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Intermittent collective dynamics of domain walls in the creep regime
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We study the ultraslow domain-wall motion in ferromagnetic thin films driven by a weak magnetic field. Using
time-resolved magneto-optical Kerr effect microscopy, we access to the statistics of the intermittent thermally
activated domain-wall jumps between deep metastable states. Our observations are consistent with the existence
of creep avalanches: roughly independent clusters with broad size and ignition waiting-time distributions,
each one composed by a large number of spatiotemporally correlated thermally activated elementary events.
Moreover, we evidence that the large-scale geometry of domain walls is better described by depinning rather
than equilibrium universal exponents.
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I. INTRODUCTION

Domain walls (DWs) in thin ferromagnetic films have be-
come a paradigmatic system [1–6] to learn about the universal
interplay between disorder, elasticity, and thermal fluctuations
in driven interfaces. Such physics is relevant for a large variety
of experimental systems [7–9] and for potential applications,
as DWs are building blocks for proposed magnetic storage
devices [10]. The caveat is that even an arbitrarily weak
disorder has a rather dramatic effect on the DW dynamics,
notably the occurrence of a depinning threshold [11,12].
Below the threshold, DWs are pinned at zero temperature
and they present a thermally activated glassy behavior called
the creep regime at finite temperature. A better understanding
of the impact of disorder in low-velocity regimes is thus
fundamental for a comprehensive study of DW dynamics and
of disordered elastic interfaces in general.

Most of the experimental studies on weakly driven DW
motion, including very recent ones [2–6], focused on the uni-
versal features of the steady DW mean velocity vs the field H

and temperature T , but not in its spatiotemporal fluctuations.
Such kind of study has been mostly performed close to the
depinning threshold, where the fluctuations are dominated by
large deterministic collective events. For example, avalanche-
size distribution and its universal properties has been dis-
cussed in the context of Barkhausen noise [13], contact lines
of liquids [7], crack propagation [14], and even in reaction
fronts in disordered flows [8] and active cell migration [9].
Well below the depinning threshold, the phenomenology of
avalanches have remained much less clear [15]. Recently,
however, theoretical studies of ultraslow creep motion [16]
have unveiled rather unexpected and nontrivial spatiotemporal
patterns, whose elementary events (EEs) strongly differ from
those encountered close to the depinning threshold. Therefore,
tackling experimentally a detailed statistical study of magne-
tization reversal events is particularly interesting.

The numerical simulations reported in Ref. [16] show
that creep motion of a one dimensional interface model
proceeds via a sequence of EEs of fluctuating sizes. These
EEs are the minimal thermally activated jumps that make
the DW overcome energy barriers and irreversibly advance
under the applied field H . The size statistics of EEs display
broad distributions, with a characteristic lateral size cutoff
Lopt ∼ H−3/4 and a characteristic area size Sopt ∼ L

5/3
opt.

These results confirm the existence of an optimal “thermal
nucleous” as proposed in the pioneer creep theories [11,12].
Since energy barriers for DW motion scale as Uopt ∼ L

1/3
opt ∼

H−1/4 (Ref. [17]), Arrhenius activation of these nuclei leads
to the celebrated creep-law ln v ∼ −H−1/4/T for the mean
velocity v at which the DW move under the action of a small
magnetic field H . The EEs are not normally distributed in
size and are not independent as traditionally assumed. On
one hand, below Sopt, EE areas are power-law distributed as
PEE(S) ≈ S−τEEG(S/Sopt), with τEE a characteristic exponent
and G(x) a rapidly decaying function for x > 1. On the other
hand, EEs tend to cluster in space and time, forming larger
cluster events (CEs). These CEs are similar to the so-called
“creep avalanches” suggested by functional renormalization
group calculations in Ref. [17] and experimentally noticed in
Ref. [15]. Such composite objects are, unlike EEs, weakly
correlated and have a much broader distribution of areas,
PCE(S) ∼ S−τCE with τCE a universal exponent. These inter-
esting predictions were not yet evidenced experimentally nor
confirmed by other theoretical approaches.

In this paper, we test the above scenario by a statistical
analysis of the ultraslow time evolution of magnetization
reversal in ferromagnetic Pt/Co/Pt thin films. For different
time windows of duration �t , we determine the size (S)
distribution PWE(S) ≡ PWE(S; �t, T ,H ) of the observed con-
secutive compact magnetization reversal area that we call a
window event (WE). This procedure permits us to relate WEs
with EEs and CEs and to show that the features displayed by
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PWE(S) are consistent with the picture summarized above of
rare localized EEs acting as epicenters of large CEs or “creep
avalanches,” each made of a large number of spatiotemporally
correlated EEs. Furthermore, our analysis of the intermittent
collective DW motion allows us to characterize the statistics
of waiting times between epicenter EEs, thus going beyond
the “geometric” predictions of Ref. [16].

II. METHODS

Experiments were mainly performed on a Pt(4.5 nm)/
Co(0.7 nm)/Pt(3.5 nm) thin ferromagnetic film with perpen-
dicular magnetic anisotropy. A polar magneto-optical Kerr
effect (PMOKE) microscope was used to image magnetic
domains. To characterize the DW dynamics, starting with a
seed magnetic domain, a train of magnetic field pulses of
duration t and intensity H were applied perpendicular to the
film plane to favor the growth of the initial domain. The DW
velocity was then computed following a standard differential
protocol. After identifying the creep regime in the H − T

