

4 +
√

5

12
Y

4,c
4 ,

K6(θ, φ) =
√

1

8
Y 0

6 −
√

7

8
Y

4,c
6 ,

K8(θ, φ) =
√

33

64
Y 0

8 +
√

7

48
Y

4,c
8 +

√
65

192
Y

8,c
8 .

Here (θ, φ) = k̂ are polar angles in k space and for spherical
harmonics we use the phase convention of Bradley and Crack-
nell [34]. [For compactness here and below we omit (θ, φ)
in Y

m,τ
l .] Therefore, the Fermi surface can be very accurately

represented by the expansion

kF (k̂) = CFS
0 Y 0

0 + CFS
4 K4(k̂) + CFS

6 K6(k̂) + CFS
8 K8(k̂),

(56)

where Y 0
0 = 1/

√
4π is the zeroth spherical harmonic (l =

m = 0). In the expansion (56) the Fermi surface is completely
defined by the coefficients CFS

0 , CFS
4 , CFS

6 , and CFS
8 . These

coefficients can be obtained numerically from the calculated
Fermi surfaces, Fig. 13. For all alkalis they are given in
Table I.

The other quantity—energy gradient at the Fermi surface
�∇kEF (k̂)—also can be expanded in terms of the cubic har-
monics, Eq. (56). Since the gradient is always normal to
the Fermi surface and therefore its direction can be found
at any point of the Fermi surface, we need only its modulus
expansion,

| �∇kEF (k̂)| = C
g

0 Y 0
0 + C

g

4 K4(k̂) + C
g

6 K6(k̂) + C
g

8 K8(k̂).

(57)

The coefficients C
g

0 , C
g

4 , C
g

6 , and C
g

8 obtained from the
ab initio calculations are also quoted in Table I. The three-
dimensional picture of | �∇kEF (k̂)| as a function of the direc-
tion k̂ in k space is shown in Fig. 14.

From Fig. 13 and the values of the coefficients CFS
l

we conclude that the Fermi surfaces of lithium and ce-
sium demonstrate the largest deformations from the spherical
shape. Sodium and potassium, on the other hand, have FS
shapes which are very close to spherical, while deviations
for rubidium lie between these two groups. This finding is
even more clearly illustrated by the shape of energy gradients,

FIG. 15. Calculated cyclotron mass m∗ for Li and K for direc-
tions [001], [101], and [111] of the magnetic field H .

Fig. 14, which are more sensitive to deviations from the
spherical form.

We now study the cyclotron mass m∗, which depends on
the closed orbit on the Fermi surface in k space, Eqs. (44),
(45). The orbit is given by the cross section of the Fermi sur-
face with a plane lying perpendicular to the applied magnetic
field �H . Such a plane is uniquely defined by its projection
kH ≡ kz′ on the z′ axis parallel to �H . Therefore, the cyclotron
mass in the applied magnetic field is a function of kH and Ĥ

pointing in the direction of �H , that is, m∗ = m∗(Ĥ , kH ). In
Fig. 15 we plot m∗ as a function of kH for three directions
of magnetic field for potassium with nearly spherical Fermi
surface and lithium with a deformed Fermi surface.

Notice that for deformed Fermi surfaces (lithium and
cesium) kmax

H and kmin
H = −kmax

H are noticeably different for
various directions of H , Table I. In Table I we also quote
average cyclotron masses (m∗

av) for magnetic field directions
[001], [101], and [111], defined according to the following
relation,

1

m∗
av

= 1∣∣kmax
H − kmin

H

∣∣
∫ kmax

H

kmin
H

dkH

m∗(kH )
. (58)
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FIG. 16. Calculated deviations of the Landau diamagnetic sus-
ceptibility χL from its average value χav

L for various directions of the
applied magnetic field H for alkali metals.

