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Topological magnon modes in a chain of magnetic spheres
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We study the collective magnonic modes of a one-dimensional bipartite chain of magnetic spheres coupled
by dipolar interactions. The magnonic modes of the infinite chain, due to the dipolar interaction, give rise to
a gapped magnonic dispersion. The external magnetic fields can be invoked to quantize the Zak phase of the
magnonic bands, which is used as an invariant to identify two topologically distinct phases of the system. In the
case of a finite chain, the magnetic fields determine whether topologically protected localized states or Tamm-
like states form at the ends of the chain. We provide an analytical expression along with numerical results
which reveal parameters resulting in topologically protected end states. This bosonic system is almost similar
to the Su–Schrieffer–Heeger system and is promising as a dynamically reconfigurable material for future use in
magnonics.
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I. INTRODUCTION

Spin waves (SWs) are the collective propagation of cou-
pled precessing spins in a polarized spin system and magnons,
the quanta of collective motion, can be exploited as infor-
mation and energy carriers [1–5]. Spectra of SW excitations
in artificial structures with periodic variations in their mag-
netic properties [6,7] are significantly different compared with
uniform media and show distinctive features such as band
gaps, the frequency intervals in which SWs are not allowed to
propagate [8–21]. Such artificial magnetic materials, dubbed
“magnonic crystals” (MCs) and which can be regarded as the
magnetic counterpart of photonic [22,23] or phononic [24,25]
crystals that guide SWs rather than electromagnetic or elastic
waves, would coherently transport magnetic energy and infor-
mation. The possibility of using SWs as an alternative means
for information processing over a broad frequency range
stimulates the so-called magnonics aimed at manipulating the
generation and propagation of SWs. Although MCs are used
for dipolar or exchange-coupled constituent materials [26],
the coherent coupling of magnonic atoms via an intermediary
will also form MCs [27,28], opening a new possibility to
design material properties for SWs.

MCs, the building blocks of magnonics, owing to special
characteristics of SWs spectra, are used in tunable phase
shifters [29], magnetic sensors [30], and transistors [31].
Furthermore, MCs offer a unique platform which has several
advantages over photonic or phononic devices, because they
can be easily modified by applying a magnetic field. Intrigu-
ingly, the band gaps can be manipulated not only by changing
crystal parameters and using various materials but also by
tuning the direction and strength of the applied magnetic field.
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These unprecedented features pave the way for reconfigurable
magnonic devices which show reprogrammable tailored band
structures [6].

On the other hand, the key features of topological phases
in condensed matter have transferred to the realm of pho-
tonics, phononics, and magnonics. The potentially nontrivial
topological properties of collective excitations in photonic
[32–34] and phononic [35–38] metamaterials were uncovered.
Recently, known topological effects in fermionic systems
found their analogues in bosonic systems, such as in the
experimental realizations of one-way topologically protected
edge states. By invoking time-reversal symmetry breaking, a
photonic analog of a quantum Hall phase with chiral edge
modes was proposed [39–41] and the existence of such robust
edge modes were experimentally observed shortly afterward
[42]. The protected unidirectional propagation of elastic edge
waves were also reported in phononic crystals [43]. More-
over, spin and valley Hall effects which demand breaking
of spatial symmetry were demonstrated by using photonic
[44–47] and phononic [48,49] topological insulators. Other
artificial systems such as photonic lattices [50,51], and dielec-
tric resonators [52,53], were also shown to present interesting
nontrivial topological features. Many studies are devoted to
topologically protected edge states of interacting spins on
a lattice [54–57]. However, topological phases of artificial
magnetic structures are less explored.

The Su–Schrieffer–Heeger (SSH) model proposed to de-
scribe the transport properties of one-dimensional polyacety-
lene [58] has raised attention to the topological phases of
matter. The SSH model exhibits rich physical phenomena,
such as fractional charge [59], nontrivial end states [60,61],
and topological soliton states [62]. The transition between
trivial and topological phases of the SSH model is associated
with the number of midgap edge states as the topological
invariant. The SSH model is realized with a phononic crystal
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waveguide [63], and cold atoms in one-dimensional optical
lattices [64]. It is also simulated in a photonic crystal excited
with a laser light [65] and in a transmission line excited with
a microwave source [66].

To realize a bosonic system almost similar to the SSH sys-
tem, we introduce a magnonic crystal rather than a photonic
or a phononic crystal. In this paper, we address the collec-
tive magnonic modes of a linear bipartite chain of dipolarly
coupled magnetic spheres which are subjected to external
magnetic fields. The spin-wave properties of our system are to
some extent analogous to the electronic properties of the SSH
system. Despite the absence of chiral symmetry, the magnonic
crystal exhibits rich physics. Due to the dipolar interactions in
an infinite chain of magnetic spheres, a two-band magnonic
band structure arises which has a small gap at the edge of
the first Brillouin zone. Upon tuning the parameters of the
system, especially applied magnetic fields, the Zak phase of
the magnonic bands becomes quantized and reveals two topo-
logically distinct phases of the system. The phase transition
is accompanied by closing and re-opening the energy gap.
In the case of a finite chain, the external magnetic fields
determine whether topologically protected localized states or
Tamm-like states form at the ends of the chain. The chain of
magnetic spheres is of fundamental interest due to its inherent
topologically nontrivial phases and its tunability by applied
magnetic fields, which makes it promising as a dynamically
reconfigurable material for future use in magnonics.

