
PHYSICAL REVIEW B 98, 224302 (2018)

Theory of x-ray scattering from laser-driven electronic systems
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We describe, within the framework of quantum electrodynamics, an interaction between a nonresonant hard
x-ray pulse and an electronic system in the presence of a temporally periodic laser field driving electron dynamics
in this system. We apply Floquet theory to describe the laser-driven electronic system, and then obtain the
scattering probability of an arbitrary nonresonant x-ray pulse from such a system employing the density-matrix
formalism. We show that the scattering probability can be connected to the time-dependent electron density of
the driven electronic system only under certain conditions, in particular, if the bandwidth of the probe x-ray
pulse is sufficiently narrow to spectroscopically resolve transitions to different final states. A special focus is
laid on application of the theory to laser-driven crystals in a strongly nonperturbative regime. We show how the
time-dependent electron density of a crystal can be reconstructed from energy-resolved scattering patterns. This
is illustrated by a calculation of a diffraction signal from a driven MgO crystal.
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I. INTRODUCTION

An electronic system exposed to a periodic laser excitation
is characterized by Floquet states, which can be seen as en-
tangled states of electronic states and laser field photons [1,2].
Floquet states are a powerful theoretical concept to describe,
on the one hand, quantum engineering of novel states of
matter aided by a periodic excitation, and, on the other hand,
nonperturbative processes driven by an intense laser field.
The former class of processes includes, for example, creation
of artificial magnetic fields and topological band structures
[3–9]. The latter field of application of the Floquet theory
is strong-field phenomena which cannot be understood by
means of the conventional perturbation theory, such as high-
order nonlinear optical processes in atomic, molecular, and
solid state systems [2,10–15].

X-ray free-electron lasers, capable of producing pulses of
hard x rays with angstrom wavelengths, offer unprecedented
opportunities for imaging electronic structure of molecules
and solids with atomic resolution [16–22]. In this paper, we
analyze an interaction of a nonresonant hard x-ray pulse with
a system characterized by Floquet states in order to explore
the opportunities to obtain temporal and spatial information
about such a system.

The interaction between nonstationary electronic systems
and x-ray pulses has already been analyzed in several studies
[23–25]. However, these studies consider processes in which a
pump pulse first brings an electronic system to a nonstationary

*daria.gorelova@desy.de
†robin.santra@cfel.de

state triggering its dynamics, and a probe x-ray pulse interacts
with the system only after the action of the pump pulse. Here,
we investigate a different process, in which pump and probe
pulses act on a system simultaneously, whereby the pump
pulse is a periodic driving force. Our analysis is performed
within the framework of quantum electrodynamics (QED) and
the density matrix formalism [26], which have been demon-
strated to be necessary for a correct description of the inter-
action of a nonstationary electronic system and x-ray pulses
[23,27]. In addition, it allows us to obtain expressions valid
for arbitrary x-ray pulses, such as pulses of ultrashort time
duration or having long coherence times, which are especially
relevant for modeling of experiments at x-ray free electron
lasers.

X-ray scattering from an electronic system interacting with
an optical pulse in the linear regime was analyzed in the 1970s
within a semiclassical theory [28,29]. This process was shown
to lead to an x-ray and optical wave-mixing signal, which
was connected to optically induced charge densities. Our
analysis in the present paper demonstrates that this connection
is correct only under certain circumstances. An experiment,
in which an x-ray pulse and an optical pulse simultaneously
interacted with a crystal leading to x-ray and optical wave
mixing, has recently been realized at the x-ray-free-electron
laser facility Linac Coherent Light Source (LCLS) [30]. In
this experiment, a linear effect of the optical field on the
crystal manifested itself as a sum-frequency signal in x-ray
diffraction. Our theory provides an interpretation of this ex-
periment, as we will discuss in detail.

Our study allows to describe x-ray diffraction from an
electronic system not only in the regime of linear coupling to
a driving field, but also in the high-order nonlinear interaction
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regime. The process of high harmonic generation (HHG),
which serves, for example, for the generation of isolated
attosecond pulses [16,31], is essential for attosecond science
and technology. Since the demonstration of HHG in bulk
solids [14], it has attracted much attention, owing to its poten-
tial for producing attosecond pulses with a higher efficiency in
comparison to that provided by gas-phase HHG. Furthermore,
there is an intense discussion about the mechanism of HHG in
solids [15,32–37]. We have chosen a MgO crystal interacting
with an infrared pulse in the regime of high-order harmonic
generation [38,39] to illustrate the possibilities of nonresonant
x-ray scattering to probe electron dynamics in a crystal in such
a regime.

Although a special focus of this work is laid on laser-
driven crystals, the expressions we derive are general for any
electronic systems driven by a temporally periodic electro-
magnetic field. Therefore, our study can be applied to the
development of techniques to image different types of driven
systems such as atoms, molecules, or quantum-engineered
materials by means of nonresonant x-ray scattering.

This article is organized as follows. In Sec. II, we represent
a driven electronic system within the Floquet formalism and
the QED framework. We use this representation in Sec. III to
describe the scattering probability of an arbitrary nonresonant
x-ray pulse (e.g., of arbitrary duration, coherence properties,
etc.) from such a system and consider some special cases
following from this expression. In Sec. IV, we apply our
theory to describe nonresonant scattering from a laser-driven
crystal. The particular case when the time-dependent electron
density of a crystal can be reconstructed is described in
Sec. IV B. The results of Sec. IV B are illustrated in Sec. V
by a calculation of nonresonant x-ray scattering from a MgO
crystal driven by an infrared pulse in a strongly nonlinear
regime.

II. OPTICALLY DRIVEN ELECTRONIC SYSTEM
TREATED WITHIN THE FLOQUET FORMALISM IN THE

QED FRAMEWORK

Within the framework of quantum electrodynamics, the
Hamiltonian describing the interaction of an electronic system

with a single-mode electromagnetic field is

Ĥel-em = Ĥel + Ĥint + Ĥem, (1)

Ĥem = ωâ†
κ0,s0

âκ0,s0 , (2)

Ĥint = α

∫
d3rψ̂†(r)(Âem(r) · p)ψ̂ (r). (3)

Here, Ĥel is the Hamiltonian of the electronic system, Ĥem

is the Hamiltonian of the electromagnetic field, and Ĥint

describes the interaction between the electromagnetic field
and the electronic system. At this stage, we do not apply the
dipole approximation to the Hamiltonian Ĥint, which is not
a necessary condition to treat the problem within the Floquet
formalism. â†

κ,s (âκ,s) creates (annihilates) a photon with wave
vector κ and polarization s. We assume that only the κ0, s0

mode with a corresponding polarization vector ε0 and the
energy ω = |κ0|c, where c is the speed of light, is occupied in
the driving electromagnetic field, and that the state of the field
is described by a single-mode coherent state |α, t〉. Âem(r)
is the vector potential operator of the electromagnetic field,
p is the canonical momentum of an electron, ψ̂† (ψ̂) is the
electron creation (annihilation) field operator, and α is the
fine-structure constant. We neglect the Â2

em contribution for
the optical field. We use atomic units for this and the following
expressions.

The Hamiltonian Ĥel-em can be represented as a matrix
in the basis |�n〉|N − μ〉, which are product states formed
by many-body eigenstates of Ĥel, |�n〉, and Fock states of
the mode κ0, s0, |N − μ〉, where μ is an integer [1,2]. N

is an integer approximating the average number of photons,
〈α, t |â†

κ0,s0 âκ0,s0 |α, t〉, in the mode κ0, s0. For ultrafast dressing
experiments that are typically carried out with light pulses
with energies of the order of 1 mJ and at photon energies
of around 1 eV, N is of the order of 1015. |μ| is related to
the number of photons involved in the interaction between
the electronic system and the electromagnetic field, which, in
practice, is limited by some value resulting in −μmax � μ �
μmax. It must be satisfied that N � μmax for the coupling ele-
ments of Ĥel-em to be independent of μ. With these conditions,
Ĥel-em is a block matrix with a quite sparse structure

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . E + (N − 2)ωI T 0 0 0
. . .

. . . T† E + (N − 1)ωI T 0 0
. . .

. . . 0 T† E + NωI T 0
. . .

. . . 0 0 T† E + (N + 1)ωI T
. . .

