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It is well known that conventional harmonic lattice dynamics cannot be applied to dynamically unstable
crystals at 0 K, such as the high-temperature body centered cubic (bcc) phase of crystalline Zr. Predicting phonon
spectra at finite temperature requires the calculation of force constants to the third, fourth, and even higher
orders; however, it remains challenging to determine at which order the Taylor expansion of the potential-energy
surface for different materials should be cut off. Molecular dynamics, on the other hand, intrinsically includes
arbitrary orders of phonon anharmonicity; however, its accuracy is severely limited by the empirical potential
field used. Recently, machine learning algorithms have emerged as promising tools to build accurate potentials
for molecular dynamics simulation. In this paper, we approach the problem of predicting phonon dispersion at
finite temperature by performing molecular dynamics simulations with machine learning driven potential fields.
We developed Gaussian approximation potential models for both the hexagonal close packed (hcp) phase and the
bcc phase of zirconium crystals. The developed potential field is first validated with static properties including
energy-volume relationship, elastic constants, and phonon dispersions at 0 K. Molecular dynamics simulations
are then performed to stochastically sample the potential-energy surface and to calculate the phonon dispersion at
elevated temperatures. The phonon renormalization in bcc Zr is successfully captured by the molecular dynamics
simulation at 1188 K. The instability of the bcc structure is found to originate from the double-well shape
of the potential-energy surface where the local maximum is located in an unstable equilibrium position. The
stabilization of the bcc phase at high temperature is due to the dynamical average of the low-symmetry minima
of the double well due to atomic vibrations.
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I. INTRODUCTION

Understanding temperature-dependent thermal properties
of materials is important for a lot of high-temperature ap-
plications, such as thermal barrier coatings, nuclear appli-
cations, and high-temperature thermoelectrics. Prediction of
macroscopic thermal properties depends on the microscopic
description of vibrational dynamics of the atoms in the solids,
which is primarily characterized by phonon dispersions.
Although recent progress in first-principles calculation has
enabled prediction of thermal properties routinely for many
materials, it has been one of the long-standing challenges
in material physics to model the vibrational spectra for ma-
terials that are dynamically unstable. Conventionally, lattice
dynamics calculations are performed at the static limit (0 K)
using the finite displacement method [1] or density functional
perturbation theory [2], but these methods failed to explain
why the dynamically unstable structures can emerge at high
temperatures. For example, SnSe in the CmCm phase is one
of thermoelectric materials with the best figure of merit (ZT
factor) at high temperature (∼1000 K) [3,4]. However, the
CmCm structure displays soft phonon modes with imaginary
frequencies in the phonon dispersion at the static limit. For
these soft phonons, the harmonic force constants are negative,
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which means that the interatomic forces no longer pull the
atoms back to the equilibrium position but push them away
once the atoms are displaced from the equilibrium position.
Clearly, the existence of soft phonons is a sign of lattice
instability, but the static lattice dynamics failed to explain
why the CmCm phase of SnSe is stable at high temperature.
Another example is the bcc structure for group-IV metals like
Ti, Zr, and Hf. They all have soft phonons at the static limit
but become stable phases at high temperature [5,6]. In 1955,
Hooton realized that atoms vibrate in an effective potential
due to their nonstationary neighbors, and the potential-energy
surface (PES) is stochastically sampled around the most prob-
able position which is not necessarily a local minima [7].
Hooton then renormalized the soft phonon modes by an effec-
tive harmonic potential that is temperature dependent. Along
this line, the problem of dynamical instability is addressed by
a self-consistent approach under the harmonic approximation
[8], which starts with the phonon dispersion at static limit as
an initial guess and iteratively solves the eigenmodes of the
dynamical equation. However, several recent studies suggest
that care must be taken for strongly anharmonic crystals where
the PES should be expanded to the third and even the fourth
order [9–11]. Therefore, the accuracy of the force constants
could be significantly affected by the artificial truncation of
the Taylor expansion of the PES [10]. On the other hand,
classical molecular dynamics (MD) can naturally incorpo-
rate the phonon anharmonicity of arbitrary order without
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truncating the Taylor expansion of the PES, but it suffers from
the inaccuracy of the empirical potential field as limited by the
fitting with the empirical functional forms [12–14].