This paper is organized as follows: In Sec. II, we introduce
our model for collective excitations in a chain of magnetic
spheres. The topological properties of the magnonic band
structure of the chain, and the appearance of different kinds
of end states, are discussed in Secs. III and IV, respec-
tively. In Sec. V we investigate the formation of localized
edge state at the interface between two topologically dis-
tinct chains. Our analytical and numerical results regarding
the appearance of two types of end modes are discussed
in Sec. VI. In Sec. VII, we conclude and summarize our
findings.

II. MODEL

We consider a one-dimensional bipartite lattice composed
of N unit cells (see Fig. 1). The intra- and intercell dis-
tances between adjacent sites are d1 and d2, respectively.
The distance between sites of the same type is d = d1 + d2.
The nth unit cell contains two magnetic spheres possess-
ing macrospins Ŝn = (Ŝx

n , Ŝ
y
n , Ŝz

n) and Ŝ′
n = (Ŝ ′x

n , Ŝ
′y
n , Ŝ ′z

n ). We
assume that Ŝ2

n = S1(S1 + 1)h̄2 and Ŝ′2
n = S2(S2 + 1)h̄2,

which are the magnitudes of spins at equivalent sites, are the
same. A constant magnetic induction B1 = B1ez (B2 = B2ez)
saturates the equilibrium magnetization of an S1-type (S2-
type) sphere. The outermost left and right sites of the chain
experience additional magnetic inductions δBL = δBLez and
δBR = δBRez, respectively. We explore the effect of the addi-
tional magnetic inductions in detail.

The dipole moments of magnetic spheres in the chain
are coupled through the dipole-dipole interaction. The model
Hamiltonian that describes the collective excitation in the

d

d1
d2

B1+ BL

B2
B1

B2
B1

B2

B1+ BR

x
z

y

FIG. 1. A linear bipartite chain of magnetic spheres, with a unit
cell consisting of two spheres of macrospins, S1 and S2. The intra-
and intercell separation between neighboring sites are d1 and d2,
respectively. A constant magnetic induction B1 (B2) saturates the
equilibrium magnetization of a S1-type (S2-type) sphere. The out-
ermost left and right sites experience additional magnetic inductions
δBL and δBR , respectively.

bipartite chain of magnetic spheres reads

H = μ0μ
2

4πd3
1

N∑
n=1

[Ŝn · Ŝ′
n − 3(Ŝn · ex )(Ŝ′

n · ex )]

+ μ0μ
2

4πd3
2

N−1∑
n=1

[Ŝn+1 · Ŝ′
n − 3(Ŝn+1 · ex )(Ŝ′

n · ex )]

− μB1

N∑
n=1

Ŝz
n − μB2

N∑
n=1

Ŝ ′z
n , (1)

where μ0 is the vacuum permeability, and μ = gμB/h̄ in
which g and μB are the g factor and the Bohr magneton,
respectively. We have neglected the dipole-dipole interactions
beyond the nearest neighbors, since these interactions do not
change the main picture.

In the ground state of the system, all macrospins are
aligned parallel to the applied magnetic field. Although
macrospins are large, the quantum nature of low-temperature
macrospin-fluctuations must be respected. Being interested in
the low-energy collective excitations of the system, we use the
Holstein–Primakoff transformation to rewrite the Hamiltonian
in terms of the spin-deviation operators. We express the spin
operator Ŝ (Ŝ′) in terms of the bosonic operator â (b̂) as

Ŝ+ = h̄
√

2S1â, Ŝ ′+ = h̄
√

2S2b̂,

Ŝ− = h̄
√

2S1â†, Ŝ ′− = h̄
√

2S2b̂†,

Ŝz = h̄(S1 − â†â), Ŝ ′z = h̄(S2 − b̂†b̂). (2)

Note that the commutation relations of the spin operators
Ŝ± = Ŝx ± iŜy and Ŝ±′ = Ŝ ′x ± iŜ ′y imply that [â, â†] = 1
and [b̂, b̂†] = 1. The Hamiltonian (1) can be written in terms
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of the bosonic operators as

H = −
√

S1S2
μ0h̄

2μ2

8πd3
1

N∑
n=1

(ânb̂†
n + 3ânb̂n + H.c.)

−
√

S1S2
μ0h̄

2μ2

8πd3
2

N−1∑
n=1

(ân+1b̂†
n + 3ân+1b̂n + H.c.)

− μ0h̄
2μ2

4πd3
2

N−1∑
n=1

(S2â†
n+1ân+1 + S1b̂†

nb̂n)

+ h̄μ

[
B1 − μ0h̄μ

4πd3
1

S2

] N∑
n=1

â†
nân

+ h̄μ

[
B2 − μ0h̄μ

4πd3
1

S1

] N∑
n=1

b̂†
nb̂n + E0, (3)

where all terms containing the product of four opera-
tors have been neglected. Hereafter E0 = −Nh̄μ(B1S1 +
B2S2) + μ0h̄

2μ2S1S2[N/d3
1 + (N − 1)/d3

2 ]/(4π ) serves as
the zero of the energy.

