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Nonequilibrium quantum spin dynamics from two-particle irreducible functional integral
techniques in the Schwinger boson representation
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We present a nonequilibrium quantum field theory approach to the initial-state dynamics of spin models based
on two-particle irreducible (2PI) functional integral techniques. It employs a mapping of spins to Schwinger
bosons for arbitrary spin interactions and spin lengths. At next-to-leading order (NLO) in an expansion in the
number of field components, a wide range of nonperturbative dynamical phenomena are shown to be captured,
including relaxation of magnetization in a 3D long-range interacting system with quenched disorder, different
relaxation behavior on both sides of a quantum phase transition, and the crossover from relaxation to arrest of
dynamics in a disordered spin chain previously shown to exhibit many-body localization. Where applicable, we
employ alternative state-of-the-art techniques and find rather good agreement with our 2PI NLO results. As our
method can handle large system sizes and converges relatively quickly to its thermodynamic limit, it opens the
possibility to study these phenomena in higher dimensions in regimes in which no other efficient methods exist.
Furthermore, the approach to classical dynamics can be investigated as the spin length is increased.

DOI: 10.1103/PhysRevB.98.224304

I. INTRODUCTION

Spin systems are among the most studied models of
condensed matter physics owing to their importance in the
study of magnetism and related phenomena such as high-
temperature superconductivity. Recently, the ability of cold
atom experiments to study the initial-state dynamics of spin
models and other interacting quantum systems in isolation
from the environment has led to the possibility to test many
aspects previously not accessible to other experimental plat-
forms.

Understanding how thermal equilibrium emerges from uni-
tary quantum dynamics is one of the most pressing unresolved
problems in many-body physics addressable by these exper-
imental platforms. It is conjectured by the eigenstate ther-
malization hypothesis [1–4] that even though the Schrödinger
equation and its field-theoretic generalizations are time re-
versible, a general quantum system develops towards a qua-
sistationary state which appears to be irreversible, i.e., it has
effectively forgotten the details about its initial state for rel-
evant observables. This picture has been numerically verified
in some models [5–7] and studied experimentally in cold atom
systems [8–10]. In the context of field theories, thermalization
from far-from equilibrium states is quantified by the fulfill-
ment of fluctuation-dissipation relations and has been shown
in O(N ) symmetric scalar field theories in various spatial
dimensions [11–13] as well as fermionic quantum fields in
3D [14] and Heisenberg magnets [15] using the same pow-
erful functional integral techniques which we will employ in
this paper.
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However, it has been discovered that some interacting sys-
tems fail to thermalize under the influence of strong disorder,
such that the system retains memory of its initial state [16–20].
This effect, referred to as many-body localization, is currently
an active research topic: the dependence on dimensionality
[21] and its stability [22] are still topics of debate. Further-
more, it is of interest to study how the processes underlying
thermalization change as aspects of classical mechanics be-
come more important, e.g., by increasing the spin length of a
quantum spin system.

So far, the dynamics of spin models have mostly been
studied from the point of view of quantum mechanics, where
the Schrödinger equation is used to evolve the whole many-
body wave function in order to evaluate the time evolution
of observables such as local magnetizations. As for a large
quantum system, the Hilbert space dimension is too high to
allow efficient simulations on a classical computer, trunca-
tions such as matrix product states are used to get approximate
results, effectively limiting the amount of entanglement which
can be captured [23,24]. These methods are, however, mostly
restricted to 1D and to early times for thermalizing systems.

In this paper, we offer a different perspective on the
dynamics of spin systems in terms of nonequilibrium quan-
tum field theory. Instead of evolving first the state or den-
sity operator and from this computing a set of relevant ob-
servables, the observables expressed in terms of low-order
correlation functions are directly evolved in time. While
the corresponding evolution equations are just a reformu-
lation of the Schrödinger equation, they offer a different
route to approximating the quantum dynamics based on two-
particle irreducible (2PI) functional integral techniques [25–
27], which are closely related to the Luttinger-Ward formal-
ism [25,28,29]. Motivated by a similar approach in which
(pre-)thermalization of a spiral state in a 3D Heisenberg
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magnet has been shown by mapping spin-1/2 systems to Ma-
jorana fermions [15], we use the Schwinger boson represen-
tation to describe the dynamics of spin models with arbitrary
spin length S (for a work also employing Schwinger bosons
see Ref. [30]). We employ a nonperturbative approximation
based on an expansion in the number of field components to
next-to-leading order (NLO) [11,31], which enables us to also
describe strongly interacting systems.

We apply our approach to a range of nonperturbative
dynamical phenomena that are known to be challenging and
which help demonstrate the characteristic strengths of the
functional techniques. Where possible, we employ alternative
state-of-the-art methods to benchmark our 2PI NLO results in
limiting cases. A particular strength of our method concerns
its ability to describe large systems in higher dimensions and
to follow the dynamics also to long times. To this end, we first
consider relaxation dynamics in a 3D long-range interacting
XY spin system with quenched disorder. The problem of the
nonequilibrium dynamics of large ensembles of spins with
position disorder and interacting via dipolar interactions is
relevant for a number of current experimental realizations
ranging from Rydberg atoms [32,33] to polar molecules [34]
and NV centers in diamond [35]. By solving the evolution
equations numerically, we analyze the relaxation dynamics of
local magnetizations and unequal-time correlation functions,
which allow us to describe the effective memory loss of the
initial state. For bulk quantities, such as the volume-averaged
magnetization, we can compare our 2PI NLO results with
corresponding results from a diagonalization method applied
to subclusters of spins (MACE) [36]. We find good agreement
when the latter is expected to converge.

As a further example, we study the relaxation dynamics of
a spin chain in a 1D anisotropic XXZ model. In the infinite
chain length limit, this model is known to exhibit a quantum
phase transition from a gapless Luttinger liquid phase with
quasi-long-range order to an (anti-)ferromagnetic phase with
long-range order. Computing the time evolution of the stag-
gered magnetization on different sides of the quantum phase
transition, we show that our method captures the expected
qualitative behavior [37]. Most remarkably, our results are
seen to converge already for rather small system sizes. This
illustrates the fast approach of our field theoretic approxi-
mation to the thermodynamic limit, such that efficient finite
size descriptions can be achieved. These findings open up
the possibility to study dynamical quantum phase transitions
in regimes in which other methods such as iMPS [37] or
other DMRG [38] related methods would fail, e.g., in higher
dimensions.

While the first two examples demonstrate the ability of
the Schwinger boson 2PI method to describe thermalization
dynamics in interacting spin models, the last application
concerns the dynamical evolution in an interacting system
that refuses to thermalize: a many-body localized (MBL)
system. For this, we investigate the paradigmatic example
of the nonequilibrium dynamics of a Heisenberg spin chain
in a random field, initialized in a Néel ordered state. Our
short-time results indicate a transition from a thermalizing
system at weak disorder, signalized by a vanishing long-time
staggered magnetization, to the arrest of the relaxation at
strong disorder, where this quantity is large and nonzero.

This paper is organized as follows. In the first three sec-
tions, we develop the Schwinger boson spin-2PI approach,
especially trying to make the derivation as transparent as pos-
sible for a quick application of the method to other problems.
First, we introduce the Schwinger boson representation of
spin systems and show how the Schwinger boson constraint
is naturally fulfilled in a nonequilibrium quantum field theory
formulation. Secondly, we introduce the 2PI effective action
and derive the Kadanoff-Baym equations of motion. Thirdly,
we employ a nonperturbative approximation to the effective
action and show how the resulting approximated Kadanoff-
Baym equations can be solved numerically. In the remaining
three sections we apply Schwinger boson spin-2PI to var-
ious settings and compare our results with state-of-the art
numerical methods.

II. NONEQUILIBRIUM QUANTUM FIELD
THEORY FOR SPIN SYSTEMS

The aim of this work is to develop a functional integral
approach based on the 2PI effective action to describe the
nonequilibrium dynamics of quantum spin models using the
Schwinger boson representation. Here, we focus on Hamilto-
nians with couplings J α

ij and external fields Bα
i of the type

Ĥ = 1

2

∑
α

∑
i �=j

J α
ij Ŝ

α
i Ŝα

j +
∑

α

∑
i

Bα
i Ŝα

i , (1)

where the lower and upper indices denote site and components
of the spin operators Ŝα

i , respectively. The J α
ij are general,

in particular, we do not assume nearest-neighbor interactions.
The spin operators fulfill the commutation relations

[
Ŝα

n , Ŝβ
m

] = iδnm

∑
γ

εαβγ Ŝγ
n , (2)

and the spin quantum number S is given by

�S2 = S(S + 1). (3)

We note that in comparison to previous works based on a
representation in terms of Majorana fermions [15,39], which
is valid for S = 1/2, our Schwinger boson approach can be
applied to arbitrary S.

Our first step towards a functional description of quantum
spin systems is to derive a path integral formulation. While
this procedure is standard for bosonic and fermionic systems
[40,41], quantum spin systems are slightly more involved due
to their nontrivial commutation relations. One possibility is
to use spin coherent states [42], which leads, however, to
topological terms associated to Berry phases. Therefore, a
common strategy is to map spins to operators which fulfill
canonical algebras and are hence easier to handle. For this,
fermions [43,44], Holstein-Primakoff bosons [45,46], and
even exotic species such as semions [47], Majorana fermions
[48], and supersymmetric operators [49] have been proposed.
In this work, we will employ a Schwinger boson representa-
tion, which we introduce and discuss in the following.
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A. Schwinger boson representation

In the Schwinger boson representation [42], each spin Ŝα
i

is expressed in terms of two bosons, âi and b̂i , via

Ŝx
i = 1

2
(b̂†i âi + â

†
i b̂i ), Ŝ

y

i = i

2
(b̂†i âi − â

†
i b̂i ),

Ŝz
i = 1

2
(â†

i âi − b̂
†
i b̂i ), (4)

where the bosonic ladder operators satisfy the algebra
[âi , â

†
j ] = [b̂i , b̂

†
j ] = δij , [âi , âj ] = [b̂i , b̂j ] = 0, and [âi , b̂

†
j ] =

0. These commutation relations ensure that the mapping (4)
fulfills the spin algebra (2). On top of this, the Schwinger
bosons have to fulfill the constraint

n̂i ≡ â
†
i âi + b̂

†
i b̂i = 2S, (5)

in order to restrict their Hilbert space to the “physical”
Hilbert space of the original spins. For instance, for S = 1/2,
the Hilbert space would be comprised of |1, 0〉 ↔ |↑〉 and
|0, 1〉 ↔ |↓〉. We note that condition (5) implies (3) and is the
only place in the Schwinger boson mapping where the spin
number S appears. Therefore the expressions derived in the
following sections are valid for arbitrary S.

For notational simplicity, it will at times be useful to cast
both Schwinger bosons into a two-component complex field
operator as

ψ̂1
i ≡ â, ψ̂2

i ≡ b̂. (6)

The commutation relations are then given by [ψ̂a
i , ψ̂

b†
j ] =

δij δ
ab and [ψ̂a

i , ψ̂b
j ] = 0, and Eq. (4) can be compactly written

as

Ŝα
i = 1

2 ψ̂
a†
i σ α

abψ̂
b
i , (7)

where σα, α ∈ {x, y, z}, are the Pauli matrices. In this way,
the spin Hamiltonian (1) takes the form

Ĥ = 1

8

∑
α

∑
i �=j

J α
ij σ

α
abσ

α
cd ψ̂

a†
i ψ̂b

i ψ̂
c†
j ψ̂d

j

+ 1

2

∑
α

∑
i

Bα
i σ α

ab ψ̂
a†
i ψ̂b

i . (8)

Here and in the following, a sum over repeated field
component indices (a, b, c, d ) is implied, whereas summation
over spin component (α) and position (i, j ) indices will be
explicit. We note that each term in the above expression is
normal ordered, since i �= j .

The validity of the Schwinger boson constraint for suitable
approximations will be a major aspect of the discussion
in the following sections. In equilibrium, the constraint is
usually ensured by introducing a Lagrange multiplier [42].
For nonequilibrium initial value problems, the symmetry-
conserving nature of approximations based on the 2PI ef-
fective action will automatically conserve the constraint as
long as the initial values comply with it. However, in the
approximation for the initial state we apply here, only the
value of 〈n̂i〉 is explicitly set to the correct value, whereas
higher orders of n̂i are different. We will discuss ways of
improving this limitation in the course of this paper.

Im(t)

Re(t)
t0 t → ∞
t0

ψa
j (t2)

ψb
i (t1)

FIG. 1. In nonequilibrium quantum field theory, all fields are
defined on the Schwinger-Keldysh closed time contour. Starting at
the initial time t0, it proceeds to infinity (C+) and then back to the
initial time (C−). Shown is the insertion of two field operators along
the contour for the evaluation of a two-point function for the case
where the operators are on different branches and t2 < t1.

B. Functional integral representation

To describe the nonequilibrium dynamics of the above
Schwinger boson model, we employ its path integral formu-
lation on the Schwinger-Keldysh closed time contour [50]
C = C+ ∪ C− depicted in Fig. 1, which consists of a forward
(C+) and a backward branch (C−). As a first step, we rewrite
the identity Z ≡ Tr{	0U (t0, t )U (t, t0)} = 1 as a path integral,
where 	0 denotes the initial density matrix and the time
evolution operator is U (t, t0) = exp (−iĤ (t − t0)). For this,
we use bosonic coherent states |ψ〉 ≡⊗i |ψ1

i 〉 ⊗ |ψ2
i 〉, such

that ψ̂a
i |ψ〉 = ψa

i |ψ〉. Following standard procedures [51,52]
leads to

Z =
∫

dψ+
0 dψ−

0 〈ψ+
0 | 	0 |ψ−

0 〉
∫ ψ+

0

ψ−
0

D′ψ exp (iS[ψ̄, ψ]),

(9)

where ψ+
0 /ψ−

0 denote fields on the forward/backward part
of the contour at t = t0, and the prime in D′ψ specifies that
integration over ψ+

0 /ψ−
0 is excluded. The classical action

corresponding to model (8) is given by

S[ψ̄, ψ] =
∫
C
dt

{∑
i

ψ̄a
i

(
δabi∂t − 1

2

∑
α

Bα
i σ α

ab

)
ψb

i

− 1

8

∑
α

∑
i �=j

J α
ij σ

α
abσ

α
cd ψ̄a

i ψb
i ψ̄c

j ψ
d
j

⎫⎬⎭. (10)

The first integral in (9) contains information on the initial
state and, as we will see, leads to some complications for spin
systems.

