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Stability of the skyrmion lattice near the critical temperature in cubic helimagnets
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The phase diagram of cubic helimagnets near the critical temperature is obtained from a Landau-Ginzburg
model, including fluctuations to Gaussian level. The free energy is evaluated via a saddle-point expansion around
the local minima of the Landau-Ginzburg functional. The local minima are computed by solving the Euler-
Lagrange equations with appropriate boundary conditions, preserving manifestly the full nonlinearity that is
characteristic of skyrmion states. It is shown that the fluctuations stabilize the skyrmion lattice in a region of
the phase diagram close to the critical temperature, where it becomes the equilibrium state. A comparison of
this approach with previous computations performed with a different approach (truncated Fourier expansion of

magnetic states) is given.
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I. INTRODUCTION

Cubic helimagnets support chiral magnetic textures called
skyrmions that are very interesting from fundamental and
applied physics points of view. From the point of view
of fundamental physics, skyrmions are solitonic states that
emerge as topologically nontrivial solutions of nonlinear field
equations [1]. From the point of view of applied physics, they
are very promising ingredients for spintronic devices [2,3],
since they are textures modulated at the nanoscale, are very
robust because of the protection provided by the topology,
and appear spontaneously under certain conditions that can be
externally controlled via the temperature, the magnetic field,
or the electric current.

Theoretically, skyrmions can appear in bulk materials as
isolated excitations of the forced ferromagnetic phase (FFM)
[4]. However, mean-field computations indicate that they
cannot condense spontaneously into equilibrium states such
as a skyrmion lattice (SKL), since the competing conical
state (CS) has lower free energy [1,5]. To stabilize the
SKL, other ingredients, like high magnetic anisotropy [6]
or modifications of the magnetic stiffness [1], are necessary.
In two-dimensional space, however, the SKL becomes the
equilibrium state in some regions of the phase diagram [7].
Experimentally, SKLs have been found in thin films samples
of some materials [8].

Despite the theoretical considerations, the A phase that
appears in bulk cubic helimagnets has been identified with
a SKL [9-12]. It has been proposed by Miihlbauer et al.
that it is stabilized by fluctuations that modify the mean-field
computations [9]. This idea is supported by Monte Carlo
simulations [13]. Miihlbauer et al. addressed the problem by
minimizing the appropriate free energy using a truncated basis
of Fourier modes for the magnetic configurations. Adding
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the contribution of fluctuations, they found as equilibrium
solution a magnetic state different from the CS and compatible
with a SKL. However, it is unclear how this equilibrium
state is related to the magnetic skyrmions of Bogdanov and
collaborators [4,14,15], which have a highly nonlinear struc-
ture, formed by a central core that has a magnetic moment
pointing opposite to the applied field, surrounded by a FFM
background in which the magnetic moments point in the
direction of the field. The Monte Carlo simulations, although
valuable since they provide some insight, are far from being
conclusive, as they are plagued of technical problems: First,
the physics of the problem involves two very different scales,
the lattice parameters of the underlying crystal and of the
SKL, that cannot be accommodated in a Monte Carlo simu-
lation; second, topology divides the configuration space into
separated sectors which cause the lost of ergodicity of the
Monte Carlo algorithms.

In this paper, we explore the idea that fluctuations stabilize
the SKL using a different approach, working in configuration
space with the fully nonlinear skyrmions of Bogdanov. In
this way, we clarify the nature of the SKL and get insight
into the physics of the problem, showing that the equilibrium
skyrmion lattice is a crystal of solitons. This means that the
strong chiral fluctuations that characterize the precursor phase
of the A phase [16—18] should be described by the nonlinear
skyrmions as elementary excitations, rather than by a bunch
of weakly coupled Fourier modes.

The role of thermal fluctuations as a stabilization factor
in cubic helimagnets at low temperature has been recently
studied by two of the authors in Ref. [19]. A comparison of the
present work with that previous work is in order. In Ref. [19],
the cubic helimagnet was modeled as a system of classical
spins with fixed modulus, so that the degrees of freedom at
each lattice site took values on the unit sphere. The free energy
was computed via a low-temperature expansion—which is
actually a saddle-point expansion—with thermal fluctuations
included at Gaussian level. The fluctuation eigenmodes for
the SKL were obtained by solving the corresponding radial
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equation with an improved discretization scheme to deal with
the singularities at the origin [20]. The low-T expansion is
valid only at temperatures much lower than the zero-field
critical temperature (it was estimated that the computations
are reliable for 7 < 0.57¢) [19]. It is worth mentioning that
very recently a SKL has been found in a cubic helimagnet
at low temperature for magnetic fields in the range close to
the transition to the FFM [21]. This SKL is a new phase
unrelated to the A phase. In addition, a conical phase with
the propagation vector not aligned with the magnetic field
has been discovered at low T in the same material [22].
The existence of a low-T stable SKL, stabilized by small
fluctuations, and the emergence of a new conical phase, were
predicted in Ref. [19]. Incidentally, the inclusion of thermal
fluctuations in the theoretical analysis of monoaxial helimag-
nets also predicts interesting effects at low temperature [23].