To overcome the challenges of both the first-principles lat-
tice dynamics and the molecular dynamics simulations using
empirical potential, machine learning (ML) based regression
algorithms provide an elegant solution to reconstruct the
ab initio PES. Instead of decomposing the PES to sim-
ple empirical functional forms, the ML algorithm is totally
data driven, which fits the PES by “learning” the corre-
lation between the atomic configurations and the resulting
energy from the ab initio data [15]. Since the ML algorithm
does not assume any form of functions when fitting the
ab initio PES, it does suffer from the error caused by artifi-
cially truncating the Taylor expansions of the PES. In princi-
ple, the ML algorithm includes all orders of anharmonic terms
in the PES. Such a data-driven feature of ML algorithms also
resulted in a significantly improved accuracy of the ML-based
potential compared with the empirical potentials, because it
bypasses the difficulty of decomposing the high-dimensional
PES to simple functional forms when fitting for empirical
potentials. Due to these advantages, machine learning al-
gorithms including artificial neural networks [16], Gaussian
process regression [17], and others [18] have been success-
fully used to model the thermal and mechanical properties in
simple crystals such as Si [19–21], GaN [20], and graphene
[22], as well as complex atomistic structures and processes,
such as amorphous carbon [23], lithium ion transport in
electrode materials [24,25], and phase-change material GeTe
[26].

Since machine learning algorithms addressed both the
problem of truncating expansions of PES in first-principles
calculations and the inaccuracy problem of the empirical
potentials, they could be promising tools to capture the lat-
tice dynamics above 0 K by fitting the PES at elevated
temperatures. This paper is therefore focused on modeling
the phonon renormalization using ML-driven potential in
zirconium (Zr) crystal, one of the most classic examples of
dynamical instability. Zr and its alloys are indeed widely
used as cladding materials in nuclear reactors [27]. At room
temperature, Zr takes the hcp phase and transitions into a bcc
phase at higher temperature, which is dynamically unstable at
0 K [8]. Since phase stability is usually required to prevent
structural failures in nuclear applications, understanding the
temperature-dependent vibrational dynamics of elemental Zr
is critical. Recently, Zong et al. successfully reproduced the
phase diagram of Zr using a potential developed by the kernel
ridge regression algorithm [28], indicating that ML could be a
promising tool to model lattice dynamics of dynamically un-
stable crystals. However, their potential has limited accuracy
for predicting phonon dispersion of both hcp and bcc Zr, with
the discrepancy of optical phonon frequency nearly 2 THz
at the Brillouin-zone center [28]. This is probably because
their machine learning potential was developed to reproduce
the phase diagram based on a multi-phase-learning strategy.
The training database therefore contains multiphase structures
with regions of phase space beyond thermal vibrations, which
is unnecessary for modeling phonons. As a result, the accu-
racy of phonon dispersions could be compromised [13]. It
remains unexplored whether such ML potential can be applied

to study the temperature-induced renormalization of the soft
phonon modes in dynamically unstable structures.

In this paper, we focus on modeling the temperature effect
on phonon dispersions using ML potential. The Gaussian
approximation potential (GAP) model [20,29] based on the
Gaussian process regression algorithm [17] is used to fit the
PES of both hcp Zr and bcc Zr. For each phase of Zr, we
developed a GAP model which accurately reproduced the
energies and interatomic forces, the equation of state, and the
elastic constants derived from first-principles calculations. We
observed that the instability of the bcc Zr at the static limit
originates from the double-well shape of the PES, and the bcc
structure corresponds to the local maxima of the PES. The
high-temperature bcc structure is stabilized by a stochastic
average due to atomic vibrations over the two low-symmetry
minima separated by a low potential barrier. The phonon
renormalization of the bcc Zr can therefore be captured by
performing MD simulations which stochastically sample the
PES. Using spectral energy density analysis, we have success-
fully observed that the soft transverse acoustic (TA) phonons
of bcc Zr are renormalized to ∼1 THz at 1188 K.