plane by fitting the creep-law ln v ∼ −H−1/4/T , we fix T to
two possible values, room temperature and 50 ◦C, and choose
H = 46.1 Oe and H = 24.2 Oe, respectively, such that v ∼
1 nm s−1 in each case. We then analyze the magnetization
reversal events at each temperature, for a total applied field
time t = 27 000 s. Since the characteristic areas of EEs are
expected to scale as Sopt ∼ H−5/4, and the energy barriers for
nucleation as Uopt ∼ H−1/4, choosing fields deep in the creep
regime allows us to maximize, in principle, our spatial and
temporal sensitivity to intrinsic collective events. For these
fields, we indeed observe a clear intermittent (i.e., not smooth)
growth. To characterize it statistically, during the long-time
magnetic field pulse we stroboscopically observe the growth
at intervals �t , such that t � �t . The duration �t is much
larger than the acquisition time of each image, and much
smaller than the pulse time t so to collect a large number
of events. This allows us to compute their area distribution,
PWE(S), for different �t and T . Although we mainly report
results for one region of a specific sample, we have also
performed less detailed but similar measurements in other
regions of the same sample and also in a different material and
checked robustness of our results. We discard WEs touching
any border of the region of interest to not underestimate
their area and make a proper comparison with theoretical
predictions. We have checked that this protocol does not affect
the tails of PWE(S) for the time windows �t used. We refer the
reader to Appendix A for further details on our experimental
setup and protocols. Magnetization reversal events were previ-
ously obtained in irradiated Pt/Co/Pt samples [15], identifying
between 30 and 50 events depending on field values. In the
present work, we were able to obtain thousands of WEs, thus
allowing a more precise statistical description, amenable to
comparison with the universal theoretical predictions.

III. RESULTS

A. Domain-wall motion within the creep regime

The obtained field dependence of DW velocity for the
analyzed sample is presented in Fig. 1(a). The figure shows
the evolution of the velocity as a function of the magnetic

FIG. 1. (a), (b) Velocity-field characteristics for ultrathin
Pt/Co/Pt magnetic thin film in different scales. In (b), the fitted solid
line confirms agreement with the creep velocity law: ln v ∼ H−1/4.
The red point corresponds to a single long pulse of duration t =
27 000 s at a small field of H = 46.1 Oe and room temperature
(RT). The total reversed area over this long pulse is indicated in
(c) and corresponds to v = 1.7 10−9 m/s. During this long pulse,
PMOKE images were taken every t0 = 15 s, allowing us to identify
NWE(t0, t ) = 1151 magnetization reversal events or “window events”
(WEs), highlighted over the image. The color scale corresponds to
the time at which each WE was observed.

field over eight orders of magnitude. Within the creep regime,
thermal activation over a field-dependent energy barrier leads
to a stretched exponential increase of the velocity, given by
[1,11,12,17]

v = v0 exp

[
−Td

T

(
H

Hd

)−μ
]
, (1)

where v0 is a temperature-dependent velocity [4], T the
temperature, kBTd a typical energy scale coming from
the competition between elasticiy and disorder (kB being the
Boltzmann constant), Hd the depinning field and μ = 1/4 the
universal creep exponent. As shown in Fig. 1(b), a straight line
with a negative slope in a plot of ln v against H−1/4 confirms
that the measured velocities are within the creep regime,
and in addition that the system belongs to the universality
classes of one dimensional elastic systems displacing in a two
dimensional media, with a random-bond type of disorder and
short-range elasticity. The fit to the creep formula of Eq. (1)
for the two temperatures we analyzed are

ln[vm−1s] = −128(1)(Oe)1/4H−1/4 + 27.6(3), (2)

= −100(2)(Oe)1/4H−1/4 + 24.4(5), (3)
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TABLE I. Characteristic depinning values for the studied temper-
ature and field values: Hd is the depinning field, Td is the depinning
temperature, H

1/4
d

Td

T
is the slope of the creep plot [see Eqs. (2) and

(3)], and T/Td and ( T

Td
)( H

Hd
)
1/4

are related to the distribution of
waiting times as discussed in Sec. III E.

T [K] 293 323

H [Oe] 46.1 24.2
Td [K] 7142 6369
Hd [Oe] 760 650

H
1/4
d

Td

T
[Oe1/4] 128 100

T

Td
0.04 0.06

( T

Td
)( H

Hd
)
1/4

0.02 0.02

at T = RT [Eq. (2)] and T = 50 ◦C [Eq. (3)]. This data,
the experimental estimates for the depinning field Hd , the
depinning temperature Td and key characteristic scales are
reported in Table I.

With the aim of pursuing the characterization of small
magnetization reversal events responsible of the creep mo-
tion of elastic systems, one should consider that the typical
area size Sopt of the “optimal thermal nuclei” responsible
for the velocity of Eq. (1) dramatically increases when the
magnetic field decreases, as Sopt ∝ H−νeq(1+ζeq ), with νeq and
ζeq positive universal exponents [1,11,12,17]. Since velocity
follows an streched exponential dependence with Sopt [11,12],
decreasing the magnetic field implies to perform very long
time experiments. Therefore, after nucleation of a single
domain, a small magnetic field (H = 46.1 Oe) is applied
during a single long time pulse (t = 27 000 s, i.e., 7.5 hours),
reaching a velocity v = 1.7 10−9 m/s. The velocity-field data
thus obtained is indicated as a red point in Fig. 1(b), and the
differential image shown in Fig. 1(c) corresponds to the full
displacement of the DW under these conditions. To identify
magnetically reversed regions (WEs), during the total long
pulse time t , PMOKE images were taken every t0 = 15 s,
which corresponds to the minimum time window �t . During
the image acquisition the magnetic field remained always ON.
Consecutive images were subtracted and, since the velocity is
small (v = 1.7 10−9 m/s), most of differential images do not
show a clear advance of the DW. Eventually, a magnetization
reversal region resulting in a local advance of the DW position
is observed. After the whole long-time pulse experiment,
the total reversed area [indicated in Fig. 1(c)] is fragmented
into many small spatially compact regions obtained from the
subtraction of consecutive images taken after t0. The number
of WEs is NWE(t0, t ) = 1151 and are highlighted with a color
code over the image of the reversed area in Fig. 1(c). Due to
the characteristics of the used PMOKE microscope and the
image analysis, the smallest detectable displacement of the
DWs correspond to events close to 0.3 μm2 (25 pixels).