C. Local U(1) symmetry and constraints

The Schwinger boson mapping, Eq. (4), is constructed
such that raising and lowering operators always appear
in pairs. In this way, any spin Hamiltonian written in
the Schwinger boson basis, Eq. (8), conserves the local
number of bosons n̂i , [Ĥ , n̂i] = 0, and hence fulfills the
constraint (5) at all times. As a direct consequence of this,
the corresponding classical action, Eq. (10), has a local U(1)
symmetry parametrized by

ψa
i → eiαi ψa

i , (11)

i.e., both bosons, âi and b̂i , are rotated by the same angle.
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At the classical level, the local U(1) symmetry leads to
a conserved Noether current or continuity equation ∂μj

μ

i =
0. Due to the absence of spatial derivatives in the action,
Eq. (10), the only nonvanishing component is the temporal
one, j 0

i = −ni ≡ −ψ̄a
i ψa

i = −|ai |2 − |bi |2. Thus one obtains
local number conservation,

∂t ni = 0. (12)

The local Schwinger boson constraint is therefore a conse-
quence of the U(1) symmetry of the classical action.

In the full quantum theory, the symmetry of the action
leads to a whole hierarchy of Ward-Takahashi identities.
Naturally, as we show in Appendix B, the lowest-order
identity is given by

∂t 〈n̂i〉 = 0. (13)

Thus the conservation of 〈n̂i〉 is directly linked to the local
U(1) symmetry of the action. In contrast to gauge theories
such as QED or QCD, where a local gauge symmetry
requires specific terms in the action to cancel each others’
contributions, each term in the action (10) is individually
invariant under a local U(1) transformation.

Of course, the full operator equation (5) is not formally
equivalent to simply the expectation value equation (13).
Instead, Eq. (5) implies an infinite hierarchy of identities
for expectation values, e.g., 〈n̂2

i 〉 = (2S)2. As we show in
Appendix B, the conservation of the latter quantity is captured
by a second-order Ward-Takahashi identity, namely,

∂t

〈
n̂2

i

〉 = 0. (14)

Thus this quantity will fulfill the aforementioned identity
provided it is fulfilled at initial time. However, in this work
we will consider Gaussian approximations to the initial con-
ditions, which will lead to only 〈n̂i〉 being set explicitly to the

right initial value. We will be discussing this approximation,
its implications, and how it can be overcome in Sec. III A.

D. Hubbard-Stratonovich transformation

Approximations for the 2PI effective action become more
transparent when dealing with real instead of complex fields,
as for example motivated in Ref. [53]. At the operator level,
we split the Schwinger bosons into their real and imagi-
nary parts, âi = (â1

i + iâ2
i )/

√
2, b̂ = (b̂1

i + ib̂2
i )/

√
2, where

(â1,2
i )† = â

1,2
i and (b̂1,2

i )† = b̂
1,2
i . As before, it is convenient

to express these operators in terms of a four-component
real field operator ϕ̂i ≡ (â1

i , â
2
i , b̂

1
i , b̂

2
i ). Inserting this into

the Schwinger boson representation (4), the spin operators
become

Ŝα
i = 1

4 ϕ̂a
i Kα

abϕ̂
b
i , (15)

where

Kα
ab = [σx ⊗ 1]abδαx − [σy ⊗ σy]abδαy + [σz ⊗ 1]abδαz.

(16)

We note that Kα
ab is symmetric in the Schwinger boson indices

(ab). Similarly, the equal-time commutation relations can be
written as [

ϕ̂a
i , ϕ̂b

j

] = −[1 ⊗ σy]abδij , (17)
and the Schwinger boson constraint becomes

n̂i = 1
2

(
ϕ̂a

i ϕ̂a
i − 2

) = 2S. (18)

At the level of the path integral, we introduce real fields
ϕa

i in an analogous way. In doing so, one ought to be careful
when comparing identities for operators with those for fields.
For instance, while ψ̂

a†
i ψ̂a

i = (ϕ̂a
i ϕ̂a

i − 2)/2, see Eq. (18), for
fields one finds that ψ̄a

i ψa
i = ϕa

i ϕa
i . Nevertheless, we note

that Eqs. (7) and (15) also hold for fields, i.e., 1
2 ψ̄a

i σ α
abψ

b
i =

1
4ϕa

i Kα
abϕ

b
i . Using this, the action in terms of real fields

becomes

S[ϕ] =
∫
C
dt

⎧⎨⎩−1

2

∑
i

ϕa
i

(
[1 ⊗ σy]abi∂t + 1

2

∑
α

Bα
i Kα

ab

)
ϕb

i − 1

2

∑
α

∑
i �=j

J α
ij

(
1

4
Kα

abϕ
a
i ϕb

i

)(
1

4
Kα

cdϕ
c
jϕ

d
j

)⎫⎬⎭, (19)

where we have discarded boundary terms of the form
∫
C ∂t (ϕ1

i ϕ
2
i ) = 0.

In order to make the quartic interaction term more tractable, we further introduce an auxiliary (Hubbard-Stratonovich) field
χα

i as ∏
α

∫
Dχα e

i
2

∑
ij [J−1]αij χ

α
i χα

j = const. (20)

After the substitution χα
i → χα

i − 1
4

∑
k J α

ik (Kα
abϕ

a
k ϕb

k ), the quartic term in (19) is replaced by a three-point vertex ∼χϕϕ (see
Fig. 2). Here, we defined J α

ii = 0 and assumed that the inverse matrix J−1 exists, as will be the case in the applications considered
in this work. Note that whenever J α

ij ≡ 0 for a given α, the auxiliary field χα
i completely decouples from the ϕa

i fields and can
hence be ignored. Because of this, in the following, all sums over spin components

∑
α that involve the auxiliary field are to be

understood as sums over only those α for which J α
ij does not vanish identically. Taking this into account, the final action written

in terms of ϕ and χ is given by

S[ϕ, χ ] =
∫
C
dt

⎧⎨⎩−1

2

∑
i

ϕa
i

(
[1 ⊗ σy]abi∂t + 1

2

∑
α

Bα
i Kα

ab

)
ϕb

i +
∑

α

∑
ij

{
1

2
[J−1]αijχ

α
i χα

j − 1

4
δijKα

cd χα
i ϕc

jϕ
d
j

}⎫⎬⎭. (21)
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− i
4Kα

ab

a

b

α

FIG. 2. The three-point vertex given by the interaction part of the
auxiliary field action, where wiggly lines correspond to the auxiliary
field correlator D and straight lines to the Schwinger boson correlator
G. In a loop diagram containing this vertex, all indices would be
summed/integrated over, i.e., the Schwinger boson indices a and b,
the auxiliary field index α, as well as the lattice index and time (the
latter two are not shown here).

With this procedure we have thus rewritten the original spin
model in terms of a dynamical four-component real scalar
field ϕa and a nondynamical, in general three-component real
scalar field χα . We note that the coupling factor J has been
absorbed into the definition of the auxiliary field, see Eq. (20).

III. 2PI GENERATING FUNCTIONAL

A. Generating functional and Gaussian approximation
to the initial conditions

The starting point to derive the 2PI effective action is to
promote Z from Eq. (9) to a generating functional. For this,
we first need to deal with the term 〈ψ+

0 | 	0 |ψ−
0 〉 related to the

initial state. If the initial state is approximately Gaussian, the
density matrix can be parametrized (in the real basis ϕ) by [51]

〈ψ+
0 | 	0 |ψ−

0 〉 ∝ exp (ihC[ϕ]), (22)

with

hC[ϕ] = α0 +
∫
C
dt1
∑

i

αa
1,i (t1)ϕa

i (t1)

+ 1

2!

∫
C
dt1dt2

∑
ij

αab
2,ij (t1, t2)ϕa

i (t1)ϕb
j (t2). (23)

Here, the functions α1 and α2 only have support at the initial
time t0.

In the following, we define a superfield � = (ϕ, χ )T to
contain all ϕ and χ fields introduced in the previous section.
Using Eq. (23), we can then promote Z from (9) to the
generating functional

Z[J,R] =
∫

D� exp i

{
S[�] +

∫
C
dt1
∑

i

J a
i (t1) �a

i (t1)

+ 1

2

∫
C
dt1 dt2

∑
ij

�a
i (t1) Rab

ij (t1, t2) �b
j (t2)

⎫⎬⎭.

(24)

In this expression, the functions α1 and α2 have been ab-
sorbed into the sources J and R. Correlation functions can be

obtained from the above generating functional by functional
derivatives. For example, the first derivatives yield

δZ[J,R]

iδJ a
i (t )

∣∣∣∣
J=0=R

= 〈
�a

i (t )
〉 ≡ �̄a

i (t ), (25)

δZ[J,R]

iδRab
ij (t1, t2)

∣∣∣∣
J=0=R

= 1

2

〈
TC �a

i (t1)�b
j (t2)

〉
≡ 1

2

(
Gab

ij (t1, t2) + �̄a
i (t1)�̄b

j (t2)
)
, (26)

where TC is the time ordering operator along the closed time
contour C, and we defined the connected two-point correlator
G as well as the field expectation value �̄. We note that
J = 0 = R is a shorthand notation for setting the sources to
zero for t �= t0, whereas for t = t0, one sets J a

i → αa
1,i and

Rab
ij → αab

2,ij .
It is important to note that in quantum spin systems,

Eq. (23) is only an approximation to the correct initial state.
To see this, consider a single spin initially in the state |↑〉. In
the Schwinger basis, this corresponds to a Fock state |1, 0〉,
which has a nonvanishing connected four-point function,

〈1, 0|â†â†ââ|1, 0〉C

= 〈1, 0|â†â†ââ|1, 0〉 − 2(〈1, 0|â†â|1, 0〉C)2

= −2, (27)

and is hence non-Gaussian. Nevertheless, similar to previous
related works [15], we will neglect here such non-Gaussian
contributions at initial time and approximate the full initial
state by the Gaussian form (23). One consequence of this will
be that, while ∂t 〈n̂2

i 〉 = 0 from (14), the identity 〈n̂2
i 〉 = (2S)2

will not be fulfilled at initial time in this approximation (see
Appendix D 3). While higher-order corrections to (23) can
in principle be added by introducing additional initial time
sources [54], this is beyond the scope of this work.

B. 2PI effective action

The generating functional Z[J,R] is the nonequilbrium
quantum field theory generalization of the partition sum in sta-
tistical mechanics. In this sense, the two-particle-irreducible
(2PI) effective action �[�̄,G] is a free energy analog defined
as the double Legendre transform of the logarithm of Z[J,R]
with respect to the source fields J and R,

�[�̄,G] = ln (iZ[J,R]) −
∫
C
dt1
∑

i

�̄a
i (t1)J a

i (t1)

− 1

2

∫
C

∑
ij

dt1dt2
[
�̄a

i (t1)�̄b
j (t2) + Gab

ij (t1, t2)
]

× Rab
ij (t1, t2). (28)

It is parametrized in terms of the field expectation value �̄ and
the connected two-point function G. From the above definition
one obtains the stationarity conditions

δ�[�̄,G]

δ�̄

∣∣∣∣
J=0=R

= 0,
δ�[�̄,G]

δG

∣∣∣∣
J=0=R

= 0, (29)
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which will explicitly be written as equations of motion for �̄

and G in the next section. These equations further show that
�[�̄,G] may be viewed as the quantum generalization of the
classical action.

A very useful decomposition of the 2PI effective action is
given by [26]

�[�̄,G] = S[�̄] + i

2
TrC ln G−1

+ i

2
TrC
{
G−1

0 [�̄]G
}+ �2[G], (30)

where a normalization constant was omitted and the free
inverse propagator is given by

i
[
G−1

0

]ab

ij
(t1, t2) = δ2S[�̄]

δ�̄a
i (t1)δ�̄b

j (t2)
. (31)

The second and third terms in Eq. (30) constitute one-
loop quantum corrections to the classical action S[�̄]. The
rest functional �2[G] contains the sum of all two-particle-
irreducible (2PI) diagrams [26], made with lines representing
the full propagator G and the interaction vertex (see Fig. 2)

iSint = − i

4

∫
C
dt
∑
i,α

Kα
ab χα

i (t )ϕa
i (t )ϕb

i (t ). (32)

Examples of such diagrams will be given in Sec. IV, where we
discuss approximations to �2[G]. That �2[G] is really a sum
of 2PI diagrams can be seen by inserting the decomposition
(30) into the second equation of (29). One obtains in this way
the Schwinger-Dyson equation for the correlator,

G−1 = G−1
0 − 2i

δ�2[�̄,G]

δG . (33)

The last term can be identified with the self-energy, which
contains the sum of all 1PI diagrams and therefore �2[G] can
only contain 2PI diagrams.

The 2PI effective action constitutes an efficient descrip-
tion of nonequilibrium dynamics, since each diagram in the
expansion of �2[G] is built out of the full correlator G,
which according to (33) already contains an infinite series
of diagrams in terms of the bare correlator G0. Furthermore,
it constitutes a self-consistent description in terms of the
physical observables �̄ and G, which does not show secularity
problems emerging from expansions in terms of the bare prop-
agator G0 [55]. Finally, because the self-energy is obtained
by a functional derivative as in Eq. (33), it is automatically
ensured that global conservation laws are fulfilled and that
the thermodynamic potentials corresponding to the effective
action in thermal equilibrium fulfill all standard relations [56].

C. 2PI equations of motion

In order to rewrite the 2PI equations of motion (29) and
(33) in a more convenient form, it is useful to introduce
some notation and make some simplifications thanks to the
properties of the Schwinger bosons. We first define the one-
point functions

χ̄α
i ≡ 〈χα

i

〉
, ϕ̄a

i ≡ 〈ϕa
i

〉
(34)

and the correlators

Gab
ij (t1, t2) = 〈TC ϕa

i (t1)ϕb
j (t2)

〉− ϕ̄a
i (t1)ϕ̄b

j (t2), (35)

Mαb
ij (t1, t2) = 〈TC χα

i (t1)ϕb
j (t2)

〉− χ̄α
i (t1)ϕ̄b

j (t2), (36)

D
αβ

ij (t1, t2) = 〈TC χα
i (t1)χβ

j (t2)
〉− χ̄α

i (t1)χ̄β

j (t2), (37)

Due to the Schwinger boson constraint (5), it turns out that
both ϕ̄ ≡ 0 and M ≡ 0. This can most easily be seen by noting
that within the Hilbert space allowed by (5), any expectation
value of an uneven number of Schwinger boson fields must be
zero. The construction of the Schwinger bosons ensures that
initially ϕ̄ and M vanish. In this case, the 2PI equations de-
rived in the next section show that these quantities will remain
zero throughout the evolution, regardless of the approximation
made. However, in general, χ̄ �= 0 because χ ∼ ϕϕ.