. . . 0 0 0 T† E + (N + 2)ωI
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where E is a diagonal matrix with the diagonal elements being the eigenenergies E�n
of the Hamiltonian Ĥel of the

electronic system with Nel electrons, I is a unit matrix and 0 is a zero matrix. T is a matrix with elements tn′,n =
〈N − μ − 1|〈�n′ |Ĥint|�n〉|N − μ〉 ∝ √

N
∫

d3r〈�n′ |eiκ0·rψ̂†(r)(ε0 · p)ψ̂ (r)|�n〉, where tn,n can be nonzero beyond the dipole
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approximation. Due to the approximations mentioned above,
the interaction of the electromagnetic field with the electronic
system is treated in the classical limit of the QED. The semi-
classical treatment within the Floquet formalism is indeed a
very good approximation to describe the interaction of atoms,
molecules and solid-state systems with strong fields. This
includes the regime of high harmonic generation as discussed,
for instance, in Refs. [10,11,40,41].

The eigenstates of Ĥel-em are Floquet states represented as
a superposition

|�K〉 =
∑
n,μ

CK
n,μ|�n〉|N − μ〉. (5)

Due to the periodic structure of the matrix in Eq. (4), each
Floquet eigenstate �K has replica states, which are physically
equivalent to each other. If �K0 is some reference eigenstate
with energy EK0 , then its replicas are∣∣�K�μ

〉 =
∑
n,μ

C
K�μ

n,μ |�n〉|N − μ〉

=
∑
n,μ

C
K0
n,μ+�μ|�n〉|N − μ〉 (6)

with the corresponding eigenenergies EK�μ
= EK0 + �μω,

where �μ is an integer.
Let us now determine the state of the light-driven electronic

system |�0, t〉, which is the solution of the time-dependent
Schrödinger equation i∂|�0, t〉/∂t = Ĥel-em|�0, t〉, under the
assumption that the state of the electronic system at time
t = 0 is known. We consider a general case, then this state
of the electronic system is a superposition of its electronic
eigenstates |�el, 0〉 = ∑

n C̃n|�n〉. It is assumed that the state
of the electromagnetic field |α, t〉, which can be represented as∑

μ AN−μe−i(N−μ)ωt |N − μ〉, is unaffected by the interaction
with the electronic system. Thus |�0, t〉 is given by

|�0, t〉 = |�el, t〉|α, t〉, (7)

which can be applied to determine the boundary condition
|�0, 0〉 for the time-dependent Schrödinger equation. The
approximation that

∑
μ A∗

N−μAN−μ+�μ ≈ 1 independently of
�μ for very large N and |�μ| 
 N leads to the solution [1]

|�0, t〉 =
∑
K0

CK0e
−iEK0 t

∣∣�K0 , t
〉
. (8)

Here, the state of the light-driven electronic system |�0, t〉 is
represented as a superposition of Fourier series∣∣�K0 , t

〉 =
∑
μ,n

CK0
n,μe−iμωt |�n〉|α, t〉, (9)

which involve physically equivalent Floquet states, with ex-
pansion coefficients

CK0 =
∑
μ,n

C̃nC
K0∗
n,μ , (10)

which are determined by the state of the electronic system at
time t = 0. The state |�0, t〉 does not depend on the choice of
a reference state K0 among its replicas.

The time-dependent electron density of the light-driven
system is given by ρ(r, t ) = 〈�0, t |ψ̂†(r)ψ̂ (r)|�0, t〉. We

obtain in Appendix A that

ρ(r, t ) =
∑
K0,I0

C∗
K0
CI0e

i(EK0 −EI0 )t ρK0I0 (r, t ), (11)

where ρK0I0 (r, t ) can be represented as a Fourier series

ρK0I0 (r, t ) =
∑
�μ

ei�μωt ρ̃K0I0 (r,�μ) (12)

with amplitudes

ρ̃K0I0 (r,�μ) =
∑

n,n′,μ

C
K0∗
n′,μ+�μCI0

n,μ〈�n′ |ψ̂†(r)ψ̂ (r)|�n〉.

(13)

III. NONRESONANT X-RAY SCATTERING FROM A
LASER-DRIVEN ELECTRONIC SYSTEM

If the driven electronic system is probed by means of high-
energy nonresonant x-ray scattering, then the total Hamilto-
nian of the whole system, matter and light, is given by

Ĥ = Ĥel-em + Ĥintx + Ĥx, (14)

Ĥintx = α2

2

∫
d3rψ̂†(r)Â2

x (r)ψ̂ (r), (15)

Ĥx =
∑
κx ,s

ωκx
â†

κx ,s
âκx ,s . (16)

Here, Ĥx is the Hamiltonian of the x-ray field, Ĥintx is the
interaction Hamiltonian between the electronic system and
the x-ray field in a high-energy nonresonant regime, and Âx

is the vector potential of the x-ray field.
We derive the probability of observing a scattered photon

with momentum κ s, P (κ s), within the density-matrix formal-
ism [26] as

P (κ s) =
∑

ss,{n′
x },F

〈�F ; {n′
x}|ρ̂1|�F ; {n′

x}〉, (17)

where {n′
x} is the x-ray field configuration that has one photon

in the scattering mode κ s and the sum is over all possible final
states �F , which are the eigenstates of the Hamiltonian Ĥel-em.

ρ̂1 = lim
tf →∞

∑
{nx },{̃nx }

ρx
{nx },{̃nx }

∣∣� (1)
{nx }, tf

〉〈
�

(1)
{̃nx }, tf

∣∣ (18)

is the total density matrix of the driven electronic system and
the x-ray field, which is evaluated within the first-order time-
dependent perturbation theory using the interaction Hamil-
tonian with the x-ray field Ĥintx as the perturbation. {nx}
and {̃nx} are sets of Fock states that specify the number of
photons in all initially occupied modes of the x-ray field with
a distribution ρx

{nx },{̃nx }, and∣∣� (1)
{nx }, tf

〉 = −i

∫ tf

−∞
dtei(Ĥel-em+Ĥx )(t−tf )Ĥintx

× e−i(Ĥel-em+Ĥx )t |�0, t〉|{nx}〉. (19)

The formalism to describe the scattering probability P (κ s)
is similar to the one applied in Ref. [23], where the interaction
of a nonstationary electronic system with a nonresonant x-ray
pulse has also been considered. However, we analyze a regime
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where a nonstationary electronic system interacts with a probe
and a pump pulse simultaneously in contrast to Ref. [23],
where it is assumed that the probe pulse arrives after the pump
pulse. In Appendix B, we derive a general expression for

the scattering probability of a probe nonresonant hard-x-ray
pulse of arbitrary coherent properties and duration, which is
applicable for both time-resolved and time-unresolved mea-
surements,

P (κ s) = P0

∑
F0

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∫
d3r1

∫
d3r2G

(1)(r2, t2, r1, t1)eiωκs (t1−t2 )−iκ s·(r1−r2 )M∗
F0

(r2, t2)MF0 (r1, t1), (20)

where P0 = ∑
ss

|(εxin · ε∗
xκ s,ss

)|2ω2
κ s

/(4π2ω2
xinc

3), εxin is the
mean polarization vector of the incoming x-ray beam,
the sum over ss refers to the sum over polarization vectors
of the scattered photons ε∗

xss
, ωxin is the mean photon energy

of the incoming x-ray beam, and ωκ s is the energy of the
scattered photon. The summation is over such final Floquet
states F0 that their replica states F�μ =0 do not enter the
summation. The scattering probability does not depend on the
choice of the reference state F0 among its replica states.

G(1)(r2, t2, r1, t1) is the first-order x-ray field correlation
function [42,43]. It depends on the probe-pulse arrival time tp
and provides the dependence of the scattering probability on
tp in the case of a time-resolved measurement. The function
MF0I0 (r, t ) analogously to the electron density in Eqs. (11)
and (13) can be represented as a sum of Fourier series

MF0 (r, t ) =
∑
I0

CI0e
i(EF0 −EI0 )t

∑
�μ

ei�μωtM̃F0I0 (r,�μ) (21)

with amplitudes

M̃F0I0 (r,�μ) =
∑

n,n′,μ

C
F ∗

0
n′,μ+�μCI0

n,μ〈�n′ |ψ̂†(r)ψ̂ (r)|�n〉.

(22)

The electron density is related to these functions via ρ(r, t ) =∑
F0
C∗

F0
MF0 (r, t ) [cf. Eq. (11)]. However, the x-ray scattering

probability in Eq. (20) is in general not connected to the
electron density, because, first, the coefficients C∗

F0
do not

enter this equation, and, second, the summation over F0 is in-
coherent. In other words, the time-dependent electron density
is not the quantity that determines the scattering probability
signal, which can be different at equal electron densities
[23,24].