II. METHODOLOGY

Here we briefly review the formalism to use the GAP
method for fitting PES and the symmetry invariant descriptors
for characterizing the atomic configurations in Sec. II A. We
then discuss the details for generating the database from
the first-principles calculations including total energies, in-
teratomic forces, and virial stresses for training the machine
learning based GAP model in Sec. II B. The training databases
are downloadable in Supplemental Material [30], and the
training process is performed using the QUIP package [31].

A. Fitting the potential-energy surface using GAP method

To construct the machine learning driven potential using
GAP, the total energy of the simulation cell is decomposed
into the contributions from each individual atom:

E =
∑

i

ε(qi ), (1)

where ε(qi ) is the contribution of energy from atom i, and qi

is the descriptor vector that characterizes the local chemical
environment of atom i, i.e., the configurations of atoms in the
neighborhood of atom i. The local energy contribution ε(q ) is
given by a linear combination of the kernel functions:

ε(qi ) =
∑

j

αjK (qi , qj ) =
∑

j

Kijαj , (2)

where the summation over j includes all the atomic config-
urations in the first-principles database. The kernel function
Kij = K (qi , qj ) is a nonlinear function that quantifies the
degree of similarity between the chemical environments de-
scribed by qi and qj . The vector α = (α1, α2, . . . , αj , . . .)
contains the unknown coefficients to be determined using the
first-principles data. Here we discuss first the determination
of the unknown coefficient vector α, which is also called the
“training process,” and then briefly discuss the specification of
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TABLE I. Hyperparameters for GAP with SOAP kernels.

rcut 5.0 Å
d 1.0 Å
σv for energy 0.001 eV/atom
σv for forces 0.05 eV/Å
σv for virial stress 0.05 eV/atom
σw 1.0 eV
σa 0.5 Å
ζ 4
nmax 12
lmax 12

the kernel function K and descriptors qi . Detailed derivations
can be found in Refs. [32,33].

The database for building the GAP potential is collected
into the vector y, which contains the results from the first-
principles calculations including total energies, interatomic
forces, and virial stresses. Another vector ε is introduced
to denote the set of local atomic energies with components
εj = ε(qj ). Then a linear operator L can be introduced to
correlate y and ε through y = LTε. The operator L is then
constructed as follows. If the data entry yi in vector y is the
total energy of a certain atomic configuration, then (LT)ij is 1
if the local energy ε(qj ) of atom j should be included into the
summation to find total energy as shown in Eq. (1), otherwise
(LT )ij is zero. If the datum yi is a component of interatomic
forces or stresses, then (LT)ij are differential operators ∂

∂xj

with respect to the atomic coordinate xj . Using the linear
operator L, the covariance matrix KDD can be constructed
to quantify the similarity correlation between any pair of data
points in the vector y as

KDD = LT KNN L, (3)

where the subscripts D and N denote the length of y and
ε, respectively. KNN is the covariance matrix for the joint
covariance matrix for energies with elements (KNN )ij =
K (qi , qj ) corresponding to the atomic configurations in ε.
However, computing the full covariance matrix KNN is ex-
pensive since N can easily approach 105 when the forces and
virial stresses are included in the database. Therefore, a sparsi-
fication method [32] is used to reduce the computational cost.
Instead of computing the full matrix KNN , a representative
set containing M atoms (M � N ) is chosen from the full
set of N atoms randomly, so that the computational cost is
reduced by dealing with a much smaller covariance matrix
KMN between the representative set and the full set and the
covariance KMM of the representative set. Then the unknown
coefficients α = (α1, α2, . . . , αM )T are calculated as a linear
combination of the input datum y, which is derived from the
Bayesian probability formula:

α = (
KMM + KMN L�−1 LT K T

MN

)−1
KMN L�−1 y, (4)

where � is a diagonal matrix with diagonal elements of the
squared uncertainties (σ 2

v ) of the input data due to conver-
gence parameters in ab initio calculations (see Table I).

