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We study magnetic textures realized in noncentrosymmetric Kondo lattice models in which localized magnetic
moments weakly interact with itinerant electrons subject to Rashba and Dresselhaus spin-orbit couplings.
By virtue of state-of-the-art numerical simulations as well as variational calculations, we uncover versatile
multiple-Q orderings under a zero magnetic field, which are found to originate in the instabilities of the
Fermi surface whose spin degeneracy is lifted by the spin-orbit couplings. In the case with equally strong
Rashba and Dresselhaus spin-orbit couplings, which is known to realize a persistent spin helix in semiconductor
quantum wells, we discover a sextuple-Q magnetic ordering with a checkerboardlike spatial pattern of the
spin scalar chirality. In the presence of either Rashba or Dresselhaus spin-orbit coupling, we find another
multiple-Q ordering, which is distinct from skyrmion crystals discussed under the same symmetry. Our results
indicate that the cooperation of the spin-charge and spin-orbit couplings brings about richer magnetic textures
than those studied within effective spin models. The situations would be experimentally realized, e.g., in
noncentrosymmetric heavy-fermion compounds and heterostructures of spin-orbit-coupled metals and magnetic
insulators.
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I. INTRODUCTION

For over a decade, noncoplanar spin configurations in
metals have been gathering growing interest as a source of
topological transport phenomena. In general, the noncopla-
narity of localized spins is characterized by the spin scalar
chirality, defined as Sj · Sk × Sl for three spins spanned by
sites j, k, and l. In the spin-charge-coupled systems, the
spin scalar chirality is imprinted on conduction electrons as
a fictitious magnetic field, coined as an emergent magnetic
field, through the so-called Berry curvature in real space [1,2].
The emergent magnetic field gives rise to a peculiar Hall
effect named the topological Hall effect, distinguished from
the conventional anomalous Hall effect in the presence of a
ferromagnetic order. The topological Hall effect has been first
observed in a pyrochlore magnet [3] and recently in metallic
compounds hosting magnetic skyrmion crystals (SkXs) [4,5].

Noncoplanar spin configurations are often described by
superpositions of spin helices running in different directions.
These are called multiple-Q magnetic orderings. One of the
latest examples is a magnetic SkX mentioned above, which
can be described as a double- or triple-Q ordering [2,6–8]. In
real space, such a SkX forms a two-dimensional periodic array
of spin-swirling nanometric objects, called skyrmions. Each
skyrmion is characterized by a topological invariant defined
by the integration of the spin scalar chirality, which guarantees
the topological stability. To date, SkXs have been experi-
mentally identified in various noncentrosymmetric magnets,
including chiral metals, such as B20-type alloys MX (M =
Mn, Fe, Co; X = Si, Ge) [6,7] and β-Mn-type Co-Zn-Mn
alloys [9] as well as heterostructures, such as a monolayer
of Fe on Ir substrates [8]. Notably SkXs not only bring
about peculiar transport of conduction electrons, such as the
topological Hall effect [4,5], but also show their own intrigu-
ing dynamics driven by an electric current flow, resulting in

current-induced motion with a remarkably low threshold [10]
and the skyrmion Hall effect [11]. Such high mobility of
skyrmions would be potentially harnessed to future memory
devices.

There are several known mechanisms for the formation of
multiple-Q orderings. For SkXs observed in noncentrosym-
metric 3d-electron systems listed above, the Dzyaloshinskii-
Moriya (DM) interaction, described as D · Sj × Sk , plays a
crucial role, which originates in the spin-orbit coupling (SOC)
under broken spatial inversion symmetry. Indeed, magnetic-
field–temperature phase diagrams in those compounds includ-
ing the SkX phase can be qualitatively explained by using lo-
calized spin models with ferromagnetic and DM interactions
between the neighboring spins [7,12].

On the other hand, recent theoretical studies have pro-
posed a distinct mechanism for the formation of multiple-Q
orderings in centrosymmetric itinerant magnets [13–16]. They
revealed that, in centrosymmetric Kondo lattice models in
which conduction electrons are coupled to localized spins,
multiple-Q orderings could be driven by the Fermi-surface
instability, irrespective of lattice types and electron fillings
[13–16]. Perturbation analyses up to fourth order with re-
spect to the spin-charge coupling strength [13–15] as well
as unbiased numerical simulations [15,16] showed that when
partial nesting occurs on the Fermi surface at multiple wave
vectors, in other words, when portions of the Fermi surface are
connected to each other, multiple-Q orders are ubiquitously
favored rather than single-Q orderings in the weak-coupling
regime. We note that, recently, a SkX has been discovered
in a centrosymmetric f -electron compound Gd2PdSi3, whose
origin might be closely related to this mechanism [17].

Considering the above arguments, a question naturally
arises; can multiple-Q orderings also show up, or, if so, what
kind when both the SOC and the Fermi-surface instability
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cooperate under broken inversion symmetry? Thus it is an
intriguing task to uncover magnetic orderings in noncen-
trosymmetric Kondo lattice models with conduction electrons
subject to the SOC. Recently, this issue was addressed in
the case of Rashba SOC by one of the authors and his co-
worker by deriving an effective spin model by the second-
order perturbation with respect to the spin-charge coupling
[18]. Nonetheless, it would be important to solve the original
noncentrosymmetric Kondo lattice model beyond the second-
order perturbation when considering the fact that in the Kondo
lattice model without the SOC higher-order contributions may
stabilize distinct magnetic textures from those in the pertur-
bative regime [13–15]. Moreover, it would be interesting to
study the effects of other types of SOC, e.g., the Dresselhaus
SOC, in the Kondo lattice model.

In this paper, we study the noncentrosymmetric Kondo lat-
tice model while fully incorporating the effect of conduction
electrons subject to the SOC by virtue of a recently developed
efficient numerical simulation technique [15,16,19,20]. We
introduce the SOCs of Rashba and Dresselhaus types, whose
coupling constants are denoted as α and β, respectively. The
Rashba SOC stems from breaking of the mirror symmetry,
e.g., at the interface of a heterostructure, whereas the Dres-
selhaus SOC stems from breaking of the space inversion
symmetry in a bulk crystal structure, e.g., in the zinc-blende
structure.