Since in general m∗
av depends on Ĥ , the Landau diamag-

netic susceptibility χL defined by Eq. (55) also shows this
dependence. Therefore, to obtain the averaged value χav

L for
each element we perform an effective integration of χL(Ĥ )
over Ĥ , using a special set of 170 points [35]. (The set gives
the correct coefficients of expansion up to spherical harmonics
with l = 10.) The calculated averaged values of χav

L and m∗
av

are given in Table I. They are in fair correspondence with
estimations of the Landau contributions obtained with other
approaches [36].

For a chosen direction of magnetic field Ĥ , χL in general
differs from the average value χav

L , and we can study χL −
χav

L as a function of Ĥ . These dependencies for all alkali
metals are presented in Fig. 16, where in addition to the
selected directions ([001], [101], and [111]) we give data for
intermediate angles (i.e., lying on the circumferences fusing
[001] and [101], [101] and [111], [111] and [001]). Notice
that the deviations from χav

L are larger for lithium and cesium
and smaller for sodium and potassium. The anisotropy of χL

with respect to the direction of the applied magnetic field is
a remarkable property of the Landau diamagnetism, which
singles it out from the Pauli paramagnetism and the Langevin
diamagnetism of closed electron shells.

V. CONCLUSIONS

The steady diamagnetic response for the Fermi gas and a
real metal with a general simply connected Fermi surface is
obtained analytically at zero temperature (T = 0) within the
widely accepted semiclassical approach [2–4,26,27]. The dia-
magnetic effect is caused by electron states in a very narrow
region of the Fermi surface. The consideration is based on a
structure in �k space called a magnetic tube, which sandwiches
the Landau level inside it. The completely occupied tubes are
diamagnetically inert. Only partially occupied tubes located at
the Fermi surface are responsible for the diamagnetic effect.
Although energy gradients at the Fermi surface change in the
magnetic field, the total density of electron states at the Fermi
energy remains constant, Appendix F.

We have applied the method for calculations of the Landau
diamagnetic susceptibility χL of alkali metals (Li, Na, K,
Rb, Cs). The crucial quantities for that are the Fermi surface
kF (k̂) and energy gradients �∇kEF (k̂) on it, which are ob-
tained from ab initio band structure calculations. For accurate
calculations of χL, we expand both kF (k̂) and | �∇kEF (k̂)| in
terms of symmetry-adapted functions, Eqs. (56) and (57). We
have demonstrated that the diamagnetic effect depends on the
direction Ĥ of the applied magnetic field �H . The anisotropy of
χL is larger for lithium and cesium and smaller for sodium and
potassium. It is worth noting that the Langevin diamagnetism
of atomic closed core shells and the Pauli paramagnetism are
isotropic with respect to Ĥ .

The present approach can be applied to other metals or
intermetallic compounds. The method can also be extended
to the case of nonzero temperatures, where the thermal excita-
tions of a one-dimensional electron gas consisting of electron
states on the Landau levels should be taken into account.

While the steady response is due to the region just below
the Fermi surface, the oscillatory behavior of energy and
magnetic susceptibility arises from a few partially occupied
tubes located at its extremal cross sections. A small oscillatory
change of the Fermi energy of the free electron gas in the
applied magnetic field is caused by a transfer (inflow or
outflow) of electrons from this equatorial region of the Fermi
surface, Sec. II D.
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APPENDIX A: CALCULATION OF �k⊥, �kz, �N

Here we note some useful relations in a partially occupied
tube shown in Fig. 11, taking into account the infinitesimal
properties of its triangular (kz, ek⊥ ) cross section. In particular,
we have

�k⊥ = h̄ω

|(∂E/∂ �k)⊥| > 0. (A1)

To calculate �kz we first consider the area A of the (kx, ky )
cross section of the Fermi surface as a function of kz, that is,
A(kz). Then �A = Aaux

n+1 − Aaux
n = [∂A(kz)/∂kz]�kz, and we

arrive at

�kz = 2πeH

ch̄

1

|∂A/∂kz| > 0. (A2)