A. Perfectly coherent x-ray probe pulse

Let us consider a perfectly coherent x-ray probe pulse,
which results in the factorizable correlation function

G(1)(r2, t2, r1, t1) =E∗
x (r2, t2 − tp )

2
eiωxint2−iκ in·r2

× Ex (r1, t1 − tp )

2
e−iωxint1+iκ in·r1 , (23)

where Ex (r, t − tp ) is the amplitude of the x-ray field, which
does not noticeably vary in comparison to the size of the
object positioned at r0. In this case, the probability is given by

P (qx )=P0

∑
F0

∣∣∣∣∣∣
∑
I0,�μ

MF0I0 (qx,�μ) Ẽx

(
�F0I0 + �μω

)∣∣∣∣∣∣
2

,

(24)

where �F0I0 = ωκ s − ωxin + EF0 − EI0 , qx = κ in − κ s and

MF0I0 (qx,�μ) = CI0

∫
d3reiqx ·rM̃F0I0 (r,�μ). (25)

Here, Ẽx (ω′) is the Fourier transform of the electric-field
amplitude of the x-ray field:

Ẽx (�F0I0 + �μω) =
∫ ∞

−∞
dtEx (r0, t − tp )ei(�F0I0 +�μω)t .

(26)

In the case of a time-resolved measurement, this function
provides the dependence of the scattering probability on the
probe-pulse arrival time tp.

Let us illustrate the dependence of the scattering probabil-
ity in Eq. (24) on the scattering energy ωκ s using the following
example. Let us assume that the Hamiltonian of a laser-driven
system has just two types of eigenstates I�μ and F�μ′ , where
the minimum energy splitting among these states is EF0 −
EI0 = 0.3ω. We assume that only one nonzero coefficient,
CI0 = 1, enters |�0, t〉, and, thus, the state of the system is
described by a single series |�I0 , t〉 comprising states I�μ [cf.
Eq. (8)]. The solid violet curve in Fig. 1 shows P (ωκ s ) at
a fixed scattering angle assuming a Gaussian-shaped probe
pulse with a bandwidth (the full width at half maximum
of the intensity) �ωbw = 0.1ω. The values of the functions
MI0I0 (qx,�μ) and MF0I0 (qx,�μ) are chosen randomly and
their variation as a function of ωκ s − ωxin within the probe-
pulse bandwidth is assumed to be negligible. As shown in
the plot, the scattering probability consists of a series of
peaks centered at �μω and EI0 − EF0 + �μω. The width
of these peaks is equal to the bandwidth of the probe pulse,
and their amplitudes are time-independent and proportional
to |MI0I0 (qx,�μ)|2 and |MF0I0 (qx,�μ)|2, respectively.

FIG. 1. Illustration of the scattering probability as a function
of ωκs − ωxin for two different probe-pulse bandwidths �ωbw.
�EI�μ′ F�μ

= EI0 − EF0 + (�μ′ − �μ)ω.
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Figure 1 shows the peaks corresponding to �μ = −1, 0,
and 1.

The dashed curve in green in Fig. 1 shows the scatter-
ing probability assuming a probe pulse with a bandwidth
�ωbw = 0.3ω, all other parameters being the same as for
the solid violet curve. In contrast to the previous example,
the contributions to the scattering probability due to transi-
tions with different final states intermix in the spectrum and
cannot be separated. This illustrates that if the bandwidth
of the probe x-ray pulse is not considerably smaller than
the difference |EF�μ

− EF ′
�μ′ | between energies of final states

F�μ and F ′
�μ′ for any �μ and �μ′, it is not possible to

spectroscopically distinguish between the contributions to the
scattering probability due to transitions to final states F�μ

and due to transitions to final states F ′
�μ′ . At the same time,

the scattering signal is time-resolved unlike the previous case,
since the amplitudes of the peaks on the dashed curve in green
depend on the probe-pulse arrival time tp via the interference
terms proportional to Ẽ∗

x (�F0I0 + �μ′ω)Ẽx (�I0I0 + �μω).

B. Quasielastic scattering by a narrow-bandwidth
probe x-ray pulse

Let us now consider a probe x-ray pulse with a bandwidth
smaller than ω, energy differences between any states I�μ and
K�μ′ comprising the wave packet �0, and energy differences
between these states and other Floquet eigenstates F�μ′′ for
any �μ, �μ′, and �μ′′, so that one can spectroscopically
distinguish between scattering to different final states. In this
case, it is possible to define the probability of quasielastic scat-
tering Pqe as the probability to separately measure scattering
events with final states being the ones comprising the wave
packet �0. Thus the probability of quasielastic scattering is
obtained by replacing the summation over final states F0 in
the expression for the total scattering probability in Eq. (20)
for the summation over states K0 for which CK0 = 0.

The probability of quasielastic scattering is given by a sum
of terms, which include integrals

∫
dt1

∫
dt2G

(1)(r2, t2, r1, t1)
M̃∗

K0I0
(r2,�μ′)M̃K0I0 (r1,�μ)ei(�μt1−�μ′t2 )ωt [cf. Eq. (21)].

Due to the condition that the probe-pulse bandwidth is smaller
than energy differences between any states I�μ and K�μ′ ,
these integrals are nonzero only for �μ = �μ′ and K0 =
I0, and the interference terms disappear. Thus, taking into
account that M̃I0I0 = ρ̃I0I0 , the probability of quasielastic scat-
tering is given by

Pqe(κ s) = P0

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∫
d3r1

×
∫

d3r2G
(1)(r2, t2, r1, t1)

×
∑
�μ

ei(ωκs +�μ)(t1−t2 )−iκ s·(r1−r2 )

×
∑
I0

∣∣CI0

∣∣2
ρ̃∗

I0I0
(r2,�μ)ρ̃I0I0 (r1,�μ). (27)

It is still not connected to the electron density in Eq. (11)
unless CI0 = δI0,K0 for some state K0. Thus, if the state of a
light-dressed electronic system is described by a superposition
of physically inequivalent Floquet states, the scattering signal
from it cannot be related to its electronic density.

C. Quasielastic scattering from a light-dressed electronic system
described by a single family of Floquet states

But let us now consider a light-dressed electronic sys-
tem in a state |�0, t〉 described by a single series |�I0 , t〉
of physically equivalent Floquet states meaning that CI0 =
δI0,K0 for some state K0. In this situation, the wave function
of the electronic system evolves in time periodically with
the frequency ω and is given by a superposition of elec-
tronic eigenstates with time-dependent coefficients |�el, t〉 =∑

μ,n CI0
n,μe−iμωt |�n〉 [cf. Eqs. (7)–(9)]. In particular, its time-

dependent electronic density evolves periodically with the fre-
quency ω and can be represented by a Fourier series ρ(r, t ) =∑

�μ ei�μωt ρ̃(r,�μ), where ρ̃(r,�μ) = ρ̃I0I0 (r,�μ). Then,
if the probe x-ray pulse has a bandwidth sufficiently narrow
to separate the contribution due to quasielastic scattering, the
probability of quasielastic scattering,

Pqe(qx ) = P0

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∫
d3r1

∫
d3r2G

(1)(r2, t2, r1, t1)eiωκs (t1−t2 )−iκ s·(r1−r2 )ρ(r1, t1)ρ(r2, t2), (28)

does depend on the time-dependent electron density ρ(r, t ).
In addition, if the probe x-ray pulse is spatially uniform and

perfectly coherent, then Pqe is given by a series of peaks with
a width equal to the bandwidth of the probe pulse centered at
scattering energies ωxin + �μω:

Pqe(qx ) = P0

∑
�μ

∣∣Ẽx

(
ωκ s − ωxin + �μω

)∣∣2
P̃qe(qx,�μ),

(29)

where the amplitudes of the peaks

P̃qe(qx,�μ) ∝
∣∣∣∣∫ d3reiqx ·rρ̃(r,�μ)

∣∣∣∣2

are connected to the corresponding �μ-th amplitudes of the
electron density, ρ̃(r,�μ). Thus, in this situation, the proba-
bility of quasielastic scattering Pqe provides the spatial and
temporal Fourier transform of the time-dependent electron
density of the driven electronic system evolving with the
frequency ω.

D. Discussion

To sum up, we considered in this section a pump-probe
experiment, in which a temporally periodic pump pulse drives
electron dynamics in a system bringing it to a state |�0, t〉,
which is a superposition of Fourier series comprising phys-
ically equivalent Floquet states [cf. Eq. (8)]. A nonresonant
hard x-ray pulse is used as a probe of the dynamics of the
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laser-driven electronic system. It induces transitions from the
initial states K�μ to final states, which are either one of the
eigenstates K�μ′ comprising the wave packet |�0, t〉 or to
final Floquet states F�μ′′ , which are different from any K�μ′

states. We refer to the former events as quasielastic scattering.
The contribution due to quasielastic scattering can be isolated
from the total scattering signal only if the bandwidth of the
probe pulse is considerably smaller than any energy splittings
between K�μ and F�μ′ states for any �μ and �μ′.