The A phase, which appears in the vicinity of the crit-
ical temperature, is far beyond the domain of applicability
of the low-temperature expansion of Ref. [19]. Because of
the mathematical complexity, the model of Ref. [19] is not
suitable to analyze the region of the phase diagram near the
paramagnetic (PM) phase, where the A phase appears. There,
the fluctuations are too strong and the modulus of the local
magnetic moment becomes softened. To cope with this effect,
it is usual to work with a Landau-Ginzburg effective model
in which the degrees of freedom at each lattice point are
the three components of a vector with unrestricted modulus,
which represents a local magnetic moment softened by fast
fluctuations. This is the approach followed in the present
work.

II. THEORETICAL FRAMEWORK

Consider a cubic helimagnet whose equilibrium properties
are described by a Landau-Ginzburg (LG) model of the local
order parameter, 71, which is a three-dimensional vector with
unrestricted modulus, proportional to the local magnetic mo-
ment. The partition function is given by

2 = [1amtexp-pw). (1)
where W = g [ d®r W is the LG functional, with
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The parameter g has the dimensions of inverse length and
sets the scale for the spatial modulation of the magnetic
configurations. The index i runs over {x,y, z}, summation
over repeated indices is understood, and 9; stands for 9/0x;.
The first and second terms in (2) correspond to the ferromag-
netic (FM) and Dzyaloshinkii-Moriya exchange interactions,
respectively, and the last term within the brackets is the Zeee-
man energy, with i proportional to the applied magnetic field,
which we take along the z axis: # = hZ. The quadratic and
quartic terms in 7 are standard in LG models: a controls the
temperature variation, and we fix the coefficient of the quartic
term to 1/4. This can always be done by a suitable rescaling of

i and a redefinition of / and B. Alternatively, by a rescaling
of m we could set 8 = 1. In this case, a different coefficient of
the quartic term appears and we would have a more standard
form of the LG theory. To study the fluctuations, however, we
prefer the equivalent form presented here.

It is convenient to work with the dimensionless free energy
density

1
BagV

where V is the volume. To evaluate the partition function, we
assume that it is dominated by the local minima of W, which
is a good approximation if g is large. The local minima are
solutions of the Euler-Lagrange (EL) equations, §WV/ém = 0,
that explicitly read

f= In 2, 3)

Vi —2qoV x i — qia+m*yin +qih =0. (4

Let us denote a generic local minimum by mg and expand W
in powers of & = m — Mg up to quadratic order,

W =Waio) + oo [ dr&Kugls + 0. 9
where the indices « and g run over {x, y, z} and
Kop = [ = V2 +qg(a +mg)]8es
+ 2qo€apy 3, + 2q3moaiop (6)

is a symmetric differential operator that is positive definite
since my is a local minimum of . The symbol €4, stands
for the totally antisymmetric tensor. The linear term in (5)
vanishes on account of the EL equations. The partition func-
tion gets a contribution from each local minimum, obtained
as an integral over £ that can be readily evaluated since the
integrand is Gaussian. The free energy density associated to
mo has the form f = fy + fi, where

1 N
fo= v d*rW(mo) (7

is sometimes called the mean field or classical contribution
and

fi Indet (KK,") (8)

C2Bq3V

is the contribution of the fluctuations to Gaussian order. The
operator Koo = —V28a,3, which does not depend on ni, is
introduced merely as a convenient form to normalize the
term coming from fluctuations. In the continuum limit, f; is
divergent and a short distance cutoff, A, has to be introduced.
The crystal lattice, whose lattice parameter is denoted by ay,
provides the natural cutoff A = 7 /ay .