It has been theoretically anticipated [67] and experi-
mentally demonstrated [68–70] that macrospins—strongly
exchange-coupled spins in a ferromagnetic or ferrimagnetic
material—are promising: Using the high spin density of
ferromagnets or ferrimagnets and a microwave cavity, even
the ultrastrong-coupling regime of the light-matter interaction
is reachable [70]. Inspired by the experiment of Tabuchi
et al. [69], we assume that spheres are made of the ferri-
magnet yttrium iron garnet (YIG) with a spin density ∼2 ×
1028 μB m−3. For spheres of diameter ∼1 μm, we find S1,2 ∼
1010. Typically d1,2 ∼ 3–10 μm and B1,2 ∼ 0.1–1 T.

III. COLLECTIVE EXCITATIONS IN AN INFINITE CHAIN
OF MAGNETIC SPHERES

We first concentrate on an infinite chain of magnetic
spheres to identify the possible topologically distinct phases
of the bulk. This is of great use when we consider a finite chain
or an interface between two topologically distinct chains,
since there is a link between the bulk topological invariant
and the presence of topologically protected end states. Indeed,
the bulk-boundary correspondence is a recurrent theme in the
theory of topological insulators.

The physical properties of an infinite chain do not depend
on its ends, thus we adopt periodic boundary conditions and
rewrite the Hamiltonian (3) in the momentum space. Due to
the translational invariance of the system, the Hamiltonian
in the basis �

†
k = (â†

k, b̂†
k, â−k, b̂−k ) can be written as H =∑

k �
†
kH(k)�k , where H(k) is given by

H(k) = τ0 ⊗ M0 + (τ0 + 3τx ) ⊗ M1(k), (4)

M0 =
[
ζ1 0
0 ζ2

]
, M1(k) =

[
0 ηk

η∗
k 0

]
, (5)

where τi refers to Pauli matrices, τ0 is the iden-
tity matrix, and k is the lattice momentum. Here we
have defined ζ1 = 2(w1 + w2)

√
S2/S1 + h̄μB1, ζ2 = 2(w1 +

w2)
√

S1/S2 + h̄μB2, and ηk = w1 + w2e
−ikd in terms of

w1 = −μ0h̄
2μ2

√
S1S2/(8πd3

1 ) and w2 = w1d
3
1/d3

2 . It can
easily be verified that, when ζ1 = ζ2, the Hamiltonian has
an inversion symmetry IH(k)I−1 = H(−k) with respect to
the unitary operators I = τ0 ⊗ τx and I = τx ⊗ τx . Moreover,
CH(k)C−1 = H(−k), where C = τx ⊗ τ0Kc, with Kc being
the complex-conjugate operator, which implies that, if |k〉
is an eigenvector of H(k) with energy ε(k), then another
solution is given by C|k〉 with energy ε(−k). The Hamiltonian
has no chiral symmetry.

The Hamiltonian H can be diagonalized by a Bogoliubov
transformation given by

ĉ1k = o1k âk + p1kb̂k + q1k â†
−k + v1kb̂†

−k,

ĉ2k = o2k âk + p2kb̂k + q2k â†
−k + v2kb̂†

−k. (6)

Rewritten in terms of the introduced quasiparticles the Hamil-
tonian (3) takes the form

H =
∑

k

(E1k ĉ†1k ĉ1k + E2k ĉ†2k ĉ2k ). (7)

The Heisenberg equations of motion [ĉ1k, H ] = E1k ĉ1k and
[ĉ2k, H ] = E2k ĉ2k then yield⎡
⎢⎢⎢⎢⎣

ζ1 η∗
k 0 −3η∗

k

ηk ζ2 −3ηk 0

0 3η∗
k −ζ1 −η∗

k

3ηk 0 −ηk −ζ2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

o1,2k

p1,2k

q1,2k

v1,2k

⎤
⎥⎥⎥⎥⎦ = E1,2k

⎡
⎢⎢⎢⎢⎣

o1,2k

p1,2k

q1,2k

v1,2k

⎤
⎥⎥⎥⎥⎦.

(8)

The quasiparticles in Eq. (7) thus correspond to the excitations
of the chain, and their energies are

E2
1,2k = − 8|ηk|2 + 1

2

(
ζ 2

1 + ζ 2
2

) ± [|ηk|2(ζ1 + ζ2)2

+ (ζ1 − ζ2)2
(

1
4 (ζ1 + ζ2)2 − 9|ηk|2

)] 1
2 . (9)

In the vicinity of the edges of the first Brillouin zone,
we write kd = ±π + ked where |ked| � 1. It follows
that the energy spectrum E1,2ke

resembles the massive
relativistic energy spectrum E = ±(m2c4 + p2c2)1/2. In
particular, for ζ1 = ζ2 	 |w1,2|, we find that E1,2ke