Specifically we focus on three cases on a square lattice:
(i) the case with both the Rashba and the Dresselhaus SOCs
with equal strength (α = β �= 0), (ii) the case with only the
Rashba SOC (α �= 0, β = 0), and (iii) the case with only
the Dresselhaus SOC (α = 0, β �= 0). Case (i) was discussed
to stabilize a peculiar spin texture called the persistent spin
helix [21]. The situation was realized on heterostructures of
zinc-blende-type semiconductor GaAs [22], and a long-living
transient spin helix was observed by spin injection, e.g.,
through optical means [22,23], which may find applications to
spintronics and quantum information. In our paper we treat a
localized spin system coupled with conduction electrons char-
acterized with α = β and find out sextuple-Q (6Q) orderings
reflecting the peculiar spin-split Fermi surface. This situation
might be potentially applied to the semiconductor quantum
wells doped with magnetic impurities, although in our model
the magnetic moments are positioned at every site. Case (ii)
belongs to C4v point-group symmetry, which would be a more
general and common system with broken mirror symmetry at
heterointerfaces. In case (ii), we discover multiple-Q order-
ings distinct from those discussed in localized spin systems
under the same symmetry. Meanwhile, case (iii) belongs to
D2d point-group symmetry, which is also widely encountered,
not only in nonmagnetic materials, such as zinc-blende- and
chalcopyrite-type semiconductors [24], but also in itinerant
magnets, such as a family of Heusler compounds [25]. In case
(iii), we also find multiple-Q orderings, which are related with
those in case (ii) by a simple global rotation.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the Kondo lattice model with the Rashba
and Dresselhaus SOCs and derive effective spin interactions
given by the bare magnetic susceptibility. We also discuss
a unique spin-dependent gauge transformation applicable to
the α = β case as well as the exchange between α and β. In

Sec. III, we explain the details of the numerical simulation and
variational calculations. The results are described in Sec. IV.
We devote Secs. IV A–IV C to the aforementioned three cases
(i)–(iii) with different types of SOCs, respectively. In these
sections, we discuss the magnetic orderings obtained by the
simulation, comparing them with the bare magnetic suscepti-
bility and the results of the variational calculations. Finally, in
Sec. V, we summarize our results.

II. MODEL

A. Hamiltonian

In this paper, we study a Kondo lattice model on a square
lattice with Rashba and Dresselhaus SOCs. The Hamiltonian
is given by

H = −
∑
jj ′s

tjj ′c
†
jscj ′s +

∑
jj ′ss ′

igjj ′ · c
†
jsσ ss ′cj ′s ′

− J
∑
jss ′

Sj · c
†
jsσ ss ′cjs ′ . (1)

Here, cjs (c†js ) is the electron annihilation (creation) operator
at site j with spin s(=↑,↓), and Sj = t (Sx

j , S
y

j , Sz
j ) describes

a localized spin at site j , which is treated as a classical
spin with the normalized length |Sj | = 1 for simplicity. σ is
a vector of Pauli matrices, defined as σ = t (σx, σy, σz). tjj ′

represents the hopping amplitude of electrons form site j ′ to
site j (tjj ′ = tj ′j ), and J is the spin-charge-coupling strength.
The SOCs are implemented in the second term in which gjj ′

reads

gjj ′ =

⎛
⎜⎝

−αjj ′e
y

jj ′ + βjj ′ex
jj ′

αjj ′ex
jj ′ − βjj ′e

y

jj ′

0

⎞
⎟⎠. (2)

Here, αjj ′ and βjj ′ denote the strength of Rashba and Dressel-
haus SOCs, respectively, which work on an electron hopping
between sites j and j ′ (αjj ′ = αj ′j and βjj ′ = βj ′j ). ejj ′ =
(ex

jj ′ , e
y

jj ′ ) is a normalized displacement vector from j to j ′,
represented as ejj ′ = (rj ′ − rj )/|rj ′ − rj | with lattice posi-
tion vectors rj and rj ′ ; we denote rj = (nj ,mj ), where nj and
mj are integers with the unit lattice constant. In the follow-
ing calculations, we consider the electron hopping processes
between the nearest-neighbor (NN) sites and between the
third-nearest-neighbor (TNN) sites. We denote the hopping
amplitudes tjj ′ between the NN and the TNN sites as t and t3,
respectively. Likewise, we represent the Rashba (Dresselhaus)
SOC αjj ′ (βjj ′ ) between the NN and the TNN sites as α (β )
and α3 (β3), respectively. In the following we take t as energy
unit (t = 1) [26].

In the momentum-space representation, the Hamiltonian in
Eq. (1) is described as

H =
∑
kss ′

c
†
ksH

0
ss ′ (k)cks ′ − J

∑
kqss ′

Sq · c
†
ksσ ss ′ck+qs ′ . (3)

Here cks is defined by the Fourier transform of cjs as
cks ≡ 1√

N

∑
j e−ik·rj cjs , where N = L2 is the number of sites

(L: the linear dimension of the system). Sq is the Fourier

224406-2



MULTIPLE-Q MAGNETIC ORDERS IN RASHBA- … PHYSICAL REVIEW B 98, 224406 (2018)

transform of Sj defined as

Sq = 1

N

∑
j

eiq·rj Sj , (4)

in which the spin normalization (|Sj | = 1) leads to the sum
constraint of

∑
q

∑
ρ |Sρ

q |2 = 1 (ρ = x, y, z). H 0(k) is a 2 ×
2 matrix defined as

H 0(k) = ε0
kI + dk · σ , (5)

in which I is the identity matrix, and ε0
k and dk are given by

ε0
k = −2t (cos kx + cos ky ) − 2t3(cos 2kx + cos 2ky ), (6)

and

dk = 2

⎛
⎜⎝

α sin ky − β sin kx + α3 sin 2ky − β3 sin 2kx

−α sin kx + β sin ky − α3 sin 2kx + β3 sin 2ky

0

⎞
⎟⎠.

(7)

B. Generalized Ruderman-Kittel-Kasuya-Yosida interactions

To get insight into the magnetic instability by the spin-
charge coupling in the weak J regime, it is useful to derive an
effective spin Hamiltonian by the second-order perturbation
analysis on the Hamiltonian in Eq. (3) with respect to J

[18]. This gives a generalization of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions [27–29]. The effective
Hamiltonian reads

Heff = −J 2N
∑

q

∑
ρρ ′

Sρ
q χρρ ′

q

(
Sρ ′

q

)∗
, (8)

in which the bare magnetic susceptibility χ
ρρ ′
q is obtained as

χρρ ′
q = T

N

∑
ωn

∑
k

tr[G0(k, iωn)σρG0(k + q, iωn)σρ ′ ], (9)

by using the noninteracting 2 × 2 Green’s-function
G0(k, iωn) = 1/(iωn − H 0(k) + μ); ωn represents the
Matsubara frequency and μ is the chemical potential. More
explicitly, Eq. (9) is written down as

χρρ ′
q = − 1

N

∑
k

∑
ττ ′

〈kτ |σρ |k + qτ ′〉 〈k + qτ ′|σρ ′ |kτ 〉

× f (εkτ ) − f (εk+qτ ′ )

εkτ − εk+qτ ′
. (10)

Here εkτ and |kτ 〉 are the eigenvalue and eigenstate of H 0(k)
with the band index τ. f (ε) is the Fermi distribution func-
tion expressed as f (ε) = 1/(1 + e(ε−μ)/kBT ), where kB is the
Boltzmann constant and T is the temperature.