B. Event areas

In Fig. 2, we show typical WE sequences, for four different
values of �t , from a 15 s to 120 s. We can appreciate that,
for a given growth, each �t induces a particular partition
of the total reversed area of the sequence. At large �t , the

FIG. 2. Sequences of magnetization reversal areas (WEs) de-
tected for different time windows of duration �t , for T = RT and
H = 46.1 Oe. The color scale corresponds to the time at which each
WE, delimited by contours lines, was detected.

coalescence of several smaller WEs corresponding to smaller
�t becomes evident.

In Figs. 3(a) and 3(b), we compare size distributions
PWE(S), from �t = 15 to 180 s at room temperature T =
RT and a field H = 46.1 Oe, and from �t = 20 to 160 s
at T = 50 ◦C and a field H = 24.2 Oe, respectively. The
first remarkable feature of all these distributions is their

FIG. 3. WE area distributions for increasing window times �t

(as indicated) at RT and H = 46.1 Oe (a) and at T = 50 ◦C and H =
24.2 Oe (b). In both cases, v ∼ 1 nm s−1. At small S, we compare
the initial decay of PWE(S ) with S−τCE , with τCE ≈ 1.11, where τCE
corresponds to depinning avalanches. (c) The collapse scaling shows
that the data of (a) and (b) displays a large size cutoff scaling
SWE ∼ (�t/t∗)1/2, with t∗ an H - and T -dependent characteristic
time. (d) Effective power-law exponents τWE for PWE(S ) vs �t/t∗.
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broadness, which can be roughly described by PWE(S) =
S−τWEGWE(S/SWE), where τWE is an effective power-law expo-
nent and SWE the cutoff value such that the function GWE(x)
is constant for small x and decays faster than a power-law for
x � 1. Quantitatively similar size-distributions were observed
in different regions of the same sample and also in other kinds
of magnetic films (see Appendix A).

Both τWE and the large-size cutoff SWE depend on �t . As
can be appreciated in Figs. 3(a)–3(b), SWE increases with
�t , more specifically SWE ∼ (�t/t∗)1/2. The fair collapse
of P (S)�t1/2 vs S/�t1/2 shown in Fig. 3(c) confirms this
dependence. Here, t∗ ≡ t∗(T ,H ) is a characteristic time.
Concomitantly, in Fig. 3(d) we show that τWE ≈ 1 for the
smallest �t/t∗ for the whole data of Figs. 3(a) and 3(b).
Note also that the same t∗ that describes the SWE (T ,H )-
dependence allows us to build a master curve for τWE vs
�t/t∗. For the characteristic times t∗, we find t∗50C ≈ 1 s
at T = 50 ◦C, H = 24.2 Oe, and t∗RT ≈ t∗50C/3 at T = RT,
H = 46.1 Oe. Therefore, SWE ≈ (�t )1/2 μm2s−1/2 in the first
case, and SWE ≈ (3�t )1/2 μm2s−1/2 in the second one.

Since EEs of Ref. [16] are power-law distributed with an
exponent τEE ≈ 1.17, it is tempting to directly compare small
�t WEs, which are also typically small, to EEs. A rough
estimate for the Pt/Co/Pt films we study shows that the largest
EEs are of the order of Sopt = 10−3(Hd/H )1.25 μm2, where
Hd is the depinning field.1 Since Hd ≈ 637 Oe, and our lowest
field is H = 46 Oe, we get that Sopt ∼ 10−5 μm2, which is
clearly well below our PMOKE resolution of roughly 0.3 μm2

(25 pixels). We thus conclude that our detected WE cannot be
a single EE, but the sum of a large number of them. Namely,
if in a time window �t we have NEE such events, of sizes
s1, s2, . . . , sNEE

, compactly grouped in a WE, its random area
is SWE ≈ ∑NEE

i=1 si . The statistics of SWE thus directly relates to
the statistics of EE random sizes si contributing to the same
WE and of their �t-dependent and fluctuating number NEE.

Given the small area of the EE compared to our detected
WE, a pure statistical analysis is convenient. If the EE were
considered independent and accumulating at a well-defined
rate on each WE, by virtue of the central limit theorem, we
would naively expect PWE(S) to develop an approximate Gaus-
sian shape around NEEs. PWE(S) shows no tendency to approx-
imate a normal nor even a peaked distribution; however, it
is broad, even for �t in the minutes timescale. To interpret
this it is worth recalling that the central limit theorem tell us
that SWE ≈ ∑NEE

i=1 si should converge to a Gaussian distribution
if NEE is large enough and the si have finite variance and
short-ranged correlations [18]. The EEs have finite variance
and, although they appear to be spatially correlated, there is
no evidence of correlation between their areas [16]. We hence
interpret that NEE must be a strongly fluctuating quantity
for all the �t analyzed. Indeed, we experimentally observe
for a fixed �t well-defined bursts of magnetic activity, with
SWE � 0.3 μm2, coexisting with WEs in the resolution edge
SWE � 0.3 μm2, at the same H and T . Since any PMOKE-
resolved area SWE > 0.3 μm2 has a large number of EEs, we

1See Supplemental Material in Ref. [16].