= ζ1 ±
[(w1 − w2)2 + w1w2k2

e d
2]1/2, where two magnonic bands are

symmetric with respect to the energy ζ1.
The spectrum has an overall nonzero gap, which how-

ever can be made zero at kd = ±π , for |ηk|2(ζ1 + ζ2)2 +
(ζ1 − ζ2)2[ 1

4 (ζ1 + ζ2)2 − 9|ηk|2] = 0. This implies that the
gap closes if simultaneously w1 = w2 and ζ1 = ζ2, for which
E1k = E2k = ζ1. Figure 2(a) shows the bulk excitation spec-
trum of the chain E1,2k as a function of kd for different values
of w1/w2 and for the special case ζ1 = ζ2. The two limiting
cases of w1 
= 0, w2 = 0 and w1 = 0, w2 
= 0, with gaped
dispersion in which intracoupling and intercoupling are dom-
inant, respectively, correspond to different dimerized regimes
and hence indicate that a transition must occur somewhere in
between these two limits. For w1/w2 > 1 the system is in a
topologically trivial phase, while for w1/w2 < 1 the chain is
in a topological phase and the transition is characterized by
closing and re-opening the gap at w1/w2 = 1.
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ζ1 = ζ2
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FIG. 2. (a) The energy spectrum of the Bogoliubov quasiparticle
excitations of the chain E1,2k versus kd for ζ1 = ζ2 and w1/w2 ∈
{0.5, 1, 2}. (b) The Zak phase ϕZak versus w1/w2 for both ζ1 = ζ2

and ζ1 
= ζ2. Here S2/S1 ∈ {1, 2} are exemplified. In all plots B1 =
B2 = 0.1 T, d2 = 6 μm and S1 = 1010.

There is a close similarity between the chain of magnetic
spheres and the SSH system hence our system supports
topological edge states inherited from the SSH model. To
demonstrate this, we calculate the Zak phase [71] defined by

ϕZak = −i

∫
1st BZ

〈�1,2k|∂k|�1,2k〉B
dk, (10)

where |�1,2k〉 = [o1,2k, p1,2k, q1,2k, v1,2k]T is the eigenvector
of H and the integral is taken over the first Brillouin zone.
It should be noted that, for bosonic eigenstates, we have
〈�1|�2〉B

= 〈�1|τz ⊗ τ0�2〉 [72]. Figure 2(b) shows the Zak
phase as a function of w1/w2. For ζ1 = ζ2 the Zak phase is
quantized, revealing two topologically distinct phases, while
it is a continuous function of w1/w2 for ζ1 
= ζ2.

IV. EDGE STATES IN A FINITE CHAIN
OF MAGNETIC SPHERES

The quantization of the Zak phase of the magnonic bands
infers the end modes which form in a finite chain of magnetic
spheres. To gain deeper insight into the end modes, in the
following consistent analytical and numerical treatments of
end states will be presented.

A. Analytical treatment

We have found that a nontrivial phase may exist if ζ1 = ζ2

which can be fulfilled assuming that S1 = S2 and B1 = B2. It
follows that

−μ0h̄
2μ2

4πd3
1

S2 + h̄μB1 = −μ0h̄
2μ2

4πd3
1

S1 + h̄μB2 ≡ τ. (11)

However, due to the presence of the additional magnetic
inductions δBL ≡ δL/(h̄μ) and δBR ≡ δR/(h̄μ), the “onsite
energies” at the outermost left and right sites of the chain
are τ + δL and τ + δR , respectively. We will show that the
difference between the outermost and the bulk onsite energies
strikingly affects the nature of the edge states.

We rely on a sort of “rotating wave approximation” (RWA)
to neglect â†

nb̂†
n and similar terms in the Hamiltonian (3).

Note that, according to the sub-Hamiltonian ζ1
∑N

n=1 â†
nân +

ζ2
∑N

n=1 b̂†
nb̂n, the terms like â†

nb̂†
n oscillate at frequency

(ζ1 + ζ2)/h̄. The neglect of quickly rotating terms of the
Hamiltonian (3) is valid when this frequency (ζ1 + ζ2)/h̄ is
much larger than the hopping frequencies |w1|/h̄ and |w2|/h̄.
The approximate Hamiltonian can be written as H = �†h�

where �† = [â†
1, b̂†

1, . . . , â†
N, b̂†

N ] and h is given by

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ + δL w1 0 0 · · · 0 0 0

w1 ζ1 w2 0 · · · 0 0 0

0 w2 ζ1 w1 · · · 0 0 0

...
...

. . .
. . .

. . .
...

...
...

0 0 0 0 · · · w2 ζ1 w1

0 0 0 0 · · · 0 w1 τ + δR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

We look for eigenstate |ψ〉 = [A1,B1, . . . ,AN,BN ]T of h.
The equation h|ψ〉 = E|ψ〉 yields

(τ + δL)A1 + w1B1 = EA1, (13)

w1AN + (τ + δR )BN = EBN, (14)

w1An + ζ1Bn + w2An+1 = EBn, (15)

w2Bn−1 + ζ1An + w1Bn = EAn, (16)

where 1 < n < N . It is convenient to introduce AN+1 and B0

and adopt the recurrence equations (15) and (16) for 1 � n �
N . Then, Eqs. (13) and (14) can be replaced with

(τ + δL − ζ1)A1 = w2B0, (17)

w2AN+1 = (τ + δR − ζ1)BN . (18)

Note that the energy E does not appear explicitly in the above
boundary conditions.