Only if the state of the driven electronic system is prepared
in such a way that |�0, t〉 may be expanded in terms of a
single family of replica states, the probability of quasielastic
scattering is connected to the time-dependent electron density.
In the general case, which particularly applies to an ultrashort
probe x-ray pulse, it may not be possible to spectroscopically
distinguish between inelastic and quasielastic contributions to
the scattering probability. Then, the scattering probability is
determined by unseparable contributions determined by the
functions MF0I0 (r, t ) and cannot be connected to the time-
dependent electron density.

If the state of the driven electronic system |�0, t〉 is a super-
position of more than one Fourier series involving physically
inequivalent Floquet states, neither the total nor the quasielas-
tic scattering probability is connected to the electronic density.
Then, it may not be advantageous to probe electron dynamics
by separating quasielastic and inelastic contributions to the
scattering probability. One may have to search for alternative
ways to extract information about electron dynamics from a
scattering signal [27].

So far, we have not applied any assumptions concerning the
electronic system. The expressions describing the interaction
between a driven electronic system and a probe nonresonant
x-ray pulse derived in this section are general for any elec-
tronic system. In the next section, we consider the particular
case of a spatially periodic electronic system.

IV. APPLICATION TO A SPATIALLY PERIODIC
ELECTRONIC SYSTEM

Let us specifically consider the case when the driven
electronic system is a crystal described by the effective one-
electron Hamiltonian

Ĥel =
∫

d3rψ̂†(r)[p2/2 + Vc(r)]ψ̂ (r), (30)

where Vc(r) = Vc(r + R) is a space-periodic crystal field
potential, R being a lattice vector. We diagonalize the Hamil-
tonian in Eq. (1) using the basis set

|ϕm,k,μ〉 = |ϕmk〉|N − μ〉, (31)

where |ϕmk〉 are one-body eigenstates of the field-free Hamil-
tonian Ĥel such that k is the Bloch wave vector and m is the
band and spin index. According to the Bloch theorem [44],
the corresponding one-body wave function of |ϕmk〉 has the
form ϕmk(r) = eik·rumk(r), where umk(r) = umk(r + R) is a
space-periodic function.

The matrix elements of the Hamiltonian Ĥel-em obtained
within the QED picture are equivalent to those derived in
Refs. [10,41,45] within a semiclassical theory, for N � 1 and

|μ| 
 N ,

〈ϕm,k,μ|Ĥel + Ĥem|ϕm,k,μ〉 = Em,k + (N − μ)ω, (32)

〈ϕm′,k,μ+1|Ĥint|ϕm,k,μ〉 =
√

2πIem

ω2c
(ε0 · [kδm′m + Dm′m]),

(33)

〈ϕm′,k,μ|Ĥint|ϕm,k,μ+1〉 =
√

2πIem

ω2c
(ε∗

0 · [kδm′m + Dm′m]).

(34)

Here, Dm′m = −iNcells
∫
Vcell

d3ru
†
m′,k(r)∇um,k(r), where the

integration is over the volume of the crystal unit cell, Vcell,
and Ncells is the number of unit cells interacting with the
driving electromagnetic field. Here, the interaction between
the crystal and the driving electromagnetic field is described
within the dipole approximation. We took into account that
Iem = Nωc/V , which is the intensity measured in units of
Eh/(taua

2
au) = 6.43641 × 1015 W/cm2 (Eh is the Hartree en-

ergy, tau is the atomic unit of time, and aau is the Bohr radius).
Other matrix elements of Ĥel-em are zero. Thus one-body
eigenstates of the Hamiltonian Ĥel-em are

|φi,k〉 =
∑
m,μ

ci
m,k,μ|ϕmk〉|N − μ〉 (35)

with corresponding eigenenergies εi,k. The coefficients ci
m,k,μ

are the solutions of the equation∑
m′μ′

〈ϕm,k,μ|Ĥel-em|ϕm′,k,μ′ 〉ci
m′,k′,μ′ = εi,kc

i
m,k,μ. (36)

This model describes laser-induced electron dynamics only
due to interband transitions vertical in the k space.

We prove in Appendix C that

ρ̃I0I0 (r,�μ) =
∑
i,k

∑
m,m′,μ

ci∗
m′,k,μ+�μci

m,k,μu
†
m′k(r)umk(r),

(37)

where the summation is over such i and k that the state |φi,k〉
is occupied in |�I0〉, and

ρ̃K0I0 =K0 (r,�μ) =
∑

m′,m,μ

ck∗
m′,k′,μ+�μci

m,k,μ

× u
†
m′k′ (r)umk(r)ei(k−k′ )·r, (38)

which is nonzero only if all the same one-body Floquet states
are occupied in |�I0〉 and |�K�μ

〉 except that the state |φi,k〉
is occupied in |�I0〉 and not occupied in |�K�μ

〉, and the state
|φk,k′ 〉 is occupied in |�K�μ

〉 and not occupied in |�I0〉.

A. Total scattering probability of a coherent probe x-ray pulse
from a laser-driven crystal

Let us now consider Eq. (24) describing the interaction
of an electronic system with a coherent x-ray pulse. Eval-
uating the integrals

∫
d3reiqx ·rM̃F0I0 (r,�μ) for a crystal in

Appendix D, we obtain that Eq. (24) can be represented
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as a sum of three terms:

P (qx ) =
∑

G

θ (qx − G)

⎡⎣ ∑
F 0,I0,�μ,�μ′

∣∣CI0

∣∣2
T̃ ∗

F 0I0�μ′ (G)T̃F 0I0�μ(G) +
∑

F 0,I0,K0 =I0,�μ,�μ′

C∗
K0
CI0 T̃ ∗

F 0K0�μ′ (G)T̃F 0I0�μ(G)

⎤⎦
+

∑
F0,I0,K0,�μ,�μ′

C∗
K0
CI0 T̃

∗
F0K0�μ′ (qx )T̃F0I0�μ(qx ) (39)

with

T̃F0I0�μ(qx ) = Ẽx (�F0I0 + �μω)
∫

d3reiqx ·rM̃F0I0 (r,�μ),

(40)

where a many-body Floquet eigenstate F0 is such that it is
obtained from a state I0 by replacing a function |φi,k〉 for
|φf,k−qx+G〉 for some k and G, or is equal to I0 resulting
in T̃I0I0�μ(qx = G) = 0. In Eq. (39), the summation over
states F 0 runs through the Floquet eigenstates comprising
the state of the light-dressed crystal |�0, t〉 (CF 0

= 0) leading
to quasielastic scattering, and the summation over states F0

runs through the eigenstates that are not (CF0 = 0) leading to
inelastic scattering. We took into account that, in practice, the
Dirac delta functions δ(qx − G) resulting from the integrals∫

d3reiqx ·rM̃F 0I0
(r,�μ) (cf. Appendix D) must be convoluted

with a detector response function of finite resolution turning
to some continuous functions θ (qx − G).

The strength of the scattering signal in the vicinity
of reciprocal lattice vectors G is given by the two
terms in the squared brackets in Eq. (39) and the third
term at qx = G. The first term in Eq. (39) is due to
quasielastic transitions from initial states I�μ to final states
F�μ′ , leading to a signal centered at scattering energies
ωks = ωxin + (�μ − �μ′)ω + EI0 − EF0 . A contribution
due to a transition from an initial state I�μ to a final
state I�μ′ leads to a signal centered at scattering energies
ωks = ωxin + (�μ − �μ′)ω. Please note that it cannot
be distinguished from the contribution due to a transition
from a different initial state K�μ to a final state K�μ′ . The
second term in Eq. (39) is due to the interference terms
between quasielastic transitions from initial states that belong
to a different family of Floquet replica states. The third
contribution to the scattering signal at reciprocal lattice
vectors G is due to inelastic transitions from initial states I

and K to final states F , which differ from them by a single
function occupied at some point k + G, but not at k. It is
nonzero even for x-ray scattering from driven electronic
systems in an initial state described by a single series with
CK0 = δI0,K0 in Eq. (8). Analogously to x-ray scattering from
stationary systems, the contributions due to quasielastic
scattering in the case of �μ = �μ′ = 0 and F 0 = I0 in
the first term would dominate over inelastic contributions
given by the third term. However, if �μ and �μ′ are
nonzero, the contributions due to quasielastic scattering
could be comparable to or even smaller than the inelastic
contributions described by the third term in Eq. (39). The
reason for this is that T̃I0I0�μ is determined by the sum∑

i,k

∑
m,m′,μ ci∗

m′,k,μ+�μci
m,k,μ

∫
Vcell

d3ru
†
m′k(r)umk(r)eiG·r,

which could be smaller than a single term
c
f ∗
m′,k,μ+�μci

m,k,μ

∫
Vcell

d3ru
†
m′k(r)umk(r)eiG·r for �μ = 0,

if the integrals
∫
Vcell

d3ru
†
m′k(r)umk(r)eiG·r do not vary much

for m and m′, due to the orthonormality of ci
m,k,μ coefficients:∑

m,μ,k ci∗
m,k,μ+�μci

m,k,μ = ∑
m,μ,k c

i�μ∗
m,k,μc

i0
m,k,μ = δ�μ,0.

