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Reinforcement learning for autonomous preparation of Floquet-engineered states:
Inverting the quantum Kapitza oscillator
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I demonstrate the potential of reinforcement learning (RL) to prepare quantum states of strongly periodically
driven nonlinear single-particle models. The ability of Q-learning to control systems far away from equilibrium
is exhibited by steering the quantum Kapitza oscillator to the Floquet-engineered stable inverted position
in the presence of a strong periodic drive within several shaking cycles. The study reveals the potential of
the intraperiod (micromotion) dynamics, often neglected in Floquet engineering, to take advantage over pure
stroboscopic control at moderate drive frequencies. Without any knowledge about the underlying physical
system, the algorithm is capable of learning solely from tried protocols and directly from simulated noisy
quantum measurement data, and is stable to noise in the initial state and sources of random failure events
in the control sequence. Model-free RL can provide new insights into automating experimental setups for
out-of-equilibrium systems undergoing complex dynamics, with potential applications in quantum information,
quantum optics, ultracold atoms, trapped ions, and condensed matter.
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I. INTRODUCTION

The use of strong periodic modulations to design properties
of quantum matter is an established approach from the
quantum simulation toolbox. Commonly known as Floquet
engineering [1-3], these ideas prove essential to realize states
of matter inaccessible in conventional materials. Prominent
achievements include stabilizing unstable equilibria [4-6]
(Fig. 1), dynamical localization and the related dynamically
controlled Mott insulator-superfluid transition in ultracold
optical lattices [7-9], the emulation of strong artificial gauge
fields [10-20], imprinting topological and spin properties into
band insulators [21-29], topological defects [30], quantum
magnetism [31-34], spin-orbit coupling [35-37], synthetic
dimensions [38—40], and photonic topological insulators
[41-43].

The current bottleneck in Floquet engineering is caused
by detrimental heating effects, due to uncontrolled energy
absorption as a result of a proliferation of Floquet many-body
resonances, beyond the inverse-frequency expansion [44—46].
The short-time dynamics of weakly interacting bosons was
shown to be dominated by parametric resonances [47-51].
Fermi’s golden rule was applied to the long-time evolution,
and leads to a featureless infinite-temperature state [52-54].
Theoretically, for nonintegrable many-body lattice systems
with bounded onsite Hilbert space dimension, heating was
proven to be (at least) exponentially suppressed in the drive
frequency [55-57], which allows for the formation of transient
long-lived prethermal steady states, ideally suited for Floquet
engineering [58-61].

Knowing how to Floquet engineer an exponentially long-
lived state of matter leaves the important open problem of
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how to steer the system in the desired target state. The
state-of-the-art approach to manipulate periodically driven
systems is the adiabatic variation of parameters [62—65].
While drive-induced photon absorption avoided crossings in
the quasienergy spectrum need to be passed quickly in order
to avoid spending much time on resonance and heating up, the
state should go slowly, compared to the inverse energy gap,
through conventional avoided crossings to suppress excita-
tions [63]. This tension leads to the breakdown of Floquet adi-
abatic perturbation theory [63,66,67], despite the existence of
parametrically controlled windows of applicability, and points
towards the necessity to develop new approaches for Floquet
control in both single-particle and many-body systems.

Reinforcement learning (RL) [68] is one of the most
promising techniques in machine learning [69-71], closely
related to optimal [72-79], feedback [80-84] control, and evo-
lutionary algorithms used in quantum chemistry and optics to
learn molecular control [85-99]. It is especially well suited to
autonomously control systems in the presence of strong drives
since it is model free and robust to imperfections and noise.
In physics, RL has been used to navigate thermals [100] and
turbulent flows [101], design experiment setups in quantum
optics [102], construct molecules with prescribed properties
[103], and to control quantum systems [104—111]. Without
a physical model, RL was shown to produce comparable
results to algorithms from optimal control [106]. Ideas from
quantum physics have been suggested to improve RL-related
algorithms [112-114]. Despite recent progress, RL’s potential
remains massively unexplored in physics.

Inspired by Ref. [106], this work demonstrates the suit-
ability of RL to study the nonequilibrium quantum dynamics
of strongly driven Floquet-engineered states. In a numerical
simulation of a quantum experiment, starting with zero knowl-
edge about the system, the RL agent learns how to optimally
prepare inverted position states in the Kapitza pendulum from
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FIG. 1. Prototypical example of Floquet engineering: high-
frequency periodic modulation stabilizes the metastable equilibrium
at the inverted position of a classical pendulum (left) and a quantum
oscillator (right). (a) Schematic Floquet control setup displaying the
step-periodic drive (green), and the control protocol (cyan). The
purpose of this work is to prepare states localized at the inverted
position (b) in the presence of strong periodic modulation without
knowledge about the physical system, using reinforcement learning
(see Supplemental Material, video 1 [115]).

tried protocol configurations (see Supplemental Material,
video 1 [115]). The algorithm is applied to both the quantum
and the classical oscillator. Unlike Ref. [106], the agent learns
from quantum (i.e., nondeterministic) measurement data, and
is shown to remain robust after adding noise to the initial state,
and occasional random failure events in the control sequence.
The study shows the advantage of exploiting the micromotion
dynamics for control to achieve higher fidelities compared to
stroboscopic control.

II. FLOQUET CONTROL PROBLEM

Consider the Hamiltonian of the horizontally kicked quan-
tum Kapitza oscillator

H(t) = Hy + Hdrive(t) + Hcontrol(t)v
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where m and wy are the mass and natural frequency of the
oscillator Hy with position (angle) and (angular) momentum
variables obeying [py, 8] = —i. Applying a strong vertical
periodic drive of constant amplitude A and frequency Q2 =
2r/T is known to stabilize the metastable inverted position
at 0 = m, a paradigmatic example of Floquet engineering
[2] (Fig. 1). The latter requires the Floquet drive to couple
strongly to the system, with an amplitude scaling linearly with
2 in the laboratory frame [2]. To see how stabilization occurs,
and to avoid working at large amplitudes, it is advantageous
to adopt the rotating frame description (1), at the expense of

introducing a second harmonic in Hyve(?) (cf. Appendix A).
Therefore, the piecewise constant drive, designed to speed up
numerical simulations, repeats every four steps. The units are
chosen such that py, 0, mwy, A are all dimensionless, and
h = 1. Energy is measured in units of wy.

For h(t) = 0, the dynamics of the uncontrolled Kapitza
oscillator at integer multiples of the drive period T (i.e.,
stroboscopically) is exactly described by the Floquet Hamilto-
nian Hp(£2). In the infinite-frequency limit, taking the period
average of Eq. (1) gives

2 2
—_m _ P 2 A

Hp( — 00, h =0) = —= —mw;cosf — — cos26. (2)
2m 8m

The periodic drive renormalizes the potential energy of the
oscillator [Fig. 1(b)] and, whenever A > \/Ema)o, the potential
supports a stable equilibrium at 6 = & with frequency of

harmonic oscillation o’ = v A?/(2m?)—w}. Away from the
limit 2— oo, finite-frequency corrections can be incorpo-
rated using the inverse-frequency expansion [2], yet the exact
form of Hg(£2) remains unknown. This leads to a modification
of the critical amplitude, yet the stabilizing behavior persists
qualitatively down to € 2 6wy for the step drive.