Due to these simplifications, the free inverse propagator
G−1

0 becomes

G−1
0,ij (t1, t2) = −i

⎛⎝ δ2S[ϕ̄,χ̄]
δϕ̄a

i (t1 )δϕ̄b
j (t2 )

0

0 δ2S[ϕ̄,χ̄ ]
δχ̄α

i (t1 )δχ̄β

j (t2 )

⎞⎠, (38)

with components

δ2S[ϕ̄, χ̄ ]

δϕ̄a
i (t1)δϕ̄b

j (t2)
= −δC (t1 − t2)

{
[1 ⊗ σy]abi∂t1

+ 1

2

∑
α

(
χ̄α

j (t1) + Bα
j

)
Kα

ab

}
δij , (39)

δ2S[ϕ̄, χ̄ ]

δχ̄α
i (t1)δχ̄β

j (t2)
= [J−1]αij δ

αβδC (t1 − t2). (40)

Similarly, the full correlation function can be written as

G =
(

G 0
0 D

)
(41)

and the self-energy as

2i
δ�2[G]

δG ≡
(

� 0
0 �

)
. (42)

We are now ready to derive the equations of motion from
the 2PI effective action as given by Eq. (29) for the nonvanish-
ing one- and two-point functions. The equation for the auxil-
iary field expectation value χ̄ follows from δ�/δχ̄ |J=0=R = 0
and is given by

χ̄α
i (t ) = 1

4

∑
j

J α
ijKα

cdG
cd
jj (t, t ) =

∑
j

J α
ij

〈
Ŝα

j (t )
〉
, (43)

where the last equality follows from the definition of G,
Eq. (35), and Eq. (15) (see Sec. V for further details). Sim-
ilarly, the equations for the correlators G and D can be
obtained from (33) by convoluting it with G from the right
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to obtain(
[1 ⊗ σy]aci∂t1 + 1

2

∑
α

(
χ̄α

i (t1) + Bα
i

)
Kα

ac

)
Gcb

ij (t1, t2) = −iδabδij δC (t1 − t2) − i

∫
C
dt
∑

k

�ac
ik (t1, t )Gcb

kj (t, t2), (44)

D
αβ

ij (t1, t2) = iJ α
ij δ

αβδC (t1 − t2) + i
∑

k

J α
ik

∫
C
dt
∑
l,δ

�αδ
kl (t1, t )Dδβ

lj (t, t2).. (45)

The left-hand side (LHS) of Eq. (44) shows that χ̄ acts as an
effective external field for the correlator G. The above equa-
tions are the Kadanoff-Baym or 2PI equations of motion for
the Schwinger boson and auxiliary field correlators. The first
is linked to magnetizations and, as we show in Appendix D,
the latter to spin correlators. Without further approxima-
tion, these two equations simply constitute a reformulation
of the Schrödinger equation for these two observables. In
practice, one must, however, employ approximations to the
self-energies � and �, which we motivate and employ in the
next section.

IV. NONPERTURBATIVE EXPANSION

A. 1/N expansion to NLO

Applications of the 2PI effective action to nonequilibrium
problems such as thermalization require approximations of
the functional �2 beyond leading order (LO) to include direct
scatterings. When a small interaction parameter is available,
perturbative or loop approximations can yield accurate re-
sults [12,13,57]. A powerful nonperturbative method for N -
component field theories consists in expanding �2 in powers
of 1/N [11,31]. When taking into account diagrams up to
next-to-leading (NLO) order, this approximation has been
shown to outperform other beyond-mean-field approximation
schemes in ultracold Fermi [58] and Bose gases [53,59,60],
including optical lattices [61,62], and it has been successfully
applied to a myriad of problems such as thermalization of
bosonic [12] and fermionic quantum fields [14], time evolu-
tion of quasiparticle spectral functions [63], critical exponents
in the O(N ) model [64], prethermalization and heating in
Floquet systems [65], and the Kondo effect in the Anderson
impurity model [66]. Remarkably, it has even been able to
capture regimes of very large infrared fluctuations close to
nonthermal fixed points [67–70], as well as regimes of strong
couplings even for rather small values of N [70]. Note,
however, that the dynamics of topological defects have been
shown not to be reproduced by this approximation using a
homogeneous background field [71–73].

As shown in Sec. II C, our Schwinger boson theory has
a local U(1) symmetry, which corresponds to a local O(2)
symmetry in the basis of real fields ϕ. After the Hubbard-
Stratonovich transformation the action (21) still has the same
symmetry and the χ field does not participate in the transfor-
mation. Thus, in our case, we will perform a 1/N expansion
with N = 2 analogously to the above examples. In order to do
so, we need to classify the 2PI diagrams contributing to �2 in
terms of their scaling with N . This requires the identification
of all O(N ) invariants [31] that can arise due to the interaction
vertex (32) and the propagator structure (41). The possible

O(N ) invariants are given by

Tr{(KG)n} and D, (46)

where the trace is taken over the field component indices. That
D is an invariant can be seen from the fact that χ does not par-
ticipate in the O(N ) transformation. To see why Tr {(KG)n} is
an invariant as well, note first that the combination Kα

abϕ
a
i ϕb

i is
invariant under O(N = 2), since it is equivalent to 2σα

abψ̄
a
i ψb

i ,
which is U(1) invariant with Eq. (11). Therefore Tr {KG} is
an O(N ) invariant. The generalization to Tr {(KG)n} is then
straightforward, since such a term arises from n copies of
Kα

abϕ
a
i ϕb

i .
Given the O(N ) invariants of (46) the next step is to estab-

lish their scaling with N . Due to the trace operation, we have

Tr{(KG)n} ∼ N. (47)

To find out the scaling of D, we first note that the generaliza-
tion of our action (21) to an O(N ) symmetric theory for gen-
eral N requires the renormalization of the coupling as Jij →
Jij /N in order for the N → ∞ limit to exist. Taking this into
account, it then follows from Eq. (45) that D must scale as

D ∼ 1

N
. (48)

The leading-order (LO) approximation to the 2PI effective
action is given by setting

�LO
2 = 0, (49)

and taking only the one-loop corrections of Eq. (30) into
account. This corresponds to taking into account contributions
∼N as can be seen from inserting the free Schwinger boson
correlator (39) into the third term, yielding a term ∼ Tr {KG}
in the effective action [which reappears on the LHS of
Eq. (44)]. A contribution to the equation of motion for D

coming from this term does not appear to this order as it is
∼N0. This means that D = 0 to LO, so that to this order the
connected spin correlators vanish (Appendix D). Equivalently,
this corresponds to a Hartree-Fock approximation in the
theory with only ϕ fields, Eq. (19).

The only next-to-leading-order (NLO) contribution to the
effective action in powers of N is given by the diagram in
Fig. 3, which scales as ∼N0 and corresponds to

�NLO
2 = −2i

(−i

4

)2 1

2!

∑
αβ

Kα
abK

β

cd

∫
C
dt1

∫
C
dt2

×
∑
jk

Gac
jk (t1, t2)Gbd

jk (t1, t2)Dαβ

jk (t1, t2). (50)

Here, an overall (−i) due to the definition of �2 is included,
as well as a 1/2! factor from the expansion of the exponential
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FIG. 3. The only diagram contributing at NLO, which is also the
only loop diagram with two vertices. Feynman rules are the same as
in Fig. 2.

and a combinatorial factor of 2. In this work, we will employ
the NLO approximation, Eq. (50), and neglect higher-order
contributions in 1/N . Of course, in our case N = 2, so 1/N

is not a particularly small number. Nevertheless, even for
small N the 1/N expansion to NLO has been shown to yield
surprisingly good results in a variety of systems where other
known approaches fail [11,64], and it has been successfully
applied in related works on quantum spin dynamics using a
Majorana representation [15,39].

It is important to note that, while the diagram of Fig. 3
also corresponds to the lowest nonvanishing contribution to �2

in a perturbative expansion in the (ϕ, χ ) basis, this apparent
equivalence is lifted at NNLO [74]. The nonperturbative na-
ture of Eq. (50) can be best seen by integrating out χ , which
yields an infinite series of diagrams to arbitrary order in the
coupling [74]. This demonstrates the power of the auxiliary
field formalism which manages to encapsulate large sets of
corrections into χ .

In the rest of the section, we discuss the Schwinger boson
constraint after truncation of �2, derive the equations of mo-
tion following from the LO and NLO approximations, discuss
the initial conditions, and give a brief summary of the whole
method including a mapping to observables in the original
spin basis.

B. Schwinger boson constraint in 2PI approximations

As we mentioned in Sec. II C (c.f. Appendix B), the
conservation of the set of identities 〈(n̂i )k〉 = (2S)k, k ∈ N,
following from the Schwinger boson constraint (5) is directly
associated in the 2PI formalism to the local U(1) symmetry of
the action. The latter implies the Ward-Takahashi identities
∂t 〈(n̂i )k〉 = 0, which ensures the fulfillment of the above
identities if they are fulfilled at t = 0. Thus the identities
〈n̂k

i 〉 = (2S)k will be true in our 2PI approximation as well if
the truncation of �2 preserves the local U(1) symmetry and the
associated Ward-Takahashi identities. Note that in the case of
the Gaussian initial state, we use here, only the k = 1 identity
is explicitly fulfilled at t = 0 as argued in Sec. III A.

Each term of the action (21) is separately invariant under
the local U(1) symmetry (see Sec. II C). As a consequence,
the vertex (32), which constitutes the building block of all
diagrams contributing to �2, is invariant as well. This can be
shown explicitly by inspecting

− i

4

∫
C
dt
∑
i,α

Kα
ab D

αδ1
ij1

(t, t1)Gad2
ij2

(t, t2)Gbd3
ij3

(t, t3), (51)

which constitutes the functional representation of the vertex
(32). In the above expression, the variables t1...3, j1...3, δ1, and

d2,3 are free and would be connected to other vertices in a
full diagram contributing to the effective action. Following
similar arguments as above for the O(N ) invariants, namely
that Kα

abϕ
a
i ϕb

i ∼ σα
abψ̄

a
i ψb

i , this expression is invariant under
the local U(1) or O(2) symmetry, which means that each
diagram in �2 is individually invariant. This is in contrast
to QED, where only a subset of diagrams taken together are
invariant under the U(1) gauge symmetry [75].

In conclusion, approximations in 2PI, and in particu-
lar the 1/N expansion to NLO introduced above, respect
the local U(1) symmetry of action (21) and the associated
Ward-Takahashi identities. Thus the Schwinger boson identity
〈n̂i〉 = 2S will be respected by our approximations. Higher-
order Ward-Takahashi identities will also be respected, but the
associated conserved quantities may not have the appropriate
initial values due to the Gaussian approximation of Sec. III A
as mentioned before (see Appendix B for details).

C. LO equations of motion

At leading order, Eq. (49), the self-energies are zero, � =
� = 0, and so D is trivial according to Eq. (45). At this order,
the only interaction effect is due to the χ̄ term on the left-hand
side of the equation of motion for the correlator G, Eq. (44).
We will show in the following that this equation is equivalent
to the mean-field equations of motion for the spin expectation
values, also known as Bloch equations.

For practical purposes, it is useful to express the correlator
in terms of functions that are not time-ordered along the
closed time contour. Thus we decompose G in spectral (com-
mutator) and statistical (anticommutator) components as [51]

Gab
ij (t1, t2) = Fab

ij (t1, t2) − i

2
sgnC (t1 − t2)ρab

ij (t1, t2), (52)

where F and ρ are given by

Fab
ij (t1, t2) = 1

2

〈{
ϕ̂a

i (t1), ϕ̂b
j (t2)

}〉
c
, (53)

ρab
ij (t1, t2) = i

〈[
ϕ̂a

i (t1), ϕ̂b
j (t2)

]〉
. (54)

The subscript “c” indicates the connected correlator. Inserting
this into (44) with � = � = 0, using that ∂t1 sgnC (t1 − t2) =
2δC (t1 − t2), and employing the commutation relations (17)
results in decoupled equations for F and ρ,

∂t1F
ab
ij (t1, t2) = i

2

∑
γ

(
χ̄

γ

i (t1) + B
γ

i

)
× [1 ⊗ σy]acKγ

cdF
db
ij (t1, t2), (55)

∂t1ρ
ab
ij (t1, t2) = i

2

∑
γ

(
χ̄

γ

i (t1) + B
γ

i

)
× [1 ⊗ σy]acKγ

cdρ
db
ij (t1, t2). (56)

To map these equations onto equations for spin variables, we
first note that 〈

Ŝα
i (t )

〉 = 1

4
Kα

abF
ab
ii (t, t ), (57)
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which follows from sgnC (0) = 0 and Eq. (15). Moreover, we employ

Kα
acK

β

bd [1 ⊗ σy]dc = i
∑

γ

εαβγKγ

ab, (58)

which we prove in Appendix A. Using Eq. (55), and Eq. (43) for χ̄ , we thus arrive at

∂t

〈
Ŝα

i (t )
〉 = i

4
Kα

ac[1 ⊗ σy]cd
∑

β

Kβ

bd

(
χ̄

β

i (t ) + B
β

i

)
Fba

ii (t, t ) =
∑
βγ

εαβγ
(
χ̄

β

i (t ) + B
β

i

)1

4
Kγ

abF
ab
ii (t, t )

=
∑
βγ

εαβγ

⎛⎝∑
j

J
β

ij

〈
S

β

j (t )
〉+ B

β

i

⎞⎠ 〈Sγ

i (t )
〉
, (59)

which constitute the mean-field (Bloch) equations for the Hamiltonian (1).