To compute the total free energy, one has to solve the spec-
tral problem K,g&g = A&,. However, away from criticality,
/1 is dominated by the short-distance fluctuations. That is,
Indet(K K(;l) is dominated by the largest eigenvalues of K,
provided it does not have infrared divergences, as is the case
if we are outside the critical region. The largest eigenvalues
of K correspond to the short-distance modes, and for these
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K ~ Ky, so that we have
Indet (KK;') = TrIn[1 + (K — Ko)K; ']
~ Tr[(K — Ko)K; '] )

The last approximation relies on the dominance of short-
distance modes, for which K — Ky < Ky.! It is straightfor-
ward to evaluate Tr[(K — KO)K(;I] using the basis of eigen-
states of K given by plane waves &, = ¢!*" i, with the three
polarization vectors satisfying i, - fig = §,4. We obtain

1 3. 2.2
f1=60v d’r mg(r), (10)
where
1 5 A (11
Gp=—-——>—.
O Bantq

Expression (10) is general for any local minimum, 1719, of the
LG functional.

Notice that, in spite of its appearance, f; is not merely a
renormalization of the LG m? term that can be absorbed in a
redefinition of a. The local minimum 72, has to be computed
with the LG functional, with the parameter a multiplying the
m? term. Then, the Gaussian fluctuations around this local
minimum give the f] contribution to its free energy, which
depends on a through my.

The saddle-point expansion is reliable if the coefficient ¢
is small, that is, if 8 is large. For the cubic helimagnet MnSi,

go ~ 0.03 A" and ap. ~ 4.5A, so that A /qy ~ 20. Hence, we
may take ¢y = 2.5/8. The value of g is unknown, but it has to
be large to justify the saddle-point expansion.

The validity of the saddle-point expansion and of the short-
distance approximation is limited by the behavior of the soft
modes. Usually these become important only in a neigh-
borhood of the critical region, where they produce infrared
divergences that invalidate the saddle-point expansion and,
of course, the short-distance approximation. The fact that the
transitions are of first order [17,18] means that it is possible
that the soft modes play little role in the chiral states, so
that that most of the phase diagram obtained in the Gaussian
approximation is qualitatively valid. In any case, within the
present approach it is not possible to delimit the region of
validity of the computations, given that we do not consider the
soft modes. In addition, our treatment of the CS, presented in
Sec. I11, is not valid for very low values of the magnetic field.
In this case, the CS is nearly degenerate, as its wave vector
can be rotated away from the magnetic field direction with
a small energy cost. This situation requires a modification of
mean field theory known as Brazovskii theory [24,25].

III. CONICAL STATE

The CS is a solution of the EL equations of the form my =
(m¢cosqz, m¢sinqgz, m;), where m, m_, and g are constants.

'This relation has to be understand in terms of matrix elements
between short-distance modes.

The EL equations are satisfied if and only if
h
M T 1A
h2
(1 —A2)2°
where A = (q — qo)/qo. Notice that A? is limited by the

12)

m?:l—a—Az—

13)

inequality m? > 0, which implies that A% < A2, where
A2 satisfy the equation
2 h?
l—a—-Ap————>=0. (14)
(1 - Arznax)
It is not difficult to see that A2 < 1 —a and that Ay = 0

fora =1 — h% Fora > 1 — h? Eq. (13) gives m; < 0 for any
AZ. Thus, the CS exists only fora < 1 — h2.

The free energy density including Gaussian fluctuations is

(1—a— A?? h? 5

— - 1 —a—A).

) 30— AD) +co(1 —a )

s)

The last term, proportional to ¢y, is the contribution of the
fluctuations in the short-distance approximation, given by
Eq. (10). The equilibrium value of A is obtained by mini-
mizing the free energy. In the absence of fluctuations, ¢y = 0,
the minimum of the free energy is attained at A =0, that
is, ¢ = qo, for any value of a and h. A second-order phase
transition to the FFM state takes place when a = 1 — h2. This
is the mean field critical line. For small ¢y, the free energy
minimum is still attained at A = 0. This minimum disappears
on the critical linea = 1 — k% — 2¢,. We see that, as expected,
the fluctuations lower the critical temperature.

fe=

IV. SKYRMION LATTICE

The EL equations (4) have axisymmetric solutions of soli-
tonic nature called skyrmions [1]. Using the parametrization
of the local order parameter in polar coordinates

m = m(sin @ cos v, sin @ sin ¥, cos ) (16)

and cylindrical coordinates (r, ¢, z) for the spatial points, the
skyrmion is a solution in which ¢ = ¢ + 7/2 and m and 6
are functions of the radial coordinate, r, only. It is therefore
invariant under rotations around the magnetic field axis, Z. The
EL equations can be cast to the form

sin% @

r2

, sinfcosf )
x|+ ———)4+a+m|+hcosf =0, (17)
r

m/ 2
m”+7—m|:9/ + + 2q0

., 0 m sin 6 cos 6
0" + = 420+ qo) —
r m r
-2
0 h
120027 _ T ing =0, (18)
r m

where the prime stands for the derivative with respect to r.
The boundary conditions are