Turning on the control field #(#) compromises the time
periodicity of H(¢), and one can in general no longer rely
on Floquet theory. The unknown control field i(t) € {0, 4},
t€[0, t7], of duration t; = N T is built from a sequence of
constant horizontal momentum kicks of duration 8¢ exerted
on the oscillator, called bangs, to speed up the efficiency
of the RL algorithm. The bounded kick strength reflects
possible constraints in experiments with too large control
fields; the exact values {44} are chosen to be on the same
order of magnitude as the bare oscillator frequency, so that no
term dominates the Hamiltonian and the dynamics cannot be
studied using perturbation theory. The 0-bang allows to turn
off the control field. I further consider drive-commensurate
protocols of two types: (i) stroboscopic T = 6t, and (ii)
commensurate nonstroboscopic T = 4nét, n € N (Fig. 1).
To control the Kapitza oscillator, nonstroboscopic protocols
are chosen Ny = 15-driving-cycles long, with 8 steps per
cycle (120 bangs). The protocol space contains 3'2° & 107
configurations.

The objective of this study is to determine a bang-bang
protocol A(¢) which finds the system in the ground state |v;)
of the nondriven uncontrolled Hamiltonian Hy, and brings it
as close as possible to the target state |y), the eigenstate
of the finite frequency Hp(S2) localized at the inverted po-
sition, in a fixed amount of time. The figure of merit is the
fidelity Fj, (1) = |(1p(tf)|1p*)|2 of being in the target state at
the end of the control sequence. Note that the amplitude A of
the instantly turned on periodic drive is held constant during
control and, therefore, there is no natural adiabatic path (in &
space) between the initial and target states. There is no small
parameter to do perturbation theory in, either.

III. COMPLEXITY OF THE DETERMINISTIC
KAPITZA CONTROL PROBLEM

At present, I am not aware of an analytical theory to find
the optimal protocol or even predict its fidelity in the Kapitza
control problem. It is, therefore, advantageous to acquire
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FIG. 2. Distributions of the nearest (N) [i.e., {—4,0} and
{0, +4}] and next-nearest (NN) [{—4, +4}] one-flip excitations of the
SD protocols (see text). The dashed vertical line marks the fidelity
of the absolute maximum. The data refer to the sample of all local
protocol minima which satisfy Fj,(t7) > 98%. The model parameters
are the same as in Fig. 3.

some intuition about the properties of the control landscape
[116], which has recently been shown to exhibit a variety
of phase transitions [106,117,118] including glassy control
phases [119] and symmetry breaking [120] in non-Floquet
control problems.

To begin with, a quick check shows that using random
protocol sequences leads to about 10% fidelity (Appendix C);
this is expected to reflect the performance of the RL agent
during the first episodes of training, when it is still unfamiliar
with the behavior of the physical system.

To get an estimate of the magnitude of the reachable fideli-
ties for the chosen set of model parameters, I use stochastic
descent (SD), initiated from random protocol configurations,
and flip the protocol bangs randomly one at a time, un-
til a local minimum of the infidelity landscape is reached
[106,119]. Such minima represent locally optimal protocols,
close to which greedy optimization algorithms are likely to get
stuck, due to the glassy character of control landscapes [119].
The obtained sample of 10° SD protocols has mean fidelity
87% (Appendix C). Out of these, 92 local minima protocols
have fidelity greater than 98%, with the absolute maximum at
98.68%. The bang sequences of the corresponding protocols
are, however, completely different which suggests that they
may occupy deep pockets in the control landscape (with
respect to the Hamming distance) [116].

To test this assertion, starting from each one of the 92 best
SD minima, I compute the fidelities of all one-flip variations
(called excitations), which fall in two categories: nearest (N)
flips are those between protocol values {—4, 0} and {0, +4},
while next-nearest (NN): {—4, +4}. Figure 2 shows the dis-
tributions of one-flip excitations. Intuitively, one expects that
the wave function cannot undergo drastic changes within the
short kicks of strength (|h|6t = 0.314) during a single bang.
Nonetheless, on average the fidelity of one-flip excitations
drops by more than 10%, which points at the rugged profile
of the Floquet control landscape. The total number of fidelity
evaluations required to obtain the local SD-minima sample is
about 10® (10° runs, with on average 10? evaluations each).
SD is a deterministic algorithm (i.e., relies on the exact

fidelities to operate). In this work, I present an autonomous
RL algorithm which can be coupled to realistic experiments
with multiple generic sources of noise.

IV. CHALLENGES IN AUTONOMOUS
QUANTUM CONTROL

All information about a quantum state is encoded in its
wave function. Hence, when developing algorithms for real-
istic experimental setups, the main challenge for autonomous
control arises from the lack of access to the quantum states
which are unmeasurable mathematical constructs. Invoking
Picard-Lindel6f’s uniqueness theorem to find the evolution
operator Uj(¢,0) which integrates Schrodinger’s equation,
given a fixed initial state |Y;), one can parametrize the ac-
cessible states at later times |y (7)) by the protocol sequence
h(t) up to time ¢:

{lv (@) = Un(z, 0)|¥i)}
& (@) :HIR@) 1Y), 1 €[0, 1]} =S (3)

Although this mapping is not one-to-one (a state may be
accessible using different protocols), it offers a significant
advantage: while quantum states cannot be measured, the
applied protocols A(¢) can actually be kept track of. Hence,
fixing the initial state, one can infer which state the system
ought to be in at a later time, from the applied protocol. In fact,
the minimal amount of information an autonomous algorithm
can have about the controlled quantum system is the applied
protocol sequences.

Another challenge in experimental quantum control is the
nondeterministic character of projective quantum measure-
ments. Since they destroy the state, one is allowed to mea-
sure only once, at the end of the protocol when the system
has evolved into the state |y (¢y)). Projective measurements
are modeled to return 1 with probability set by F(t) =
|(1W(tf)|1p*)|2 if the system is found in the target state |y,),
and 0 otherwise (Appendix B). Therefore, the algorithm seeks
to maximize the fidelity Fj(¢;), whose true value remains
unknown at the time of measurement, and is only estimated
from the data. During the optimization process, the situation is
in fact much more complicated since, as the available protocol
family is explored, the true probability F}(z;) to determine
the measurement, changes from one protocol to the next, as
different protocols in general lead to different final states.

Further challenges arise from (i) the inability to prepare the
initial state |y;) with certainty. Experiments only prepare the
desired initial state within a given fidelity window. Addition-
ally, (ii) in experiments one has to account for the occasional
failure of the control apparatus: even though the algorithm
may have requested the protocol sequence h(t), the physical
system might experience a slightly modified protocol A'(t)
instead. Depending on the sensitivity of the optimal solution,
this could lead to drastic changes in the reachable fidelities
[106,119] (see Fig. 2). Every experiment (iii) comes with
its own imperfections and difficulties: the Hamiltonian H(¢),
assumed to model the system, is often merely a simplified
approximation, which compromises the unconditioned appli-
cability of idealized simulations. Finally, even if all of the
above were not present, (iv) there are various constraints
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imposed by the dynamics of the physical system of interest. In
this respect, controlling Floquet systems remains an unsolved
challenging problem of nonequilibrium dynamics. It is, thus,
desirable to have a versatile algorithm which is capable of
dealing with the above scenarios in an efficient way.