For the number of the electron states in the partially
occupied tube n, Fig. 11, we find

�N = 2v

∮
On+1

�Sdk = v�kz

∮
On+1

�k⊥dk = v �A�kz,

(A3)

where v = V/(2π )3 and �S is the area of the (kz, ek⊥ ) cross
section: �S = �k⊥�kz/2. This gives Eqs. (17) and (52).
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APPENDIX B: CALCULATION OF �E H=0, �E H �=0
⊥ , �E H �=0

z

We first consider the energy of a partially occupied tube
n without magnetic field (H = 0), left panel of Fig. 12.
The reference energy at �k(R) is Eref = E(�k(R)) = EF −
h̄ω, Fig. 11. We will calculate the energy by integrating
over x from R to R′ along the energy gradient direction
∂E/∂ �k|F , Fig. 11. Notice that O ′

nO
′
n+1 is perpendicular to

RR′, the energy at x is (x/�kF )h̄ω, and the infinitesimal vol-
ume element is dk dx(x/�kF )|O ′

n,O
′
n+1|. Denoting �lF =

|O ′
n,O

′
n+1|, we get

�EH=0 = 2v

∮
On+1

ε dk, (B1)

where

ε =
∫ �kF

0

(
x

�kF

h̄ω

)(
x

�kF

�lF

)
dx. (B2)

Performing integration in (B2) and taking into account that the
area of the cross section shown in Fig. 11 is �S = �kF �lF /2
whereas 2v

∮
�Sdk = �N , we arrive at Eq. (23).

We now consider the case H �= 0, the right panel of Fig. 12.
The transverse component of an electron state condensed
on the Landau level is E(L) = Eref + h̄ω/2. Thus, for each
electron state we have �E

H �=0
⊥ = h̄ω/2, and for all electron

states we obtain Eq. (24a).
Populating the Landau levels along the L,L′ line shown

in Fig. 11, the one-dimensional electron energy changes from
Eref to Eref + h̄ω/2. Since in the infinitesimal cross-section
approximation of Fig. 11 the energy increases linearly with
kz and the density of electron states along the L,L′ line is
constant, for the energy of all these occupied states we obtain
�E

H �=0
z = (h̄ω/4) �N , Eq. (24b).

APPENDIX C: POLAR REGION

If the energy gradient at a certain point P of the Fermi
surface is parallel to the z axis (or to the magnetic field �H ),
that is, ∂E(P )/∂ �k || �H , then [∂E(P )/∂ �k]⊥ = 0, but on the
other hand, the contour path for E = E(P ) in Eq. (45) reduces
to the point P . This leads to the ambiguity for ∂A/∂E in
Eq. (45) and consequently for m∗ and ω in Eqs. (44) and (43).
This situation corresponds to a polar region around the point
P and requires a special treatment.

For convenience we put the origin of the coordinate system
at the point P and assume that the center of curvature is
located below. The Fermi surface in the vicinity of P is given
by the function kFS

z (kx, ky ) = f (kx, ky ), whose tensor of the
second derivatives is diagonalized:

∂2kFS
z

∂k2
x

∣∣∣∣
P

< 0,
∂2kFS

z

∂k2
y

∣∣∣∣∣
P

< 0,
∂2kFS

z

∂kx∂ky

∣∣∣∣
P

= 0. (C1)

This polar region of the Fermi surface is described by the
function

kFS
z (kx, ky ) = 1

2

∂2kFS
z

∂k2
x

∣∣∣∣
P

k2
x + 1

2

∂2kFS
z

∂k2
y

∣∣∣∣∣
P

k2
y. (C2)

In the polar region we deal with the zeroth magnetic tube, i.e.,
n = 0, and with the zeroth Landau level. Two tubes’ auxiliary
boundary conditions are reduced to

Aaux
n=0 = 0, (C3a)