We assume that the end states are exponentially decaying
with distance into the bulk from the boundaries, and consider
the ansatz Al = A0z

l
es and Bl = B0z

l
es, where 0 � l � N + 1,

and A0, B0, and zes are complex numbers. Indeed, zes, or the
localization length

des = d

| ln |zes|| , (19)

characterize the decay of the edge state. For large values of N ,
the eigenstate |ψL〉 localized at the left end and the eigenstate
|ψR〉 localized at the right end can be studied separately. First
we focus on the left localized eigenmode |ψL〉. By substituting
the above ansatz in Eqs. (15)–(17), we find

0 = w1

w2
(τ + δL − ζ1)2z2

es

+ [
(τ + δL − ζ1)2 − w2

2

]
zes − w1w2, (20)

E = w1

w2
zes(τ + δL − ζ1) + τ + δL. (21)

224409-4



TOPOLOGICAL MAGNON MODES IN A CHAIN OF … PHYSICAL REVIEW B 98, 224409 (2018)

Note that here only the solution with |zes| < 1 is admissible.
The normalized eigenstate is

|ψL〉 = 1

|zes|

√√√√ 1

1 + |zes|2
(

ζ1−τ−δL

w2

)2

1 − |zes|2
1 − |zes|2N

×
[
zes,

τ + δL − ζ1

w2
z2

es, . . . , z
N
es,

τ + δL − ζ1

w2
zN+1

es

]T

.

(22)

A similar analysis for the right localized eigenmode ends up
with

|ψR〉 = 1

|zes|N

√√√√ 1

1 + (
τ+δR−ζ1

w2|zes|
)2

1 − |1/zes|2
1 − |1/zes|2N

×
[
τ + δR − ζ1

w2zes
zes, zes, . . . ,

τ + δR − ζ1

w2zes
zN

es, z
N
es

]T

,

(23)

where

0 = w1w
2
2z

2
es + [

w3
2 − w2(τ + δR − ζ1)2

]
zes

− w1(τ + δR − ζ1)2, (24)

E = w1w2zes + w2
2

τ + δR − ζ1
+ ζ1. (25)

But here only the solution with |zes| > 1 is admissible.
Of particular interest is the case τ + δL = ζ1, where the

outermost left site and the bulk sites have the same onsite en-
ergies, for which Eqs. (20) and (21) imply that zes = −w1/w2

and E = ζ1. If w1/w2 < 1 then the eigenstate is localized at
the left end with the amplitude given by

|ψL|2 = 1 − (
w1
w2

)2

1 − (
w1
w2

)2N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0(
w1
w2

)2

0

...(
w1
w2

)2(N−1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Note that here Bn = 0 for all n; that is, the eigenstate |ψL〉
is zero on the sublattice of S2-type magnetic spheres. For the
other case τ + δR = ζ1, Eqs. (24) and (25) imply that zes =
−w2/w1 and E = ζ1. If w1/w2 < 1 then the eigenstate will
be localized at the right end and its amplitude reads

|ψR|2 = 1 − (
w1
w2

)2

1 − (
w1
w2

)2N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(
w1
w2

)2(N−1)

...
0(

w1
w2

)2

0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)
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FIG. 3. (a) The localization length des, and (b) the energy E

of the left end mode |ψL〉 versus w1/w2. Analytical and numer-
ical results are denoted by solid and dashed lines, respectively.
Here N = 80, B1 = B2 = 0.1 T, d2 = 6 μm, S1 = S2 = 1010, δL =
−0.0259Ec, and δR = 0.

But here An = 0 for all n; that is, the eigenstate |ψR〉 is zero
on the sublattice of S1-type magnetic spheres.

B. Numerical treatment

Now we go beyond the RWA and consider all â†
nb̂†

n

and similar terms in the Hamiltonian. In the following,
we summarize an efficient numerical method to diagonalize
quadratic bosonic Hamiltonians given by Colpa [72]. In terms
of �† = [â†

1, b̂†
1, . . . , â†

N, b̂†
N ] the Hamiltonian (3) can be

written as

H = 1
2 [�† �]H̃C

[
�

�†

]
. (28)

By using a paraunitary matrix T , the matrix H̃C can be put in
a diagonal form as

T †H̃CT =
[

E 0
0 E

]
. (29)

Here 0 is a 2N × 2N matrix whose elements are
zero, and E = diag[E1, E2, . . . , E2N ]. Introducing χ † =
[d̂†

1, d̂†
2, . . . , d̂†

2N ] via [χ † χ ]T † = [�† �], the Hamiltonian
can be recast into the form

H = 1
2 [χ † χ ]

[
E 0
0 E

][
χ

χ †

]
. (30)

The task is now to find the paraunitary matrix T . By invoking
the Cholesky decomposition, the matrix H̃C can be decom-
posed as H̃C = K†K, where K is an upper triangle matrix. Af-
terward, a matrix σ , where σ i,j = δi,j for j = 1, . . . , 2N and
σ i,j = −δi,j for j = 2N + 1, . . . , 4N , is utilized to build the
Hermitian matrix W = KσK† which can be diagonalized by a
unitary matrix U , such that U†WU = τz ⊗ E. Finally, the pa-
raunitary matrix can be constructed as T = K−1U (τ0 ⊗ E

1
2 ).