V. REINFORCEMENT LEARNING

In this work, I adopt a modification of Watkins Q-learning
algorithm [121] to study the Kapitza control problem. An
RL agent seeks to find an optimal protocol h(¢) to prepare
the target state |v.), without knowledge about the controlled
system.! To do this, it episodically gains experience and
uses it by taking actions to construct bang-bang protocols
one bang at a time. These protocols are applied to a simu-
lated quantum system (the environment), returning a reward
to the agent: the estimated fidelity Fj(¢;), computed based
on the measurement record obtained so far. As the number
of training episodes increases, the algorithm progressively
correlates protocols with their fidelity, a process referred to
as learning. Even though in a simulation it is possible to
learn from the exact fidelities, in order to better simulate
a realistic quantum experiment, for each protocol A(t), the
algorithm stores two integers, corresponding to the number
m of protocol encounters, and the number n of 1’s in the
output of the binary quantum measurement. From them, it
computes the reward r estimating the mean current fidelity
r = n/m of being in the target state (for a given protocol).
The error estimate E to be within the 20 window controls the
number of repetitions used to gather measurement statistics.
Hence, during the learning process, the agent has to deal with
noisy rewards. These intrinsically quantum features obscure
the learning process significantly close to the best attainable
fidelities, where it is known that differences in the higher
decimal places of the fidelity can play a decisive role [119].

The information the agent has about the controlled system
is encoded in the RL state space S, which I define using
the correspondence (3). For instance, for a four-step-long
protocol {+4}, {+4, —4}, {+4, —4,0}, {+4, —4,0,0} €S are
all admissible RL states. Note that the size of S scales
exponentially with the number of bangs. While this aggra-
vates the exploration of the state space, it is well within the
scope of RL algorithms to learn nearly optimal policies in
complex environments with exponentially large state spaces,
as becomes clear from recent success in mastering video and
board games beyond human level [122,123]. Importantly, this
scaling does not depend on the Hilbert space dimension of
the quantum system which makes the algorithm applicable to
large systems (one does need an experiment to simulate their
dynamics to provide rewards, though). In this respect, the RL
algorithm is modular: the learning part (which can be chosen
insensitive to the Hilbert space dimension) is separate from
the quantum mechanics part (which provides the rewards and
in a simulation would suffer from the limitations due to large
Hilbert space dimensions). To construct protocols on the fly,
every time step the agent invokes its knowledge gathered so
far to pick an action from the set A = {—4, 0, +4} based on

'Note that the agent is presented with the target state, and does not
discover it.
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FIG. 3. Running fidelity estimate during train (left) and test
(right) stages of Q-learning for the quantum Kapitza oscillator. The
three rows show data for stochastic rewards only (top), stochastic
rewards and noisy initial condition (middle), and stochastic rewards,
noisy initial condition and stochastic environment (bottom). The
horizontal black lines show the average fidelity of local infidelity
minima computed using one-flip SD (dashed dotted line), and the
best SD realization (dashed line) out of 10° local minima samples
obtained with deterministic cost function. The horizontal red dashed
line shows the best-encountered protocol using RL during the train
stage. The RL data points (red) are averaged over 100 seed realiza-
tions of the pseudorandom number generator, with the uncertainty
window (shaded area) computed using a bootstrapping approach.
The green curve shows the exponentially attenuated exploration
schedule &(n.p), normalized within [0,1] for display purposes: unity
corresponds to no exploration. The oscillator parameters are Ny =
15 periods with eight steps each, Q2/wy = 10, A = 2, and mw = 1.

the predicted expected reward. I use an e-greedy exploration
policy, which is attenuated exponentially with the number of
episodes [68]. Finally, the reward space is R = {r €[0, 1]:
r = n/m}. The algorithm also applies experience replays to
enforce exploration around the estimated best-encountered
protocol (cf. Appendix G).

VI. AUTONOMOUSLY INVERTING THE QUANTUM
KAPITZA OSCILLATOR

The Q-learning agent is first trained for 10° exploration
episodes, followed by 10° greedy test episodes to examine
the stability of the learning process. Due to the probabilistic
character of e-greedy exploration, the algorithm is run for 100
distinct seeds of a pseudorandom number generator, and the
results I present show averages (cf. Appendix E 2). Figure 3(a)
shows that the fidelity Fj(z;) of being in the target state
increases consistently and then saturates at about 80%. Hence,
the RL agent is capable of autonomously controlling the
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Kapitza oscillator by using only information from noisy quan-
tum measurements. Note that the agent slightly overestimates
the true fidelity (blue). Yet, it learns the correct noise correla-
tions in the reward (test stage: blue and red shaded areas).

To demonstrate the robustness of RL to noise in the initial
state, I draw a Haar-random state |¢), and consider the noisy
initial state |v;(n)) oc|¥;)+nl¢), with n = 0.31 such that
[{(W; ] (7))|> &~ 0.9. This results in a small drop of fidelity
to about 73%, parametrically controlled by n [Fig. 3(b)].
Therefore, Q-learning is stable to small perturbations in the
initial condition. Additionally, I expose the RL agent to a
stochastic environment, in which every bang is randomly
replaced by any of the three available actions with probability
¢ = 1/120, mimicking occasional spontaneous failure in the
control apparatus. The value ¢ = 1/120 is chosen so that
one bang of the 120-bang-long control sequence fails on
average. This scenario, similar to gate failure in quantum
computing, expectedly leads to a further reduction to about
71% [Fig. 3(c)]. Hence, RL is also capable of learning in
stochastic quantum environments. Interestingly, the agent is
capable of denoising the experimental rewards, as indicated
by the uniform envelope of the estimated (red) compared to
the true (blue) fidelity fluctuations.

To investigate the ability of the algorithm to navigate noisy
environments, I also trained the agent in a noiseless determin-
istic environment, but tested it in a noisy stochastic setup (cf.
Appendix E 1). The test-stage true fidelity fluctuates about the
same value, as if the agent was trained in a noisy stochastic
environment. This behavior likely originates from the intrinsic
exploration noise built in e-greedy policy. The inability to
exploit the knowledge in the presence of initial state noise is
presumably a consequence of the RL state space definition (3).
This reveals a potential drawback: if the system is initiated
in a sufficiently different state, the gained knowledge is not
immediately exploitable, and the agent takes time to explore
again (Appendix E 1). This is, however, a feature of the current
choice for the state-action space, rather than of the algorithm.