Contributions from lattice disorder would additionally smear
out the scattering signal at reciprocal lattice vectors G.

It follows from Eq. (39) that a scattering signal at reciprocal
lattice vectors G does not automatically provide quasielastic
scattering. If the bandwidth of the x-ray pulse is more narrow
than energy differences between any states I0, K�μ, and
F�μ′ for any �μ and �μ′, then the interference terms in
the second term of Eq. (39) would be zero. But the inelastic
contributions to the scattering signal at the G vectors given
by the third term would still remain. They can be separated
from the quasielastic contributions in the first term only by
the spectroscopy of the scattered photons.

B. Quasielastic scattering from a laser-driven crystal in a state
described by physically equivalent Floquet states

Let us consider a laser-driven crystal prepared in a state
|�0, t〉 described by a single series |�I0 , t〉 of physically
equivalent Floquet states, which corresponds to the electronic
wave function of a crystal given by a superposition |�el, t〉 =∑

μ,n CI0
n,μe−iμω|�n〉 evolving in time periodically with the

frequency ω. In this case, the probability of quasielastic
scattering by a perfectly coherent nonresonant high-energy
x-ray probe pulse can be represented as

Pqe(qx ) =
∑
�μ,G

P̃qe(G,�μ)δ(qx − G)

× ∣∣Ẽx

(
ωκ s − ωxin + �μω

)∣∣2
,

P̃qe(G,�μ) ∝
∣∣∣∣∫ d3reiG·rρ̃(r,�μ)

∣∣∣∣2

. (41)

According to this expression, a scattering signal in this case
is a series of Bragg peaks at crystal reciprocal lattice vectors
G at scattering energies ωxin − �μω, which we will refer to
as �μ-th order Bragg peaks. The intensity of the �μ-th order
Bragg peak, I�μ(G), is proportional to P̃qe(G,�μ) and is
given by the G-th amplitude of the spatial Fourier transform
of the �μ-th amplitude of the time-dependent density of a
crystal ρ(r, t ) = ∑

�μ ei�μωt ρ̃(r,�μ).
This conclusion goes in line with the experiment by Glover

et al. in Ref. [30], who have observed x-ray and optical wave
mixing in a diamond crystal. In their experiment, a diamond
sample was simultaneously illuminated by an x-ray and an op-
tical pulse. They have observed a signal at a scattering vector
qx = G + κe, where κe is the wave vector of the optical pulse,
accompanying the diamond Bragg peak at G = (1, 1, 1). In
that experiment, the incident x-ray energy at 8 keV had a
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bandwidth of approximately 1 eV, set by a Si(1, 1, 1) double
monochromator, and which is less than the 1.55 eV laser pho-
ton energy. X-ray photons at the sum frequency were detected
after a Si (2,2,0) channel cut analyzer and were distinguished
from the elastic scattering given by P (ωks = ωxin ) in energy
and both the phase matching and emission angle. The results
were interpreted as arising due to the inelastic scattering of
the incident x-rays from the (1,1,1) Fourier component of
the optically induced currents, from which they extract a
corresponding change in valence charge density.

We have a slightly different interpretation for the observed
signal in the experiment of Ref. [30] and suggest that it is
the first-order Bragg peak given by the probability P̃qe(G, 1)
in Eq. (41). The probability P̃qe(G, 1) is determined by the
amplitudes ρ̃(r, 1), which are much larger than other higher-
order amplitudes, ρ̃(r,�μ) for |�μ| > 1 at the condition of
their experiment, where the pump pulse interacted with the
crystal in a perturbative regime. Since, in this regime, ρ̃(r, 0)
gives approximately the unperturbed density of the crystal,
ρ̃(r, 1) does describe the optically-induced change of the elec-
tron density. However, electrons brought to conduction bands
by the pump pulse also contribute to ρ̃(r, 1) [cf. Eq. (37)] and,
thus, the signal is connected to the total change of the electron
density.

Equation (41) does not describe the shift of a scatter-
ing vector by κ0 relative to a reciprocal lattice vector G.
This discrepancy is due to the dipole approximation to the
interaction between the crystal and the driving electromag-
netic field. This assumption results in the approximated time-
dependent electron density with the same spatial periodicity
as the stationary electron density of a crystal. Please notice
that this discrepancy follows only from the approximation to
the electron density, but not from the theory describing the
interaction with a nonresonant x-ray probe pulse.

V. NONRESONANT X-RAY SCATTERING FROM A
LIGHT-DRIVEN MgO CRYSTAL

We illustrate our study with a calculation of the probability
of nonresonant x-ray scattering by a temporally periodic
coherent x-ray pulse from the cubic wide-band-gap crystal
MgO driven by an intense infrared laser pulse of the photon
energy ω = 1.55 eV in a nonlinear regime. Recently, it was
demonstrated that HHG is strongly sensitive to the atomic-
scale structure of MgO, which was proposed as a possible
probe of electron dynamics driven by an electromagnetic
pulse in a crystal [39]. Therefore we have chosen a similar
regime for the interaction with the driving laser pulse for
our calculation in order to determine what new insights on
electron dynamics of a light-driven crystal nonresonant x-ray
scattering can provide.

We calculated the Bloch functions within density func-
tional theory with the ABINIT software package [46] us-
ing Troullier-Martins pseudopotentials [47]. The calculated
Bloch functions were used as basis functions [cf. Eq. (31)],
which were then used to diagonalize the Hamiltonian Ĥel-em

[Eqs. (32)–(34)] at each k point. The resulting Floquet-Bloch
eigenstates were substituted in Eq. (41) to calculate the
diffraction signal. According to our convergence study, the
calculation of the diffraction signal is converged when a 24 ×

24 × 24 Monkhorst-Pack grid, sixteen conduction bands, and
2μmax + 1 = 81 blocks of the Floquet Hamiltonian in Eq. (4)
are taken into account for an MgO crystal driven by a pump
pulse of 1.55 eV photon energy and 2 × 1012 W/cm2 inten-
sity, which is the maximum intensity in our calculation. We
also use these parameters for calculations at lower intensities,
since the number of conduction bands and μmax necessary for
the convergence drops with decreasing intensity of the pump
pulse.

For simplicity, we took into account only four valence
bands of MgO, but ignored the impact from inner shells
of the crystal, which does not influence the calculation of
the time-dependent density, but provides an additive to a
diffraction signal. This results in our calculation being not
quite precise, but still accurate enough to illustrate some
features of nonresonant x-ray scattering from a driven crystal
and demonstrate the feasibility of such a calculation.

We assume that the state of the laser-driven MgO crys-
tal before the interaction with the probe pulse can be well
described by a single series involving states |�I�μ

〉 with the
largest absolute values of projections on the ground electronic
state of MgO. We also assume that a perfectly coherent non-
resonant x-ray pulse of photon energy ωxin is used as a probe
pulse. As described in the previous section, the diffraction
signal in this case consists of �μ-th order Bragg peaks at
scattering energies ωxin − �μω and at reciprocal lattice vec-
tors G, and their intensity is proportional to the squared spatial
Fourier transform of the corresponding �μ-th amplitudes of
the time-dependent electron density, | ∫ d3reiG·rρ̃(r,�μ)|2.

Figure 2 shows the intensities of the �μ-th order
Bragg peaks normalized to the intensity of the zero-order
Bragg peak at the scattering energy ωxin, I�μ(G)/I0(G) =
| ∫ d3reiG·rρ̃(r,�μ)|2/| ∫ d3reiG·rρ̃(r, 0)|2. Here, we as-
sume the pump pulse of 2 × 1012 W/cm2 intensity polarized
along the (0,0,1) direction. We consider two cases: vector G =
(0, 0, 2) parallel to the pump-pulse polarization ε0 [Fig. 2(a)]
and vector G = (2, 0, 0) perpendicular to ε0 [Fig. 2(b)]. As
follows from the figures, the ratios I�μ(G)/I0(G) are lower
than 10−5. Still, it should be experimentally feasible to ob-
serve the �μ-th order Bragg peaks, for example, following
the technique of Glover et al. in Ref. [30], who have observed
the first-order Bragg peak.