D. NLO equations of motion

At next-to-leading order, Eq. (50), the self-energies follow from (42) as

�
NLO,ab
ij (t1, t2) = 2i

δ�2

δGab
ij (t1, t2)

= −1

4

∑
αβ

Kα
acK

β

bdG
cd
ij (t1, t2)Dαβ

ij (t1, t2), (60)

�
NLO,αβ

ij (t1, t2) = 2i
δ�2

δD
αβ

ij (t1, t2)
= −1

8
Kα

abK
β

cdG
ac
ij (t1, t2)Gbd

ij (t1, t2). (61)

Similar to the correlator G in Eq. (52), it is convenient to split the self-energies into spectral and statistical parts as

�
αβ

ij (t1, t2) = �
F,αβ

ij (t1, t2) − i

2
sgnC (t1 − t2)�ρ,αβ

ij (t1, t2), (62)

�ab
ij (t1, t2) = iδC (t1 − t2) �

(0),ab
ij (t1) + �

F,ab
ij (t1, t2) − i

2
sgnC (t1 − t2)�ρ,ab

ij (t1, t2), (63)

where we separated a possible time-local part �(0) [31]. In the same way, we decompose the correlator D into

D
αβ

ij (t1, t2) = iJ α
ij δ

αβδC (t1 − t2) +
∑
kl

J α
ikD̂

αβ

kl (t1, t2)J β

lj (64)

and define

D̂
αβ

ij (t1, t2) = D̂
F,αβ

ij (t1, t2) − i

2
sgnC (t1 − t2)D̂ρ,αβ

ij (t1, t2). (65)

The NLO equations of motion, following from inserting Eqs. (60) and (61) with the above decompositions into Eqs. (44) and
(45), can be greatly simplified using the properties of the Schwinger bosons. As shown in Ref. [15] and also Sec. IV E, physical
initial states imply that Gij (t0, t0) ∼ δij and hence �ij (t0, t0) ∼ δij . This property extends to all later times by induction through
Eqs. (44) and (45). Because of this, we can replace

Gab
ij (t1, t2) → δij Gab

ii (t1, t2), (66)

�ab
ij (t1, t2) → δij �ab

ii (t1, t2). (67)

This means in particular that the local part of the self-energy �(0) vanishes,

�
(0)
ii ∼ Jii = 0. (68)

At NLO, one further finds from (61) that also

�
αβ

ij (t1, t2) → δij�
αβ

ii (t1, t2). (69)

All in all, the 2PI equations for the Schwinger boson and auxiliary field correlators become

∂t1F
ab
ii (t1, t2) = i[1 ⊗ σy]ac

{
1

2

∑
γ

(
χ̄

γ

i (t1) + B
γ

i

)
Kγ

cdF
db
ii (t1, t2)

+
∫ t1

0
dt �

ρ,cd

ii (t1, t )Fdb
ii (t, t2) −

∫ t2

0
dt �

F,cd
ii (t1, t )ρdb

ii (t, t2)

}
, (70)
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∂t1ρ
ab
ii (t1, t2) = i[1 ⊗ σy]ac

{
1

2

∑
γ

(
χ̄

γ

i (t1) + B
γ

i

)
Kγ

cdρ
db
ii (t1, t2) +

∫ t1

t2

dt �
ρ,cd

ii (t1, t )ρdb
ii (t, t2)

}
, (71)

and

D̂
F,αβ

kj (t1, t2) = −�
F,αβ

kk (t1, t2)δkj +
∫ t1

0
dt
∑
m,δ

�
ρ,αδ

kk (t1, t )J δ
kmD̂

F,δβ

mj (t, t2) −
∫ t2

0
dt
∑
m,δ

�
F,αδ
kk (t1, t )J δ

kmD̂
ρ,δβ

mj (t, t2), (72)

D̂
ρ,αβ

kj (t1, t2) = −�
ρ,αβ

kk (t1, t2)δkj +
∫ t1

t2

dt
∑
m,δ

�
ρ,αδ

kk (t1, t )J δ
kmD̂

ρ,δβ

mj (t, t2). (73)

Note that the above equations are simply a reformulation of Eqs. (44) and (45) in terms of spectral and statistical components,

which removed the reference to a closed time contour.
The approximation to NLO enters through the spectral and statistical components of the self-energies, which are given by

�
F,ab
ii (t1, t2) = −1

4

∑
αβ

Kα
acK

β

bd

∑
kl

J α
ikJ

β

li

(
Fcd

ii (t1, t2)D̂F,αβ

kl (t1, t2) − 1

4
ρcd

ii (t1, t2)D̂ρ,αβ

kl (t1, t2)

)
, (74)

�
ρ,ab

ii (t1, t2) = −1

4

∑
αβ

Kα
acK

β

bd

∑
kl

J α
ikJ

β

li

(
ρcd

ii (t1, t2)D̂F,αβ

kl (t1, t2) + Fcd
ii (t1, t2)D̂ρ,αβ

kl (t1, t2)
)
, (75)

and

�
F,αβ

ii (t1, t2) = −1

8
Kα

abK
β

cd

(
Fac

ii (t1, t2)Fbd
ii (t1, t2) − 1

4
ρac

ii (t1, t2)ρbd
ii (t1, t2)

)
, (76)

�
ρ,αβ

ii (t1, t2) = −1

4
Kα

abK
β

cdF
ac
ii (t1, t2)ρbd

ii (t1, t2). (77)

Apart from this, the auxiliary field one-point function is still given by Eq. (43), i.e.,

χ̄α
j (t ) = 1

4

∑
k

J α
jkKα

cdF
cd
kk (t, t ). (78)

The above equations can be further simplified assuming spatially homogeneous initial states and fields as well as translationally
invariant interactions, see Appendix C for details.

E. Initial conditions

The 2PI equations derived in the previous sections are first-order integrodifferential equations, which can be solved
numerically by providing them with initial conditions. In our case, we need to provide only Fab

ii (t0, t0) and ρab
ii (t0, t0), since

the initial values for D̂F and D̂ρ follow directly from evaluating the right-hand side of Eqs. (72) and (73) at the initial time.
The initial conditions for F are related to the initial values of the magnetizations Ŝα

i and the spin quantum number S. This
can be seen by writing F in the complex basis and then using (4) and the constraint (18) to relate it to the spin observables. For
instance, one has at initial time F 11 = 1

2 〈{â1, â1}〉 = 〈â†â〉 + 1
2 = 〈Ŝz〉 + S + 1

2 . In this way, one obtains

Fii (t0, t0) =

⎛⎜⎜⎜⎝
〈
Ŝz

i

〉+ S + 1
2 0

〈
Ŝx

i

〉 〈
Ŝ

y

i

〉
0

〈
Ŝz

i

〉+ S + 1
2 − 〈Ŝy

i

〉 〈
Ŝx

i

〉〈
Ŝx

i

〉 − 〈Ŝy

i

〉 − 〈Ŝz
i

〉+ S + 1
2 0〈

Ŝ
y

i

〉 〈
Ŝx

i

〉
0 − 〈Ŝz

i

〉+ S + 1
2

⎞⎟⎟⎟⎠, (79)

where all spin expectation values are evaluated at the initial
time t0. We note that this is the only point in our theory
where the length of the spin appears. By setting S in the
initial condition above, the length of the spin is fixed for the
whole time evolution as the identity 〈n̂i〉 = 2S is conserved.
We point out that in the Gaussian approximation to the
initial conditions considered here, all correlators of the form
〈Ŝα

i (0)Ŝβ

j (0)〉
c

with i �= j are initially zero as is shown in
Appendix D 3. This is indeed sufficient for the initial product

states we will consider in this work, which have no initial
correlations.

The initial conditions for ρab
ii are determined by the equal-

time commutation relations given in Eq. (17). Writing the
matrix out explicitly, they are given by

ρii (t0, t0) =

⎛⎜⎝0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎠. (80)
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V. SUMMARY OF THE METHOD

In summary, we have developed a Schwinger boson 2PI
description of quantum spin models of type (1) using a
formulation in terms of a four-component real scalar field ϕa

and a (in general) three-component real scalar (auxiliary) field
χα . In this basis, we have performed a 1/N expansion to NLO
by making use of the local O(2) symmetry associated to the
Schwinger boson constraint (5). The resulting equations of
motion for the average field χ̄ and the correlators F, ρ, DF ,
and Dρ are given in Eqs. (70)–(73) and (78), which are
complemented by the initial conditions given in Eqs. (79)
and (80). In the case of homogeneous initial conditions and
translationally invariant interactions, the equations can be
simplified as given in Appendix C. Details on the numerical
procedure can be found in Appendix F.

Various spin observables can be extracted out of the ϕ and
χ field correlators. The one-point function, or site-resolved
magnetization, can be obtained in two equivalent ways via〈

Ŝα
i (t )

〉 = 1

4
Kα

abF
ab
ii (t, t ) (81)

=
∑

k

[J−1]αikχ̄
α
k (t ), (82)

as demonstrated above and in Appendix D. In the latter
appendix, we further show that the correlator D can be related
to the connected two-point functions of the spin variables via

1

2

〈{
Ŝα

i (t1), Ŝβ

j (t2)
}〉

c
= D̂

F,αβ

ij (t1, t2), (83)

i
〈[
Ŝα

i (t1), Ŝβ

j (t2)
]〉 = D̂

ρ,αβ

ij (t1, t2). (84)

It is important to note that these relations only strictly hold in
the exact theory. An alternative way to compute two-point spin
functions, which correspond to four-point functions in the ϕ

fields, would be via a Bethe-Salpeter type equation as done in
Ref. [15].

In the remaining sections, we will apply the developed for-
malism to a variety of problems by solving the 2PI equations
of motion numerically. For this, we use a predictor-corrector
algorithm and check that the Schwinger boson identity 〈n̂i〉 =
2S is fulfilled (see Appendix F 4). By comparing it to different
state-of-the art numerical techniques, we will show that it is
able to capture most important aspects of the thermalization
processes present in various different setups.

VI. MAGNETIZATION DYNAMICS OF A 3D DIPOLAR
INTERACTING SPIN SYSTEM WITH

QUENCHED DISORDER

In this section, we apply Schwinger boson spin-2PI to the
nonequilibrium dynamics of large ensembles of spins with
positional disorder and dipolar interactions. Such systems are
relevant for a number of current experimental realizations
ranging from Rydberg atoms [32,33] to polar molecules [34]
and NV centers in diamond [35]. Specifically, we consider a
dipolar XY model with Hamiltonian

Ĥ = 1

2

∑
i �=j

Jij

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

)+ �
∑

i

Ŝx
i (85)

and interactions given by

Jij = C3(1 − cos2(θij ))
|�ri − �rj |3 . (86)

In the above expression, �ri is the position of atom i and θij

is the angle between �ri − �rj and the quantisation axis. We
consider the relaxation dynamics of a relatively large system
of 100 spins in three spatial dimensions starting in an initial
product state given by

|�0〉 = ⊗i |↓〉i . (87)

Such a system size is well beyond reach for calculations based
on exact diagonalization and beyond the scopes of DMRG due
to the high dimensionality.

The parameters we choose for the model in Eq. (85) are
motivated by the Rydberg experiment of Ref. [32] with inter-
action strength C3/h̄ = −2π × 1.73 GHz μm3 and Rabi fre-
quency �/h̄ = 2π × 1.48 MHz. Similar to that experiment,
we consider a three-dimensional cloud of spins with random
positions taken from a Gaussian distribution and impose a
low-distance cutoff due to the Rydberg blockade [76]. The
parameters are again taken from the above reference.

Because of this setting, the Jij are inhomogeneous but
constant over each realization of the system, i.e., there is
quenched disorder. Due to the 1/r3 dependence of the inter-
actions, a few entries of Jij are rather large, and lead to slow
convergence of the time step in the numerics. Since we are
mainly interested in a benchmark of the 2PI method, we set
all entries above Jcut/h̄ = 3 × 106 Hz to exactly Jcut. This is
similar in spirit to soft core potentials such as those realized
with Rydberg dressing [77].

The inhomogeneity of the system drastically increases the
numerical cost of solving 2PI equations, as compared to
translation-invariant systems, see Appendix C and Ref. [15].
We note, however, that the 2PI approach still only scales
polynomially with system size and furthermore converges
comparably quickly to its thermodynamic limit as discussed
in Sec. VII.

A. Memory cut and computational resources

The memory integrals of the 2PI equations, which integrate
from the initial to the current time, require storage of all past
times to compute the next step. Since the two-point correlators
G and D depend on two time variables, this implies that the
memory requirements scale quadratically with the number of
time steps. This is further worsened by the fact that D depends
independently on two space indices due to the inhomogeneity.
All in all, this makes it a priori difficult to evolve the system
to long times.

However, the contributions from early times to time-
evolving observables such as correlation functions effectively
become less important at later times. In our theory, this effec-
tive loss of memory can be quantified by the dynamics of the
self-energies �F/ρ (t, 0) and the Schwinger boson correlators
F (t, 0), ρ(t, 0), both of which appear in the memory inte-
grals. As a two-time function with argument (t, 0) measures
the correlation with the initial state, we expect it to approach
zero as t → ∞, at least for a thermalizing system.
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FIG. 4. The correlations with the initial time in the dipolar
XY Hamiltonian with 100 randomly placed spins starting in a −z

polarized state (same system as in Fig. 5) as quantified by all
16 components of the Schwinger boson self-energy �F/ρ (t, 0) and
correlators F (t, 0)/ρ(t, 0) at one site (similar graphs are obtained at
all sites). The red line indicates the memory zone, which is shifted
along with the time evolution. The damping in all of these functions
reflects the effective loss of memory of the initial state as expected
for a thermalizing system.

In Fig. 4, we show the early time dynamics of these func-
tions for the 100 spin system to be studied below. In all cases,
we see a clear damping of the envelope of the oscillations with
time. In particular, the self-energies are shown to decrease
by at least a factor of 10 within the time window shown.
This suggests that contributions to the memory integrals from
the distant past will be strongly suppressed and hence can
be safely ignored. This enables us to restrict the memory
integrals to only the recent history, which significantly reduces
the amount of resources needed.

For the simulations presented below, we choose to restrict
the memory of the system to around 1.5 μs, which is marked
as a red line in Fig. 4. We have tested that variations in
the memory cut chosen do not significantly affect the results
presented, see Appendix F 5 for a more detailed description
of this procedure. Moreover, in this section and the next,
we show results for one realization of the disorder only, but
have tested for early times that averages over five realizations
give similar results. This indicates that in this description,
sufficient self-averaging occurs already for these relatively
small system sizes.

B. Demagnetization dynamics

We compute the relaxation dynamics of the volume-
averaged magnetization

〈Ŝα〉 = 1

N

N∑
i=1

〈
Ŝα

i

〉
(88)

for the model and initial conditions specified above. To test the
accuracy of the Schwinger boson spin-2PI method, we com-
pare the results to the cluster method MACE [36], which is
well-suited for studying the early-time dynamics of one-point
functions in such disordered systems and has shown to work
well in various similar long-range interacting spin models
[32,34,36]. For more details on this method see Appendix F 6.
Apart from the effective loss of memory of the initial state,
thermalization is characterized by the approach of observables
to their corresponding equilibrium values. The time evolution
of the α = x, z magnetization components is shown in Fig. 5.
Starting from the initial state given in Eq. (87), which is
an eigenstate of the XY Hamiltonian, the Sz component
(and equally the Sy component not shown) starts to oscillate
at a period T = 2π/� ≈ 0.67 μs determined by the Rabi
frequency. Due to interactions, these oscillations decay in
time and they approach zero, as shown by MACE (black
dashed line). This behavior can be understood from the fact
that the Hamiltonian does not favor any particular direction
along z. Hence one would expect 〈Ŝz〉 = 0 in equilibrium as
long as the final equilibration temperature is above possible
symmetry-breaking transitions.

From a dynamical point of view, at a mean-field level, the
inhomogeneity of the interactions causes each spin to oscillate
at a different effective frequency, which leads to dephasing of
the total magnetization. The build-up of correlations beyond
mean-field leads to additional damping of the magnetization
[32], as can be seen in Fig. 5.

In the LO or mean-field approximation (gray dotted line),
the damping is extremely slow. In fact, it is present only due
to the inhomogeneity of the system, as was also noted in
Ref. [32] and will be seen in the next sections. In the limit
where the system becomes (discretely) translational invariant,
e.g., on a lattice, the mean-field approximation would lead to
no damping, therefore failing to describe thermalization in this
closed quantum system. The failure of the LO approximation
to describe the relaxation dynamics comes as no surprise since
it does not account for direct scattering effects [11].