0(0)=m, lim 8(r) =0, m’(0) =0, lim m(r) = m,, (19)
r—00 r—00
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FIG. 1. Difference in the free energy of fluctuations between the
skyrmion lattice and the conical state computed in the mean-field
case (cop = 0).

where the non-negative constant m; is the value of the order
parameter in the FFM homogeneous state, since as r — 00
Eq. (17) approaches the EL equation for the homogeneous
state. The condition m’(0) = 0 is necessary to have a finite
solution at r = 0. Thus, the isolated skyrmion has no degree
of freedom. Since 6 and m tend exponentially to 0 and m; as
r — 00, the skyrmion is a localized structure that consists of
a central core surrounded by a FM background.? The core size
is controlled by the external parameters a and #.

Itis believed that A phase that appears in cubic helimagnets
is formed by the condensation of skyrmions in a lattice with
hexagonal cells that have a skyrmion core in its center. Ob-
viously, the lattice breaks the skyrmion rotational symmetry
and the magnetic structure has not the form of the isolated
skyrmions described by Egs. (17) and (18) and the bound-
ary conditions of (19). However, if the lattice cell is larger
than the skyrmion core, we can approximate the magnetic
structure within each cell by a central axisymmetric skyrmion
core surrounded by a deformed FM background. Then, the
magnetic structure on each cell can be computed in the so-
called circular cell approximation (CCA) [15], as a solution
of Egs. (17) and (18) on a circle of radius R, proportional to
the cell parameter, with the boundary conditions

00)=n, O(R)=0, m'(0)=0, m(R)=m (20)

The skyrmion lattice (SKL) has thus two free parameters, R
and my, that are fixed by minimizing the free energy. Notice
that in this case mg is not forced to be equal to the value of
the order parameter in the homogeneous state. The SKL free
energy density in the CCA reads

2 (R 1 -
f= ﬁ/o dr r[q—gW(mo) + Com%], 21
where mg is the solution of Egs. (4) with the boundary
conditions (20).

At mean field level, the SKL has higher free energy than
the CS for any value of a and #; thus, it is at most metastable.
To obtain a stable SKL, one has to either modify the model

>The approach of @ and m to their limits as r — oo is not
monotonous but oscillating, with the oscillations exponentially
damped.
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FIG. 2. Components of the free energy including Gaussian fluc-
tuations as a function of the SKL cell radius, R, for the parameters
displayed and with ¢y = 0.01; the blue line is the difference between
the free energies of the SKL and the CS; the red and green lines are
the contributions of the mean field and fluctuations, respectively, to
this difference.

[1,6] or go beyond the mean-field approximation and include
the effect of fluctuations at Gaussian level [9]. Let us analyze
the last possibility. Figure 1 displays the difference of f;/co,
given by Eq. (10), between the SKL and the CS, computed
with the mean-field equilibrium solutions. As this difference is
negative except in a very narrow interval of a in the vicinity of
the transition point, we see that the free energy of fluctuations
contributes to lower the free energy of the SKL with respect to
the CS. Thus, thermal fluctuations are a potential mechanism
to stabilize the SKL.

To explore this possibility, we solve numerically the
boundary value problem defined by Egs. (17) and (18) and the
boundary conditions (20). Then, we determine the equilibrium
values of mg and R by minimizing the free energy that in-
cludes the fluctuations, f = fy + f1. We fix ¢p = 0.01. With
such small value of ¢, the equilibrium values of mg and R are
only slightly shifted from their mean-field values. A typical
result is shown in Fig. 2, which displays the components of
the free energy as a function of ggR. In these plots, the value
of mg has been fixed by minimizing the total free energy,
keeping R fixed. The blue line is the difference of total free
energies between the SKL and the CS. The red and green
lines represent respectively the mean field (fy) and fluctuation
(f1) components of this free energy difference. The SKL is
more stable than the CS since its total free energy is lower
in a neighborhood of the minimum. Thus, in this case (h =

1

0.8 103
g 06 C=0.01 .92 c
® 04}
h=0.15 0/ 10.1
02t lao9

0 : : : : 0
0 02 04 06 08 1
r/R

FIG. 3. Equilibrium skyrmion profile in the unit cell for the
parameters displayed in the legend, including fluctuations.
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FIG. 4. Free energy difference between the SKL and CS, fsxi. —
fc, as afunction of a for the fixed values of & displayed in the legend.

0.15 and a = 0.9), the SKL is the equilibrium state. The
equilibrium skyrmion profile in the unit cell is displayed in
Fig. 3.