The Bragg peaks at the vector G parallel to the pump-pulse
polarization are of both even and odd orders, whereas the
Bragg peaks at the vector G perpendicular to the pump-pulse
polarization ε0 appear only at even orders. This demonstrates
a strong anisotropy of odd-order amplitudes ρ̃(r,�μ) of the
time-dependent electron density in MgO with respect to the
polarization of the laser pulse driving electron dynamics. The
observation that

∫
d3reiG·rρ̃(r,�μ) at the vector G ⊥ ε0 is

zero for odd �μ may be related to the effect that HHG
spectra of MgO contain only odd-order harmonics [39], which
also become zero in the scattering signal at G ⊥ ε0 in our
calculations. The latter phenomenon was attributed to a highly
directional field-induced nonlinear current [39]. Since only
odd harmonics are observed in the HHG spectra of MgO, the
current induced by the pump pulse may not influence even-
order laser-driven electronic properties, and, thus, the even-
order amplitudes of the electron density remain unaffected
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FIG. 2. Normalized intensities of Bragg peaks at scattering en-
ergies ωxin + �μω, I�μ(G)/I0(G), depending on �μ for (a) G =
(0, 0, 2) and (b) G = (2, 0, 0).

by the direction of the field-induced current. A more detailed
investigation of this phenomenon is required for its precise
interpretation, which is beyond the scope of this paper.

Figure 3 shows the dependence of the first-oder Bragg
peak intensity at G = (0, 0, 2) on the polarization of the
pump pulse. It follows from the figure that the intensity of
the first-order Bragg peak is proportional to (ε0 · G)2. Thus
the spatial Fourier transform of the amplitude ρ̃(r, 1) of the
time-dependent density of MgO has a linear dependence on
(ε0 · G). This result agrees with the experiment by Glover
et al. in Ref. [30] mentioned above, who have observed the
same dependence of the signal intensity on the polarization of
an optical pulse.

The experiment by You et al. in Ref. [39] has also demon-
strated the anisotropy of the interaction between the driving
pulse and the MgO crystal. However, their experiment did not
reveal selection rules and polarization dependence of the time-
dependent electron density. In addition, only odd harmonics in
the HHG spectra of MgO appear, which makes any even-order
effects undetectable by this technique. Thus, nonresonant x-
ray scattering providing direct information about the time-
dependent electron density can be used as a complementary
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FIG. 3. Dependence of the normalized intensity of the first-order
Bragg peak at G = (0, 0, 2), I1(G)/I0(G), on polarization of the
pump pulse ε0.

technique to probe electron dynamics in crystals during their
interaction with an intense laser pulse.

In Fig. 4, we study how the distribution of intensities
I�μ(0, 0, 2) changes depending on the intensity of the driving
pulse polarized along (0,0,1). When the pump-pulse intensity
is 1.25 × 1011 W/cm2 (the plot with black columns in Fig. 4),
the intensities of �μ-th order Bragg peaks monotonically
decrease with increasing |�μ|, which can be described within
low-order perturbation theory. In contrast, the plot with orange
columns in Fig. 4 corresponding to the pump-pulse intensity
of Iem = 2 × 1012 W/cm2 [the same plot as in Fig. 2(a)]
shows a nonuniform distribution of intensities I�μ. For exam-
ple, the intensity of the second-order Bragg peak is higher than
the intensity of the first-order Bragg peak on this plot mean-
ing that | ∫ d3reiG·rρ̃(r, 2)| > | ∫ d3reiG·rρ̃(r, 2)| at Iem =
2 × 1012 W/cm2. This indicates a nonperturbative nature of
the interaction between the pump pulse of 2 × 1012 W/cm2

intensity and the MgO crystal. Studying the other distri-
butions, one can observe how the time-dependent electron
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FIG. 4. Normalized intensities of Bragg peaks
I�μ(0, 0, 2)/I0(0, 0, 2) depending on �μ at different intensities of
the pump pulse.

224302-9



POPOVA-GORELOVA, REIS, AND SANTRA PHYSICAL REVIEW B 98, 224302 (2018)

0

2.5 × 10−6

5 × 10−6

(a)

0

5 × 10−6

1 × 10−5

(b)

0

0.5

1

1.5

2

0.25 0.5 0.75 1 1.25 1.5 1.75 20

(c)

I1/I0
α1Iem

I2/I0
α2I

2
em

Intensity Iem (1012 W/cm2)

I2/I1
α21Iem

FIG. 5. Comparison of ratios of Bragg-peak intensities as func-
tions of the pump-pulse intensity Iem at G = (0, 0, 2) with functions
of Iem: (a) I1(G)/I0(G) with α1Iem; (b) I2(G)/I0(G) with α2I

2
em; (c)

I2(G)/I1(G) with α21Iem. α1, α2, and α21 are chosen such that the
ratios of the Bragg-peak intensities and the corresponding functions
of Iem coincide at Iem = 1.25 × 1011 W/cm2.

density changes with increasing pump-pulse intensity making
a transition from a low-order perturbative to a nonperturbative
regime. For example, Fig. 5 shows the ratios I1(G)/I0(G),
I2(G)/I0(G) and I2(G)/I1(G) at G = (0, 0, 2) as functions
of the pump-pulse intensity. In a perturbative regime of
interaction between the pump pulse and the MgO crystal,
| ∫ d3reiG·rρ̃(r, 2)|2 ∝ I2(G)/I0(G) should be a quadratic

function of Iem, and | ∫ d3reiG·rρ̃(r, 1)|2 ∝ I1(G)/I0(G) and
I2(G)/I1(G) should be linear functions of Iem. This is true
only below Iem = 5 × 1011 W/cm2 indicating a transition to
a nonperturbative regime of interaction at approximately this
pump-pulse intensity.

The linear dependence of the relative intensity of the
first-order Bragg peak on the pump-pulse intensity, when
the pump-pulse intensity is below 5 × 1011 W/cm2, also
agrees with the experiment of Glover et al. in Ref. [30].
In this experiment, they used a pump-pulse of the intensity
Iem ≈ 1.5 × 1010 W/cm2. The relative intensity of the peak
I1(G)/I0(G), which the authors referred to as the SFG
efficiency, varied linearly with the intensity. The order of
the effect also agrees with the experiment. In our case, the
relative intensity of the first-order Bragg peak is 2.9 × 10−7

at Iem = 1.25 × 1011 W/cm2 for MgO. In the experiment, it
is ≈3 × 10−7 at Iem ≈ 1.5 × 1010 W/cm2 for diamond.

VI. CONCLUSIONS

In this manuscript, we described nonresonant x-ray scat-
tering from an electronic system in the presence of a single-

mode electromagnetic pulse with the frequency ω driving
electron dynamics in this system. The driving field brings the
electronic system to a state |�0, t〉, which is a superposition of
Fourier series involving physically equivalent Floquet states
K�μ with eigenenergies shifted by multiples of ω. If the
driven electronic state is prepared in such a way that its state
is described by a single series, then its electronic properties
change periodically with the frequency ω. We took into ac-
count that a nonresonant x-ray probe pulse can induce transi-
tions from the states K�μ comprising |�0, t〉 to any possible
final Floquet states F�μ′ . We derived a general expression for
the scattering probability of a nonresonant hard-x-ray probe
pulse of arbitrary coherence properties and a duration valid
for both time-unresolved and -resolved measurements, and
considered particular cases following from this expression.

We obtained that the probability of x-ray scattering in gen-
eral is not connected to the time-dependent electron density
of the driven electronic system. In particular, it cannot be
connected to the time-dependent density of a driven electronic
system in a state involving physically inequivalent Floquet
states, when its electronic properties do not evolve periodi-
cally with the frequency ω, under any conditions.

If the state of the driven electronic system does evolve pe-
riodically with the frequency ω, then it is possible to connect
the scattering signal to the time-dependent electron density
in the following case. If the bandwidth of the probe x-ray
pulse is smaller than any energy differences between states
K�μ comprising the state of the driven electronic system
|�0, t〉 and possible final Floquet states F�μ′ for any �μ

and �μ′, then it is possible to separate from the total signal
the contribution due to quasielastic transitions, i.e., transitions
with final states being the states comprising |�0, t〉, by the
spectroscopy of scattered photons. In this case, the probability
of quasielastic scattering is connected to the time-dependent
electron density. In particular, if the probe x-ray pulse is
spatially uniform and coherent, the scattering signal would in-
clude a series of peaks at scattering energies ωxin − �μω with
amplitudes determined by the spatial Fourier transform of
the corresponding amplitude ρ̃(r,�μ) of the time-dependent
electron density given by ρ(r, t ) = ∑

�μ ei�μωt ρ̃(r,�μ).
In contrast to measurements of stationary electronic sys-

tems, when inelastic contributions are negligible in compar-
ison to elastic ones, inelastic contributions can be compa-
rable to or larger than quasielastic contributions related to
ρ̃(r,�μ = 0) and cannot be neglected in the case of a driven
electronic system. In a general case, and, particularly, in the
case of an ultrashort probe x-ray pulse, it may not be pos-
sible to spectroscopically distinguish between inelastic and
quasielastic contributions to the scattering probability. If the
bandwidth of a probe pulse is not narrow enough, quasielastic
contributions intermix with inelastic ones in the spectrum
and cannot be factored out. Applying ultrashort x-ray pulses
in experiments aimed to probe the time-dependent electron
density of a driven electronic system, one has to take this
aspect into account.