Figure 3 shows the localization length des and the energy
E of the left end mode as a function of w1/w2 obtained from
analytical and numerical approaches which are denoted by
solid and dashed lines, respectively. The localization length
des and energy E of the end states are about the lattice constant
d and the characteristic energy Ec ≡ h̄μB1, respectively. The
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FIG. 4. The energies of a finite chain with N = 10 magnetic
spheres versus w1/w2. The energies of bulk states (in black solid)
and localized end modes (in dashed) for (a) δL = δR = 0, (b) δL =
−0.0259Ec and δR = 0, and (c) δL = δR = ζ1 − τ . Here w1 + w2 =
−4 × 10−4Ec is kept constant and all the other parameters are the
same as in Fig. 3.

analytical results calculated from the RWA approximation are
in good agreement with the numerical results derived from
the full Hamiltonian, ensuring that the RWA which neglects
the quickly oscillating terms is applicable.

We demonstrate how the external onsite energies δL and
δR and w1/w2 affect the nature of the end modes. Moreover,
we find the corresponding wave function of the possible end
modes, indicating their end localization. Figure 4 shows the
energy spectrum as a function of w1/w2 for a chain with N =
10. Here w1 + w2 = −4 × 10−4Ec and thus ζ1 = 0.9992Ec

are kept constant and all the other parameters are the same as
in Fig. 3. The energies of the delocalized and localized modes
are denoted by solid and dashed lines, respectively. Besides,
the wave functions of the various localized end modes for a
chain with N = 80 are depicted in Fig. 5.

In the absence of onsite energies δL = δR = 0, Fig. 4(a),
there is a pair of doubly degenerate localized states ener-
getically above the delocalized states. Besides, there are two
singly degenerate midgap eigenmodes which are delocalized
(localized) when w1/w2 is smaller (greater) than 1.8 (Note
that, in the limit of large N , the transition point tends to
w1/w2 = 1, in all cases). In this case all localized states are
Tamm-like states [73]. The corresponding wave functions for
the left ψL and right ψR localized states with energies above
the gap are shown in Fig. 5(a).

For the case of δL 
= 0 and δR = 0, Fig. 4(b), there are two
singly degenerate localized states, one energetically above and
one energetically below the delocalized states, along with two
singly degenerate midgap eigenmodes which are delocalized
(localized) when w1/w2 is smaller (greater) than 1.8. Despite

−1

0

1

ψ

(a)

−1

0

1

ψ

(b)

0 20 40 60 80
site index

−1

0

1

ψ

(c)

FIG. 5. ψL (in red) and ψR (in blue) for (a) δL = δR = 0 and
w1/w2 = 2, (b) δL = −0.0259Ec, δR = 0, and w1/w2 = 2, and (c)
δL = δR = ζ1 − τ and w1/w2 = 0.5. The eigenenergies pertaining
to (ψL, ψR ) are (a) (0.9997, 0.9997)Ec, (b) (0.9992, 0.9991)Ec, and
(c) (0.9992, 0.9992)Ec. The wave functions have been calculated
for a chain of N = 80 sites. Here w1 + w2 = −4 × 10−4Ec is kept
constant and all the other parameters are the same as in Fig. 3.

having the external onsite energy at one of the chain ends, all
localized states are Tamm-like states. The corresponding wave
functions for the localized states with energies within the gap
are plotted in Fig. 5(b).

The case of δL = δR = ζ1 − τ , where onsite energies of the
outermost and the bulk sites are equal, is of particular interest.
Figure 4(c) shows that here all states are singly degenerate
delocalized states when w1/w2 > 0.5 while for w1/w2 < 0.5,
a pair of doubly degenerate localized modes appear within
the gap, which are topological end states. For w1/w2 < 1 the
system is in a topological phase characterized by ϕZak = π

and is thus expected to host localized topologically protected
edge states imposed by the bulk-boundary correspondence.
The wave functions for the localized end states in this case
are depicted in Fig. 5(c). Therefore, the type of end modes is
determined by the additional magnetic inductions applied at
the end sites of the chain.

To examine the robustness of the edge states against pertur-
bations, we add Hperturb = wperturb

∑N−1
n=1 (ânân+1 + b̂nb̂n+1 +

H.c.) to the Hamiltonian (3). In other words, we add

Hperturb(k) = wperturb

[
0 e−ikd

eikd 0

]
⊗ τ0

to the Hamiltonian (4). We find that, despite the presence
of this perturbation, the Zak phase of an infinite chain with
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ζ1 = ζ2 persists to be quantized, and topological end states
of a finite chain persist to be present. Indeed, topological end
states are protected against perturbations that preserve the in-
version symmetry IHperturb(k)I−1 = Hperturb(−k) where I =
τx ⊗ τx .