We now discuss the formalism for the kernel functions
K (q, q ′) and the descriptor vector q. The descriptor vector q

is used to characterize the structural features of atomic config-
urations in the neighborhood of a certain atom (later referred
to as local chemical environments), which is usually referred
to as the chemical environment. The descriptor of a dimer
molecule is simply the bond length between the two atoms.
However, in condensed matter systems like crystals, one needs
to deal with the many-body feature of atomic interactions,
which makes the choice of descriptor much more difficult.
One of the most intuitive choices of descriptor for solids is the
list of atomic positions {r i}Ni=1. However, {r i}Ni=1 is not a good
descriptor, because it fails to uniquely characterize certain
atomic configurations. For example, one can simply generate
a completely different list by changing the order of atoms in
the list, or imposing arbitrary rotations or translations to the
coordinates, while the new list and the old list correspond to
the same atomic structure. A good descriptor should therefore
be invariant to permutation, translation, and rotation opera-
tions [29]. Recently, Bartók et al. derived the so-called SOAP
descriptor [34] that can be used to uniquely characterize and
differentiate chemical environments, which is chosen as the
descriptor in this paper. Since the nonlocal metallic bonds
in Zr crystals are intrinsically many-body interactions, the
many-body SOAP descriptor becomes the natural choice. In
SOAP, the chemical environment of an atom i is represented
by the density of neighboring atoms, which is smoothed by a
Gaussian function:

ρi (r ) =
∑

j

e
− |r−rij |2

2σ2
a fcut (|r ij |), (5)

where r ij = r i − rj is the vector connecting atom i and its
neighboring atom j , and σa corresponds to the “size” of the
atom. The function fcut is a smooth cutoff function:

fcut (r ) =
⎧⎨
⎩

1, r < rcut − d
1
2

[
1 + cos

(
π r−rcut+d

d

)]
, rcut − d < r � rcut

0, r > rcut

,

(6)

where rcut is the cutoff radius, and d is the cutoff transition
width where the fcut smoothly decays from one to zero.
Obviously, ρi only depends on the relative coordinate r ij thus
invariant to translations, and the summation over j ensures
permutation invariance of ρi . To ensure the rotational invari-
ance, the atomic density distribution ρi is further expanded to
a set of orthonormal radial basis functions gn(r ) and spherical
harmonics Ylm:

ρi (r ) =
∑

n<nmax

∑
l<lmax

l∑
m=−l

ci
nlmgn(|r|)Ylm

(
r
|r|

)
. (7)

The components in descriptor vector qi are then calculated
as the power spectrum of the expansion coefficients ci

nlm:

(qi )nn′l =
∑
m

(
ci
nlm

)∗
ci
n′lm. (8)

After specifying the descriptors, the kernel functions are
constructed by inner products of descriptor vectors:

Kij = σ 2
w

∣∣∣∣∣
qi · qj

|qi | · |qj |

∣∣∣∣∣
ζ

, (9)
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TABLE II. Detailed parameters for DFT calculations to generate training databases.

hcp Zr

N M T (K) Supercell k mesh EDIFF

Database 1 1350 20 0 3 × 3 × 2 7 × 7 × 7 1e-10
Database 2 4266 65 0 3 × 3 × 2 7 × 7 × 7 1e-10
Database 3 72000 750 100, 300 3 × 3 × 2 3 × 3 × 3 1e-6

bcc Zr

N M T (K) Supercell k mesh EDIFF

Database 1 1458 20 0 3 × 3 × 3 7 × 7 × 7 1e-10
Database 2 2214 45 0 3 × 3 × 3 7 × 7 × 7 1e-10
Database 3 54000 750 100, 300, 1200 3 × 3 × 3 3 × 3 × 3 1e-6

where the exponent ζ is a positive integer to improve the
sensitivity to different local atomic environments, and σ 2

w is
an overall scaling parameter. From Eqs. (5)–(9), the hyper
parameters (σv, σa, σw, rcut, d, ζ, nmax, lmax) are summarized
in Table I for constructing the descriptors and the kernel func-
tions. Here we choose typical values of σa, σw, d, rcut, and ζ

in the literature [33,35]. The expansion cutoffs nmax and lmax

are chosen so that a converged phonon dispersion can be
obtained with the tolerance in frequency of 0.01 THz.