Aaux
1 = 2πeH

h̄c
. (C3b)

(Notice that here δ = 0.) Thus, the first quantized auxiliary
orbit On=1 at the Fermi surface is an ellipse at �kz = kz,1 < 0,
which can be found by equating its area to Aaux

1 , Eq. (C3b).
The result is

�kz = −eH

h̄c

√√√√ ∂2kFS
z

∂k2
x

∣∣∣∣
P

∂2kFS
z

∂k2
y

∣∣∣∣∣
P

. (C4)

Therefore, the whole polar region with 0 � kz � �kz repre-
sents the zeroth partially occupied tube. It can be shown that
the volume of the polar region is

VP = 1
2 |�kz|Aaux

1 . (C5)

The same expression holds for a small sphere cap in the case
of the Fermi sphere of the free electron gas. The number of
active electron states ( �H = 0) is then

�Nn=0 = 2vVP = |�kz|2πeH

h̄c
v. (C6)

The latter equation demonstrates that �N0/|�kz| follows the
general relation (52) although the curvature of the Fermi
surface polar region has been explicitly taken into account.
Analogously, one can show that the other quantities (energy,
etc.) also follow the general consideration.

APPENDIX D: TUNING AUXILIARY
BOUNDARY CONDITIONS

In this section we will give details of derivation of Eqs. (50)
and (51b) and define the small parameter δ ∼ H in Eq. (47).
The middle part of Eq. (50) can be integrated by parts,

En(H = 0)

= 2
LxLy

(2π )2

[
Eaux

n+1A
aux
n+1 − Eaux

n Aaux
n −

∫ Eaux
n+1

Eaux
n

A(E)dE

]
.

(D1)

Introducing notations �E = Eaux
n+1 − Eaux

n , �A =
(2πe/ch̄)H , Eq. (D1) can be written as

En = [
Eaux

n+1(1 − �∗ + δ) + Eaux
n (�∗ − δ)

]
�Nn, (D2)

where

�∗ = 1

�A�E

∫ Eaux
n+1

Eaux
n

A(E) dE − n. (D3)

We further expand A(E) up to the second derivative term,

A(E) = A(E0) + A′(E − E0) + 1
2A′′(E − E0)2, (D4)

where E0 = (Eaux
n+1 − Eaux

n )/2 and we use short notations
A′ = ∂A(E0)/∂E, A′′ = ∂2A(E0)/∂E2. With Eq. (D4) we

224417-16



LANDAU DIAMAGNETIC RESPONSE IN METALS AS A … PHYSICAL REVIEW B 98, 224417 (2018)

obtain

�∗ = 1

2
+ δ − A′′

12

(�E)2

�A
+ O(H 3), (D5)

where O(H 3) ∼ H 3 and Eq. (D2) becomes

En(H = 0) =
[
E0 + A′′

12

(�E)2

�A

]
�Nn. (D6)

On the other hand, for the energy of the tube in the magnetic
field with respect to E0 one has

En(H �= 0) =
[
E0 − �A

A′ δ + 1

8

A′′

A′ (�E)2

]
2Np. (D7)

Equating Eqs. (D6) and (D7), we obtain

δ = πe

12ch̄

A′′

(A′)2
H. (D8)

If, as in Eq. (5), one uses γ = 1/2 + �1h [27], then in
Eq. (D8) δ should be replaced with (δ − γ ) ∼ H . From
Eq. (D8) it follows that δ is also a function of energy,
δ = δ(E). This in turn leads to a more complicated final
expression,

δ(E) = πe

12ch̄

f (E)

[1 + Ef ′(E)/f (E)]
H, (D9)

which can be solved iteratively, starting with f0(E) =
A′′(E)/A′(E)2 as in Eq. (D8).