I could not distinguish any significant features in the best
protocol sequences (cf. Appendix C), which suggests that the
bang-bang family might not be naturally suitable for Floquet
control problems. Nonetheless, one can visualize the dynam-
ics of the real-space probability distribution of the oscillator.
I consider three stages: (i) The Floquet system is subject to
the best RL protocol in the presence of the Floquet drive.
Once the control stage is over, (ii) I keep the Floquet drive on
with h =0, before (iii) both the Floquet drive and the control
are turned off (h=0, A = 0) and the system evolves under
H, [see Supplemental Material [115] for best-encountered
RL (video 1) and best SD one-flip local minimum (video
2)]. One can observe the complexity of preparing entire local
probability distributions with a single global control field, as
becomes clear from the large fluctuations in fidelity between
the short bangs. Note that the RL agent seems to first push the
real-space weight of the wave function clockwise (video 1 in
[115]), before the final state is eventually reached from the op-
posite counterclockwise direction. This is reminiscent of the
classical problem with scarce control resources (mountain car
paradigm in RL [68]) where, in the short time available, one
might decide to push the pendulum one way to convert energy
from the drives into potential energy which, with the help of
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FIG. 4. RL agent performs better in nonstroboscopic (8 bangs
per cycle) than stroboscopic (1 bang per cycle) control at moderate
drive frequencies. See Fig. 3 for the parameters.

gravity, can then be unleashed to reach the inverted position
from the other side. The quantum character of the dynamics
likely determines the precise nontrivial bang sequence to keep
the structure of the wave packet during the evolution. This
classical-like behavior is intriguing since the quantum nature
of the dynamics is clearly exhibited during stage (iii), where
the overlap with the target state remains large even when the
oscillator is not controlled or driven, as a consequence of
|Y,) having a finite overlap with the excited eigenstate of H,
corresponding to the metastable classical inverted state.

Last, the study also confirms the clear superiority of non-
stroboscopic Floquet control (8 bangs per cycle) over strobo-
scopic control (1 bang per cycle). Figure 4 shows the learned
saturation fidelity for several moderate frequencies in both
cases. As expected, since the stroboscopic protocols can also
be viewed as nonstroboscopic ones, the stroboscopic optimal
fidelity is always a lower bound on the nonstroboscopic one.
However, the smaller stroboscopic family (3!>~ 107 proto-
cols) can be explored more efficiently which leads to seem-
ingly better RL performance at high drive frequencies. Even
though nonstrobscopic dynamics is often neglected in Floquet
engineering, it can offer advantages in Floquet control, and
should not be easily dismissed [124,125].

VII. DISCUSSION

The best SD protocol out of the family of local minima
has 98.6% fidelity (Fig. 3, dashed black line), better than
the average learned RL fidelity. It is also superior to the
best protocol encountered by the RL agent during training
at 91.6% (Fig. 3, dashed red line). Why could the agent
not learn any of these protocols? One possibility is that it
estimated their true fidelities poorly, and decided to ignore
them. Another suggests the existence of very deep pockets in
the infidelity landscape, which are unstable to noise, naturally
present in the exploration schedule (Fig. 2). RL is designed to
find stable solutions, even if they are further from the global
minimum as measured by the cost function. Last but not least,
the RL fidelities do improve with increasing the number of
training episodes to 10%, still a tiny fraction of the total RL
state space size (cf. Appendix E 3). In this respect, notice that
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the data in Fig. 3 are shown for 10° fidelity evaluations, as
opposed to 10® evaluations for SD.?

The control setup considered in this paper comes in con-
trast to typical Floquet control problems, which support an
adiabatic path in parameter space between the initial and
target states, e.g., by slowly turning on the drive amplitude.
As a result, comparing the numerically obtained protocols
to analytical predictions is a formidable challenge. However,
this challenge does not arise from the specific nonadiabatic
setup alone. Even though adiabatic perturbation theory has
been extended to periodically driven systems, Floquet reso-
nances, leading to gaps in the quasienergy spectrum along the
adiabatic trajectory, are known to result in the breakdown of
Floquet adiabaticity [63,66,67]. In contrast, this is not a prob-
lem in static (i.e., non-Floquet) systems, where RL has been
applied to a many-body spin chain to prepare ground states,
adiabatically connected by the control field [106]: it was
found that, at short durations, the functional form of optimal
protocols differs significantly from that of adiabatic protocols,
but can still be understood within the analytical framework
of shortcuts to adiabaticity. Extending such ideas to Floquet
systems is, to the best of my knowledge, an open problem,
where RL and optimal control could provide useful insights.

One might also raise a valid objection that experiments cur-
rently cannot project the system to exact Floquet eigenstates,
and hence using this particular target state makes the study not
immediately applicable to realistic experimental setups. It is,
however, possible to target a quasi-Gaussian state, localized at
the inverted position (6 |,) ocexp[—(a)/)l/ 4 cos6]. This gives
qualitatively similar results (cf. Appendix D).

Itis also important to mention that there exist alternative al-
gorithms that can be used to study Floquet control. Examples
include GRAPE [75], CRAB [76], VQE [78,79,126], QAOA
[127-129], and Lyapunov-based feedback control [130—-133].
Whereas some of them require to have a model for the system
under control, RL is model free and can be applied in situa-
tions where the Hamiltonian of the system (more generally,
the dynamics of the environment) is unknown. In this study, I
make use of a model only to provide the training data.

Quite generally, bang-bang protocols also come with an
experimental limitation, posed by the bandwidth of pulse
generators. Even though they constitute a convenient theory
starting point, it would be interesting to parametrize the
protocols by Fourier components, an idea underlying the
CRAB algorithm [76]. Such protocols can be resonant with
the drive, and the corresponding control process likely admits
a Floquet description. I should emphasize that the use of
bang-bang protocols is not at all a requirement imposed by RL
algorithms, and certain RL algorithms (e.g., Policy Gradient)
can even be applied to learn continuous control fields.

The major bottleneck in using RL to control realistic
experiments is set by sample efficiency. In the present im-
plementation, I repeat each protocol 100 times (not shown in
Fig. 3) to estimate its fidelity from the quantum measurement
data. While this slows down the learning process, I stress
that this is an intrinsic feature of all quantum measurements,

2Without counting nonexploratory repetitions required to collect
measurement statistics.

unrelated to RL. In a large class of platforms, such as cold
atoms, this can be alleviated by measuring multiple copies of
the system simultaneously. Theoretically, the problem could
also be mitigated by employing techniques from statistical
inference, or a suitable pretraining procedure.

Even though the obtained fidelities are model dependent
and do not carry over to other control problems, the Q-
learning algorithm is universal in the sense that the RL agent,
starting with no prior knowledge, learns only from its actions
(protocols) and the stochastic reward. This is analogous to
playing video or board games without seeing the game con-
figuration, but only the (noisy) score. Hence, the fine details
of the controlled system are irrelevant for Q-learning and can
be applied to any model, even classical ones, as I demonstrate
using the classical Kapitza pendulum (see [115], video 3, and
Appendix F).

VIII. OUTLOOK

Every experiment comes with its own imperfections which
obscure the physics of interest. Building a theory to describe
them all in detail is often a formidable setup-dependent task,
and requires considerable efforts. In the era of machine learn-
ing and automation, it is desirable to develop autonomous
algorithms to delegate the tedious task of exploring the fine
details of experiments to computers, and RL emerges as a nat-
ural candidate. It is currently an open question as to whether
experimental imperfections can be turned into features, and
exploited for the purpose of control.