In summary, the procedure of fitting PES works as follows.
The data from first-principles calculations are collected into
the vector y first and the coefficient vector α is then calculated
using Eq. (4). The kernel functions used to generate covari-
ance matrices KMN and KMM are specified as in Eqs. (5)–
(9). After obtaining the coefficient vector α, total energies of
an arbitrary atomic configuration q can be calculated using
Eqs. (1) and (2), which completes the Gaussian process re-
gression process. In the following part, we are going to discuss
the details for generating the training database, i.e., the vector
y using the first-principles calculations.

B. Generation of the training database

Since the purpose of this paper is to model the temperature
effect on phonon dispersion of Zr, the database should be
constructed with specific emphasis on the phase-space region
around equilibrium that is approachable by thermal vibrations.
The developed potential is expected to accurately fit the
curvature of the ab initio PES at equilibrium. In addition
to the curvature at the static limit, the thermal vibrations
would sample a wider region of the PES in the phase space,
which is essentially the physical origin for phonon disper-
sion renormalization. Therefore, the training database should
include not only responses to perturbations of the equilib-
rium structure such as strains and atomic displacements but
also snapshots of thermal vibrations at high temperatures.
In order to avoid the potential fitting of unnecessary phase-
space regions beyond thermal vibrations, we separately train
the potential for each phase (hcp and bcc) of Zr studied
in this paper to ensure the accuracy of phonon dispersions.
For both hcp and bcc Zr, the databases are constructed as
follows.

Database 1 is used to train the GAP model in the descriptor
space around the equilibrium geometry and the mechanical re-
sponse to bulk strains. Self-consistent field (SCF) calculations
are performed with different strain tensors with distortion

parameters up to 4% imposed on the simulation cell. The
symmetry-irreducible strain tensors for the hexagonal lattice
and the cubic lattice are specified in Refs. [36] and [37],
respectively. The size of the simulation cells for hcp Zr and
bcc Zr are specified in Table II. Database 1 includes forces on
atoms, total energies, and virial stress on the simulation cell.

Database 2 is used to teach the GAP model with harmonic
and anharmonic force constants at different volumetric strains.
First, simulation cells of hcp Zr and bcc Zr are constructed
with uniform strains on each lattice constant from −4 to
4% with the step of 1%. In each supercell with strains,
small displacements (0.03 Å) are imposed to the irreducible
atoms according to the space groups using the PHONOPY

package [38] and SHENGBTE package [39]. SCF calculations
are then performed for each perturbed supercell with strains
and displacements, so that the total energies, forces, and virial
stresses at the perturbed states are recorded.

Database 3 provides the information of chemical environ-
ments and PES above 0 K. Ab initio molecular dynamics
(AIMD) simulations were performed at different temperatures
to generate snapshots of atomic configurations for both bcc
and hcp Zr. At each temperature, 1000 snapshots of atomic
configurations are generated with AIMD using a time step of 1
fs. Total energy and forces are used as training data quantities.

All the training data in the databases are generated by
density functional theory (DFT) based first-principles calcu-
lations using the Vienna Ab-Initio Simulation Package (VASP)
[40,41]. Since the goal is to capture the effect of temperature
on phonon dispersion (renormalization), the training database
should include DFT data at both 0 K and finite temperatures.
All DFT calculations are performed using the PBE functional
[42] with projector augmented wave method [40,41]. For all
DFT simulations, the cutoff energy is chosen as 300 eV [8].
For both the hcp phase and bcc phase of Zr, the following
databases were generated to train the GAP model with chemi-
cal environments. Table II summarizes the detailed parameters
in DFT and AIMD calculations, including total number of
atoms in all AIMD snapshots and DFT calculations (N ),
number of representative sets of atoms (M), temperature T ,
dimensions of supercells, and convergence threshold of SCF
calculations (the EDIFF tag in the VASP package).

III. RESULTS AND DISCUSSIONS

This section discusses the application of GAP to model
the phonon renormalization in Zr at elevated temperature.
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FIG. 1. (a, b) Comparison of (a) energy and (b) interatomic
forces between GAP and AIMD calculations of the hcp Zr. (c), (d)
Comparison of (c) energy and (d) force components between GAP
and AIMD calculations of the bcc Zr.