The NLO approximation (red thick line), on the other hand,
reproduces the damping of 〈Ŝz〉 shown by MACE remarkably

224304-12



NONEQUILIBRIUM QUANTUM SPIN DYNAMICS FROM … PHYSICAL REVIEW B 98, 224304 (2018)

−0.5

−0.25

0

0.25

0.5

0 2 4 6 8 10 12

−0.02

−0.01

0

0 2 4 6 8 10 12

MACE not converged

M
ag

n
et

iz
at

io
n
:
〈S

z
〉

M
ag

n
et

iz
at

io
n
:
〈S

x
〉

Time: t [μs]

2PI LO/MF
2PI NLO

MACE

FIG. 5. Time evolution of the magnetizations in the dipolar XY
Hamiltonian with 100 randomly placed spins starting in a −z po-
larized state. MACE, mean-field (2PI LO/MF), and 2PI NLO are
compared. The Sy component shows similar behavior as the Sz

component, shifted by a quarter period of the oscillation. We only
show a single realization of the quenched disorder here, but have
checked for small times that an averaged result shows qualitatively
similar behavior. We emphasize that the MACE result for the Sx

component has not converged yet as shown in Appendix F.

well. As the damping rate is related to the imaginary part
of the self-energy, we expect the quantitative agreement to
improve in higher orders of the 1/N expansion. Although
the expected equilibrium value of vanishing magnetization in
the z and y components is not reached in the simulated time
span, the monotonically damped oscillations around zero are
a strong indicator for a relaxation to this value. In contrast to
the z component of the magnetization, the MACE and NLO
curves for 〈Ŝx〉 show no agreement between each other, even
at early times. For this particular observable, however, MACE
has not reached convergence yet for the maximal cluster size
employed here, namely, 13, as shown in Appendix F 6. Thus
the MACE prediction shown for 〈Ŝx〉 can not be taken as a
quantitatively accurate result to compare with.
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FIG. 6. Different contributions to the total energy as calculated
via the formulas derived in Appendix E. The mean-field part of
the energy slowly dampens while the contribution of the quantum
correlations rises. The energy stored in the B-field contribution
approaches a finite value due to the finite Sx magnetization for long
times. The total energy stays constant as expected from the symmetry
conserving properties of the approximation.

C. Energy

As a complementary characterisation of the dynamics, we
display in Fig. 6 the time evolution of different contribu-
tions to the energy, namely, the mean-field or disconnected
part J 〈S〉 〈S〉, the linear “B-field” component B 〈S〉 and the
connected contributions arising from quantum correlations
J 〈SS〉c. We give the expression of the energy along with a
description of its derivation in Appendix E. Due to the con-
serving properties of our approximation, the total energy stays
constant up to small numerical errors. It furthermore vanishes
for the fully −z polarized initial product state considered here.

In general, the different energy components show clear
oscillations at twice the Rabi frequency. Every time the total
spin crosses the xy plane, the interaction energy rises and is
correspondingly compensated by a negative B-field energy
contribution. Initially, the interaction energy is just given by
the mean-field part but as time passes correlations build up and
the interaction energy becomes dominated by the connected
part of the 〈SS〉 correlator. At long times, the correlation
energy saturates and compensates the negative energy con-
tribution coming from the residual total Sx magnetization.
This shows once again the importance of fluctuations beyond
mean-field in the long-time dynamics of the system.

To summarize, we have efficiently simulated a system
of 100 spins in 3D governed by a dipolar XY model with
quenched disorder in an external field using the Schwinger bo-
son spin-2PI method. Taking advantage of the loss of memory
from the initial state, we were able to simulate the dynamics
to relatively long times, despite the memory requirements
imposed by the inhomogeneity of the problem. In a regime
where mean-field clearly fails to describe the relaxation pro-
cess, the NLO result for the total 〈Ŝz〉 magnetization agrees
remarkably well with the behavior predicted by MACE. While
considerable deviations are observed for the 〈Sx〉 component,
which are at least partly attributed to a lack of convergence
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of MACE, both NLO and MACE predict a nonvanishing
long-time value for this observable. Thus these results show
the potential of the present method to describe the relaxation
dynamics of spin systems of considerable size (�100) in high
dimensions up to relevant thermalization time scales, even for
inhomogeneous problems.

VII. RELAXATION DYNAMICS AROUND THE QUANTUM
PHASE TRANSITION OF THE ANISOTROPIC XXZ CHAIN

The question of whether and how the far-from-equilibrium
dynamics on different sides of a quantum critical point (QCP)
are connected to the underlying equilibrium quantum phase
transition [37,78] has recently gained much attention from the
perspective of dynamical phase transitions [79–83]. In this
section, we investigate whether this field of study may be
addressed by our 2PI method, similarly to what has been done
for an O(N ) model in Ref. [84]. Here, we consider a model
studied before in this context [37,79], the antiferromagnetic
nearest-neighbor interacting XXZ chain with periodic bound-
ary conditions defined by the Hamiltonian

Ĥ = J
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1 + �Ŝz
i Ŝ

z
i+1

)
, (89)

where we choose J > 0 and � denotes the anisotropy. This
model exhibits an equilibrium quantum phase transition from
a gapless Luttinger liquid phase with quasi-long-range order
for |�| < 1, to an antiferromagnetic (ferromagnetic) phase
with long-range order for � > 1 (� < −1) [37].

We study the evolution of the staggered magnetization,∑
i

(−1)i
〈
Sz

i (t )
〉
, (90)

in a spin chain initialized with classical Néel order, i.e.,

|�0〉 = |↑↓↑ · · · ↑↓〉 , (91)

for different anisotropies �. The time evolution of this initial
state has been extensively studied with a numerically accurate
method (iMPS) in the infinite length limit [37,85]. Those stud-
ies show different dynamical behavior of this nonequilibrium
initial state depending on �. One finds exponentially damped
oscillations with near constant oscillation period for � �
1, a simple exponential decay for � > 1, and an algebraic
decay for � = 0. This behavior has later been attributed to
an underlying dynamical quantum phase transition (DQPT)
at � = 1 [79], with the long-time average of the staggered
magnetization being the order parameter of the transition.

A. Evaluation in the infinite length limit

Using our 2PI approach, we first compare in Fig. 7 the
effect of varying the system size on the dynamics of the
staggered magnetization for � = 1. Remarkably, we find no
significant changes in the dynamics for the times considered
when increasing the chain length from N = 6 to N = 10.
This suggests that results with a system size of just N = 6
can already be taken as a good approximation to the ther-
modynamic limit in this particular problem. Moreover, we
observed a similarly fast convergence to the thermodynamic
limit in two spatial dimensions (not shown), which indicates
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FIG. 7. Comparison of different system sizes in the dynamics of
the staggered magnetization starting in the classical Néel state in the
XXZ chain at the Heisenberg point � = 1.0. A fast convergence to
the thermodynamic limit is found as chain length 6 shows no sizable
difference to chain length 10.

that this method is also well-suited for the study of quantum
dynamics of spin systems in the infinite volume limit in higher
dimensions. This fast convergence to the thermodynamic limit
is a feature resulting from the field-theoretic nature of our
method and was also found in Ref. [15]. We note that in
contrast to the previous section, we do not use a memory cut
here as we found it to lead to an unphysical leveling-off of the
exponential damping.

B. Dynamics of the Néel ordered state on different sides
of the QCP

Figure 8 shows the time evolution of the staggered mag-
netization for different values of � below and above the
transition as obtained from our 2PI approximation. Remark-
ably, our method captures the qualitative behavior expected
[37]. For � < 1, we obtain exponentially damped oscillations,
whereas for � > 1, the damping becomes exponential and
nonoscillatory. This represents a considerable improvement
compared to previous mean-field treatments based on a map-
ping to a spinless fermion model [37], which found spurious
algebraic decay of the staggered magnetization for � < 1 and
a constant oscillatory behavior for � > 1. Note that such a
mean-field approximation does not correspond to our LO ap-
proximation, which is equivalent to mean-field in the original
spin variables and which does not show any dynamics here.

Fitting an exponentially damped function f (t ) ∼
exp(−t/τ ) to our data, where the proportionality factor
contains an oscillatory function for � < 1, we extract the
relaxation time τ as a function of the anisotropy, see Fig. 9.
As the critical point at � = 1 is approached from below, we
observe a fall-off of the relaxation time, which is the behavior
expected in this model. Note that this constitutes a rather
anomalous behavior compared to the usual critical slowing
down close to quantum critical points [37,86]. As � = 1 is
approached from above, an algebraic dependence τ (�) ∼ �2

has been previously found in Ref. [37]. Figure 9 shows that
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FIG. 8. Time evolution of the modulus of the staggered magneti-
zation in the XXZ chain with different anisotropies �, tuning across
the (dynamical) quantum phase transition at � = 1. The dynamics
exhibit an oscillating exponentially damped behavior for � < 1
and a pure exponential damping for � > 1, which was previously
found with MPS [37]. Note that in mean field/LO, the staggered
magnetization stays constant for all times and hence all features seen
here are solely obtained from the NLO approximation.

our results are compatible with such a quadratic dependence
in the regime just above � = 1.1

While all of the above results are in agreement with those
found in Ref. [37] with iMPS, the damping rates inferred
do not agree quantitatively with the iMPS results. Moreover,
the quantum critical point seems to be slightly shifted away
from � = 1 in our approximation, as evidenced by the simple
exponential damping of the � = 1 curve shown in Fig. 8,
instead of the oscillations around zero found in Ref. [37].
Other features not well reproduced by our approximation
include the approximate � independence of the oscillation
periods found for � < 1 and the algebraic decay expected for
� = 0.

Despite these quantitative inaccuracies, which may be im-
proved in the next order of the 1/N expansion, it is remarkable
that our 2PI approximation is able to reproduce most generic
features of the relaxation dynamics around the QPT of the
XXZ chain, even in the strongly interacting regime around
� = 1. In particular, it greatly outperforms previous mean-
field treatments built on a mapping to spinless fermions which
show a qualitatively different behavior. The results presented
here open up the possibility to study dynamical quantum
phase transitions in lattice spin systems in regimes in which
methods such as iMPS or other DMRG related methods fail,
e.g., in higher dimensions as previously done in the O(N )
model [84]. For this purpose, our results suggest that one

1While the line in this figure is not a fit, we checked that vastly
different power laws such as ∼� and ∼�3 are clearly inconsistent
with the data.
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FIG. 9. Relaxation time as obtained from an exponential fit to the
data in Fig. 8 as a function of anisotropy. As the QCP around � = 1
is approached, the dynamics becomes faster, which is the anomalous
behavior found before in this model. Furthermore, the relaxation time
changes asymetrically as the QCP is approached from above/below.
The errors result from the fitting procedure and are smaller than the
dot size for most data points. The blue line (not a fit) indicates the
�2 behavior previously found for the approach to the QCP from
above [37].

would not need to simulate large system sizes owing to the
fast convergence to the thermodynamic limit shown here.

VIII. SIGNATURES OF MANY-BODY LOCALIZATION
IN A HEISENBERG CHAIN

In the first two applications, we have shown that the
Schwinger boson spin-2PI method is able to reproduce
generic features of thermalization dynamics in interacting
spin models. In this section, we give some indicative results
that it is also able to capture the dynamics of local observables
in a system that refuses to thermalize: a many-body localized
(MBL) system [16,87–91]. The model best studied in this con-
text is the Heisenberg chain with nearest-neighbor interactions
in a random field [92–94],

Ĥ = J
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1 + Ŝz
i Ŝ

z
i+1

)+
∑

i

hi Ŝ
z
i , (92)

where the hi are numbers drawn from a uniform random dis-
tribution in the interval [−	,	]. Note that this Hamiltonian
becomes the model (89) studied in the previous section for
� = 1 and 	 = 0. As before, we consider as initial state
the classical Néel state in Eq. (91) and study the dynamics
of the staggered magnetization, Eq. (90), in a system with
periodic boundary conditions. For the purpose of localization,
it is useful to note that for this particular initial state, the
staggered magnetization can be interpreted as quantifying the
correlations with the initial state by means of [96]∑

i

〈
Ŝz

i (t )Ŝz
i (0)

〉 = 1

2

∑
i

(−1)i
〈
Sz

i (t )
〉
. (93)

For thermalizing systems with initial state in the zero-
magnetization sector, such as the Néel state, the correlation
with the initial state, and hence the staggered magnetization,
should go to zero as a relaxing system effectively forgets its
initial state. In a localized system, however, memory of the
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FIG. 10. Time evolution of the staggered magnetization in a
Heisenberg chain of six spins with a random field for different dis-
order strengths 	, averaged over 26 realizations of the disorder. As
the disorder increases, the dynamics slow down from exponentially
fast relaxation to a full arrest on the observed timescales. (Inset)
Latest value of the staggered magnetization as a function of disorder
strength. Error bars are defined as the standard deviation of the
disorder average.

initial state is retained and therefore the above quantity tends
to a nonzero constant in a fully many-body localized system.

Figure 10 shows the time evolution of the staggered mag-
netization in a chain of six spins initialized in a Néel ordered
state for various disorder strengths 	. The results displayed
are averaged over 26 disorder realizations. Based on the finite-
size discussion of the previous section for the case without
disorder (see Fig. 7), we expect them to capture at least some
qualitative features of the system in the thermodynamic limit.
For very weak disorder (	 = 0.01), we observe that the time
evolution is indistinguishable from the case of no disorder for
early times and the relaxation slows down at around J t = 8.
For larger disorder strengths, a plateau is approached and the
value of the staggered magnetization at the plateau is found
to increase with increasing disorder. For 	 = 50, no time
evolution of the staggered magnetization is visible on the
observed timescale. In the inset, we show the latest value of
the staggered magnetization as a function of the disorder. A
crossover from thermalization at low disorder strength to no
relaxation at strong disorder is visible (see inset in Fig. 10),
where the inflexion point resulting from interpolating between
the points is consistent with the value 	 ≈ 3.5 obtained in
Ref. [96] for the location of the MBL transition.

For the results shown in this section, we again do not
use memory cuts as in the previous section. Nevertheless,

it is interesting to note that, counterintuitively, employing a
memory cut happens to work better the stronger the disorder
is, even though the memory of the initial state lasts longer in
this case. On a technical level, this may be understood from
the fact that the disorder enters quadratically in the Schwinger
bosons (and therefore already at LO) into the action whereas
interaction effects enter through the NLO self-energies and
therefore through the memory integrals. At weak disorder, the
interactions dominate and therefore the memory integrals are
important, whereas at strong disorder the opposite is the case
and therefore the memory integrals can be cut. In Ref. [57],
this fact has been used in greater depth to develop a simple
Hartree-Fock theory of the many-body-localization transition.