In this respect, RL presents a set of promising algorithms,
capable of simultaneously dealing with various sources of
uncertainty and noise, even in highly complex far-from-
equilibrium scenarios with no available analytical description.
Out of a variety of RL algorithms [68], it is not clear which
ones are best suited for controlling quantum systems away
from equilibrium. In this study, I chose Q-learning because
it is off policy, i.e., one can use data, generated when the
policy of the agent was suboptimal, to improve the current
policy. Further advantages are expected to be offered by deep
learning [107,108,110,134,135], especially in the search of an
efficient compressed representation of the state-action space,
which is one way to incorporate continuous protocols. Deep
learning allows the agent to generalize and evaluate the value
of previously unseen protocols, but also brings in difficulties
associated with uncontrolled approximations and the absence
of convergence guarantees for the algorithm. I verified that the
tabular Q-learning algorithm used in this paper is convergent.

This work represents a pioneering step in introducing RL to
control quantum systems far away from equilibrium. Whereas
it is difficult to a priori assess the suitability of RL for
nonequilibrium many-body control, recent work successfully
applied RL algorithms to control static (i.e., non-Floquet)
chaotic many-body spin chains [106,107]. The higher com-
plexity of many-body control may as well require to cast
the RL problem as a partially observable Markov decision
process. While still at the beginning of this quest, the present
proof-of-principle theoretical study already hints towards the
applicability of RL to a large class of problems in quantum
dynamics, and will hopefully spawn more research in this
exciting new direction.
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APPENDIX A: SIMULATING THE DYNAMICS
OF THE KAPITZA OSCILLATOR

This Appendix motivates the choice of Hamiltonian for the
Kapitza oscillator [Eq. (1), main text], and discusses similar-
ities and differences with the original Kapitza pendulum due
to the periodic step drive. The Kapitza oscillator with mass m
and natural frequency wy is governed by the Hamiltonian [2]

2
Hy = 0 ma)(z) cos 6,

Hia(t) = Hy+ AQLf(t)cosb,
2m
(A1)

where A and 2 =27 /T are the (dimensionless) amplitude
and the frequency of the periodic drive, and f(t +T) = f(t)
is a T-periodic function with zero period average. In the
infinite-frequency limit, one may expect that, since the drive
averages to zero, the system is effectively governed by the
nondriven oscillator Hy. However, since the strength of the
drive-system coupling scales linearly with the drive frequency
€2, this naive picture breaks down, and the effective infinite-
frequency Floquet Hamiltonian Hr (2 — 00) # H.

In Ref. [2], a generic way to circumvent this problem was
suggested, by going to a rotating frame:

H(t) = V() Hia (DO V (1) — iV ()3, V (1),
V(t) = exp[—i A(t)cos 0],

t

A(t) = AQ[ dr’ f(t). (A2)
This transformation removes the linear with 2 scaling of the
amplitude in the time-integrated drive A(¢), and facilitates the
computation of the infinite-frequency Floquet Hamiltonian, as
I now briefly revisit. Fundamentally, changing the reference
frames can be seen as a resummation of an entire subseries
of the inverse-frequency expansion [1-3]. A straightforward
calculation yields

1 1
Hyoi(t) = Hy + =— A()[sin 0, pyly — =— A>(1)sin® 6,
2m 2m
(A3)
where [-, -]+ denotes the anticommutator. For instance, spe-
cializing to f(t) = AQsin(Q2r) gives A(t) = —A cos(2t)

and A2(r) = A2/2(1 + cos 2€2¢). Since in this rotating frame
the drive couplings (i.e., the amplitudes) of A(¢) and A(¢) are

independent of €2, the infinite-frequency Floquet Hamiltonian
(up to a constant) can be computed by taking the time average

2
Hp (2 — 00) = Hy — A7 cos 26. (A4)
8m

Next to the free oscillator H, it contains an extra potential-
energy term, which is responsible for stabilizing the inverted
position of the oscillator at & = 7 for high-enough frequen-
cies. Note that this change of frames changes the micromotion
(i.e., intraperiod) evolution, but not the Floquet Hamiltonian;
hence, the stabilizing property of the dynamics is left intact.

To set up an efficient simulator for quantum dynamics
which produces the data from which the RL agent learns,
it is advantageous to consider periodic step drives. These
multiharmonic analogs of the monochromatic drive allow to
circumvent solving Schrodinger’s equation using ODE inte-
grators, and reduce simulation time. Typically, multiharmonic
drives do not change the structure of the Floquet Hamiltonian,
i.e., they preserve the stabilization effect: this can be seen
with the help of the inverse-frequency expansion where the
operator structure decouples from the time-ordered integrals
and is, thus, independent of the specific choice of drive.
Howeyver, there can be subtleties, which I now discuss.

A first guess would be to use a periodic-step time de-
pendence for the laboratory-frame drive f(¢), with A(z) the
corresponding continuous periodic zigzag function. However,
choosing a step drive in the laboratory frame results in a
more complicated time average fOT A%(t)dt ~ Q7%, which
eliminates the stabilizing cos 26 term in the infinite-frequency
Floquet Hamiltonian, and compromises the engineering prop-
erty of the Floquet drive.

This observation suggests to use step drives in the rotating
frame. I propose the following periodic step-drive Hamilto-
nian:

Ste] A . .
Ho' (1) = Hy — 3, signcos Qr [sin6, pols

2
— A—(l — sign sin 292t) cos 26. (AS)
8m
Certainly, Eq. (AS5) has the correct infinite-frequency limit.
However, the choice of the time-periodic step functions in
Eq. (AS) comes at a price, and a few remarks are in order:
(i) Notice that the time dependence of the cos 26 term is not
equal to the square of the time dependence in front of the
[sin @, pg]+ term with this choice of drives. Hence, although
the stroboscopic dynamics of the Hamiltonian (AS) at infi-
nite frequencies coincides with that of the original Kapitza
oscillator (A1), this is not necessarily the case at finite fre-
quencies. (ii) Even though the Hamiltonian in Eq. (AS) does
not describe the original dynamics of the laboratory-frame
oscillator, the Floquet Hamiltonian associated with Eq. (AS5)
also supports a stable equilibrium at high enough frequencies.
Thus, the Floquet engineering properties of the Hamiltonian
(AS) are the same as in the original Kapitza oscillator, al-
though the corresponding finite-frequency Floquet Hamiltoni-
ans differ. (iii) Sacrificing the equivalence of the micromotion
dynamics by going from the laboratory to the rotating frame
(and further by using step drives) permits to also adjust the
relative phases of the two time-dependent drives in Eq. (AY).
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The term 1/2(1 — signsin2L2¢) allows to use a minimum
of four (instead of eight) steps per driving cycle. Keeping
the periodic drive commensurate with the bang-bang control
further facilitates the simulation of the dynamics. In turn, this
enables reaching longer evolution times at a small computa-
tional cost. (iv) If one adds additional terms to the laboratory-
frame Hamiltonian (A1), which depend on the position 6
only, then they remain unaffected by the transformation to the
rotating frame, and thus can simply be added to Eq. (AS).
Such a term is given, e.g., by the horizontal displacement
operator sin 6, to which the control field couples (see main
text). Hence, Eq. (A5) preserves the control properties of the
original oscillator.