In the presence of SOC, in general, the bare magnetic
susceptibility χ

ρρ ′
q in Eq. (10) has nonzero off-diagonal com-

ponents. To examine the dominant magnetic instability, there-
fore, it is useful to diagonalize the effective spin Hamiltonian
in Eq. (8) in the form

Heff = −J 2N
∑

q

∑
ξ

λξ
q

∣∣S ′ξ
q

∣∣2
. (11)

Here, we define the eigenvalues and eigenvectors of χ
ρρ ′
q in

Eq. (10) as λ
ξ
q and uξ

q (ξ = 1 − 3), respectively, formulated
as

χquξ
q = λξ

quξ
q. (12)

Note that we sort the eigenvalues as λ1
q � λ2

q � λ3
q. S′

q is a
transformed spin Fourier component, given by Sq = U ∗

q S′
q

with Uq = [u1
q, u2

q, u3
q]. Note the sum constraint also holds for

S′
q as

∑
q

∑
ξ |S ′ξ

q |2 = 1.
The diagonalized form of the effective spin Hamiltonian

in Eq. (11) gives us important information on magnetic insta-
bility. Suppose the largest eigenvalue λ1

q takes the maxima at
a set of wave-vectors {Qν}. Then, under the sum constraint
of

∑
q

∑
ξ |S ′ξ

q |2 = 1, we find that the largest energy gain of
the RKKY Hamiltonian in Eq. (11) is earned for multiple-
or single-Q magnetic orderings characterized with the wave-
vectors {Qν} with the corresponding spin Fourier components
of SQν

∝ (u1
Qν

)∗ (see also Sec. III A). Therefore, analyzing the
q profile of λ1

q is important to figure out the inherent magnetic
instability in the weak-J regime.

Meanwhile, it should be noted that the generalized RKKY
interactions leave degeneracy; the single- and multiple-Q
orderings specified by {Qν} and the corresponding modes
SQν

∝ (u1
Qν

)∗ are energetically degenerate. Higher-order con-
tributions play a crucial role in selecting out the lowest-
energy magnetic state as demonstrated in the absence of SOC
[13–15]. This motivates us to study the original model in
Eq. (1) or (3) by numerical simulation that treats the spin-
charge coupling and the SOC on an equal footing.

C. Spin-dependent gauge transformation for α = β

In the case of α = β with only the NN terms (t3 = α3 =
β3 = 0), the Fermi surfaces have peculiar properties [21]. The
Fermi surfaces, which have spin degeneracy in the absence of
SOC, are unidirectionally split along the [1̄10] direction by
the SOC, and moreover, all the states in each Fermi surface
have the same spin polarization parallel or antiparallel to
the [110] direction [for example, see Fig. 1(c)]. The shift
vector connecting the spin-split Fermi surfaces Qs is given by
Qs = 2 tan−1(

√
2α)(−1, 1). Importantly, this peculiar nature

of the Fermi surfaces indicates that the SOC with α = β can
be effectively taken away through a certain spin-dependent
gauge transformation, which adds or subtracts half of the shift
vector Qs/2 to or from the electron momenta, depending on
the spin directions [21]. For the annihilation operators, the
gauge transformation can be formulated as

c̃j =
(

eiQs·rj /2 0

0 e−iQs·rj /2

)
V0cj , (13)

where cj = t (cj↑, cj↓) and

V0 = 1√
2

(
ei(π/4) 1

ei(π/4) −1

)
. (14)

This transformation adds spin-dependent gauges with the
quantization axis to [110]. Then, by using the newly defined
annihilation and creation operators, c̃j and c̃†j , the original
Hamiltonian in Eq. (1) for α = β with only the NN terms
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FIG. 1. Fermi surfaces and bare magnetic susceptibilities for
μ ∼ −1.4 (near quarter-filling) (a) and (b) without the SOC (α =
β = 0) and (c) and (d) with the equally strong Rashba and Dres-
selhaus SOCs (α = β = 0.2). (a) and (c) and (b) and (d) show the
Fermi surfaces and the largest eigenvalues of the bare magnetic
susceptibility λ1

q [see Eq. (12)], respectively. Note that all the TNN
terms are set to zero (t3 = α3 = β3 = 0).

(t = 1) is written into the form with effectively vanishing
SOC,

H = −
√

1 + 2α2
∑
jj ′s

c̃
†
js c̃j ′s − J

∑
jss ′

S̃j · c̃
†
jsσ ss ′ c̃js ′ . (15)

Here, the new spin frame S̃j is defined through the rotation by
the amount of Qs · rj along the [110] direction on the original
spin frame as

S̃j =

⎛
⎜⎝

cos Qs · rj sin Qs · rj 0

− sin Qs · rj cos Qs · rj 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

0 0 1
1√
2

− 1√
2

0
1√
2

1√
2

0

⎞
⎟⎠Sj .

(16)
These analyses imply that the magnetic orderings for α = β �=
0 are related to those without SOC through the site-dependent
rotation in Eq. (16). We use this property in the discussion in
Sec. IV A.

D. Exchange between α and β

We also remark that the exchange between α and β leads to
a simple uniform rotation of magnetic orderings. By applying
a π rotation along the [110] axis in spin space for conduction
electrons as given by

cj = exp

(
−i

π

2

σx + σy√
2

)
cj , (17)

and likewise to the spin frame for the localized spins as

Sj =

⎛
⎜⎝

0 1 0

1 0 0

0 0 −1

⎞
⎟⎠Sj , (18)

the original Hamiltonian in Eq. (1) is transformed to the one
with exchanged αjj ′ and βjj ′ ,

H = −
∑
jj ′s

tjj ′c
†
jscj ′s +

∑
jj ′ss ′

igjj ′ (αjj ′ ↔ βjj ′ ) · c
†
jsσ ss ′cj ′s ′

− J
∑
jss ′

Sj · c
†
jsσ ss ′cjs ′ . (19)

This indicates that the magnetic orderings for the Rashba-only
case in Sec. IV B also applies to the Dresselhaus-only case in
Sec. IV C through the global rotations in Eqs. (17) and (18).
We utilize this nature in Sec. IV C.

III. METHOD

A. Kernel polynomial method-Langevin dynamics

To reveal the ground-state magnetic orderings for the
Kondo lattice model with Rashba and Dresselhaus SOCs,
we employ a state-of-the-art large-scale numerical simulation
combining the kernel polynomial method (KPM) [30] with
Langevin dynamics (LD) [19,31]. This recently developed
method, called KPM-LD, costs only O(N ) (N : number of
lattice sites), allowing us to run the simulation for the system
sizes of up to ∼104 sites. Here, we employ the modified
version of the KPM-LD [20] making use of a probing method
[32] and the stochastic Landau-Lifshitz-Gilbert equation in
the LD.

We perform the KPM-LD at zero temperature on the square
lattice of N = 962. In the KPM, we expand the density of
states in a series of Chebyschev polynomials up to the 2000th
order, where 144 random vectors are chosen by a probing
technique [32] for calculation of the Chebyschev moments.