We showed how our study can be applied to the calcu-
lation of nonresonant x-ray scattering from a crystal driven
by an electromagnetic pulse. In particular, we showed that
quasielastic scattering of a spatially uniform coherent narrow-
bandwidth probe x-ray pulse from driven crystals with
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electronic properties periodically evolving with the frequency
ω results in the appearance of �μ-th order Bragg peaks with
intensities proportional to | ∫ d3reiG·rρ̃(r,�μ)|2 at scattering
energies ωxin − �μω. For these conditions, we illustrated
some features of nonresonant x-ray scattering from a laser-
driven crystal and the information it can provide by consid-
ering an MgO crystal driven by a laser pulse in a strongly
nonlinear regime. Nonresonant x-ray scattering revealed spe-
cial selection rules of the interaction between the driving laser
pulse and MgO crystal resulting in the strong anisotropy of
odd-order amplitudes of the time-dependent electron density.

To sum up, we showed how a nonresonant x-ray probe
pulse interacts with a laser-driven electronic system and
discussed particular cases, when its time-dependent electron
density can be imaged by means of x-ray scattering. The
ability to follow electronic dynamics in laser-driven electronic
systems opens up opportunities for better understanding and
control of the way how electronic properties of such systems
are modified by a driving electromagnetic pulse.
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APPENDIX A: TIME-DEPENDENT ELECTRON DENSITY

The time-dependent electron density ρ(t ) is given by

ρ(r, t ) = 〈�0, t |ψ̂†(r)ψ̂ (r)|�0, t〉
=

∑
I0,K0

C∗
K0
CI0e

−i(EI0 −EK0 )t

×
∑

μ,μ′,n,n′
e−i(μ−μ′ )ωtC

K∗
0

n′,μ′C
I0
n,μ〈�n′ |

× ψ̂†(r)ψ̂ (r)|�n〉. (A1)

Representing the sum over μ and μ′ as∑
μ,μ′

e−i(μ−μ′ )ωtC
K∗

0
n′,μ′C

I0
n,μ =

∑
μ,�μ

C
K∗

0
n′,μ+�μCI0

n,μei�μωt , (A2)

we obtain

ρ(r, t ) =
∑
I0,K0

C∗
K0
CI0e

−i(EI0 −EK0 )t
∑
�μ

e−i�μωt ρ̃K0I0 (r,�μ),

where

ρK0I0 (r,�μ) = C
K∗

0
n′,μ+�μCI0

n,μ〈�n′ |ψ̂†(r)ψ̂ (r)|�n〉. (A3)

APPENDIX B: SCATTERING PROBABILITY

The interaction Hamiltonian entering Eq. (19) in the main
text can be represented as

Ĥintx = 1

c2

∑
κ1,s1

∑
κ s,ss

√
2πc2

V ωxκ1

√
2πc2

V ωxκ s

â†
κ s,ss

âκ1,s1 (εxκ1,s1 · ε∗
xκ s,ss

)ei(κ1−κ s )·r. (B1)

Substituting the interaction Hamiltonian into Eq. (18), we obtain that the following function enters the expression for the
scattering probability:∑

κ1,κ2,s1,s2

2π
√

ωxκ1ωxκ2

V

∑
{nx },{̃nx }

ρx
{nx },{̃nx }

∑
{n′

x }
〈{n′

x}|â†
κ s,ss

âκ1,s1 |{nx}〉〈{̃nx}|â†
κ2,s2

âκ s,ss |{n′
x}〉e−iωxκ1 t1eiωxκ2 t2eiκ1·r1e−iκ2·r2 . (B2)

This function is the first-order radiation correlation function G(1)(r2, t2, r1, t1), since applying that∑
{n′

x } âκ s,ss |{n′
x}〉〈{n′

x}|â†
κ s,ss = 1, Eq. (B2) reduces to

∑
κ1,κ2,s1,s2

2π
√

ωxκ1ωxκ2

V
Tr

[
ρ̂x âκ1,s1 â

†
κ2,s2

e−iωxκ1 t1eiωxκ2 t2eiκ1·r1e−iκ2·r2
] = G(1)(r2, t2, r1, t1), (B3)

where ρ̂x is the density matrix of the x-ray field. Thus we obtain from Eq. (17) that

P (ωκ s ) = 2π

V ωκ sω
2
xin

∑
ss,F

∣∣(εxin · ε∗
xκ s,ss

)∣∣2
∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∫
d3r1

×
∫

d3r2G
(1)(r2, t2, r1, t1)MF (r1, t1)M

∗
F (r2, t2)eiωκs (t1−t2 )−iκ s·(r1−r2 ), (B4)

where

MF (r, t ) = eiEF t 〈�F |ψ̂†(r)ψ̂ (r)|�0, t〉. (B5)

Each final Floquet state F is a member of a family of replica states according to Eq. (6), �F�μ′ = ∑
n′,μ C

F0
n′,μ+�μ′ |�n′ 〉|N −

μ〉, with energies EF�μ′ = EF0 + �μ′ω. Thus we replace the sum over F in the expression
∑

F MF (r1, t1)M
∗
F (r2, t2) with
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∑
�μ′,F0

MF�μ′ (r1, t1)M∗
F�μ′ (r2, t2). Let us evaluate this sum∑

�μ′,F0

MF�μ′ (r1, t1)M
∗
F�μ′ (r2, t2) =

∑
�μ′,F0

ei(EF0 +�μ′ω)(t1−t2 )〈�0, t2|ψ̂†(r2)ψ̂ (r2)|�F�μ′ 〉〈�F�μ′ |ψ̂†(r1)ψ̂ (r1)|�0, t1〉

=
∑

�μ′,F0

ei(EF0 +�μ′ω)(t1−t2 )
∑

n,n′,μ,μ′
C

F ∗
0

n′,μ′+�μ′C
F0
n,μ+�μ′A

∗
N−μ′AN−μei(μωt1−μ′ωt2 )

×〈�el, t2|ψ̂†(r2)ψ̂ (r2)|�n′ 〉〈�n|ψ̂†(r1)ψ̂ (r1)|�el, t1〉, (B6)

where we applied that

〈α, t2|N − μ′〉〈N − μ|α, t1〉 = A∗
N−μ′AN−μei(−[N−μω]t1−[N−μ′ω]t2 ). (B7)

We now use the substitutions �μ′′ = �μ′ + μ and �μ′′′ = �μ′ + μ′, and obtain∑
�μ′,F0

MF�μ′ (r1, t1)M
∗
F�μ′ (r2, t2) =

∑
�μ′′,�μ′′′,F0

eiEF0 (t1−t2 )ei(�μ′′ωt1−�μ′′′ωt2 )
∑
n,n′

C
F ∗

0
n′,�μ′′′C

F0
n,�μ′′

∑
�μ′

A∗
N−�μ′′′+�μ′AN−�μ′′+�μ′

× 〈�el, t2|ψ̂†(r2)ψ̂ (r2)|�n′ 〉〈�n|ψ̂†(r1)ψ̂ (r1)|�el, t1〉. (B8)

The assumption that
∑

�μ′ A
∗
N−�μ′′′+�μ′AN−�μ′′+�μ′ ≈ 1 independently of �μ′′′ and �μ′′ leads to∑

�μ′,F0

MF�μ′ (r1, t1)M
†
F�μ′ (r2, t2) =

∑
F0

MF0 (r1, t1)M∗
F0

(r2, t2), (B9)

where

MF0 (r, t ) =
∑
I0

CI0e
i(EF0 −EI0 )t

∑
�μ

ei�μωtM̃F0I0 (r,�μ) (B10)

with

M̃F0I0 (r,�μ) = 〈
�F�μ

∣∣ψ̂†(r)ψ̂ (r)|�0〉. (B11)

Thereby, M̃K0I0 (r,�μ) = ρ̃K0I0 (r,�μ).