For these practical reasons, the simulator of quantum
dynamics used to provide the data for the RL agent uses
the Hamiltonian (AS5). I use the (angular) momentum basis
with 21 states in the Hilbert space, such that the low-energy
initial and target wave functions remain marginally affected
by increasing the number of states.

APPENDIX B: SIMULATING QUANTUM
MEASUREMENTS

In this Appendix, I motivate the specific choice of binary
quantum measurement used to simulate a setup close to realis-
tic experiments. Suppose one had access to all observables in
the quantum Kapitza oscillator, and one could readily measure
any combination of them. To determine if the state [ (¢5))
at the end of the protocol is the Floquet eigenstate local-
ized at the inverted position, one would proceed as follows.
Since one cannot measure states, but only observables, one
has to measure the Hermitian operator corresponding to the
Floquet Hamiltonian Hp. A projective quantum measurement
then returns probabilistically the nth eigenvalue of Hr with
probability |(w(tf)|nF)|2, where Hplnp) = e|np). Let us
reconcile this with the binary measurement defined in the

main text: if, in a fixed outcome, n coincides with the target
state at the inverted position, this corresponds to the binary
output 1, and in all other cases to 0.

Note that for many-body systems, the probability
I(w(tf)lnp)|2 is likely to be exponentially small for almost
all states, due to the exponentially large (with the system
size) dimension of the Hilbert space. In such cases, it will be
infeasible to successfully target a specific many-body state.
This is related to the fact that the fidelity, being a probability,
is a microscopic quantity, while in many-body systems the
measurable quantities are observables (and their densities).
For instance, in Ref. [106] it was demonstrated that in certain
many-body control problems, one can successfully target mi-
croscopic states, such that the normalized logarithmic fidelity
—L""log Fy(tf) remains finite as L — co. Another argu-
ment, based on typicality of many-body states [138], shows
that even though the eigenstates of generic observables are
orthogonal by definition, within a small eigenvalue shell they
share the same macroscopic properties, such as expectation
values of observables, up to exponentially suppressed finite-
size corrections. This raises the question as to whether it
is possible to target macroscopic properties of many-body
systems using RL and quantum control, to be addressed in
future studies.

APPENDIX C: CONTROL PROTOCOLS LEARNED
BY THE RL AGENT

In this Appendix I discuss the protocols learned by the
RL agent. Even though I do not yet fully understand the
physics behind the best RL protocols, certain features present
themselves worthy of attention.

Figure 5 (left column) shows the best protocol out of
a family of 10° local minima obtained using one-flip SD,
and the corresponding instantaneous fidelity evolution. The
middle column shows the best encountered protocol by the

4 = 4 4 M
Q —~
2 =
= 2 ~ 2 < 2
< B =
= fas
92 0 20 2 0
7 : s
£ -2 = -2 % —2
¢ st
—4 : . £ : —4 LML iU
0 5 10 15 0 5 10 15 0 5 10 15
driving cycle t/T driving cycle t/T driving cycle ¢/T
1.0 1.0 1.0
—— Fy(ty) = 0.9868 —— Fy(ty) = 08981 —— Filty) = 0.9160 0"
<05 E 0.5 E 0.5
0.0 0.0 - ! 0.0
0 5 10 15 0 b} 10 15 0 5 10 15

driving cycle t/T

driving cycle ¢/T

driving cycle /T

FIG. 5. Protocols (upper row) and the corresponding fidelities (lower row) against time. The oscillator parameters are 2/wy = 10, A = 2,
and mw,y = 1. The protocols contain 8 steps per period for a total of Ny = 15 periods.
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FIG. 6. Fidelity distributions for random protocols on linear (left), and a semilog (middle) scale, and the sample of local SD minima (right).

The oscillator parameters are Q/wy =

RL agent during the train stage, according to the estimated
fidelity (recall that the measurement is noisy and the agent
only gets an estimate of the true value). I checked that, for
this seed realization, the agent in fact learned this protocol
and was following it during the test stage. The right column
shows the best true-fidelity protocol encountered during the
train stage. Despite notable similarities at early times between
the two protocols, there are small differences suggesting that
the agent has hard time estimating the true value of a protocol
close to optimality, due to the presence of noise in the reward.
Additionally, notice that the instantaneous fidelities are not
monotonic: they first rise and drop at intermediate times
before they shoot up for the final values. In fact, the rise
appears during a stage dominated by the +4 bang mode. This
is reminiscent of the agent pushing the pendulum (on average)
in one direction in order in the second stage to make use of the
gained gravitational energy to overcome the potential barrier
and eventually reach the inverted position from the other side
in the time allotted. Indeed, this naive classical picture is
confirmed by the protocol visualizations (see Supplemental
Material, video 1 [115]). The quantum nature of the dynamics
is most likely hidden in the nontrivial character of the bang
sequence.

While it is hard to make precise sense of these protocol
patterns, one can gain insights into the complexity of Kapitza
bang-bang control as an optimization problem. Figure 6 (left
panel) shows the histogram of 10° randomly chosen protocols.
As observed using the train curves in RL, the mean fidelity
of a random protocol is about 10%, which is consistent. This
distribution represents the density of states (DOS) in protocol
space [119]. It decays at least exponentially with fidelity (mid-
dle panel). This distribution comes in strong contrast to that
of one-flip local SD minima in the infidelity landscape (right
panel), which is heavily sifted towards the high-fidelities of
interest. When pushed to 10° training episodes, the RL agent
learns on average a fidelity which is consistent with the mean
of this distribution [cf. Fig. 11 (top right panel)].

APPENDIX D: LEARNING A QUASI-GAUSSIAN
TARGET STATE

As I explained in Appendix B, targeting an exact Floquet
eigenstate requires the ability to measure the Floquet Hamil-
tonian. Unfortunately, often this is beyond the capabilities of
present-day experiments.

10, A = 2, and mw, = 1. The protocols contain 8 steps per period for a total of Ny = 15 periods.

At the same time, however, the main reason behind the
interest in that particular Floquet eigenstate, is precisely its
feature to be localized at the inverted position. One might
then wonder how the RL agent would perform, if required
to target a simpler state with the same property. To test this,
I use as an alternative target state the quasi-Gaussian state
9|I//* ocex/p( a~'%cos@) (Fig. 7), with oscillator length

= (') in the harmonic approximation set by the
1nﬁn1te -frequency effective potential at the inverted position:
o' =+/A?/(2m?) — w]. Such a state can be emulated easily
as the ground state of some static Hamiltonian, and is thus
much more easily accessible compared to the exact Floquet
eigenstate. Figure 8 shows that this does not introduce any
additional difficulties for the RL algorithm. As a matter of
fact, the obtained fidelities are slightly higher, compared to
targeting the exact Floquet eigenstate (cf. Fig. 3 in the main
text).