Before that, the accuracy of the GAP model to reproduce
DFT calculations should be examined. As shown in Fig. 1, the
GAP predictions of total energies and components of forces

(Fix, Fiy, and Fiz of atom i along three Cartesian axes) are
compared with the original AIMD simulation, corresponding
to 200 equally spaced snapshots randomly selected from the
1000 AIMD snapshots at 300 K. The GAP model is observed
to reproduce the energies from AIMD calculation with the
root-mean-squared error (RMSE) of 0.0002 eV/atom for the
hcp phase and 0.0003 eV/atom for the bcc phase. The RMSE
of the atomic forces between GAP model and AIMD simu-
lations is 0.025 eV/Å for the hcp phase and 0.053 eV/Å for
the bcc phase. The comparisons indicate good fitting of the
ab initio PES and its derivatives.

In addition to accurately reproducing the training observ-
ables (energies and forces), the GAP model is also expected
to reproduce the thermal and mechanical properties of the
Zr crystals. Figure 2(a) shows the equation of state E =
E(V ) and Fig. 2(b) shows the symmetry-irreducible elastic
constants Cij for both hcp and bcc Zr. Excellent agreement
is achieved in the equation of state as well as the elastic
constants. The instability of the bcc Zr is manifested in the
elastic constants. For a crystal to be energetically stable, the
Born criterion requires the Cij tensor to be positive definite.
In the case of bcc structure, the stability criterion requires
C11, C12, and C44 to satisfy C11 − C12 > 0, C44 > 0, and
C11 + 2C12 > 0 [43]. Clearly the criterion C11 − C12 > 0 is
not satisfied as shown in the right panel of Fig. 2(b). Besides
the elastic constants, we also compare the phonon dispersions
predicted by the GAP model of both hcp Zr and bcc Zr
at the static limit with the inelastic neutron-scattering (INS)

FIG. 2. (a) Equation of state (energy vs volume) of hcp Zr and bcc Zr calculated by GAP and DFT. (b) Symmetry-irreducible elastic
constants of hcp Zr (left panel) and bcc Zr (right panel). The experimental elastic constants of hcp Zr are from Ref. [45]. (c) Phonon dispersion
of hcp Zr. INS measurement data are taken from Ref. [44]. (d) Phonon dispersion of bcc Zr. INS measurement data are taken from Ref. [5].
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FIG. 3. (a) PES along eigenvectors at high-symmetry point N. Q1 and Q2 correspond to dimensionless normal coordinates of the two TA
modes with the order of increasing frequency. (b) PES along the Q1 direction with Q2 = 0. (c) PES along the Q2 direction with Q1 = 0.

measurements [5,44] and the DFT calculations, as shown in
Figs. 2(c) and 2(d). For the hcp phase, there is only a small dif-
ference in the phonon dispersion, while a larger discrepancy is
observed for the soft modes (plotted as imaginary frequencies)
of the bcc phase, which is likely due to the larger RMSE of
energy and forces in for the bcc phase as shown in Figs. 1(b)
and 1(d).

To illustrate the origin of the soft phonon modes, the PES
is plotted in the normal coordinates for the two lowest modes
at the high-symmetry point N in the Brillouin zone. In order to
obtain the shape of the PES around the equilibrium position,
small displacements are imposed along the eigenvectors for
the lowest soft TA mode with a scaling factor Q1 and the
second lowest TA mode with a scaling factor Q2, and the PES
as a function of scaled coordinates E = E(Q1,Q2) is plotted
in Fig. 3(a). It is clear that the PES shows a double-well
shape. The dynamic instability of the bcc structure originates
from the fact that the equilibrium state (Q1,Q2) = (0, 0)
is a saddle point of the PES. Along the Q1 direction, the
equilibrium state is the local maximum of the double well
as shown in Fig. 3(b), while it is the local minimum along
the Q2 direction. As a result of the negative local curvature
∂2E

∂Q2
1

< 0, the eigenvalue for the lowest TA mode ω2 is also

negative when the lattice dynamics simulations are performed
at the static limit, so that the imaginary phonon frequency is
observed in Fig. 2(d). At high temperature, the normal mode
oscillator is hopping between the two potential wells, and
the equilibrium position corresponding to the bcc structure is
indeed the dynamical average between the two local minima.
In addition, due to the complicated multiminimum shape of
the PES of the bcc phase, the fluctuations of AIMD energy
and forces could also be larger compared with the stable
hcp phase even at the same temperature, which results in
the larger RMSE when reproducing the AIMD energies and
forces.