APPENDIX C: REPRESENTATION OF FUNCTIONS ˜MF0 I0 VIA ONE-BODY FLOQUET STATES

Let us evaluate functions M̃F0I0 for an electron system of noninteracting electrons. In this case, the many-body Hamiltonian
of the system light and matter Ĥel-em can be written as a sum of independent one-body Hamiltonians.

Let us consider a many-body solution for a many-electron system of the time-dependent Schrödinger equation, which,
according to Eqs. (7)–(9), can be represented as

|�el, t〉 =
∑
I0

CI0e
−iEI0 t

∣∣�elI0 , t
〉
. (C1)

Since CK0 is determined by the boundary conditions, a time-dependent many-body function |�elI0 , t〉 is also a possible
many-body solution to the time-dependent Schrödinger equation under certain boundary conditions. Let us assume that at
t = 0, it is given by a Slater determinant |�elI0 , 0〉 = |φel0

1,1, · · · , φel0
i,k , · · · 〉, where |φel0

i,k 〉 = ∑
m,μ ci

m,k,μ|ϕmk〉. In the case of
noninteracting electrons, the time evolution of this many-body wave function |�elI0 , t〉 can be represented as a Slater determinant
|φel

1,1, · · · , φel
i,k, · · · 〉, where φel

i,k(r, t ) = ∑
m,μ ci

m,k,μe−iμωtϕmk(r) is a one-body solution of the time-dependent Schrödinger
equation for the boundary condition φel

i,k(r, 0) = φel0
i,k . Therefore we can obtain the matrix elements

NF0I0 (r, t ) = 〈
�elF0 , t

∣∣ψ̂†(r)ψ̂ (r)
∣∣�elI0 , t

〉
(C2)

using the relations

NI0I0 (r, t ) =
∑
i,k

∣∣φel
i,k(r, t )

∣∣2 =
∑
�μ

ei�μωt
∑

m,m′,μ

ci∗
m′,k,μ+�μci

m,k,μϕ
†
m′k(r)ϕmk(r), (C3)

where the sum is over such i and k that |φel
i,k〉 enters |�elI0 , t〉, and

NF0 =I0 (r, t ) = φ
el†
f,k′ (r, t )φel

i,k(r, t ) =
∑
�μ

ei�μωt
∑

m,m′,μ

c
f ∗
m′,k′,μ+�μci

m,k,μϕ
†
m′k′ (r)ϕmk(r), (C4)

which is nonzero, if the Slater determinant |�elF0 , t〉 can be obtained from |�elI0 , t〉 by replacing a function φel
i,k(r, t ) by

φel
f,k′ (r, t ).
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Let us now express the matrix elements NF0I0 via the functions M̃F0I0 (r,�μ) in Eq. (B11). Since |�I0 , t〉 = |�elI0 , t〉|α, t〉,
we apply that NF0I0 = 〈�F0 , t |ψ̂†(r)ψ̂ (r)|�I0 , t〉. Then, we express |�I0 , t〉 via the Floquet eigenstates |�I�μ

〉 as follows:

|�I0 , t〉 =
∑

�μ,K0

∣∣�K�μ

〉〈
�K�μ

∣∣�I0 , t
〉 =

∑
�μ

∣∣�I�μ

〉〈
�I�μ

∣∣�I0 , t
〉 =

∑
�μ

B
I0
�μ(t )

∣∣�I�μ

〉
, (C5)

where, according to Eq. (9),

B
I0
�μ =

∑
n

〈
�I�μ

∣∣�n

〉|α, t〉
∑

μ

CI0
n,μe−iμωt . (C6)

Thus

NF0I0 =
∑

�μ,�μ′
B

F ∗
0

�μ′+�μB
I0
�μ

〈
�F�μ′

∣∣ψ̂†(r)ψ̂ (r)
∣∣�I0

〉
. (C7)

We now consider the sum∑
�μ

B
F ∗

0
�μ′+�μB

I0
�μ =

∑
n′,n

∑
�μ

〈�n′ |〈α, t
∣∣�F�μ′+�μ

〉〈
�I�μ

∣∣α, t
〉|�n〉IF0I0

n′,n

=
∑
n′,n

I
F0I0
n′,n

∑
μ,μ′

C
F0
n′,μC

I ∗
0

n,μ′
∑
�μ

〈α, t |N − μ + �μ′ + �μ〉〈N − μ′ + �μ|α, t〉, (C8)

where

I
F0I0
n′,n =

∑
�μ′′

ei�μ′′ωt
∑

μ

C
F ∗

0
n′,μ+�μ′′C

I0
n,μ. (C9)

Applying the approximation that
∑

�μ A∗
N−μ+�μ′+�μAN−μ′+�μ ≈ 1 independently of μ′ − μ + �μ′, we obtain that∑

�μ

〈α, t |N − μ + �μ′ + �μ〉〈N − μ′ + �μ|α, t〉 ≈ ei(μ′−μ+�μ′ )ωt . (C10)

Thus, the sum
∑

�μ B
F ∗

0
�μ′+�μB

I0
�μ is given by ei�μ′ωt

∑
n′,n |IF0I0

n,n′ |2. It is further simplified using the following derivation:∑
n′,n

∣∣IF0I0
n,n′

∣∣2 =
∑
�μ′

ei�μ′ωt
∑

μ,μ′′,n

CI0
n,μC

I ∗
0

n,μ′′+�μ′
∑
n′,�μ

C
F ∗

0
n′,μ+�μC

F0
n′,μ′′+�μ =

∑
�μ′,n

ei�μ′ωt
∑
μ,μ′′

CI0
n,μC

I ∗
0

n,μ′′+�μ′δμ,μ′′

=
∑
�μ′

ei�μ′ωt
∑
μ,n

CI0
n,μC

I ∗
0

n,μ+�μ′ =
∑
�μ′

ei�μ′ωtδ�μ′,0 = 1, (C11)

leading to a simple relation
∑

�μ B
F ∗

0
�μ′+�μB

I0
�μ = ei�μ′ωt . Therefore we obtain that

NF0,I0 (r, t ) =
∑
�μ

ei�μωtM̃F0I0 (r,�μ), (C12)

resulting in the following relations for the matrix elements M̃F0I0 (r,�μ) = ρ̃F0I0 (r,�μ):

M̃I0I0 (r,�μ) =
∑
i,k

∑
m,m′,μ

ci∗
m′,k,μ+�μci

m,k,μu
†
m′k(r)umk(r) (C13)

and

M̃F0 =I0I0 (r,�μ) =
∑

m,m′,μ

c
f ∗
m′,k′,μ+�μci

m,k,μei(k−k′ )·ru†
m′k′ (r)umk(r), (C14)

where the same restrictions for the coefficients k, k′, f , i apply as for Eqs. (C3) and (C4), respectively.

APPENDIX D: EVALUATION OF THE FOURIER TRANSFORMS OF FUNCTIONS ˜MF0 I0 (r,�μ)

Let us consider Eq. (24), which depends on integrals
∫

d3reiqx ·rM̃F0I0 (r,�μ). Taking into account the periodicity of a crystal,
we obtain that∫

d3reiqx ·rM̃I0I0 (r,�μ) =
∑
i,k

∑
m,m′,μ

ci∗
m′,k,μ+�μci

m,k,μ

∫
d3reiqx ·ru†

m′k(r)umk(r)

= Ncells

∑
i,k

∑
m,m′,μ

ci∗
m′,k,μ+�μci

m,k,μ

∑
G

δ(qx − G)
∫

Vcell

d3ru
†
m′k(r)umk(r)eiG·r, (D1)
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where δ(qx − G) is the Dirac delta function, and∫
d3reiqx ·rM̃F0I0 =F0 (r,�μ) =

∑
m′,m,μ

c
f ∗
m′,k′,μ+�μci

m,k mu

∫
d3rei(qx+k−k′ )·ru†

m′k′ (r)umk(r)

=Ncells

∑
m′,m,μ

c
f ∗
m′,k′,μ+�μci

m,k,μ

∑
G

δ(qx + k − k′ − G)
∫

Vcell

d3ru
†
m′k′ (r)umk(r)eiG·r, (D2)

where the same restrictions for the coefficients k, k′, f , i apply as for Eqs. (C3) and (C4), respectively.
Since we solve the time-dependent Schrödinger equation for the electronic system interacting with the pump pulse under the

assumption that it can be solved separately for each k point, the number of electrons at each k point for all many-body states
comprising the electronic wave function |�el, t〉 is the same. As a result, if states K and I comprise the wave function of the
light-dressed system |�0, t〉,

∫
d3reiqx ·rM̃K0I0 (r,�μ) are nonzero only for qx = G.
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