In Sec. IV A the KPM-LD is initiated from a random spin
configuration, aiming at an unbiased search for the ground
state. On the other hand, in Sec. IV B, we start the KPM-LD
from some given ansätze for the configuration of localized
spins because for α �= 0 and β = 0 we found that random
configurations often fail to converge to a homogeneous state
and end up with a mixing of different ordering domains. This
can be attributed to keen energy competitions of multiple
magnetic orders originating in a considerable number of sharp
peaks in λ1

q [see Fig. 5(f)]. Consequently, in Sec. IV B, we use
the KPM-LD as an “ansatz optimizer” rather than an unbiased
simulation.

Below we describe how we prepare the initial ansätze used
in Sec. IV B. The ansätze we employ are single-Q helical
states that maximize the energy gain of the generalized RKKY
Hamiltonian in Eq. (11) and multiple-Q superpositions of
them. As discussed later in Sec. IV B, for α �= 0 and β =
0, λ1

q takes the largest value at four wave vectors denoted as
Qa

ν (ν = 1–4) among all the characteristic wave vectors [see
Fig. 5(d)]. {Qa

ν}’s are related with each other by C4 and σv

symmetry operations. Moreover, the C4v symmetry dictates
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that the corresponding eigenvectors u1
Qa

ν
are simply described

as

u1
Qa

1
= t (ux, uy, iuz), (20a)

u1
Qa

2
= t (uy, ux, iuz), (20b)

u1
Qa

3
= t (−uy, ux, iuz), (20c)

u1
Qa

4
= t (−ux, uy, iuz), (20d)

where ux, uy , and uz are real numbers. As mentioned in Sec.
II B, multiple-Q orderings maximizing the RKKY energy
gain in Eq. (11) under the sum constraint of

∑
q

∑
ρ |Sρ

q |2 = 1
are characterized with the spin Fourier components of SQa

ν
∝

(u1
Qa

ν
)∗. As a result, in this Rashba-only case the multiple-Q

states are given by superpositions of symmetry-related helices
with the spin rotation plane perpendicular to the xy plane,
which are given by

Sj = N̂

4∑
ν=1

Aν

⎛
⎜⎜⎝

u1x
Qa

ν
cos Qa

ν · rj

u
1y

Qa
ν

cos Qa
ν · rj

−u1z
Qa

ν
sin Qa

ν · rj

⎞
⎟⎟⎠. (21)

Here, the sum constraint
∑

ν A2
ν = 4 holds for Aν , and N̂ rep-

resents the normalization factor so that |Sj | = 1. We note that
without the normalization factor N̂ all the ansätze described
by Eq. (21) gain the same amount of the RKKY energy in
Eq. (11). Among those multiple-Q orderings we take double-
or single-Q orderings for the initial ansätze in the KPM-LD
for simplicity. For the double-Q orderings, we set Aν = √

2
for ν = 1 and 2 or ν = 1 and 3. Likewise, for the single-Q
ordering, we set Aν = 2 for one ν and otherwise Aν = 0.

In Sec. IV A, we employ the periodic boundary condition
as in the previous works [15,16], whereas in Sec. IV B we use
the open boundary condition. This is because in the latter case
it turns out that the KPM-LD yields incommensurate magnetic
orderings with a large magnetic unit cell [see Fig. 6(c)],
which would be attributed to the wave vectors with the largest
λ1

q, {Qa
ν}, deviating from commensurate wave vectors [see

Fig. 5(d)]. In order to exclude the boundary effects we extract
the square with 642 sites in the middle of the whole system
with 962 sites for analyzing the spin textures.

For the spin textures obtained in the KPM-LD we calculate
|Sq| [see Eq. (4)], which is proportional to the square root
of the spin structure factor. We also compute the spin scalar
chirality κp for each square plaquette p as

κp = 1
4 (Sj · Sk × Sl + Sk · Sl × Sm

+ Sl · Sm × Sj + Sm · Sj × Sk ), (22)

where the sites j, k, l, and m correspond to the bottom-left,
bottom-right, top-right, and top-left vertices of the square
plaquette p, respectively. In the same manner as |Sq|, we
define |κq| = | 1

N

∑
p eiq·rpκp|.

B. Variational calculation

In Secs. IV A and IV B, we also perform variational calcu-
lations. For given spin configurations we calculate the total
energy by using the exact diagonalization of the one-body

Hamiltonian and compare the values to determine the ground
state. The calculations are performed for the system sizes of
N = 962 and 4802.

IV. RESULTS

A. Case with α = β

First, we discuss the Fermi-surface instabilities for the case
with equally strong Rashba and Dresselhaus SOCs, namely,
α = β along with the case without the SOCs. In this section,
we consider only the NN terms in the Hamiltonian in Eq. (1)
and neglect the TNN terms (t3 = α3 = β3 = 0). Here, we set
the chemical potential as μ ∼ −1.4, corresponding to near
quarter-filling (n ∼ 0.5). Figures 1(a) and 1(b) display the
Fermi surface and the largest eigenvalue of the bare magnetic
susceptibility in the absence of SOC. The Fermi surface is
partially nested by the commensurate wave-vectors Q1 =
(π/2, π ) and Q2 = (π, π/2) at this filling as illustrated in
Fig. 1(a). Reflecting the partial nesting, the susceptibility takes
the largest value at two inequivalent positions on the edge of
the Brillouin zone, Q1, and Q2 as shown in Fig. 1(b).

When α and β are introduced with equal strength, the spin-
degenerate Fermi surfaces are split along the [1̄10] direction,
each of which has the uniform spin polarization parallel or
antiparallel to the [110] direction. Figure 1(c) shows the
spin-split Fermi surfaces for α = β = 0.2. The partial nesting
of the shifted Fermi surfaces yield additional maxima in λ1

q
at four wave-vectors Q3 = Q1 + Qs, Q4 = Q1 − Qs, Q5 =
Q2 + Qs, and Q6 = Q2 − Qs, where Qs is the shift vector of
the Fermi surfaces shown in Fig. 1(c). As a result, the bare
magnetic susceptibility shows the largest value at totally six
independent wave vectors as shown in Fig. 1(d).

With the Fermi-surface instabilities at these wave numbers
in mind we discuss the spin textures obtained by the KPM-
LD simulations. We begin with the results for J = 0.1. In
the absence of SOC we obtain the noncollinear but coplanar
double-Q ordering [Figs. 2(a) and 2(b)] as reported in the
previous work [33]. The two wave vectors characterizing the
magnetic texture are identified as Q1 and Q2, which coincide
with those in Figs. 1(a) and 1(b). Since the spin components
are modulated in the up-up-down-down manner, hereafter we
refer to this double-Q order as 2Q-uudd [33].