FIG. 4. (a) Aspect ratio scaling of �t = 15 s WEs. The solid
(dashed) line shows the expected depinning scaling Si ∼ L

1+ζd

i for
qEW (qKPZ) class. (b) Scaling of the square width W 2 of DW
segments of size L, for two typical configurations at RT. The solid
(dashed) line shows the expected qEW (qKPZ) scaling at depinning,
W 2 ∼ L2ζd , with ζd = 1.25(0.63).

arrive to the first important observation of our paper: EEs are
strongly clustered spatiotemporally.

C. Domain-wall roughness

The results of the previous section are consistent with the
EEs clustering predicted for simple DW models [16,19]. To go
beyond, since EEs are too small to be experimentally resolved,
one is immediately tempted to compare our experimentally
resolved WEs with the predicted CEs. Indeed, unlike EEs,
CEs are not expected [16] to be strongly correlated, as we
also observe for WEs. Moreover, the predicted value for
τCE ≈ 1.11 is only slightly above τWE ≈ 1 observed in Fig. 3(d)
for the smallest �t . To argue that WE may indeed approach
the single intrinsic CE in the small �t limit, we start by
noting that the same scaling of zero-temperature depinning
avalanches, Si ∼ L

1+ζd

i , is also expected for CEs [16] at finite
temperature. In Fig. 4(a), we analyze for T = RT the approx-
imately oblong shapes of WEs by plotting the areas Si of each
WE sampled from a long sequence, versus their corresponding
lateral size Li , defined as the major axis length of the reversed
blobs. A crossover is observed at S ≈ 2 μm2, below which
we observe a Si ∼ L2.25

i scaling.2 The two main candidate
depinning universality classes that are consistent with the
observed creep law ln v ∼ H−1/4/T are the 1D quenched-
Edwards-Wilkinson (qEW), and the 1D quenched Kardar-
Parisi-Zhang (qKPZ). The first predicts ζd ≈ 1.25 [20] while
the second ζd ≈ 0.63 [21–23]. Only the qEW value is in
good quantitative agreenment with Fig. 4(a), in the small size
WE limit.3 In addition, Fig. 3(d) is quantitatively consistent
with the relation τCE = 2 − 2/(1 + ζd ) ≈ 1.11 predicted for
qEW. To investigate this issue, in Fig. 4(b) we computed

the squared width W 2(L) ≡ u2
L(x) − uL(x)

2
from different

2We show both the original noisy Si vs Li curve and a smoothed
curve, obtained by grouping similar areas in small bins and by
assigning the average of Li to each area bin. Indistinguishable results
are obtained by binning Li rather than Si .

3The downward deviation crossover for large WEs or lateral accel-
eration is due to coalescence effects in the proximity of a percolation
transition. See Sec. III G for further details.
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small segments of size L extracted from typical DW con-
figurations, where uL(x) is the DW displacement measured
with respect to the untilted segment (see Appendix B details).
The scaling W 2 ∼ L2ζd is consistent with the qEW depinning
roughness exponent ζd = 1.25 and thus with Figs. 3(d) and
4(a). We then arrive to the second important observation of
our paper: WEs approach single CEs in the small �t limit
and we find experimental evidence that the DW roughness
and CE statistical properties are better described by depinning
rather than equilibrium exponents as theoretically predicted in
Refs. [17,24,25]. A smaller roughness exponent 0.69 ± 0.07
was observed in extended DWs in the same material in the
pioneering work by Lemerle et al. [1], and interpreted to be the
equilibrium exponent ζeq = 2/3. Such interpretation implies
an observation scale below Lopt [24]. However, from Ref. [1],
we infer Lopt ≈ 0.18 μm, lower than their PMOKE resolu-
tion of 0.28 μm. We thus conclude that a spatial crossover
from the qEW value ζd ≈ 1.25 to a nonequilibrium exponent
∼ 0.69 ± 0.07 must exist. A natural candidate is the quenched
Kardar-Parisi-Zhang (qKPZ) or directed percolation depin-
ning exponent ζd ≈ 0.63.

D. Event lengths

In Fig. 5(a), we show the area Si vs the major axis length Li

of each WE. The difference with Fig. 4(a), where �t = 15 s,
is that now we plot WEs for all �t , from 15 s to 180 s to
observe the effects of large WEs. We show both the cloud
obtained from raw data and an averaged version by grouping
areas in small logarithmically increasing bins and by taking
the corresponding average value of Li in such groups. We
compare with the depinning scaling Si ∼ L

1+ζd

i , expected for
CEs in the creep regime [16], both for the qEW class where
ζd = 1.25 and for the qKPZ class, where ζd ≈ 0.63. At Li ≈
L∗ = 2 μm, a clear crossover is observed (indicated by the
vertical line). As can be appreciated in the figure, for Li < L∗
a better agreement is obtained for qEW, as compared, for
instance, with the qKPZ class.

In Fig. 5(b), we show the (nonnormalized) probability
distribution PWE(L) for all the Li observed. As for PWE(S),
we observe a broad distribution. If WEs were a part, single,
or dominated by a single CE, we expect, indeed, WEs to dis-
play power-law distributions similar to the ones observed for
depinning avalanches, PCE(S) ∼ S−τCE and PCE(L) ∼ S−τL ,
where τCE and τL are related to depinning exponents. The
general exponents are well known [26]:

τCE = 2 − (ζd + 1/νd )/(1 + ζd ), (4)

τL = τCE(1 + ζd ) − ζd, (5)

where ζd is the depinning roughness exponent and νd the de-
pinning correlation length exponent. For the qEW universality
class, we have ζd ≈ 1.25 and, by virtue of the statistical tilt
symmetry [27], νd = 1/(2 − ζd ) ≈ 1.33. On the other hand,
ζd ≈ 0.63 and νd ≈ 1.73 for the qKPZ class [23], where the
statistical tilt symmetry is broken. This yields τCE ≈ 1.11,
τL ≈ 1.25 for the qEW class, and τCE ≈ 1.25, τL ≈ 1.42 for
the qKPZ class. The effective power law at intermediate
L � L∗ (indicated by the vertical line) is roughly consistent