APPENDIX E: Q-LEARNING IN NOISY
AND STOCHASTIC ENVIRONMENTS

1. Numerical experiment: Does the Q-learning agent learn
specifics of the stochastic environment?

Training the Q-learning agent with noise in the initial state
and in a stochastic environment raises the question as to

0.20 1 —e— initial ground state of Hy
' —e— target 1: inverted eigenstate of Hp(2)
—e— target 2: inverted quasi-Gaussian state
0.154
@
=
T 0.101
0.05 1
0.00 1 | : ,
- —7/2 0 /2 T
0

FIG. 7. Initial state and target states at the inverted position for
Q/wy =10, A =2, and mwy = 1.
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whether it is capable of learning the details of such uncertainty cuml dat
quantum, data

sources and exploit them to its advantage in the learning
process. To this end, I consider the following numerical
experiment: the agent is trained on a noise-free deterministic
environment (with the only uncertainty in the reward, as a
result of the quantum measurement), but subsequently tested
on a noisy stochastic environment (i.e., with additional oc-
casional random failures in the bangs of the protocols). The
performance during the test stage should then be compared to
the case where the agent was also trained in a noisy stochastic
environment (n = 0.31, ¢ = 1/120, see main text). In which
scenario does the agent perform better?

To answer this, I distinguish between two quantities during
the test stage: the estimated fidelity expected by the agent
(red) and the true fidelity of the protocol (blue). Figure 9
clearly shows that, after learning in a noise-free deterministic
environment, the agent erroneously learns to expect a higher
fidelity, compared to the true fidelity associated with the
learned protocol.

There are two important conclusions from this numerical
experiment. (i) Notice that the true fidelity in the train stage
in Fig. 9 (blue dots) is about the same as the expected fidelity
had the agent been trained in the presence of uncertainty [see
Fig. 3 (red dots), main text]. This suggests that the agent
does not learn to exploit any additional features of the en-
vironment using this state-action space parametrization. This
means that the RL algorithm is intrinsically robust to noise.
The most likely reason for this lies in the stochastic e-greedy
exploration schedule used in Q-learning (cf. Appendix G).
(i1) Recall that the RL state space definition depends on
the initial state |y;). As the noise induces a change in the
initial state, the algorithm learns the average fidelity over an

0 2x10* 4x10* 6x10* 8x10* 10° 0 200 400 600 800 1000

train episodes test episodes

FIG. 9. Numerical experiment training the agent using binary
quantum data in a deterministic environment starting from a fixed
initial state, while testing on noisy initial states and/or stochastic
environment. The red data show the agent’s estimated fidelity, while
the true fidelity is shown in blue. The mismatch between the agent’s
estimate (red) and the true fidelity (blue) arises due to the absence
of noise and stochasticity during the train stage. The left side (train
curves) shows the same data for better comparison. The parameters
are the same as in Fig. 3 of the main text.

ensemble of noisy initial states. This reveals the weakness of
the current state-action choice to generalize to arbitrary initial
conditions, which comes as a tradeoff to the capability to learn
solely from the actions taken. This behavior can be explained
by the observation that the agent is not presented with any
information about the uncertainty in the environment during
learning: e.g., if the agent was told retroactively once a bang
in a protocol had randomly failed, it might be possible to learn
to “correct” or “counteract” this change. This behavior will be
explored in future studies.

2. Single run vs average performance

Even in deterministic setups, the Q-learning algorithm (cf.
Appendix G) contains intrinsic noise due to the e-greedy
exploration schedule used during the train stage. Therefore,
the algorithm is run for 100 independent realizations of the
pseudorandom number generator, and the graphs in this paper
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FIG. 10. Training behavior as a function of the number of train episodes: worst run (let), best run (middle), and average performance
(right) over 100 seed realizations of the pseudorandom number generator. The oscillator parameters are 2/wy = 10, A = 2, and mwy = 1. The
protocols contain § steps per period for a total of Ny = 15 periods. The target is the Floquet eigenstate. The initial state is noise free and the

environment is deterministic.

show averages. The deviation from the mean is computed us-
ing a bootstrapping approach (shaded area). Figure 10 shows
the worst (left) and the best (middle) runs, and compares them
to the average fidelity performance (middle).

3. Dependence on the number of training episodes

It is curious to study how the agent’s learning capabilities
change as the number of training episodes increases. As noted
in the main text, the huge protocol space contains 3'2° ~ 107
protocol configurations. Additionally, the fidelity histograms
[cf. Fig. 6 (left panel)] show that most states have very poor
fidelities. In the main text I showed data for up to 10° training
episodes. Figure 11 shows that one can achieve a reasonable

improvement by increasing the training episodes by an order
of magnitude. I do not consider it appropriate to push the Q-
learning algorithm to its limits since the maximum number of
training episodes in realistic experimental setups is set by the
sample efficiency. Instead, I believe that the algorithm can be
made more useful if it is appropriately improved in sample
efficiency instead.

APPENDIX F: REINFORCEMENT LEARNING TO INVERT
THE CLASSICAL KAPITZA PENDULUM

Last but not least, I demonstrate the versatility and uni-
versality of the Q-learning algorithm by applying it to
the classical Kapitza pendulum. For the sake of a better
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0.6 1 0.6 0.6 1
0.44 0.4 0.4+
quantum data quantum data quantum data
0.2 1 ] 0.2 1
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20.84 — =08
=" =0 =
0.6 : £ 0.6 = 0.6
e = ey
=z 044 = 041 = 044
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< quantum data = quantum data < quantum data
0.21 noisy init: state 0.2 noisy init. state 0.2 noisy init. state
1.0 4 10 1.0 1
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0
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FIG. 11. Training behavior as a function of the number of train episodes: 10*(left), 10° (middle), and 10°(right). The oscillator parameters
are Q2/wy = 10, A =2, and mw, = 1. The protocols contain 8 steps per period for a total of Ny = 15 periods. The target is the Floquet

eigenstate.

224305-11



MARIN BUKOV

PHYSICAL REVIEW B 98, 224305 (2018)

comparison with the quantum Kapitza oscillator, I choose the
same time-dependent Hamiltonian in the rotating frame:
2 A
_ Py 2 . :
H(t) = — — mwycos — —(sign cos 1) py sin 6
2m m
A2
— 8—(1 — signsin 2Q2¢) cos 260 + h(t)sinf, (F1)
m

where py and 6 are classical conjugate variables, and Ah(¢) is
the bang-bang control field. The dynamics of the pendulum is
governed by Hamilton’s equations of motion:

. 1
0 = —[po — A(signcos Q2t)sin 6],
m

A
Do = —mw(z) sin @ + — (sign cos 2t) py cos 0
m

AZ
— 4—(1 — signsin 2Q¢) sin 20 — h(t)cosf.  (F2)
m

The initial state is chosen as 8(t = 0) = 0.01 and py(r =
0) = 0. The target state is the inverted position at 6 = 7.
The finite value of the initial angle breaks the symmetry of
the optimal protocol (i.e., reaching the target clockwise and
counterclockwise).