On the other hand, when the Rashba and Dresselhaus
SOCs are introduced with the equal strength of α = β =
0.2, we find a complex noncoplanar spin texture character-
ized with six wave vectors as shown in Figs. 2(e) and 2(f).
These wave vectors coincide with the ones giving the largest
value in λ1

q, {Qν} (ν = 1–6) in Fig. 1(d). We emphasize that
we have shown the stabilization of the magnetic ordering
with more than three wave vectors in the two-dimensional
system. Remarkably, we find that this 6Q ordering ex-
hibits a checkerboardlike pattern of the spin scalar chirality
[Fig. 2(i)], characterized with multiple wave vectors specified
by (π/2, 0), (0, π/2), (π, π/2), and (π/2, π ) [Fig. 2(j)].

While increasing J to J = 0.2 and 0.3, we find that the
same ordering patterns are obtained in the KPM-LD: 2Q-uudd
without SOC and 6Q with α = β = 0.2. The result indicates
that the Fermi-surface instabilities govern the magnetic tex-
tures in the weak-coupling regime.
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FIG. 2. The results of the KPM-LD simulations for α = β = 0 and α = β = 0.2. (a)–(d) correspond to α = β = 0. (a) and (b) represent
a real-space spin texture and the norm of its Fourier transform |Sq| of 2Q-up-up-down-down (2Q-uudd) for J = 0.1, respectively, whereas
(c) and (d) correspond to those of 1Q-uudd for J = 0.4. (e)–(l) correspond to α = β = 0.2. (e) and (f) are a spin texture and |Sq| of 6Q for
J = 0.1, whereas (g) and (h) display those of 3Q for J = 0.4. (i) shows the real-space pattern of the spin scalar chirality for 6Q corresponding
to (e) with the absolute value of its Fourier transform |κq|, represented in (j). (k) and (l) are those for 3Q. The real-space textures of spin and
scalar chirality in (a), (c), (e), (g), (i), and (k) are shown for a part of the whole system with N = 962 system for clarity. In (a), (c), (e), and (g),
the arrows denote the directions of the localized spins on the xy plane and the color represents the z component.

For J = 0.4, however, we find that the spin texture changes
into a less complex one. Without the SOC appears a simple
single-Q state composed of Q1 (or Q2, depending on the
initial configuration), which is a collinear up-up-down-down
ordering [Figs. 2(c) and 2(d)]. In the same way as 2Q-
uudd, we denote this single-Q order as 1Q-uudd [33]. With
α = β = 0.2 we obtain the triple-Q ordering characterized
by the three ordering vectors Q1, Q2, and Q3 (or Q4, Q5,
and Q6) [Figs. 2(g) and 2(h)]. The 3Q state also shows the
density wave of the spin scalar chirality as shown in Fig. 2(k),
although it is only characterized by a single wave vector as
shown in Fig. 2(l) in contrast to four in Fig. 2(j).

As we mentioned in Sec. II C, the spin-dependent gauge
transformation guarantees the exact mapping of the model
for α = β �= 0 to the SOC-free one in Eq. (15). Hence, the
magnetic orderings stabilized for α = β �= 0 are related with
those for α = β = 0 through the transformation in Eq. (16).
Indeed, we have confirmed that 6Q and 3Q uncovered in
the KPM-LD simulations are obtained by applying the site-
dependent rotation in Eq. (16) to 2Q-uudd and 1Q-uudd,
respectively, after certain global rotations.

We also verified the results of the KPM-LD by variational
calculations. Figure 3 shows the energy difference between
2Q-uudd and 1Q-uudd obtained in the absence of SOC (α =
β = 0). Here, we take the variational states as

Sj =

⎛
⎜⎝

cos
(
Q1 · rj − π

4

)
cos

(
Q2 · rj − π

4

)
0

⎞
⎟⎠ (23)

for 2Q-uudd, and

Sj =

⎛
⎜⎝

√
2 cos

(
Q1 · rj − π

4

)
0

0

⎞
⎟⎠ (24)

for 1Q-uudd [33]. Note that we do not need the normalization
factor for the spin lengths as the wave numbers are commen-
surate. As shown in Fig. 3, 2Q-uudd is more stable compared
to 1Q-uudd for J < J 0

c ∼ 0.33 and vice versa for J > J 0
c .

The variational result looks consistent with the KPM-LD
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FIG. 3. Energy difference between 2Q-uudd and 1Q-uudd at
μ ∼ −1.4 in the absence of SOC, estimated by variational calcu-
lations for N = L2 = 962 and 4802.

results. By using the spin-dependent gauge transformation,
we can derive the critical value of J for nonzero α = β as
Jc = J 0

c

√
1 + 2α2.

Combining the results by the KPM-LD and variational
calculations, we summarize the J -α phase diagram for equally
large α and β in Fig. 4. The red- and blue-shaded regions
correspond to 6Q and 3Q, respectively, and the dashed line
shows the phase boundary Jc determined by the variational
calculations. The phase diagram in Fig. 4 indicates that the
exotic sextuple-Q orderings are stabilized in a wide param-
eter range of α and J in the present spin-charge and spin-
orbit-coupled system. In real materials perfect tuning of α

equally to β might be difficult, but considering that persis-
tent spin helices have been observed despite an imperfect
balance between α and β (e.g., α/β ∼ 0.8–1.2 in Ref. [22]),

FIG. 4. Ground-state phase diagram for the Kondo lattice model
with equally large Rashba and Dresselhaus SOCs (α = β) for μ ∼
−1.4, determined by the KPM-LD and variational calculations. The
circles and triangles represent the parameters for which the KPM-
LD simulations are performed. In the absence of SOC (α = β =
0) 2Q-uudd is favored for J < J 0

c ∼ 0.33, whereas 1Q-uudd is
stabilized for J > J 0

c (see Fig. 3). For finite SOCs (α = β �= 0) 6Q

appears on the red-shaded region, whereas 3Q shows up on the
blue-shaded region. The dashed line is the phase boundary given by
Jc = J 0

c

√
1 + 2α2.

FIG. 5. Fermi surfaces and bare magnetic susceptibilities for
μ = 0.98 (a) and (b) without the SOCs (α = β = 0) and (c)–(f) with
the Rashba SOC (α = 0.2, β = 0). Note that the TNN terms are
introduced with t3 = −0.5 and α3 = −0.5α. (a), (c), and (e) and (b),
(d), and (f) show the Fermi surfaces and the largest eigenvalues of
the bare magnetic susceptibility λ1

q [see Eq. (12)], respectively. (f) is
the magnified view of (d). In (a) and (b), the arrows indicate the wave
vectors that give the largest magnetic susceptibility in the absence
of SOC. In (c) and (d), the black arrows denote the wave vectors
that give the largest λ1

q in the presence of the Rashba SOC. In (d),
the white arrows correspond to the ordering vectors of 1Q′, which
is found for J = 0.2–0.4 in the KPM-LD simulations (see Fig. 8).
In (e) and (f), the other characteristic wave vectors, which give the
comparably large λ1

q, are shown.

the sextuple-Q ordering could also be robust against small
imbalance between α and β.