FIG. 5. (a) Aspect-ratio of WEs obtained experimentally, be-
tween the area Si and major axis length Li of individual WE. We
display the data Si vs Li for WEs corresponding to all values of �t to
enhance the crossover behaviour and access large WEs. Small WEs
fairly scale as CEs or depinning avalanches in the qEW class, Si ∼
L

1+ζd

i with ζd ≈ 1.25 and thus Si ∼ L2.25
i (solid line), as compared

to the qKPZ class, with ζd = 0.63, predicting Si ∼ L1.63
i (dashed

line). The dotted-dashed line indicates a fair Si ∼ L1.4
i scaling, which

can be rationalized using a simple model. (b) Probability distribution
(nonnormalized) for the major axis length Li of the events shown in
(a). In (a) and (b) a vertical line indicates the approximate location
of the aspect-ratio crossover, L∗.

with qEW. Unfortunately, however, the effective power law
observed in Fig. 5(b) is roughly consistent with both classes,
unlike Fig. 5(a), which is more consistent with the qEW class.

The crossover at L∗, observed in Fig. 5(a), may be associ-
ated to the CE coalescence process occurring for large WEs.4

In that case, a WE area can be written as a sum of a given
number NCE of CE areas, SWE ≈ ∑NCE

i=1 Si . Since PCE(S) is a
broad distribution, the typical WE area is dominated by the
largest areas and thus relates to the typical number of CE
as SWE ∼ N

1/(τ−1)
CE . The lateral size of a WE instead satisfies

an inequality LWE <
∑NCE

i=1 Li , as the fluctuating CE lateral
extensions Li can now overlap. Since PCE(L) is also a broad
distribution, we can use the same extreme value argument
to estimate LWE � N

1/(τL−1)
CE . Combining these results, we

4In our protocol, the maximum WE lateral size Li was limited by
the lateral size Lroi of the region of interest. We did not consider
WEs touching nor spanning completely the region of interest. If
spanning WEs were considered, we would have SWE ≈ v�tLroi in
the long-time limit, with v the average velocity, shown in Figs. 1(a)
and 1(b).
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get SWE � L
(τL−1)/(τ−1)
WE ≡ L

1+ζd

WE . This shows that WE areas
should scale with their length approximately as CE in the
Li < L∗ regime, as observed in Fig. 5(a). Above L∗, however,
where large WEs become a nonnegligible fraction of the in-
terface, the last scaling prediction breaks down. In Sec. III G,
we discuss a simple model that quantitatively accounts for the
crossover observed at L∗ in the Si vs Li plot.

E. Waiting times

The behavior at large �t , where the probability to observe
single CE in a WE decreases, is directly related to the behavior
of the large-size PWE(S) cutoff, SWE, with �t . In such regime
we can regard each WE area as the sum of a given number
NCE of cluster areas, SWE = ∑NCE

i=1 Si . As NCE can only grow
irreversibly with �t , so does the large-size cutoff SWE. Naively,
one may think that SWE should linearly increase with �t

because the sum of all WE areas observed in a region of a
fixed lateral size L should grow as Lv�t in a steady-state
regime. As shown in Fig. 3(c), we find instead a sublinear
increase SWE ∼ (�t/t∗)1/2. To make sense of this striking
observation, it is instructive to regard the area SWE vs �t as a
continuous-time continuous-jump random walk, with random
CE area increments Si and waiting times δi for the ignition of
a new CE, such that �t = ∑NCE

i=1 δi . If we assume that the δi are
distributed according to ψ (δ) ∼ t∗α δ−(1+α), with 0 < α � 1
characterizing the broadness of ψ (δ), we get �t ∼ t∗N1/α

CE for
the typical number of events NCE in a �t . Since the same
heuristic arguments apply for the broadly distributed CEs,
we get SWE ∼ N

1/(τCE−1)
CE . Combining the two last results, we

get SWE ∼ (�t/t∗)α/(τCE−1), which fairly describes our data of
Fig. 3(c) if α/(τCE − 1) ≈ 1/2. Using τCE ≈ 1.11, we obtain
α ≈ 0.05.

Broad waiting-time distributions have been heuristically
derived for creep motion [28,29], borrowing ideas from more
general random energy models (see, for instance, Ref. [18]),
and also observed numerically close to the depinning thresh-
old.5 The basic idea is to assume that the EE barrier dis-
tribution behaves as P (U ) ∼ exp[−U/U ∗]/U ∗ for a large
barrier U , with U ∗ a characteristic energy (with U and U ∗
in units of temperature). If temperature is small enough, the
typical time to overcome U is given by the Arrhenius law,
δ ∼ t∗ exp[U/T ], with t∗ a characteristic time. Changing vari-
ables, we obtain ψ (δ) ∼ αt∗α δ−(1+α), with α ∼ T/U ∗. Since
clustering implies that not all EEs have the same U , we will
argue that the δi corresponds to the special EEs that act as CE
epicenters. These EEs may be associated to the ones allowing
us to escape from dominant configurations [25]. Two different
predictions for U ∗ and thus for α are found in the literature. In
Ref. [28], it is assumed that U ∗ ≡ Td . With Td from Table I,
we obtain α = 0.04 for T = 293 K and α = 0.06 for T =
323 K. Both results are in excellent agreement with our data,
which gives α ≈ 0.05. In Ref. [29], on the other hand, the
characteristic energy is taken as the optimal nucleus barrier
U ∗ ≡ Td (Hd/H )μ, with μ = 1/4 for the one dimensional
elastic string. The exponent is thus again nonuniversal but

5E. A. Jagla, unpublished.