Quantities γ and δ should be taken into account for the
definition of the boundaries of the occupied magnetic tubes,
because they concern a large number of electron states inside
the Fermi surface. For partially occupied tubes at the Fermi
surface they give only small corrections on the order of
h̄ω/EF to the main results, which can be omitted.

APPENDIX E: CONNECTION WITH
PEIERLS’ EXPRESSION

In his early pioneer work [8], Peierls obtained Eq. (2) for
the steady diamagnetic susceptibility. Below we will show
that the magnetic susceptibilities given by Eqs. (2) and (55)
coincide for the case of the parabolic energy band dependence
in terms of kx and ky ,

E(�k) = a(kz)k2
x + b(kz)k2

y + c(kz)kxky + d(kz). (E1)

Notice that a(kz), b(kz), c(kz), d(kz) here are arbitrary
smooth functions of kz and the z axis points in the direction
of the applied magnetic field H . The expression in the curly
bracket of Eq. (2), being λ = 4ab − c, is an invariant of
the quadratic form (E1). We then transform (E1) to a new
coordinate system (k′

x, k
′
y ) where it takes the diagonal form

E(�k) = a′(kz)k′
x

2 + b′(kz)k′
y

2 + d(kz). Now λ = 4a′b′ and in
the following will work in this representation. For the integral
in Eq. (2) we obtain

I = −4
∫

FS

a′(kz)b′(kz) dS(�k)

|∇kE(�k)|

= 4π

∫ kmax
z

kmin
z

√
a′(kz)b′(kz) dkz, (E2)

where the first integration is taken over the Fermi surface (FS)
and kmax

z (kmin
z ) is the maximal (minimal) projection of the FS

on the z axis. The final expression for Eq. (2) becomes

χ = − e2

12π2h̄2c2

∫ kmax
z

kmin
z

√
a′(kz)b′(kz) dkz. (E3)

On the other hand, using Eq. (44) we obtain m∗(kz) =
h̄2/2

√
a′(kz)b′(kz). Substitution of m∗(kz) in Eq. (55) gives

the same result as before, Eq. (E3).
In general however Eq. (2) differs from Eq. (55). We

ascribe it to a number of approximations used in the derivation
of Eq. (2) [11,13,14].

APPENDIX F: DENSITY OF ELECTRON
STATES AT EF

Consider the partitioning of the Fermi surface region in
partially occupied tubes. The density of electron states (DOS)
at the Fermi energy then is given by

g(EF )
1

V
=

∑
�gn(EF ) =

∫ kz,max

kzmin

dkz

�g(EF )

�kz

,

(F1)

where �gn(EF ) is the DOS contribution from the part of the
Fermi surface Sn associated with a partially occupied tube n,

�gn(EF ) = 1

4π3

∮
Sn

dS

| �∇E| . (F2)

In the applied magnetic field H �= 0, Fig. 11, electron states
occupy the Landau level n along the L,L′ line. Since the
Landau orbits are perpendicular to the z axis, the energy
gradient should be taken in the z direction with the surface
element dS in the (kx, ky ) plane. From Fig. 11 we obtain
∂E/∂kz = h̄ω/�kz, dS⊥ = �k⊥dk. We thus arrive at

�gH �=0(EF ) = 1

4π3

∮
�k⊥�kz

h̄ω
dk. (F3)

Notice that �S = �k⊥�kz/2 is the area of the triangular
(O ′

n, A,O ′
n+1) cross section, which can also be written as

�S = �kF �lF /2. Since |∂E/∂ �k| = h̄ω/�kF , we continue
Eq. (F3) as

�gH �=0(EF ) = 1

4π3

∮
�lF dk

|∂E/∂ �k| = �gH=0(EF ). (F4)

Here in establishing the last equality we have taken into
account that �lF dk = dSH=0 is a part of the Fermi surface
perpendicular to the energy gradient ∂E/∂ �k in the absence
of the magnetic field. Equation (F4) leads to gH �=0(EF ) =
gH=0(EF ).
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