B. Case with α �= 0 and β = 0

Next, we discuss the magnetic orderings in the presence of
only Rashba SOC (α �= 0 and β = 0). First of all, we show
the Fermi-surface instabilities. In this section, we introduce
the TNN terms with t3 = −0.5 and α3 = −0.5α and set the
chemical potential as μ = 0.98, following the previous study
on the SOC-free case [15]. Figures 5(a) and 5(b) show the
Fermi surface and the bare magnetic susceptibility in the
absence of SOC. The Fermi surfaces show rather strong
partial nesting with Q1 = (π/3, π/3) and Q2 = (−π/3, π/3)
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FIG. 6. The results of the KPM-LD simulations for J = 0.1: (a), (b), (e), and (f) without the SOC (α = β = 0) and (c), (d), (g), and
(h) with the Rashba SOC (α = 0.2 and β = 0). (a) and (b) represent a typical spin pattern and the norm of its Fourier transform |Sq| of the
2Q-vortex state, whereas (c) and (d) correspond to those of the multiple-Q state. (e) and (f) are the real-space pattern of the spin scalar chirality
and the absolute value of its Fourier transform |κq| for the 2Q-vortex state in (a). (g) and (h) display those of the multiple-Q state in (c). The
real-space textures of spin and scalar chirality in (a), (c), (e), and (g) are shown for a part of the whole system with N = 962 system for clarity.
In (a) and (c), the arrows denote the directions of the localized spins on the xy plane, and the color represents the z component.

as shown in Fig. 5(a), which leads to the distinct peaks in the
susceptibility at the same wave vectors as shown in Fig. 5(b).

When the Rashba SOC is introduced, the spin degeneracy
of the Fermi surface is lifted and accordingly the peaks in the
susceptibility are split in a complicated way. Figures 5(c)–5(f)
display the spin-split Fermi surfaces and the largest eigenval-
ues of the bare magnetic susceptibility λ1

q for α = 0.2 and β =
0. Due to the spin splitting of the Fermi surface, the two peaks
in the SOC-free susceptibility at Q1 and Q2 split into totally
14 distinct peaks with almost equal amplitudes [Figs. 5(d) and
5(f)]. As shown in Fig. 5(f) we denote these wave vectors as
Qη

ν with ν = 1–4 for η = a, b, c and ν = 1, 2 for η = d. Note
that a set of wave vectors indexed with a superscript η, {Qη

ν}’s
are related with each other by C4 and σv symmetry operations,
yielding the exactly identical value of λ1

q. As displayed in
Figs. 5(c) and 5(e) we can assign {Qa

ν} ({Qb
ν}) to the wave

vectors connecting two portions within the outer (inner) Fermi
surfaces, whereas {Qc

ν} ({Qd
ν }) to the wave vectors connecting

from one in the inner (outer) Fermi surface to the other in the
outer (inner). After closely comparing the competing heights
of those peaks for large system sizes, we find out that λ1

q at
{Qa

ν} are slightly larger than the others [Figs. 5(c) and 5(d)].
In the following, we discuss the results of the KPM-

LD simulations. Figure 6 shows the simulation results for
J = 0.1. As already reported in detail in the previous study
[15], without the SOC a noncoplanar double-Q ordering
appears, characterized with Q1 and Q2 [Figs. 6(a) and 6(b)].
The double-Q ordering, named the 2Q vortex, shows a stripe
of the spin scalar chirality [Figs. 6(e) and 6(f)] [15].

With the introduction of the Rashba SOC with α = 0.2, we
find a more complex multiple-Q state as shown in Figs. 6(c)

and 6(d). As stated in Sec. III A, for α = 0.2, we performed
the KPM-LD by adopting several different spin ansätze as
the initial spin configurations, which are double- or single-Q
orderings constructed from {Qa

ν} [see Eq. (21)]. In Figs. 6(c)
and 6(d), we only show the results obtained from one of
the initial ansätze. We stress that for the other ansätze we
have also confirmed similar multiple-Q orderings with the
same energy within the resolution of the KPM-LD, which are
characterized with the same set of wave vectors as in Fig. 6(d),
although the weight distributions among them vary to some
extent. As seen in Fig. 6(d), the multiple-Q ordering appears
to be dominantly formed by {Qa

ν} as well as other closely
located wave vectors, such as Qc

3 and Qc
4 [see Fig. 5(f)].

We find that the multiple-Q order exhibits a modulated
stripe of the spin scalar chirality whose net component van-
ishes as shown in Figs. 6(g) and 6(h). The spatial pattern of
the spin scalar chirality makes the multiple-Q order distinct
from SkXs, which, in general, show a nonzero net value
of the scalar chirality. The discovery of such a complex
multiple-Q ordering is remarkable as compared with localized
or continuum spin models with only NN interactions under the
same symmetry, where simpler multiple-Q orderings, such
as SkX are normally found [34,35]. Although the effective
spin model describing the RKKY interaction also predicts
the stabilization of multiple-Q orderings [18], our paper on
the original Kondo lattice model indicates potential formation
of further complex multiple-Q orderings characterized with
more than two wave vectors, which would be attributed to the
full integration of the conduction electrons to the simulations.

Then we discuss the evolution of the magnetic orderings
while increasing J . The KPM-LD simulations reveal that
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FIG. 7. (a) Spin texture and (b) |Sq| of the coplanar 2Q-flux
order, constructed from Eq. (26). The dashed square in (a) denotes
the magnetic unit cell.

without the SOC the noncoplanar 2Q-vortex state is favored
for J = 0.1 and 0.2, whereas it is replaced by a coplanar
double-Q ordering for J = 0.3 and 0.4 as represented in
Fig. 7. We refer to the latter ordering as 2Q flux. For α = 0.2
the complex multiple-Q orders are stabilized for J = 0.1 and
0.15, whereas a single-Q ordering is favored for J = 0.2–0.4.
We note that the ordering vector of the single-Q ordering
found for large J , named 1Q′, is not any of the {Qη

ν}’s but
another relatively large wave vector denoted as the white
arrows in Fig. 5(d), around which the susceptibility takes a
broad peak with a sizable height. We summarize the results in
the J -α phase diagram in Fig. 8.

Complementary to the KPM-LD we perform variational
calculations. In the absence of the Rashba SOC, we compare
the energies of 2Q vortex and 2Q flux in Fig. 9(a). The 2Q

vortex is described as [15]

Sj =

⎛
⎜⎜⎝

√
1 − b2 sin2(Q2 · rj ) cos(Q1 · rj )√
1 − b2 sin2(Q2 · rj ) sin(Q1 · rj )

b sin(Q2 · rj ),

⎞
⎟⎟⎠, (25)

whereas 2Q flux is found to be represented as

Sj = N̂

⎛
⎜⎝

cos(Q1 · rj )

cos(Q2 · rj )

0

⎞
⎟⎠. (26)

FIG. 8. Ground-state phase diagram for the Kondo lattice model
with the Rashba SOC (α �= 0 and β = 0), determined by the KPM-
LD simulations.