V. PHASE DIAGRAM AND DISCUSSION

Figure 4 displays the difference between the free energies
of the SKL and CS, fskL — fcs, as a function of a for fixed
values of h, with ¢y = 0.01. The lines end at the point at
which the SKL disappears as a metastable state. Four cases
can be distinguished, depending on the range of h: (a) For
h 2 0.167, the SKL is never the equilibrium state. (b) For
0.162 < h < 0.167, it becomes the equilibrium state in an
interval of a; below and above this interval it is metastable or
unstable. (c) For 0.155 < i < 0.162, the SKL is the equilib-
rium state in two disjoint intervals of a: By increasing a from
negative values, where the SKL is metastable, it becomes the
equilibrium state at a certain a; at a higher a, the SKL loses
stability and becomes again metastable; and it regains stability
at a still higher value of a and remains the equilibrium state
until it disappears. (d) For & < 0.155, the SKL becomes the
equilibrium state at sufficiently high a and remains so until its
disappearance. The phase diagram is reconstructed from this
results. Let us discuss it in the following paragraphs.

At mean-field level (c¢y = 0), the phase diagram is dis-
played in Fig. 5. A second-order phase transition takes place
on the red line, which separates the homogeneous FFM phase
(green region) from the conical phase (red region). The SKL

04 r Co = O
03[ 7~
> FFM
Ny / ~ g
0.2 | Conical ~ 0
N
0.1 (metastable SKL) \\

0 L L L
08 08 09 095 1

FIG. 5. Phase diagram at the mean-field level (cop = 0). The
conical state is the equilibrium state in the red region. In the blue
stripped region, the skyrmion lattice is metastable.

|

FFM

0.4 ¢

03} _
Conical
02t

0.1+

FIG. 6. Phase diagram including Gaussian fluctuations (cop =
0.01). The SKL is the equilibrium state in the blue region. On the
blue line, a first-order phase transition takes place.

is metastable within the conical phase, in the region with blue
stripes. The local minimum of the free energy that defines the
SKL disappears on the dashed blue line. In contrast with what
happens in models where the modulus of the order parameter
is fixed, the SKL does not disappear through a nucleation pro-
cess, in which the lattice size R diverges and the homogeneous
state is attained smoothly [6,15]. In the present case, with a
soft modulus, the size of the SKL remains bounded and the
metastable state disappears because the minimum depth gets
gradually shallower until the minimum becomes a inflection
point.

Figure 6 displays the phase diagram including fluctuations,
with ¢y = 0.01. The effect of the fluctuations is quantitative,
shifting the line boundary between the homogeneous and CS
to lower values of a (lower temperatures), and qualitative,
stabilizing the SKL in the blue region. On the phase boundary
(blue line), a first-order transition takes place, since the SKL
and the CS cannot be smoothly connected. With higher values
of ¢y, the phase diagram is similar, with the SKL stable phase
extended to lower values of a. For instance, with ¢y = 0.1,
the region where the SKL is stable has a similar form to the
blue region of Fig. 6 (right), but it covers the interval from
a=—04toa =0.75and from s = 0to h = 0.5. In this case,
the transition from the FFM to the CS takes place a = 0.8 for
h=0.

The results may be invalid near the phase boundary in
the high-a region, where soft modes may become important,
causing the failure of both the saddle-point expansion and the
short-distance approximation. Also, the high (approximate)
degeneracy of the CS for low field values invalidates the
computation in the low-field region, where the CS has to be
treated with a mean-field theory of Brazovskii type.

The phase diagram is very similar to that obtained by
Miihlbauer et al. [9] using a truncated Fourier basis to ob-
tain the mean-field local minima and to minimize the total
free energy. These authors identify the new equilibrium state
stabilized by the fluctuations with a SKL. Although this
identification is reasonable, it is unclear how the spin texture
determined through the summation of a finite number of
Fourier modes is related to the highly nonlinear skyrmion
configurations of Bogdanov. We have shown here that results
similar to those of Miihlbauer et al. can be obtained by
working directly with the fully nonlinear skyrmion texture in
configuration space: A lattice formed by the condensation of
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skyrmions is the equilibrium state at a sufficiently low field
near the critical temperature. It can be identified with the A
phase of cubic helimagnets. These results shed light on the
internal structure of the SKL and thus provide more insight
to the physical aspects of the problem. Of special importance
is the fact that the strong chiral fluctuations that characterize
the precursor phase of the A phase [17] should be described
by nonlinear skyrmion tubes as elementary excitations, rather
than by the dynamics of a bunch of weakly coupled Fourier
modes.
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