FIG. 6. Normalized mean square distance 〈δ2x(T )〉/C as a func-
tion of T , measured at T = RT and H = 46.1 Oe.

now it is also field dependent, α ≈ (T/Td )(H/Hd )μ. From
Table I, we obtain α ≈ 0.02 both for the two temperatures
and their corresponding fields. This value is only slightly
below but is again of the order of α ≈ 0.05 we infer from
our measurements. Both predictions are in rough agreement
with the empirical α ≈ 0.05 we obtain from the time-scaling
of SWE we observe in Fig. 3(c) for the two temperatures. It
would be interesting to perform a more systematic study as
a function of T and H to further test these theories. The
previous observations lead us to argue that WEs give access
not only to the CE area (at small �t) but also to the waiting-
time statistics (at larger �t). As CEs start at a seed EE, the δi

must be controlled by their energy barrier distribution.6

F. Event correlations

To further test the connection between WEs and CEs
we have also studied correlations from the spatiotemporal
correlations of the registered positions xi of the N measured
WE epicentres. To do that we used the mean square distance
〈δ2x(T )〉 ≡ ∑N

i=1[xi+n − xi]2/N , which depends only on the
temporal separation T = nt0. For noncorrelated WE epicentre
sequences, 〈δ2x(T )〉 tends to a constant value C = (L0 +
1)(L0 + 2)/2, where L0 is approximately the lenght of the
DW in units of the spatial discretization.7 Figure 6 shows
〈δ2x(T )〉/C measured at T = RT and H = 46.1 Oe. One can
see that even for short T it becomes approximately constant
as expected for uncorrelated events (note that 〈δ2x(T )〉/C > 1
for large T due to an underestimation of the length of DW).
We hence conclude that WEs are very weakly correlated in
sharp contrast with the predicted EE correlations in Ref. [16]
and consistent to what is predicted for CEs and more generaly
for depinning avalanches. This observation further confirms
our identification of WEs with single CEs or with coalesced
groups of them, for small or large �t , respectively.

6Barrier distributions for dominant metastable states have been
computed in Ref. [25] for forces below and near fc. For small
systems a roughly exponential right tail followed by a cut-off can
be appreciated.

7L. Foini, A. Rosso, private communication.
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G. Heuristic model for large WEs

Summing up, our results are consistent with the predic-
tions of Ref. [16] after identifying the small �t WEs with
the predicted CEs. At large �t WEs cannot be single CEs,
however, and deviations from the predicted properties for CEs
are expected. This is already apparent in Fig. 5(a), where
large WEs display a clearly different length to area aspect
ratio than the expected for CEs. Moreover, Fig. 5(a) shows
a clear crossover from the expected Si ∼ L

1+ζd

i CE behavior
to a different behavior, rather well described by a new power-
law, Si ∼ L1.4

i . There is no theoretical predictions yet for this
crossover so we propose here a simple, heuristic model.

A very simple model can explain the behavior of Si vs
Li observed experimentally, shown in Fig. 5(a). The idea
is to think WE as the compact objects formed by random
deposition of simulated CEs, with a lateral sizes Li sampled
from PCE(L) ∼ L−τL . We can also assume, for simplicity, that
the corresponding areas satisfy a deterministic relation Si =
L

1+ζd

i assumption that leads automatically to PCE(S) ∼ S−τCE ,
with τL, τCE and ζd related by Eqs. (4) and (5). Both as-
sumptions are reasonable approximations according to creep
simulations [16]. To simulate this model, we generated such
events in the interval [0,1], sequentially increasing the number
of deposited CEs. The process starts with one WE, which
equals the first deposited CE. Adding more CEs may produce
more WEs (especially for a small number of deposited CEs)
or can decrease their number due to the possible coalescence
with an existing WE, if the new CE overlaps it. When a
coalescence between a new CE and an existing WE takes
place, the area of the resulting WE is the sum of the new
CE area with the previous area of the WE, but the length of
the new WE can either remain constant or increase at its left,
right, or both corners simultaneously. In more rare cases, the
new CE can overlap more than one WE. The process finishes
when a single WE spans the whole interval, i.e., when the
deposited CEs percolate the system. To make statistics over
many sequences, at this point we reset the simulation and
restart, adding a first CE into a new actogram. Figure 7(d)
shows actograms corresponding to four runs.

To be concrete, for the simulations we use the values ζd =
1.25, τ = 1.11 and τL = ζd , corresponding to the 1D qEW
depinning class. We sample the epicenter of each CE from a
uniform distribution in the interval [0,1] and its lateral size
li by li = 0.05[r (lτL+1

max − l
τL+1
min ) + l

τL+1
min )]1/(τL+1) with lmin =

10−5 and lmax = 1.5, and r a different uniform random number
in the interval [0,1]. This produces a power-law distribution
PCE(l) ∼ l−τL with a cutoff at lmax. The area of such a CE is
simply si = l

1+ζd

i . Using different parameters yields qualita-
tively similar results.