With the idea that the bcc structure is stabilized through
dynamical average of the low-symmetry minima of the
PES, the phonon dispersion should be renormalized to real
frequency values at high temperature when the PES is
dynamically sampled. MD simulations are therefore per-
formed to stochastically sample the PES, using the ma-
chine learning driven GAP potentials we have developed
above. Phonon dispersion is then calculated by spec-
tral energy density (SED) analysis [46,47], which maps
the vibrational energy distribution in wave-vector space
and frequency domain (q, ω). Here the SED distribution
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FIG. 4. (a), (b) SED of hcp Zr at (a) 100 K and (b) 300 K. (c) SED of bcc-Zr at 1188 K. (d) SED as a function of phonon frequency at
q = (0.3, 0, 0) . The dashed lines indicate the frequency measured by INS in Ref. [5] at 1188 K.

is calculated by summing the Fourier transform of the
amplitudes of vibrational velocities:

φ(q, ω) = 1

4πτ0Ncells

∑
α=x,y,z

∑
b

mb

×
∣∣∣∣∣
∫ τ0

0

∑
R

u̇α (R, b, t ) · exp (iq · R − iωt )dt

∣∣∣∣∣
2

,

(10)

where Ncells is the total number of unit cells, R is the lattice
vector, b is the index of basis atoms in the unit cell, and
u̇α (R, b, t ) is the velocity component along the α = (x, y, z)
axis of the atom (R,b) at time t . The quantity dt = (1 fs)
is the time step between neighboring MD snapshots and
τ0 is the total integration time selected as 1 ns, and longer τ0

is found not to affect the SED distributions. For the hcp phase,
SEDs along the � − A direction and the � − M direction are
calculated, using supercells containing 3 × 3 × 50 primitive
cells and 50 × 3 × 3 primitive cells, respectively. For the bcc
phase, the SED is extracted along the � − N path using a
supercell containing 50 × 3 × 3 primitive cells. Figures 4(a)
and 4(b) show the SED of the hcp Zr at 100 and 300 K.

For the hcp phase, the most pronounced effect of nonzero
temperature is the broadening of the SED lines due to stronger
phonon scattering at higher temperature. Figure 4(c) shows
the phonon dispersion of the bcc Zr at 1188 K. The SED
analysis has successfully captured the renormalization of the
soft TA mode in bcc Zr which is now renormalized to ∼1 THz
at 1188 K. Figure 4(d) shows the SED as a function of
frequency at q = (0.3, 0, 0) along the � − N direction. The
broad SED peak observed near 1 THz agrees well with INS
experiments [5].

IV. SUMMARY

In summary, we studied the temperature effect on phonon
dispersions of the hcp phase and the dynamically unstable bcc
phase of Zr, using molecular dynamics simulation with the
machine learning driven Gaussian approximation potential.
The GAP model accurately reproduces energies and inter-
atomic forces corresponding to the atomic configurations of
the AIMD snapshots as well as the mechanical properties of
Zr. The dynamical instability of bcc Zr is captured by the
GAP model with the soft phonon modes in the dispersion
relationship as well as the non-positive-definite elastic con-
stant tensor. The instability of the bcc structure is observed
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to originate from the double-well shape of the PES, and the
bcc phase becomes stable at high temperature as a result of
dynamical average as the normal mode oscillators hopping
between the two local minima of the PES. The stabilization
of bcc Zr is captured by examining the phonon dispersion at
high temperature using MD simulations and SED analysis. In
addition to the broadening effect at elevated temperature, the
SED analysis also captures the phonon renormalization of the
soft TA mode in bcc crystal, with the frequency renormalized
to ∼1 THz at 1188 K, agreeing well with the INS experi-
ments. This paper approaches the problem of phonon renor-
malization in dynamically unstable crystals using molecular

dynamics, showing that the machine learning driven potential
is a promising tool for modeling high-temperature lattice
dynamics and thermal properties.
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