V. EDGE STATES AT THE INTERFACE OF TWO
TOPOLOGICALLY DISTINCT CHAINS

Now we study the existence of topologically protected
edge states at the interface between two topologically distinct
subchains of magnetic spheres, characterized by different Zak
phases ϕZak = 0 and ϕZak = π . We assume that the left and
right subchains consist of N and N + 1 magnetic spheres, re-
spectively, where N is an even integer. The unit cell of the left
and the right subchains is identified with a pair of distances
(d1, d2) and (d ′

1, d
′
2), respectively, such that d = d1 + d2 and

d ′ = d ′
1 + d ′

2. Without loss of generality, we choose d ′
2 = d2.

The energy wJ characterizes the junction of the two subchains.
The bulk sites of the left (right) subchain have the onsite

energy ζ1 (ζ ′
1), while the end sites of the left (right) subchain

have the onsite energies τ + δL and τ + δR (τ ′
L + δ′

L and τ ′
R +

δ′
R), where

τ = −μ0h̄
2μ2

4πd3
1

S1 + h̄μB1,

τ ′
L = −μ0h̄

2μ2

4πd ′
1

3 S1 + h̄μB1, (31)

τ ′
R = −μ0h̄

2μ2

4πd3
2

S1 + h̄μB1.

We analytically verify the formation of the local-
ized edge state at the interface. To this end, we rely
on the RWA and assume that the bulk and the end
sites of each left and right subchains have the same
onsite energies and solve for the eigenmode |ψ〉 =
[A1,B1, . . . ,AN,BN,AN+1,BN+1, . . . ,A2N+1]T of h given
in the appendix. By considering the ansatz

Al = AN

zN−l
es

for 1 � l � N,

Bl = BN

zN−l
es

for 1 � l � N,

(32)
Al = AN+1z

′
es

l−N−1 for N + 1 � l � 2N + 1,

Bl = BN+1z
′
es

l−N−1 for N + 1 � l � 2N.

and following the procedure outlined in Sec. IV A, we end up
with

0 =
√(

w1

w2

)2

+ w1

w2

(
zes + 1

zes

)
+ 1 − (ζ1 − ζ ′

1)

w2

+
√(

w′
1

w2

)2

+ w′
1

w2

(
z′

es + 1

z′
es

)
+ 1, (33)

0 =
√

w2/zes + w1

w2zes + w1

√
w2z′

es + w′
1

w2/z′
es + w′

1

+ z′
es

zes

(
wJ

w2

)2

.

Note that here only eigenstates with |zes| > 1 and |z′
es| < 1 are

admissible. Indeed, the localization lengths des = d/| ln |zes||
and d ′

es = d ′/| ln |z′
es|| characterize the decay of the edge state

inside the left and right subchains, respectively. Moreover, it
turns out that

AN+1 = AN

w2

wJ
zes,

BN = −AN

√
w2zes + w1

w2/zes + w1
, (34)

BN+1 = −AN

wJ

w2
z′

es

√
w2zes + w1

w2/zes + w1
,

where

|AN |2 =
[

1 − 1/z2N
es

1 − 1/z2
es

w2(zes + 1/zes) + 2w1

w2/zes + w1

+
∣∣∣∣w2zes

wJ

∣∣∣∣
2 1 − z′

es
2N+2

1 − z′
es

2

+
∣∣∣∣wJz

′
es

w2

∣∣∣∣
2

w2zes + w1

w2/zes + w1

1 − z′
es

2N

1 − z′
es

2

]−1

. (35)

Now using Eq. (32), the eigenstate |ψ〉 can be determined
straightforwardly.

The appearance of the localized edge state is also verified
numerically by going beyond the RWA. We consider a chain
composed of two subchains with 60 and 61 magnetic spheres.
Figures 6(a)–6(c) show the localization length for each sub-
chain des, d ′

es and the energy spectrum E for various w1 and
w′

1. Even though the analytical results are calculated within
the RWA, they are in good agreement with the full numerical
results. Figure 6(d) demonstrates that, at the domain wall
formed between two subchains, an edge state forms at the
midgap energy. It is worth noting that, when both subchains
are sharing the same topological invariant, there is no edge
state at the interface. The localized edge state in Fig. 6(d)
exponentially decays away from the interface with different
decay lengths, des and d ′

es. Due to the broken mirror symmetry
around the interface, the localized edge state is neither anti-
symmetric nor symmetric.