We now discuss the results of the model. In Fig. 7(a), we
show that the model reproduces the main features observed
experimentally in Fig. 5(a). Small WEs below a characteristic
crossver scale display the Si ∼ L2.25

i . This is natural, as most
of the small WEs are individual CEs. At approximately L∗ ∼
0.07, there is a crossover toward Si ∼ L1.4

i for large WEs.
Remarkably, this new exponent is indistinguishable from the
one we obtain experimentally [see Fig. 5(a)]. We leave for a
future study to understand the origin and possible universality
of this new exponent. It is worth noting, however, that the
crossover may be associated to the lateral acceleration that

FIG. 7. A simple model for understanding the area vs major axis
length of large WEs. (a) Simulation results for the model [compare
them with experimental results in Fig. 5(a)]. The solid line indicates
the qEW depinning scaling, and the dashed dotted line the effective
power law observed at large WEs. The color bar indicates number of
randomly deposited CEs. Results are reported in arbitrary units. (b)
Probability distribution for percolation, as a function of the number
of randomly deposited CEs. (c) Average aspect-ratio scaling versus
number of CEs. (d) From bottom to top, four actograms showing
the growth of compact WEs as we increase the number of deposited
CEs (as indicated by the color bar). The actograms display segments
centered at uniformly distributed epicenters, whose size equals the
lateral extension of the growing WE. When the system percolates,
i.e., a single WE spans the system (set to unity), the actogram is reset
and a new deposition process starts.

occurs when the WEs almost percolate the [0,1] interval. In
Fig. 7(b), we show the probability to percolate as a function of
the number of deposited CEs. Most of the points in Fig. 7(a) in
the Si ∼ L1.4

i regime belong to states with a high probability
to percolate. It is also worth noting that finite size effects,
due to the finiteness of the interval and the broad range of
the CE lateral size distribution, play an important role here.
In Fig. 7(c), we show that the average anisotropic aspect-ratio
Si/L

2.25
i is unity only for a small number of CEs, but then

decreases, implying an accelerated lateral growth of WEs
compared with the area growth. This effect may produce
the crossover and the downward deviation appreciated in
Fig. 7(a), and also experimentally shown in Fig. 5(a). For an
even larger number of CEs, the aspect-ratio increases as large
WEs tend to completely overlap with most of the new CEs
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and thus increase their areas without modifying their lateral
size. Those states are near to percolate but need a rare CE to
overlap the voids between the few remaining WEs.

The model presented has some unphysical features. In
particular, the random deposition process implies, in the long-
time limit, a growing interface with a nonstationary width.
The model describes satisfactorily the crossover in Si vs
Li observed in the experiments, however, so the necessary
surface relaxation effects or correlations that may make the
width to saturate are not relevant for the regime we aim
to describe. In addition, the number of deposited CEs does
not strictly represent time. Broadly distributed times between
random depositions could be easily added, however, to further
test the picture suggested by the experiments. Particularly, to
reproduce the area and lateral size distributions as a function
of the window time �t found experimentally.

IV. CONCLUSIONS

From our results, the following picture emerges. Creep
dynamics is driven by EEs with a broad size distribution and a
large-size cutoff controlling the mean velocity. The seed EEs
that trigger a cascade of extra EEs are separated by broadly
distributed waiting times. Repeated, this collective process
of ignition and correlated growth produce independent CEs
statistically very similar to depinning avalanches, that may
coalesce into larger compact objects. Hence, CEs can be
truly regarded as “creep avalanches.” The described picture,
that drastically changes the naive view of creep motion as
independent thermally nucleated displacements, is likely to
appear not only in other magnetic films but in the creep regime
of other disordered elastic systems in general.
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APPENDIX A: SAMPLES & EXPERIMENTAL PROTOCOL

Experiments were mainly performed on a Pt/Co/Pt ultra-
thin ferromagnetic film, a prototypical system which has been
the focus of many studies of DW motion [1,2,4,5,30–33]. The
studied sample was a Pt(4.5 nm)/Co(0.7 nm)/Pt(3.5 nm) thin
film, with the thickness of each layer indicated in parenthesis.
The film was sputter grown at 300 K on etched Si/SiO2

substrate. The magnetic response of this system to an external
out-of-plane magnetic field is characterized by a square mag-
netic cycle with a well defined remnant magnetization, typical
of systems with perpendicular magnetic anisotropy [2].

PMOKE microscopy has been used to image magnetic
domains after applying magnetic field pulses perpendicular
to the film plane. After fully magnetizing the sample in
one direction, a short pulse in the opposite direction and of

FIG. 8. Histograms for the Ntot(t0, t ) = 1151 WEs shown in
Fig. 1(c), obtained by comparing consecutive images taken every
�t = t0 = 15 s at T = RT and H = 46.1 Oe. The histogram with
uniform binning is presented in the left panel, while in the right
panel a logarithmic binning is used for the same WEs. Power-law
behavior at small sizes can be described with PWE(S ) ∼ S−τWE with
the distribution exponent τWE ≈ 0.76 ± 0.1.

intensity H = 130 Oe was first applied to nucleate a seed
magnetic domain. Then, a second pulse of duration t and
intensity H was applied to favor the growth of the initial
magnetic domain. DW velocity was then computed as the
ratio between the linear advance of the DW linear advance
�x and the pulse duration, v = �x/t . Experiments were
performed at T = RT (room temperature) and T = 50 ◦C. To
measure velocities between 10−9 m/s and 10−1 m/s, pulses
of different amplitude and duration were used. In all cases,
the total number of pulses was 15 or more and the rise time of
the pulses was more than one order of magnitude faster than
the pulse duration. The shortest pulse was 1 ms and the largest
one 1800 s. Due to the spatial resolution of our microscope,
for velocities smaller than 10−8 m/s, we observed that there
was no difference in the observed DW velocity if the magnetic
field was ON or OFF during the image acquisition. In all the
cases, given the illumination condition, the used shutter time
of the camera was 200 ms.

Although we mainly report results for one region
of a specific sample, we have made similar measure-
ments in other regions of the same sample and also
in a Pt(6 nm)/[Co(0.2 nm)/ Ni(0.6 nm)]3/Al(5 nm) sample,
where the numbers in parenthesis stand for thickness
and the ferromagnetic layer consists in a stack of three
Co(0.2 nm)/Ni(0.6 nm) bilayers (for more information about
these samples and their DW dynamics, see Refs. [34,35]). In
both cases, the results are consistent with the main universal
results reported for the specific region of the Pt/Co/Pt sample
in Sec. III.