FIG. 9. J dependence of the energies for several ansätze, esti-
mated by variational calculations with (a) α = β = 0 and (b) α =
0.2 and β = 0. (a) represents the energies for 2Q vortex and 2Q

flux, measured from that of the 1Q helical ordering. The inset of (a)
is the same plot in the small-J region. (b) shows the energies for two
ansätze for 2Q states and 1Q′, measured from that of the 1Q-helical
ordering. The calculations are performed for N = 4802.

In Fig. 9(a), we set the variational parameter b, which de-
scribes the noncoplanarity, at b = 0.6 for the 2Q-vortex
ansatz in Eq. (25). Note that, in Fig. 9(a), we subtract the
energy of the single-Q helical ordering corresponding to the
b = 0 case in Eq. (25). Figure 9(a) shows that, for J � 0.04,
the 2Q vortex has lower energy than the 2Q flux and vice
versa for J � 0.04. We also see that the helical ordering is
unfavored in the whole range of J studied here. Thus, the
variational calculations verify the trend in the KPM-LD that
2Q vortex transitions to 2Q flux while increasing J . The
critical value of J is considerably different between the two
calculations, which might be attributed to the energy resolu-
tion of the KPM-LD or the incompleteness of the variational
ansätze.

Figure 9(b) shows the energy comparison among several
ansätze for α = 0.2 and β = 0. Since the multiple-Q states
discovered in the KPM-LD, e.g., Figs. 6(c) and 6(d), are too
complicated to deduce the corresponding ansätze, we simply
employ the double-Q orderings that are used for the initial
spin configurations in the KPM-LD [see Eq. (21)], which
maximize the energy gain of the generalized RKKY Hamilto-
nian in Eq. (11) without the normalization factor. In Fig. 9(b),
we denote the double-Q orderings formed by Qa

ν1
and Qa

ν2

as 2Q-Qa
ν1

Qa
ν2

. Here, the energies are measured from that of
the single-Q ordering formed by Qa

ν , named 1Q. Although
the ansätze for the multiple-Q states are approximate ones, it
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FIG. 10. (a) Multiple-Q order with J = 0.1 for α = 0 and
β = 0.2. This is produced by applying the π rotation along the [110]
axis to the spin texture for α = 0.2 and β = 0 shown in Fig. 6(c). (b)
Spin scalar chirality of the multiple-Q order in (a), which is identical
to the Rashba-only case shown in Fig. 6(g).

turns out that they qualitatively reproduce the J dependence
obtained by the KPM-LD shown in Fig. 8: The double-Q
orderings are favored up to J ∼ 0.15 and replaced by 1Q′ for
J � 0.15.

C. Case with α = 0 and β �= 0

Finally, we discuss the case with the Dresselhaus SOC
only (α = 0 and β �= 0). As stated in Sec. II D, magnetic
orders for the Dresselhaus-only case are identical to what are
obtained by a π rotation of those for the Rashba-only case
along the [110] axis [see Eq. (18)]. Hence the phase diagram
for the Rashba-only case presented in Fig. 8 is common to the
Dresselhaus-only case with the simple global rotation applied
to the magnetic orders.

Figure 10(a) shows the multiple-Q order in the
Dresselhaus-only case with J = 0.1, which is obtained
by applying the π rotation to the one for the Rashba-only case
in Fig. 6(c). The uniform rotation leads to the same spatial
pattern of the spin scalar chirality as the Rashba-only case as
shown in Fig. 10(b). We also remark on the distinction of the
multiple-Q ordering here from those expected in localized
spin models describing only NN interactions with the same
D2d symmetry; in the latter case shows up a periodic array of

antiskyrmions, which are characterized with the opposite sign
of the topological invariant to conventional skyrmions [25].

V. CONCLUSIONS

To summarize, we have studied magnetic orderings gen-
erated by itinerant electrons subject to the Rashba (α) and
Dresselhaus (β) SOCs by means of the large-scale numerical
simulations as well as the variational calculations based on the
perturbation analyses. We discovered the complex multiple-Q
orderings under a zero magnetic field, depending on the nature
of the spin-split Fermi surfaces induced by the SOCs. For
the equal strength of both SOCs (α = β �= 0), the exotic spin
texture is unveiled in a broad range of J , characterized with
as many as six wave vectors. Notably this sextuple-Q ordering
shows a checkerboardlike pattern of the spin scalar chirality.
In the case that only Rashba or Dresselhaus SOC exists (α
or β = 0), we found another type of complex multiple-Q
states, which are distinct from those expected in localized spin
systems under the same symmetry. Since our mechanism does
not rely on specific lattice features, the complex multiple-Q
orderings could also be formed on other types of lattices in
the presence of the SOC as is the case without the SOC
[13–16]. Our findings suggest that the combination of the
spin-charge and spin-orbit couplings under broken spatial
inversion symmetry gives rise to richer multiple-Q magnetic
orders than the competition between the ferromagnetic and the
DM interactions in localized spin systems. Our theory would
be potentially applicable to noncentrosymmetric f -electron
compounds as well as heterostuctures of spin-orbit-coupled
metals and magnetic materials.

ACKNOWLEDGMENTS

We thank K. Barros and R. Ozawa for providing us with
the code for the KPM-LD simulations. We are also grateful
to R. Ozawa and S. Iino for fruitful discussions. K.N.O.
acknowledges Y. Tserkovnyak for his incisive comments. The
KPM-LD simulations were carried out at the Supercomputer
Center, Institute for Solid State Physics, University of Tokyo.
K.N.O. was supported by the Japan Society for the Promotion
of Science through a research fellowship for young scientists.

[1] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62,
R6065 (2000).

[2] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[3] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y.

Tokura, Science 291, 2573 (2001).
[4] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys.

Rev. Lett. 102, 186601 (2009).
[5] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.

Niklowitz, and P. Boni, Phys. Rev. Lett. 102, 186602 (2009).
[6] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.

Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
[7] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.

Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901
(2010).

[8] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubet-
zka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys.
7, 713 (2011).

[9] Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Ronnow, D.
Morikawa, Y. Taguchi, and Y. Tokura, Nat. Commun. 6, 7638
(2015).

[10] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W.
Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine,
K. Everschor, M. Garst, and A. Rosch, Science 330, 1648
(2010).

[11] W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. B.
Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang,
Y. Zhou, A. Hoffmann, and S. G. E. te Velthuis, Nat. Phys. 13,
162 (2016).