VI. DISCUSSION

The gap between the two excitation branches for the trans-
lationally invariant chain of magnetic spheres can be closed if
w1 = w2 and ζ1 = ζ2, which leads to E1k = E2k = ζ1. The
characteristic energy of the localized eigenmode at the left
and right ends of a finite chain is ζ1 when zes = −w1/w2

and zes = −w2/w1, respectively, which is possible only if
the onsite energies of end sites are equal to ζ1. The nature
of the localized states is determined by the onsite energies
of the chain bulk and end sites. Tamm-like states can form
with an energy higher or lower than ζ1, while topological end
states with energy ζ1 occurs only if w1/w2 < 1 and τ + δL =
ζ1 or τ + δR = ζ1. Moreover, the topological end states are
protected against perturbations that do not break the inversion
symmetry. Thus the existence and nature of localized end
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FIG. 6. The analytical (circle) and numerical (triangle) results
for (a) d ′

es as a function of w′
1/w2, (b) des, and (c) E as a function

of w1/w2. (d) |ψ |2 of the localized state at the interface of two
subchains for w1/w2 = 3, ζ1 = 0.9966Ec, and ζ ′

1 = 0.9989Ec. In
all panels (w1/w2)(w′

1/w2) = 1, wJ = w2, N = 60 and the other
parameters are the same as in Fig. 3.

states of a chain of magnetic spheres can be controlled by the
external magnetic fields.

The analytical and numerical results for the localization
length des and energy E of localized states are in good agree-
ment (Fig. 3). This confirms that the RWA is applicable when
the frequency (ζ1 + ζ2)/h̄ is much larger than the hopping
frequencies |w1|/h̄ and |w2|/h̄. Whether the RWA breaks
down has no influence on the topology of the system, but on
the symmetry of its energy spectrum; see Fig. 7.

−π −π/2 0 π/2 π
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0.3

0.6

E
1,

2k
/h̄

μ
B
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0.997

0.998

0.999
(b)

FIG. 7. The bulk excitation spectrum E1k (in black solid) and E2k

(in red dashed) as a function of kd for (a) B1 = B2 = 0.55 mT, and
(b) B1 = B2 = 100 mT. Here d1 = d2 = 6 μm and S1 = S2 = 1010.

Remarkably, comparatively low magnetic inductions
δBL,R ∼ 1 mT are required to control the system. Despite
the micrometer separation of spheres, no practical difficulties
arise in applying the external fields: Only the outermost
left and right spheres with a separation of ∼1 mm should
experience extra local magnetic inductions while all spheres
are subjected to a weak uniform field B1,2 ∼ 100 mT.

Our analysis suggests a physical realization of a magnonic
waveguide in which the guided modes are due to the dipolar
coupling among magnetic spheres with small magnetic loss
and high values of saturation magnetization, and give rise
to the transmission of spin waves with highly suppressed
backscattering. This opens up novel opportunities to explore
the capability of an information-carrying spin wave for future
use in technologies. Moreover, magnetic spheres in cavities
have been demonstrated to hybridize with optical [74,75]
and microwave photons [69,70]. Our study paves the way
towards utilizing a chain of magnetic spheres for bidirectional
conversion between optical and microwave photons, which is
of prime importance in the realm of long-distance quantum
communication.

VII. CONCLUSION

In conclusion, we have introduced a magnonic crystal, a
linear bipartite chain of dipolarly coupled magnetic spheres,
which to some extent provides a spin wave analogy with the
SSH model which is able to host topologically protected end
states. We specified the fundamental properties of collective
excitations in the magnetic chain with a two-site unit cell. We
obtained the Zak phase associated with the magnonic bands
to classify topologically distinct phases. We also investigated
various types of localized end states that may exist in a finite
chain both analytically and numerically. Our results indicate
that not only Tamm-like localized states but also topological
end states may form at the boundaries of the system. The
nature of end modes that may form is determined by the onsite
energies of the bulk and end sites. The external magnetic fields
thus can be used to control the Tamm-like localized states,
topological end states, energy spectrum, energy gap, and other
properties of the chain.

The electric and magnetic dipolar interactions are quite
similar, hence topological chains of metallic nanoparticles
[76] and magnetic microspheres may share some common
features. However, a bipartite chain composed of magnetic
microspheres is easier to realize experimentally. The mi-
crometer separation of spheres can also be changed to tune
the topological chain. Notably the external magnetic fields
can be utilized to dramatically change the characteristics of
the magnetic chain. Therefore, a chain of magnetic spheres
provides a promising dynamically reconfigurable system.

APPENDIX

Relying on the RWA, the approximate Hamiltonian in
the basis �† = [â†

1, b̂†
1, . . . , â†

2N+1] can be expressed as
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H = �†h�, where h is given by

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ + δL w1 0 0 · · · 0 0 0 0 0 0 0 · · · 0 0 0

w1 ζ1 w2 0 · · · 0 0 0 0 0 0 0 · · · 0 0 0

0 w2 ζ1 w1 · · · 0 0 0 0 0 0 0 · · · 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

...
... · · · ...

...
...

0 0 0 0 · · · w2 ζ1 w1 0 0 0 0 · · · 0 0 0

0 0 0 0 · · · 0 w1 τ + δR wJ 0 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 wJ τ ′
L + δ′

L w′
1 0 0 · · · 0 0 0

0 0 0 0 · · · 0 0 0 w′
1 ζ ′

1 w2 0 · · · 0 0 0

0 0 0 0 · · · 0 0 0 0 w2 ζ ′
1 w′

1 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

0 0 0 0 0 0 0 0 0 0 0 0 · · · w′
1 ζ ′

1 w2

0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 w2 τ ′
R + δ′

R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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