While these observations are in agreement with previous
numerical studies of MBL in this system, we note that the
observed timescales as well as the system size are not large
enough to conclusively demonstrate that this method is able
to describe this phenomenon. Future studies would, however,
be immediately able to generalize results to higher dimensions
and more exotic interactions (such as long-range interactions),
where other standard numerical methods become inapplica-
ble. Moreover, it is useful to note that in contrast to conven-
tional field-theoretic treatments of disordered systems [97],
the disorder is taken into account without further approxima-
tions as it is quadratic in the Schwinger boson operators.

IX. CONCLUSIONS AND OUTLOOK

Our work presents a nonequilibrium quantum field theory
approach to the dynamics of arbitrary spin models using a
symmetry conserving 1/N expansion of the 2PI effective
action. Its nonperturbative nature means that our theory is not
restricted to a small interaction parameter. We argue that N

is related to a residual O(2) symmetry of our mapping of
spins to Schwinger bosons and show that the Schwinger boson
constraint emerges as a conserved current of this symmetry,
which is not violated in 2PI approximations. We furthermore
show how spin correlators can be extracted from a Hubbard
Stratonovich field correlator.

We benchmark our method in various settings. First, we de-
scribe the relaxation dynamics in a 3D long-range interacting
dipolar XY model with quenched disorder as implemented in
Rydberg atom experiments. We find substantial improvement
over the mean-field solution in a system with 100 spins, a
regime far from the applicability of exact diagonalization.
Only small deviations from a method considered numerically
exact in this regime, MACE, are found, while all qualitative
features of the dynamics are recovered. Furthermore, we study
the thermalization dynamics of a Néel ordered initial state
on different sides of a (dynamical) quantum phase transition
in a 1D (an)isotropic XXZ model in a regime in which the
mean-field approximation does not show any dynamics. We
find that our method reproduces most qualitative features
found previously with matrix product states. Lastly, we give
some indicative results that our method is able to describe the
transition from a thermalizing to a many-body-localized phase
in a 1D Heisenberg chain in a random field.

These benchmarks show that our nonequilibrium quantum
field theory method is able to describe generic features found
in the local magnetization dynamics of strongly correlated
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spin models implemented in current cold atom experiments,
such as models with quenched disorder in interactions and/or
external fields, long-range interactions and quantum phase
transitions. Furthermore, it is not restricted to small system
sizes or low dimensionality and its quickly converging finite
size flow leads to the capability of extracting the time evo-
lution in the thermodynamic limit. Our description in terms
of Schwinger bosons could furthermore be used to study the
quantum-classical crossover by studying the dependence of
the dynamics on the spin length.

This opens up a whole range of possible applications, most
notably to the thermalization dynamics of local observables
in systems exhibiting a many-body-localization transition as
well as dynamical quantum phase transitions. Furthermore,
the influence of dimensionality and long-range interactions
on these phenomena could be examined. As the external
magnetic field could, in principle, be made time dependent,
also the order parameter dynamics in periodically driven
(Floquet) systems could be examined as previously done with
2PI methods in the O(N ) model [65]. Moreover, our method
can provide (at least qualitative) predictions for quantum
simulation experiments, for example, with Rydberg atoms in
optical tweezers, cold atoms in quantum gas microscopes,
trapped ions or NV centers in diamond in regimes in which
other methods are not available.

Our method can be extended in several ways. As an ex-
tension of the 1/N expansion to NNLO is numerically very
expensive [98,99], a better approximation of the initial state
in terms of a non-Gaussian state could have more potential
for substantial improvement. Furthermore, the use of more
efficient numerical algorithms might enable the evaluation of
the inhomogeneous 2PI equations for system sizes close to the
thermodynamic limit also in 3D.
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APPENDIX A: K IDENTITY

We prove the following identity between K and the totally
antisymmetric tensor ε:

Kα
acK

β

bd [1 ⊗ σy]dc = i
∑

γ

εαβγKγ

ab. (A1)

The proof is based on the comparison of the spin commuta-
tion relations written with Schwinger bosons and with spin

variables. Firstly,[
Ŝα

i , Ŝ
β

j

] = iδij

∑
γ

εαβγ Ŝ
γ

i

= iδij

∑
γ

εαβγ 1

4
Kγ

abϕ̂
a
i ϕ̂b

j , (A2)

where we have inserted the real Schwinger boson representa-
tion (15) after using the spin commutation relations. We can,
however, also perform these steps in reverse order, giving[

Ŝα
i , Ŝ

β

j

] = 1

16
Kα

abK
β

cd

[
ϕ̂a

i ϕ̂b
i , ϕ̂

c
j ϕ̂

d
j

]
= 1

4
Kα

abK
β

cdδij ϕ̂
a
i ϕ̂c

i [1 ⊗ σy]db, (A3)

where in the last step the commutation relations for the
Schwinger boson field (17) and the symmetry of the Kα

ab

was used. Comparing both of the above expressions for the
commutator leads to the identity (A1).

APPENDIX B: WARD-TAKAHASHI IDENTITIES

In this section, we derive a set of Ward-Takahashi identities
(WTI) for the current associated to the U(1) symmetry of the
complex Schwinger boson action (10) in complete analogy to
the textbook derivation of Ward identities in, e.g., QED [40].
As we will see, the identities ∂t 〈(n̂i (t ))k〉 = 0, ∀k ∈ N, which
follow from the Schwinger boson constraint (5), correspond to
special cases of these WTIs.

We start by transforming the Schwinger bosons according
to the following infinitesimal transformation:

ψa
i (t ) → ψ ′a

i (t ) = ψa
i (t ) + iαi (t )ψa

i (t ), (B1)

where we work in the complex basis for convenience. Note
that we make αi (t ) explicitly time dependent. The measure
of the functional integration is invariant under such a unitary
transformation such that this transformation merely acts like
a change of coordinates and it follows that∫

D[ψ̄, ψ] exp {iS[ψ̄, ψ]} =
∫

D[ψ̄, ψ] exp {iS[ψ̄ ′, ψ ′]}.
(B2)

Expanding the right-hand side (RHS) to first order in α leads
to

0 =
∫

D[ψ̄, ψ] exp {iS[ψ̄, ψ]}

×
⎛⎝−i

∑
j

∫
C
dt
(
∂tαj (t )ψ̄a

j ψa
j

)⎞⎠
=
∫

D[ψ̄, ψ] exp {iS[ψ̄, ψ]}
⎛⎝−i

∑
j

∫
C
dt αj (t )∂tj

0
j

⎞⎠,

(B3)

where it was used that the variation with respect to α van-
ishes as S is invariant under transformations with constant
α. The only nonvanishing contribution is therefore the vari-
ation with respect to ∂tα of the kinetic term. In the second
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step, partial integration was used and the classical Noether
current j 0

i = −ni ≡ −ψ̄a
i ψa

i was inserted. Noting that the
expression must hold for arbitrary αj (t ) and dividing by Z =∫
D[ψ̄, ψ] exp {iS} we can follow

∂t

〈
j 0
j (t )

〉 = 0 ⇒ ∂t 〈n̂i (t )〉 = 0, (B4)
i.e., the expecation value of the Schwinger boson number
operator is a constant, also in the exact quantum theory.

The same can now be done for the expectation value with
two field insertions, i.e.,∫

D[ψ̄, ψ] exp {iS[ψ̄, ψ]}ψa
i (t1)ψ̄b

j (t2)

=
∫

D[ψ̄, ψ] exp {iS[ψ̄ ′, ψ ′]}ψ ′a
i (t1)ψ̄ ′b

j (t2). (B5)

Again expanding to first order in α leads to

0 =
∫

D[ψ̄, ψ] exp {iS[ψ̄, ψ]}ψa
i (t1)ψ̄b

j (t2)

×
(

−i
∑

k

∫
C
dtαk (t )∂tj

0
k (t ) + iαi (t1) − iαj (t2)

)
.

(B6)

By introducing (contour-) delta functions, we can extend the
sum over k and the contour time integral over the whole
bracket. Arguing again as above, this results in the second

WTI:〈
∂tj

0
k (t )ψa

i (t1)ψ̄b
j (t2)

〉
= 〈ψa

i (t1)ψ̄b
j (t2)(δikδC (t − t1) − δjkδC (t − t2))

〉
. (B7)

To relate this back to the quantity n̂i , we consider the special
case i = j, t1 = t2 ≡ t , for which the second WTI becomes〈(

∂t j
0
k (t )

)
ψa

i (t )ψ̄b
i (t )

〉 = 0. (B8)

Suppressing time arguments, the time derivative of the con-
straint squared can then be re-expressed as

∂t

〈
n̂2

i (t )
〉 = ∂t

〈
ψ̂

a†
i ψ̂a

i ψ̂
b†
i ψ̂b

i

〉
= ∂t

〈
ψ̄a

i ψa
i ψ̄b

i ψb
i

〉
= 2

〈
ψ̄a

i ψa
i ∂t

(
ψ̄b

i ψb
i

)〉 = 0, (B9)

where in the second line the operator expectation value was
rewritten in terms of a path-integral expectation value,2 and
we made use of the first WTI, ∂t 〈n̂i (t )〉 = 0.

Higher-order WTIs may be obtained analogously. When
considering the special case of insertions of the form
(ψa

i (t )ψ̄b
i (t ))k−1, the resulting WTI can be related, as in

Eq. (B9), to the identity ∂t 〈(n̂i (t ))k〉 = 0.2

APPENDIX C: NLO: HOMOGENEOUS INITIAL STATES

For spatially homogeneous systems with periodic boundary conditions, i.e., translationally invariant initial states and
interactions, G, �, and � become independent of the lattice site. The correlator D and the interaction matrix J depend only on
the distance between two sites and can be Fourier transformed with momentum k as

Jk =
∑

x

eikxJx, (C1)

and similarly for D. The inverse transform is normalized by 1/Ns , where Ns is the number of spins. Using this, the equations of
motion for the correlators (70) and (71), can then be simplified to

∂t1F
ab(t1, t2) = i[1 ⊗ σy]ac

{
1

2

∑
γ

χ̄γ (t1)Kγ

cdF
db(t1, t2) +

∫ t1

0
dt �ρ,cd (t1, t )Fdb(t, t2) −

∫ t2

0
dt �F,cd (t1, t )ρdb(t, t2)

}
,

(C2)

∂t1ρ
ab(t1, t2) = i[1 ⊗ σy]ac

{
1

2

∑
γ

χ̄γ (t1)Kγ

cdρ
db(t1, t2) +

∫ t1

t2

dt �ρ,cd (t1, t )ρdb(t, t2)

}
, (C3)

with Schwinger boson self-energies, Eqs. (74), (75), given by

�F,ab(t1, t2) = − 1

4Ns

∑
αβ

Kα
acK

β

bd

∑
k

J α
k J

β

k

(
Fcd (t1, t2)D̂F,αβ

k (t1, t2) − 1

4
ρcd (t1, t2)D̂ρ,αβ

k (t1, t2)

)
, (C4)

�ρ,ab(t1, t2) = − 1

4Ns

∑
αβ

Kα
acK

β

bd

∑
k

J α
k J

β

k

(
ρcd (t1, t2)D̂F,αβ

k (t1, t2) + Fcd (t1, t2)D̂ρ,αβ

k (t1, t2)
)
. (C5)

2We note that the equal-time expectation value 〈ψ̄a
i (t )ψb

j (t )〉 corresponds to the symmetrically ordered product of operators
1
2 〈{ψ̂a†

i (t ), ψ̂b
j (t )}〉. Similarly, higher-order products of fields taken at equal times correspond to symmetrically ordered products of operators.

This has to be taken into account when writing the expectation value 〈(n̂i )k〉 in terms of path-integral expectation values of the fields ψ̄, ψ . In
particular, this affects the derivation of ∂t 〈(n̂i (t ))k〉 = 0 from the kth-order WTI presented here. However, it can straightforwardly be shown
that the derivation remains valid as long as one can write 〈(n̂i )k〉 as a linear combination of 〈(ni )q〉 ≡ 〈(ψ̄a

i ψa
i )q〉 with q � k. We explicitly

checked that this is indeed the case up to k = 4.
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The equations of motion for the auxiliary field, Eqs. (72) and (73), simplify to

D̂
F,αβ

k (t1, t2) = −�F,αβ (t1, t2) +
∫ t1

0
dt
∑

δ

�ρ,αδ (t1, t )J δ
k D̂

F,δβ

k (t, t2) −
∫ t2

0
dt
∑

δ

�F,αδ (t1, t )J δ
k D̂

ρ,δβ

k (t, t2), (C6)

D̂
ρ,αβ

k (t1, t2) = −�ρ,αβ (t1, t2) +
∫ t1

t2

dt
∑

δ

�ρ,αδ (t1, t )J δ
k D̂

ρ,δβ

k (t, t2), (C7)

with auxiliary field self-energies, Eqs. (76) and (77), resulting as

�F,αβ (t1, t2) = − 1
8K

α
abK

β

cd

(
Fac(t1, t2)Fbd (t1, t2) − 1

4ρac(t1, t2)ρbd (t1, t2)
)
, (C8)

�ρ,αβ (t1, t2) = − 1
4K

α
abK

β

cdF
ac(t1, t2)ρbd (t1, t2), (C9)

and the auxiliary field one-point function, Eq. (78), as

χ̄α (t ) = 1
4J α

k=0Kα
cdF

cd (t, t ). (C10)

In the above equations, we omitted possible external fields, which can be incorporated by replacing

χ̄ γ (t1) → χ̄ γ (t1) + Bγ (C11)

in Eqs. (C2) and (C3).