Magnetization reversal events were previously obtained in
irradiated Pt/Co/Pt samples [15], identifying between 30 and
50 events depending on field values. In the present work, as
we previously anticipated, we were able to obtain a large
amount of WEs. This represents a quantitative progress in
view of the fact that this allows us to perform a deeper
statistical description of the data. Figure 8 shows the obtained
histogram of the 1151 WE areas shown in Fig. 1(c) by
comparing consecutive images taken every t0 = 15 s. Since
we are seeking power-law-like distributions and their effective
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exponents, it is convenient to use logarithmic binning. In the
right panel of Fig. 8, we use the same WEs used in the left
panel to build a new histogram. In this case, dividing the
number of events per interval by the width of the interval, the
probability distribution is obtained. Figure 8 shows a power-
law signature at small size values with a cutoff around 3 μm2.
The distribution is of the form PWE(S) = S−τWEGWE(S/SWE),
where τWE is the power-law exponent and SWE the cutoff value
such that the function GWE(x) rapidly decays for x � 1.

For a proper comparison with theoretical predictions, we
discarded in the statistical analysis events touching the borders
of the region of interest, i.e., the observation region, other-
wise their area would be underestimated. This may affect,
however, the tails of the size distribution, corresponding to
large events, with a lateral size of the order or larger than
the lateral size L of the observation region. For the range
of time windows �t , we consider WEs of lateral size L are
extremely rare, however. Indeed, we observe a �t-dependent
but clearly L-independent cutoff in our distributions, growing
as �t1/2 (with a temperature-dependent prefactor). Such �t

dependence is used to estimate the waiting-time distribution
exponent for cluster “ignition events”. On the other hand, the
power-law decay effective exponent of WEs, which is also
central to our analysis and for the comparison with theory,

FIG. 9. WE area histograms obtained from a different region
(upper panel) of the same Pt(4.5 nm)/Co(0.7 nm)/Pt(3.5 nm) sample
used to report most our results in the main text, and obtained for
a different Pt(6 nm)/[Co(0.2 nm)/ Ni(0.6 nm)]3/Al(5 nm) sample
(lower panel).

is not sensible to the tails. This justifies our event-detection
protocol.

To evidence the robustness of our results, in
Fig. 9 we show results for the event area distribution
measurements done in a different region of the same
Pt(4.5 nm)/Co(0.7 nm)/Pt(3.5 nm) sample (upper panel),
and for a Pt(6 nm)/[Co(0.2 nm)/ Ni(0.6 nm)]3/Al(5 nm)
sample (lower panel). As can be appreciated, not only the
effective power-law decay exponent is similar, but also the
time dependence is qualitatively similar to the one of Fig. 3
reported in Sec. III for the sample and region we have chosen
for most of our analysis.

APPENDIX B: DOMAIN-WALL ROUGHNESS

To have a more direct estimate of the roughness exponent
of our DWs and check consistency with our interpretation
of the WE statistics, we have computed the single-value
displacement field uL(x) of segments of given sizes L parti-
tioning a larger DW configuration. Here we discuss our prac-
tical method. The displacements uL(x) for each segment are
measured with respect to the straight line fitting each segment.
This straight line is also used as the x axis to parametrize the
displacement field. Such an approach is justified by taking into
account that the theoretical description of a directed driven
interface assumes that the interface is flat, on average, in the
direction perpendicular to the motion. The field on magnetic
DWs, on the other hand, acts as a pressure, always normal
to the DW. Having uL(x) for segments of different length L,
we can now compute their global squared width W 2(L) ≡
u2

L(x) − uL(x)
2
. If the interface is self-affine, we expect

W 2 ∼ L2ζ with a well-defined roughness exponent ζ . We
have tested this methodology numerically on large discretized
interfaces of size L0, with displacement field U (x), where x =
0, 1, . . . , L0 − 1, with different precise values of ζ . We do
so by superimposing Fourier modes U (x) = ∑

q Uqe
iqx with

q = 2πn/L0 (n = 0, . . . , L0 − 1), Uq complex Hermitian

FIG. 10. Numerical test for the practical implementation used to
compute W 2 for a DW. We compute W 2 for numerically generated
self-affine Gaussian signals of size L0 = 1024 for several precise
values of ζ . We average over ten samples for each ζ . The solid lines
show agreement with the expected W 2 ∼ L2ζ . The method allows us
to measure super-rough cases ζ > 1.

224201-9



MATÍAS PABLO GRASSI et al. PHYSICAL REVIEW B 98, 224201 (2018)

Gaussian amplitudes of zero mean, 〈Uq〉 = 0, and variance
〈|Uq |2〉 ∼ 1/q1+2ζ (also known as self-affine Gaussian sig-
nals [36]). This construction assures that the signal U (x) is
periodic, U (x) = U (x + L0), and self-affine with identical
spectral and global exponent ζ . Finally, we compute W 2(L)
for these interfaces, by the partition procedure previously
described. In Fig. 10, we compare W 2(L) vs L with the corre-
sponding scalings for each ζ , averaged over ten uncorrelated
numerically sampled configurations U (x). A good agreement

is always obtained if the fit does not include values of L larger
than a fixed fraction of the order of the total size L0, so to have
a large number of segments and to reduce boundary effects.
It is worth noting that our method also allows us to accu-
rately measure values ζ > 1, corresponding to super-rough
interfaces. This is an advantage over the displacement correla-
tor function B(x) ≡ ∫ L0−x

0 dx0 [u(x + x0) − u(x0)]2/(L0 −
x), which gives the correct global ζ , B(x) ∼ x2ζ , only if
ζ < 1, otherwise it saturates to ζ = 1.
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