To define the reward for the agent, note that simply reach-
ing the target is not enough to assure a stable orbit at the
inverted position after the control sequence is over, if the
momentum at the end of the protocol is large enough to
cause spinover. Hence, a good cost function should penalize
large final momenta. I thus (empirically) choose the following
reward:

1
r®, po) = —{[0(y) + 7Imod(27) — 7} — 4 pe(ts)l?,
r e [—oo,1]. (F3)

In classical systems, measurements are deterministic.
However, they might still be noisy. To take this into account
in RL, I add Gaussian noise to the values of the position
and momentum with zero mean and variance o = 0.05. This
leads to uncertain rewards. Similar to the quantum case, I also
consider cases in which (i) the initial state is noisy, by adding
Gaussian noise in the initial condition with zero mean and
variance 1 = 0.1, and (ii) there are occasional failure events
in the control bangs. This works in the same way as for the
quantum oscillator.

The universality of the state-action representation makes
the Q-learning algorithm agnostic on the physical system it is
applied to. Thus, I apply the same algorithm to the classical
Kapitza pendulum (see Fig. 12). The best RL protocol for the
case of noisy reward but noiseless initial state in a determinis-
tic environment is shown in the Supplemental Material, video
3[115].

APPENDIX G: Q-LEARNING ALGORITHM FOR
AUTONOMOUS QUANTUM CONTROL

Below, I provide a trivial extension of Watkins tabular
Q-learning [68] which uses as a reward the noisy running
estimate of the fidelity Fj(f;), and learns from experience
replays.

/—— 0.57 1

W? quantum data

IS

quantum data RL-estimated fidelity

reward 7(ty)

sl s 0.10 1
noisy init. state L)
y true fidelity

————

quantum data

noisy init. state| (.04

stochastic env.

0 2x10* 4x10¢ 6x10°* 8x10¢ 10° 0 200 400 600 800 1000
train episodes test episodes

FIG. 12. Training behavior as a function of the number of train
episodes for the classical Kapitza pendulum. The oscillator param-
eters are 2/wy = 10, A =2, and mw, = 1. The protocols contain
8 steps per period for a total of Ny =4 periods. The target is
0, = m and p, = 0. See Supplemental Material, video 3 [115] for
a visualization of the best-encountered RL protocol.

To study the Floquet control problem, I apply the version
of a tabular Q-learning algorithm [68] with eligibility trace
depth parameter A = 0.6. For the Q-learning update rule, I
use a small learning rate of @ = 0.1 in order to account for the
running stochastic reward (the fidelity), estimated from binary
quantum measurements as » = m/n. Here, m is the number
of +1 measurement outcomes, and n is the total number of
measurements for a fixed protocol (see main text). To gain
measurement statistics, each protocol is repeated 100 times
every time it is encountered, until the error estimate to be
within the 20 window, E = 2./r(1 — r)/n, becomes less than
1%. During this repetition stage, no updates of the Q function
take place. To choose actions, the algorithm uses an e-greedy
policy: the best action (according to the current Q function)
is taken with probability 1 — &(np), or else a random action
is chosen with probability £(nep). The exploration schedule
&(nep) is attenuated exponentially according to

( 10n,p )
e(nep) = (6 —ey) exp| ———— | + ¢y, (G1)

episodes

with ¢; = 10 and €7 = 50 (chosen empirically). The larger
&(nep), the less the RL agent explores [see green curves in
all learning plots, where &(ncp) is normalized within [0,1] for
display purposes]. The current episode and the total number
of train episodes are denoted by n¢p and Nepisodes, respectively.
In order to help the agent explore the exponentially large RL
state space efficiently, I keep track of the best encountered
protocol with respect to the current fidelity estimate, and
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Algorithm 1 Q-learning with nondeterministic rewards (quantum measurements)

1: procedure Q-LEARNING

2:  initialize an empty Q(s, a) function for all states s € S and actions a € A(s)

3:  initialize an empty registry R(h) = (m, n, E) for all protocol sequences %, number of protocol encounters m € N, number
of positive quantum measurement outcomes n € N, and statistical error estimate £ € R

4 initialize best_encountered_actions arbitrarily and find the corresponding best_encountered_protocol

5 initialize best_encountered_return= —1

6:  repeat for every episode:

7 set value of e-greedy exploration according to some schedule

8 run e-greedy QL_episode in explore mode

9: if statistical error estimate E of return for most recent protocol % is within some threshold then
10: repeat protocol to collect data and improve statistics (Q function is not updated)
11: update registry R(h).
12: run QL_episode in repeat mode (Q function is updated)
13: run update_best_encountered routine
14: if episode is scheduled for replay then
15: if statistical error estimate E of return for best protocol % is within some threshold then
16: repeat
17: run greedy QL_episode in replay mode with unit learning rate « = 1 (Q function is updated)
18: best_encountered_return < r
19: until a number of replay episodes is exhausted
20:  until number of episodes is exhausted
21:
22:

1: function QL_EPISODE(MODE)

2 reset environment into initial state S = Sy

3 q < Q(Sy, :) (compute Q-function value of initial state for all available actions a € A(s))

4 trace(s,a) =0, foralls € S,a € A(s)

5:  repeat for each step in the episode:

6: run choose_action(mode) to get action A from state S using policy derived from Q (e.g., e-greedy)
7 take action A, environment goes to new state S’

8: trace(S, A) < a: fire eligibility trace

9: set§, < —q(A)

10: if S is terminal then

11: compute current estimate of return

12: S < 6 +r

13: O(s,a) < Q(s,a)+ , trace(s,a) foralls € S, a € A(s)
14: goto next episode

15: q < Q(S',:) (find Q function for all actions in state S”)
16: 8 < &; + max, g(a) (find action that maximizes q)

17: Q(s,a) < Q(s,a) + §; trace(s,a) forall s € S, a € A(s)
18: trace(s, a) < A trace(s,a) forall s € S, a € A(s)

19:  until episode is complete

20:

21:

1: function CHOOSE_ACTION(MODE)
if mode is repeat
A <« action taken in previous run at this time step
else if mode is explore then
compute available actions .A(S) from current state S
compute Agreqy < One of the (possibly many) actions that maximize Q(S, :)
choose A < Ageeqy With probability & (depending on exploration schedule), otherwise A <— a random available action
if A is not Agecqy then
trace(s, a) < 0, reset trace forall s € S, a € A(s)
else if mode is replay then
A < best_encountered action at this time step

: function UPDATE_BEST_ENCOUNTERED
if return_best_encountered<current return r then
if statistical error estimate E of return for most recent protocol /4 is within some threshold then
return_best_encountered < r
overwrite actions_best_encountered with most recent actions sequence
overwrite state_best_encountered with most recent protocol

QUELNT TQ0VRXIINRERD
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replay it every 100 episodes for 200 times, thereby updating
the Q function.

Algorithm I describes the pseudocode for the RL algorithm
used to obtain the results in the main text. Familiarity with

the original Watkins’ Q-learning algorithm and its extension
TD(A) (see e.g. Ref. [68]) is helpful to facilitate under-
standing. It is straightforward to extend Algorithm I to deep
learning.
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