APPENDIX D: SPIN OBSERVABLES FROM AUXILIARY FIELD CORRELATORS

In this appendix, we clarify the connection between the auxiliary field χ and spin variables. Loosely speaking, we aim to
establish the following links:

〈χ〉 ↔ 〈S〉 , 〈χχ〉 ↔ 〈SS〉 . (D1)

For this purpose, we start from the auxiliary field action in Eq. (21) and introduce a source field ηα
j for the auxiliary field via

S[ϕ, χ ] → S[ϕ, χ ] + i

∫
C
dt
∑
j,α

ηα
j χα

j . (D2)

In order to understand the relation between functional derivatives with respect to this source field and spin expectation values,
we first complete the squares in the interaction part of the action as follows:

Sint[ϕ, χ ] =
∫
C
dt

⎧⎨⎩1

2

∑
jk,α

[J−1]αjk

(
χα

j −
∑
m

Jα
jm

(
1

4
Kα

abϕ
a
mϕb

m − ηα
m

))(
χα

k −
∑

l

J α
kl

(
1

4
Kα

cdϕ
c
l ϕ

d
l − ηα

l

))⎫⎬⎭
+
∫
C
dt

⎧⎨⎩−1

2

∑
ij,α

J α
ij

(
1

4
Kα

abϕ
a
i ϕb

i − ηα
i

)(
1

4
Kα

cdϕ
c
jϕ

d
j − ηα

j

)⎫⎬⎭. (D3)

Note that we assume B = 0 in the following, but the results can be straightforwardly generalized to nonzero external field.
Shifting the source field by χα

j → χα
j +∑m Jα

jm( 1
4K

α
abϕ

a
mϕb

m − ηα
m), we can integrate out the auxiliary field by a standard

Gaussian functional integration, which yields

Z[η] =
∫

Dϕ

∫
Dχ exp

⎛⎝iS[ϕ, χ ] + i

∫
C
dt
∑
j,α

ηα
j χα

j

⎞⎠
∝
∫

Dϕ exp

⎛⎝iS[ϕ] + i

∫
C
dt
∑
ij,α

J α
ij

(
ηα

i

1

4
Kα

cdϕ
c
jϕ

d
j − 1

2
ηα

i ηα
j

)⎞⎠, (D4)

where the proportionality factor is the determinant from the Gaussian integral. S[ϕ] denotes the Schwinger boson action before
introducing the auxiliary field, which is given in Eq. (19).

In the next two sections, we derive the relationship between the one- and two-point functions of the auxiliary field and spin
expectation values. The strategy consists in writing functional derivatives of Z[η] with respect to η, which define expectation
values of χ , in terms of ϕ correlators. The latter can then be associated to operator expectation values of ϕ̂, which are in turn
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related to spin variables Ŝ by the Schwinger boson mapping (15). In the following, brackets of field variables will refer to
averages with respect to the path integral with S[ϕ], i.e.,

〈(·)〉 =
∫

Dϕ(·) exp(iS[ϕ]), (D5)

where the ordering along the closed time contour needs to be taken into account.
We note that the relations derived here are strictly only valid in the exact theory, and deviations can be expected when

employing approximations to the effective action. In Appendix D 3, we therefore check whether standard relations between spin
correlators are reproduced by the corresponding χ correlators at NLO, and argue how deviations from the expected results might
be overcome by future work.

1. One-point function

The one-point function of the auxiliary field can be obtained by deriving the generating functional once with respect to the
source field, i.e., 〈

χα
i (t )

〉 = 1

Z

δZ[η]

iδηα
i (t )

∣∣∣∣
η=0

(D6)

=
∑

k

J α
ik

〈
1

4
Kα

abϕ
a
k ϕb

k

〉
(D7)

=
∑

k

J α
ik

〈
Ŝα

k

〉
, (D8)

which just reproduces the result obtained from the equation of motion for the auxiliary field, see Eq. (43). Multiplying from the
left with the inverse interaction matrix (assuming it is invertible) gives the sought expression for the spin one-point function,〈

Ŝα
i

〉 =∑
k

[J−1]αik
〈
χα

k (t )
〉
. (D9)

We have tested this analytical identity in our numerical evaluations by comparing the result for the magnetizations obtained from
the auxiliary field (D9) with the one from the Schwinger boson two-point function (57) and found agreement between the two.

2. Two-point function

Similarly, one can calculate the two-point-function by deriving the generating functional twice,〈
χα

i (t1)χβ

j (t2)
〉 = 1

Z

δZ[η]

iδηα
i (t1)iδηβ

j (t2)

∣∣∣∣
η=0

= iJ α
ij δ

αβδC (t1 − t2) +
∑
ml

J α
imJ

β

jl ×
〈

1

4
Kα

abϕ
a
m(t1)ϕb

m(t1)
1

4
Kβ

cdϕ
c
l (t2)ϕd

l (t2)

〉
= iJ α

ij δ
αβδC (t1 − t2) +

∑
ml

J α
imJ

β

jl

〈
TC Ŝ

α
m(t1)Ŝβ

l (t2)
〉
. (D10)

Using the definition (37) and the decomposition of Eqs. (64) and (65), the left-hand side of Eq. (D10) can be written as

LHS = D
αβ

ij (t1, t2) + χ̄α
i (t1)χ̄β

j (t2) = iJ α
ij δ

αβδC (t1 − t2) +
∑
kl

J α
ikJ

β

lj

×
{
D̂

F,αβ

kl (t1, t2) − i

2
sgnC (t1 − t2)D̂ρ,αβ

kl (t1, t2) + 〈Ŝα
k (t1)

〉 〈
Ŝ

β

l (t2)
〉 }

. (D11)

Similarly, we decompose the time ordered spin correlator [cf. Eq. (52)] into anticommutator and commutator parts as 〈TC ŜŜ〉C =
FS − i

2 sgnC ρS with

F
S,αβ

ij (t1, t2) ≡ 1
2

〈{
Ŝα

i (t1), Ŝβ

j (t2)
}〉

c
, (D12)

ρ
S,αβ

ij (t1, t2) ≡ i
〈[
Ŝα

i (t1), Ŝβ

j (t2)
]〉

. (D13)

In this way, the right-hand side of (D10) becomes

RHS = iJ α
ij δ

αβδC (t1 − t2) +
∑
kl

J α
ikJ

β

jl

{(
F

S,αβ

kl (t1, t2) − i

2
sgnC (t1 − t2)ρS,αβ

kl (t1, t2)

)
+ 〈Ŝα

k (t1)
〉 〈

Ŝ
β

l (t2)
〉 }

. (D14)
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Comparing the terms on the LHS and RHS, we can therefore conclude that

F
S,αβ

ij (t1, t2) = D̂
F,αβ

ij (t1, t2), (D15)

ρ
S,αβ

ij (t1, t2) = D̂
ρ,αβ

ij (t1, t2), (D16)

as given in Eqs. (83) and (84). Note that only those components β of the spin-spin correlators for which J β is invertible can
be read out with Eqs. (D15) and (D16). For instance, if there is no ŜzŜz term in the Hamiltonian, the FS,zz component can
not be obtained from the above equations. In such cases, spin-spin correlators can be computed from a Bethe-Salpeter equation
approach, as described in Ref. [15]. We note again that both approaches are equivalent in the exact theory, but differences may
arise when doing approximations.

3. Spin identities from auxiliary field correlators at NLO

The relations between auxiliary field and spin correlators derived in Appendix D only hold in the exact theory. In this section,
we investigate whether standard relations between correlation functions imposed by the properties of the spin operators are
reproduced by the corresponding χ correlators at NLO in the 1/N approximation. In order to distinguish the two, we denote
the latter with a tilde, e.g., ρ̃S is the spin commutator expectation value in Eq. (D16) as obtained from the approximated D̂ρ

to NLO. Note that a further check consists in comparing the expression for the total energy 〈Ĥ 〉 of the system in terms of spin
expectation values to the corresponding expression for the energy expressed with auxiliary field correlators as obtained from the
1/N approximation. This is discussed in Appendix E.

4. Spin commutation relations

First, we consider the spin equal-time commutation relations, which require that the spin commutator obtained from (D16)
fulfils

ρ
S,αβ

ij (t, t ) = i
〈[
Ŝα

i (t ), Ŝβ

j (t )
]〉 = −δij

∑
γ

εαβγ
〈
Ŝ

γ

i (t )
〉
. (D17)

To check this, we start from (D16) and use the (exact) equation of motion for Dρ , Eq. (73), to obtain

ρ̃
S,αβ

ij (t, t ) = −�
ρ,αβ

ii (t, t )δij , (D18)

where the memory integral vanishes at equal times. Next, we insert the auxiliary field self-energy in the NLO approximation,
Eq. (77) and get

ρ̃
S,αβ

ij (t, t ) = 1

4
Kα

abK
β

cdF
ac
ii (t, t )ρbd

ii (t, t )δij = 1

4
Kα

abK
β

cdF
ac
ii (t, t )(−i)[1 ⊗ σy]bdδij

= −1

4

∑
γ

Kγ
acF

ac
ii (t, t )εαβγ δij , (D19)

where we used the commutation relations of the Schwinger bosons, Eq. (80), and in the last step we employed the identity (58)
proved in Appendix A. Inserting (57), we finally arrive at the sought identity:

ρ̃
S,αβ

ij (t, t ) = −δij ε
αβγ
〈
Ŝ

γ

i (t )
〉 = ρ

S,αβ

ij (t, t ). (D20)

The validity of this identity already at NLO in the 1/N expansion can be understood from the fact that higher orders in 1/N lead
to memory integral terms in the self-energy �ρ , which vanish at equal times and hence yield no further contribution to ρ̃S (t, t ).

5. Initial state correlations

Since at the initial time also the memory integrals in D̂F vanish, we can calculate the spin-spin correlations of the initial state
analytically as given by

F
S,αβ

ij (0, 0) = 〈Ŝα
i (0)Ŝβ

j (0)
〉
C

= 0 for i �= j. (D21)

Using the equations of motion for D̂F , Eq. (72), we obtain

F̃
S,αβ

ij (0, 0) = −�
F,αβ

ii (0, 0) δij = 0 for i �= j. (D22)

The vanishing of the connected correlators implies that the initial state in the Gaussian approximation is a product state as
expected.
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6. Spin length constraint at initial time

Another condition that needs to be fulfilled is the spin length constraint, i.e.,〈 �̂S2
i (t )
〉 = S(S + 1). (D23)

At the initial time, t = 0, we can check this analytically, i.e., we will check whether∑
α

(
F

S,αα
ii (0, 0) + 〈Ŝα

i (0)
〉2 ) = S(S + 1) (D24)

is also true for FS → F̃ S . We use Eq. (D22) to relate the spin-spin correlator to the auxiliary field self-energy � and insert the
corresponding expression at NLO, Eq. (76), so that

F̃
S,αα
ii (0, 0) = 1

8K
α
abKα

cd

(
Fac

ii (0, 0)Fbd
ii (0, 0) − 1

4ρac
ii (0, 0)ρbd

ii (0, 0)
)

= 1
8

(
Tr [KαFii (0, 0)KαFii (0, 0)] + 1

4 Tr [Kαρii (0, 0)Kαρii (0, 0)]
)
, (D25)

where in the second equality, we have used the symmetry properties of K, F , and ρ and the trace runs over the Schwinger boson
indices.

Inserting the expressions for the initial time F and ρ, Eqs. (79) and (80), the explicit form of Kα , Eq. (16), and performing
the traces, leads to∑

α

〈
S̃α

i (0)2
〉 ≡∑

α

(
F̃

S,αα
ii (0, 0) + 〈Ŝα

i (0)
〉2 ) = 1.5 S(S + 1) − 1

2

∑
α

〈
Ŝα

i (0)
〉2 i.g.

�= S(S + 1), (D26)

which shows that the length constraint is, in general, not
exactly reproduced. For instance, for S = 1/2, and an
initial product state, one can show that (D26) leads to∑

α 〈S̃α
i (0)2〉 = 1 �= 3

4 = S(S + 1). Furthermore, we note that
this quantity is related to the Schwinger boson constraint
squared by

〈
n̂2

i

〉 = 4
〈 �̂S2

i

〉− 2 〈n̂i〉 . (D27)

Since 〈n̂〉 = 2S, this shows that the second-order identity
〈n̂2〉 = (2S)2 is not fulfilled in our approximation.

Our 2PI approach involves two approximations: the Gaus-
sian approximation of the initial conditions and the 1/N

expansion to NLO of the effective action. The latter, however,

has in our case no influence on the value of 〈n̂2
i 〉 and 〈 �̂S2

i 〉
at the initial time. To understand why, note that all higher-
order diagrams beyond NLO in 1/N involve more than two
interaction vertices. Their contribution to the self-energy �,
which is obtained from Eq. (61), will thus involve at least
one memory integral. Such integrals vanish at initial time and
hence the NLO expression for � becomes exact at t = 0.

The reason for the violation of the identities 〈n̂2
i 〉 = (2S)2

and 〈 �̂S2
i 〉 = S(S + 1) lies, therefore, in the Gaussian approx-

imation of the initial non-Gaussian Fock state. This should
come as no surprise since 〈n̂2

i 〉 and 〈 �̂S2
i 〉 involve four-point

expectation values in the ϕ variables, which are obviously not
captured in a Gaussian approximation.

Nonvanishing initial four-point, or, more generally, n-point
functions can be taken into account by introducing additional
n-point sources in the generating functional, which only have
support at the initial time. One possibility to treat such terms
is to consider them as additional (time nonlocal) interaction
vertices [54]. Another possibility is to use nPI effective
actions [100], which lead to self-consistent equations for n-
point correlators.

APPENDIX E: ENERGY

The conservation of energy is guaranteed due to the fact
that all 2PI approximations fulfill global conservation laws
[56]. To explicitly compute the energy, we start by noting that
it is the conserved charge corresponding to time translation
invariance. It can therefore be deduced from the 2PI effective
action by calculating its change under the transformation t →
t + ε(t ) and writing it as [101]

δ�[G,D] =
∫
C
dtE(t )∂tε(t ). (E1)

A partial integration together with the fact that the variation of
�[G,D] vanishes for the solutions of the equations of motion
[see Eq. (29)] directly proves the conservation of the energy
function E.

The explicit calculation closely follows the one for the
O(N ) model [101], and yields

E = 1

8

∑
i,γ

(
χ̄

γ

i (t ) + 2B
γ

i

)
Kγ

abF
ab
ii (t, t )

+ 1

2

∑
ij,γ

J
γ

ij D̂
F,γ γ

ij (t, t ). (E2)

This is in fact equal to taking the expectation value of the
Hamiltonian [Eq. (1)] and inserting the expressions for the
magnetization [Eq. (82)] and the spin-spin connected corre-
lator [Eq. (83)] in terms of Schwinger boson and auxiliary
field correlators. The first term in Eq. (82) arises due to the
mean-field contribution and the magnetic field and the second
term due to the quantum fluctuations.

Since the initial states considered in this work correspond
to product states, the energy at initial time is entirely de-
termined by the magnetizations, i.e., by the mean-field and
magnetic field contributions [first term in Eq. (E2)]. Within
the Gaussian approximation employed for the initial state, the
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magnetizations are set to the correct value at initial time and,
thus, the value of the energy in our 2PI approach agrees with
the value of the energy in the exact theory at the initial time,
and hence at all later times. In Appendix F, we comment on
the numerical conservation of the energy as given by Eq. (E2).

We note that a slightly different approach to obtaining the
energy is given in Ref. [65], where the Heisenberg equa-
tions of motion are used to express four-point functions of
Schwinger bosons in terms of G and D. Following their
approach yields in our case

E = −1

4

∑
i

[1 ⊗ iσy]ab∂tF
ba
ii (t, t ′)|t=t ′

+ 1

8

∑
i,γ

B
γ

i K
γ

abF
ab
ii (t, t ). (E3)

One can analytically show that both expressions are equal
by inserting Eq. (70) and the Schwinger boson self-energies
in Eqs. (74) and (75). Recombining the resulting terms by
employing the equations of motion for the auxiliary field
correlator [Eq. (72)] then yields Eq. (E2).