224406-10

https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1126/science.1058161
https://doi.org/10.1126/science.1058161
https://doi.org/10.1126/science.1058161
https://doi.org/10.1126/science.1058161
https://doi.org/10.1103/PhysRevLett.102.186601
https://doi.org/10.1103/PhysRevLett.102.186601
https://doi.org/10.1103/PhysRevLett.102.186601
https://doi.org/10.1103/PhysRevLett.102.186601
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/ncomms8638
https://doi.org/10.1038/ncomms8638
https://doi.org/10.1038/ncomms8638
https://doi.org/10.1038/ncomms8638
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1038/nphys3883
https://doi.org/10.1038/nphys3883
https://doi.org/10.1038/nphys3883
https://doi.org/10.1038/nphys3883


MULTIPLE-Q MAGNETIC ORDERS IN RASHBA- … PHYSICAL REVIEW B 98, 224406 (2018)

[12] S. D. Yi, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 80,
054416 (2009).

[13] Y. Akagi, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 108,
096401 (2012).

[14] S. Hayami and Y. Motome, Phys. Rev. B 90, 060402
(2014).

[15] R. Ozawa, S. Hayami, K. Barros, G.-W. Chern, Y. Mo-
tome, and C. D. Batista, J. Phys. Soc. Jpn. 85, 103703
(2016).

[16] R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118,
147205 (2017).

[17] T. Kurumaji, T. Nakajima, M. Hirschberger, A. Kikkawa, Y.
Yamasaki, H. Sagayama, H. Nakao, Y. Taguchi, T. -h. Arima,
and Y. Tokura, arXiv:1805.10719.

[18] S. Hayami and Y. Motome, Phys. Rev. Lett. 121, 137202
(2018).

[19] K. Barros and Y. Kato, Phys. Rev. B 88, 235101 (2013).
[20] R. Ozawa, S. Hayami, K. Barros, and Y. Motome, Phys. Rev. B

96, 094417 (2017).
[21] B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev. Lett.

97, 236601 (2006).
[22] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C.

Zhang, S. Mack, and D. D. Awschalom, Nature (London) 458,
610 (2009).

[23] M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis, Nat.
Phys. 8, 757 (2012).

[24] S. Chen, X. G. Gong, C.-G. Duan, Z.-Q. Zhu, J.-H. Chu, A.
Walsh, Y.-G. Yao, J. Ma, and S.-H. Wei, Phys. Rev. B 83,
245202 (2011).

[25] A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo,
F. Damay, U. K. Rossler, C. Felser, and S. S. P. Parkin, Nature
(London) 548, 561 (2017).

[26] Our results will hold for generic hoppings and SOC which
lead to multiple peaks in the bare magnetic susceptibility [see
Eqs. (10) and (12)] compatible with the model symmetry. The
choice of the parameters is just for the convenience of numerical
simulations. See also Ref. [15].

[27] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[28] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[29] K. Yosida, Phys. Rev. 106, 893 (1957).
[30] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod.

Phys. 78, 275 (2006).
[31] Z. Wang, G.-W. Chern, C. D. Batista, and K. Barros, J. Chem.

Phys. 148, 094107 (2018).
[32] J. M. Tang and Y. Saad, Numer. Linear Algebra Appl. 19, 485

(2012).
[33] S. Hayami, R. Ozawa, and Y. Motome, Phys. Rev. B 94, 024424

(2016).
[34] S. Banerjee, J. Rowland, O. Erten, and M. Randeria, Phys. Rev.

X 4, 031045 (2014).
[35] X. Li, W. V. Liu, and L. Balents, Phys. Rev. Lett. 112, 067202

(2014).

224406-11

https://doi.org/10.1103/PhysRevB.80.054416
https://doi.org/10.1103/PhysRevB.80.054416
https://doi.org/10.1103/PhysRevB.80.054416
https://doi.org/10.1103/PhysRevB.80.054416
https://doi.org/10.1103/PhysRevLett.108.096401
https://doi.org/10.1103/PhysRevLett.108.096401
https://doi.org/10.1103/PhysRevLett.108.096401
https://doi.org/10.1103/PhysRevLett.108.096401
https://doi.org/10.1103/PhysRevB.90.060402
https://doi.org/10.1103/PhysRevB.90.060402
https://doi.org/10.1103/PhysRevB.90.060402
https://doi.org/10.1103/PhysRevB.90.060402
https://doi.org/10.7566/JPSJ.85.103703
https://doi.org/10.7566/JPSJ.85.103703
https://doi.org/10.7566/JPSJ.85.103703
https://doi.org/10.7566/JPSJ.85.103703
https://doi.org/10.1103/PhysRevLett.118.147205
https://doi.org/10.1103/PhysRevLett.118.147205
https://doi.org/10.1103/PhysRevLett.118.147205
https://doi.org/10.1103/PhysRevLett.118.147205
http://arxiv.org/abs/arXiv:1805.10719
https://doi.org/10.1103/PhysRevLett.121.137202
https://doi.org/10.1103/PhysRevLett.121.137202
https://doi.org/10.1103/PhysRevLett.121.137202
https://doi.org/10.1103/PhysRevLett.121.137202
https://doi.org/10.1103/PhysRevB.88.235101
https://doi.org/10.1103/PhysRevB.88.235101
https://doi.org/10.1103/PhysRevB.88.235101
https://doi.org/10.1103/PhysRevB.88.235101
https://doi.org/10.1103/PhysRevB.96.094417
https://doi.org/10.1103/PhysRevB.96.094417
https://doi.org/10.1103/PhysRevB.96.094417
https://doi.org/10.1103/PhysRevB.96.094417
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nphys2383
https://doi.org/10.1038/nphys2383
https://doi.org/10.1038/nphys2383
https://doi.org/10.1038/nphys2383
https://doi.org/10.1103/PhysRevB.83.245202
https://doi.org/10.1103/PhysRevB.83.245202
https://doi.org/10.1103/PhysRevB.83.245202
https://doi.org/10.1103/PhysRevB.83.245202
https://doi.org/10.1038/nature23466
https://doi.org/10.1038/nature23466
https://doi.org/10.1038/nature23466
https://doi.org/10.1038/nature23466
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1063/1.5017741
https://doi.org/10.1063/1.5017741
https://doi.org/10.1063/1.5017741
https://doi.org/10.1063/1.5017741
https://doi.org/10.1002/nla.779
https://doi.org/10.1002/nla.779
https://doi.org/10.1002/nla.779
https://doi.org/10.1002/nla.779
https://doi.org/10.1103/PhysRevB.94.024424
https://doi.org/10.1103/PhysRevB.94.024424
https://doi.org/10.1103/PhysRevB.94.024424
https://doi.org/10.1103/PhysRevB.94.024424
https://doi.org/10.1103/PhysRevX.4.031045
https://doi.org/10.1103/PhysRevX.4.031045
https://doi.org/10.1103/PhysRevX.4.031045
https://doi.org/10.1103/PhysRevX.4.031045
https://doi.org/10.1103/PhysRevLett.112.067202
https://doi.org/10.1103/PhysRevLett.112.067202
https://doi.org/10.1103/PhysRevLett.112.067202
https://doi.org/10.1103/PhysRevLett.112.067202