APPENDIX F: NUMERICAL IMPLEMENTATION

The dynamical equations as given in Eqs. (70) and (71)
are first-order integro-differential equations, which are hard
to solve analytically, especially when supplemented with ad-
ditional Volterra-type integral equations for the self-energy
as in the 1/N expansion. Therefore we revert to a numerical
evaluation of these expressions.

For a rather old but well referenced review of numerical
techniques for general Volterra-type integral and integrodif-

ferential equations see Ref. [102]. The quite sophisticated
methods in use for evaluation in thermal equilibrium (which
requires solving a self-consistency equation iteratively rather
than propagating an initial value problem) are described in
Ref. [103].

The numerical techniques, which have been primarily used
to solve the dynamical equations for nonequilibrium prob-
lems, mostly use first an extended Newton-Cotes discretiza-
tion to compute the integrals and then use the result to solve
the differential part of the equation with standard differential
equation solvers. One complication arises from the require-
ment to fulfill conservation laws in the evaluation, in our
case the energy, total magnetization (in some models) and the
Schwinger boson constraint. For relativistic field theories, a
very elegant solution of this requirement lies in the symmetric
discretization of the second-order time derivative as described
in Ref. [104] and in Ref. [14] with additional fermionic
fields. For nonrelativistic theories, this is not possible, as
the symmetric derivative is a second-order discretisation of
a first-order derivative, which is inherently unstable [105],
as we explicitly checked in our case. The most widely used
method to circumvent this complication has been the usage
of predictor-corrector algorithms, which will be our method
of choice in this work and will be explained in the following.
See, e.g., Ref. [66] for a higher-order method or Ref. [106] for
a neat trick to separate out the free evolution part.

The next sections are organized as follows. First, we will
introduce the predictor corrector method. Then, for the eval-
uation of the right-hand sides of the differential equations,
we show how to discretize the memory integrals and how the
order of the evaluation of the various quantities proceeds. We
end by discussing tricks to lower the resource consumption
and how conservation laws are fulfilled with our method.

1. Predictor-corrector method

Below, we denote the discretised right-hand sides of the equations for F and ρ, Eqs. (70) and (71), with RHSF and RHSρ .
For the diagonal steps, we will furthermore need the evolution equation for the second time argument of F ,

∂t2F
ab
ii (t1, t2) = i[1 ⊗ σy]bc

{
1

2

∑
γ

(
χ̄

γ

i (t2) + B
γ

i

)
Kγ

cdF
ad
ii (t1, t2)

+
∫ t1

0
dt ρad

ii (t1, t )�F,dc
ii (t, t2) −

∫ t2

0
dt F ad

ii (t1, t )�ρ,dc

ii (t, t2)

}
, (F1)

which follows from Eq. (70) by exchanging t2 ↔ t1 and using the symmetry properties of F . We denote the discretized RHS of
above equation with RHST2 below.

For a single time step from t1 to t1 + 1, the predictor-corrector algorithm proceeds as follows.
(1) Predict F (t1 + 1, t2) and ρ(t1 + 1, t2) for t2 � t1.

Fab
ii (t1 + 1, t2) = Fab

ii (t1, t2) + �t × RHSF,ab
ii (t1, t2), (F2)

ρab
ii (t1 + 1, t2) = ρab

ii (t1, t2) + �t × RHSρ,ab

ii (t1, t2). (F3)

(2) Predict F (t1 + 1, t1 + 1) and set ρ(t1 + 1, t1 + 1) to equal-time commutation relations.

Fab
ii (t1 + 1, t1 + 1) = Fab

ii (t1, t2) + �t × (RHSF,ab
ii (t1, t1) + RHST2F,ab

ii (t1, t1)
)
, (F4)

ρab
ii (t1 + 1, t1 + 1) = ρab

ii (0, 0). (F5)
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(3) Evaluate the RHSs for t2 � t1 + 1 (for details see below in Appendices F 2 and F 3.).

RHSF,ab
ii (t1 + 1, t2), (F6)

RHSρ,ab

ii (t1 + 1, t2), (F7)

RHST2F,ab
ii (t1 + 1, t1 + 1). (F8)

(4) Correct F and ρ for t2 � t1.

Fab
ii (t1 + 1, t2) = Fab

ii (t1, t2) + �t

2

(
RHSF,ab

ii (t1 + 1, t2) + RHSF,ab
ii (t1, t2)

)
, (F9)

ρab
ii (t1 + 1, t2) = ρab

ii (t1, t2) + �t

2

(
RHSρ,ab

ii (t1 + 1, t2) + RHSρ,ab

ii (t1, t2)
)
. (F10)

(5) Correct F (t1 + 1, t1 + 1).

Fab
ii (t1 + 1, t1 + 1) = Fab

ii (t1, t2) + �t × (RHSF,ab
ii (t1, t1) + RHST2F,ab

ii (t1, t1)

+ RHSF,ab
ii (t1 + 1, t1 + 1) + RHST2F,ab

ii (t1 + 1, t1 + 1)
)
. (F11)

Steps 3–5 are then iterated up to a certain convergence, which improves the fulfillment of conservation laws (see below).
Furthermore, the evaluated RHSs can then be stored for the predictor step in the next time step.

2. Discretization of memory integrals

We discretize all memory integrals with the trapezoidal rule, such that the RHSs become

RHSF,ab
ii (t1, t2) = [1 ⊗ iσy]ac

{
1

2

∑
γ

(
χ̄

γ

i (t1) + B
γ

i

)
Kγ

cdF
db
ii (t1, t2)

+ �t

2

(
�

ρ,cd

ii (t1, 0)Fdb
ii (0, t2) + �

ρ,cd

ii (t1, t1)Fdb
ii (t1, t2)

)+ �t

t1−1∑
l=1

�
ρ,cd

ii (t1, l)F
db
ii (l, t2)

− �t

2

(
�

F,cd
ii (t1, 0)ρdb

ii (0, t2) + �
F,cd
ii (t1, t2)ρdb

ii (t2, t2)
)− �t

t2−1∑
l=1

�
F,cd
ii (t1, l)ρ

db
ii (l, t2)

}
, (F12)

RHSρ,ab

ii (t1, t2) = [1 ⊗ iσy]ac

{
1

2

∑
γ

(
χ̄

γ

i (t1) + B
γ

i

)
Kγ

cdρ
db
ii (t1, t2)

+ �t

2

(
�

ρ,cd

ii (t1, t2)ρdb
ii (t2, t2) + �

ρ,cd

ii (t1, t1)ρdb
ii (t1, t2)

)+ �t

t1−1∑
l=t2+1

�
ρ,cd

ii (t1, l)ρ
db
ii (l, t2)

}
. (F13)

The equations for D̂F (D̂ρ) are not explicit with the trapezoidal rule, i.e., the RHS depends on the quantity to be determined.
This can, however, be circumvented by a simple matrix inversion in the auxiliary field and space indices, such that Eqs. (72) and
(73) become

D̂
F,εβ

ij (t1, t2) =
[
1 − �t

2
�ρ (t1, t1)J

]−1,εα

ik

[
−�

F,αβ

kk (t1, t2)δkj + �t
∑
m,δ

J δ
km

{
1

2
�

ρ,αδ

kk (t1, 0)D̂F,βδ

jm (t2, 0)

+ 1

2
�

F,αδ
kk (t1, 0)D̂ρ,βδ

jm (t2, 0) + 1

2
�

F,αδ
kk (t1, t2)D̂ρ,δβ

mj (t2, t2)

+
t1−1∑
l=1

�
ρ,αδ

kk (t1, l)D̂
F,δβ

mj (l, t2) +
t2−1∑
l=1

�
F,αδ
kk (t1, l)D̂

ρ,βδ

jm (t2, l)

}]
, (F14)

D̂
ρ,αβ

kj (t1, t2) =
[
1 − �t

2
�ρ (t1, t1)J

]−1,εα

ik

[
− �

ρ,αβ

kk (t1, t2)δkj

+ �t

2

∑
m,δ

�
ρ,αδ

kk (t1, t2)J δ
kmD̂

ρ,δβ

mj (t2, t2) + �t
∑
m,δ

t1−1∑
l=t2+1

�
ρ,αδ

kk (t1, l)J
δ
kmD̂

ρ,δβ

mj (l, t2)

]
. (F15)
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All the other expressions, especially the self-energies �,� are given by simple multiplications or additions.

3. Order of evaluation

In order to ensure that each evaluation step only requires known quantities, the following procedure is followed when
evaluating the RHS(t1, t2) for t1 � t2 (i.e., step 3 in the predictor-corrector scheme).

(1) Calculate all �ρ (t1, t2), �F (t1, t2), and χ̄ (t1) for t2 �
t1 from Eqs. (76)–(78).

(2) Calculate Dρ (t1, t2) for t2 � t1 from Eq. (F15). Note
that for t1 = t2, the memory integrals do not contribute.

(3) Calculate DF (t1, t2) for t2 < t1 from Eq. (F14).
(4) Calculate DF (t1, t2) for t2 = t1 from Eq. (F14). Note

that the memory integrals depend on DF (t1, t2) with t2 < t1.
(5) Calculate �F (t1, t2) and �ρ (t1, t2) for t2 � t1 from

Eqs. (74) and (75).
(6) Calculate RHSρ from Eq. (F13).
(7) Calculate RHSF from Eq. (F12).

4. Conservation laws

The Schwinger boson constraint 〈n̂i〉 = 2S computed as

〈n̂i〉 = 1

2

(∑
a

F aa
ii (t, t ) − 2

)
, (F16)

is conserved up to 10−15 relative error (i.e., machine precision)
in our scheme. Note that this is not the case when using other
ways of calculating the diagonal step (step 4 in predictor-
corrector scheme), for example, the one used in Ref. [61].

Additionally, the total Sz magnetization is conserved up to
a similar precision as the constraint in models in which it is a
conserved quantity such as the Heisenberg model. The energy
in all simulations presented in this work is at least conserved
up to 10−3 relative error, and typically up to 10−6. We checked
that the error decreases as �t2 with decreasing time step.
When employing a memory cut in Sec. VI, we observed a
slight drift in the energy due to the explicit dependence of
the energy on the memory integrals as visible in Fig. 6 for
late times. This drift is on the order of 10−3 at the latest
time considered, decreases with increasing memory zone, and
we checked that it did not have any sizable effects on the
results presented. Furthermore, we checked that both methods
of calculating the energy derived in Appendix E coincide
numerically if the evaluate-correct step is sufficiently iterated.

5. Resource consumption and possible improvements

The evaluation of the Kadanoff-Baym equations is very
costly, especially with regards to memory consumption. This
is due to the necessity to store the whole past for the evaluation
of the memory integrals. The objects which, in our case,
overshadow all others in terms of memory requirement are DF

and Dρ as they are functions of two lattice site indices. Taking
into account that both of them contain nine components,
storing each of them requires a priori around 670 GiB of
memory for 1000 time steps, 100 lattice sites, and double
precision. In this estimate, a factor of 1/2 was already saved
by only saving the lower triangle of the t1, t2 plane of all
correlation functions, as the upper triangle can be deduced due
to their (anti-)symmetry.

A large increase in efficiency in both execution time and
memory can be achieved when dealing with a system that for-
gets its initial state at a sufficiently fast rate, as, for example,
encountered in a thermalizing or relaxing system. In this case,
one can neglect at late times the parts of the memory integrals
which involve times in the remote past. This means that one
only needs to store the times closest to the current time and
gradually shift the memory zone forwards. This procedure is
nicely described in Ref. [104]. The truncation of the memory
integrals makes it, in principle, possible to evolve the system
to arbitrarily late times using a fixed amount of memory and
within a computational time that scales, asymptotically, as a
linear function of evolution time. The latest time achievable
may be, however, bounded by the growth of the error in
the memory integral truncation. The memory consumption
can furthermore be reduced by a factor of two by using the
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FIG. 11. Comparison of different cluster sizes in MACE for the
plots shown in Fig. 5. Note that all cluster sizes lie on top of each
other in the plot of the Sz component.
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(anti-)symmetry properties of D̂F and D̂ρ such that only half
of the array needs to be stored.

In the example shown in Fig. 5, this procedure reduces the
total memory consumption from ≈1 TiB to a mere 17 GiB.
The single realization shown in Fig. 5 took approximately one
week of computation time on a cluster with 64 cores of type
Intel Xeon Phi 7210-F and a time step of �t = 0.01. For the
considerably smaller systems studied in Secs. VII and VIII,
the computation time was on the order of 30 minutes for a
single disorder realization and a time step of �t = 0.02, but
without memory cut.

Lastly, we comment on different numerical methods to
solve the Kadanoff-Baym equations in our case. While a sym-
metric time derivative does not need a sophisticated predictor-
corrector scheme to fulfill conservation laws, it proved to
be inherently unstable due to it being a second-order dis-
cretization of a first-order time derivative. A simple Riemann
discretization of the memory integrals in the equations for
Dρ/F , while circumventing the matrix inversion needed with
the trapezoidal rule, lead to a substantially larger error in the
energy. We expect higher-order predictor-corrector methods
as used in Ref. [66] to lead to better convergence properties,
which may improve the area of application of the present
method.

6. MACE and its convergence properties

The MACE method [36] consists in taking a spin i in
the system, building a cluster around it composed of its

closest neighbors, and solving the cluster dynamics by ex-
act diagonalization to compute the magnetization dynamics
〈Sα

i 〉 (t ) of the spin i. One may also build the cluster by
choosing the spins j with the largest couplings |Jij |, which
we checked leads, in our case, to the same result. To obtain
the total magnetization, this procedure is repeated with each
spin of the ensemble and then averaged over. We estimate
that MACE has reached approximate convergence when in-
creasing the cluster size does not lead to appreciable dif-
ferences. MACE has been previously employed to describe
the magnetization dynamics of spin systems with quenched
disorder in cold dipolar molecules [34,36] or Rydberg atoms
[32], showing convergence for cluster sizes of around 10–12
spins. While modifications of the method for applications in
lattice spin systems have been proposed [107], computation
of other observables such as two-point functions remains
challenging.

Figure 11 shows the evolution of the magnetizations dis-
played in Fig. 5 as obtained from MACE for different cluster
sizes. While the results for the Sz component from all cluster
sizes shown lie on top of each other, this is not the case for the
Sx component. Even at rather early times the curves for Sx

show significant deviations up to the largest size considered,
without any sign of convergence. At longer times, all cluster
sizes seem to converge to a negative value for the magne-
tization, but the final value shows considerable fluctuations
between cluster sizes. Because of this, we conclude that
the MACE result for 〈Sz〉 has converged, whereas 〈Sx〉 has
not.
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