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Relaxation and domain formation in incommensurate two-dimensional heterostructures
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We introduce configuration space as a natural representation for calculating the mechanical relaxation patterns
of incommensurate two-dimensional (2D) bilayers. The approach can be applied to a wide variety of 2D materials
through the use of a continuum model in combination with a generalized stacking fault energy for interlayer
interactions. We present computational results for small-angle twisted bilayer graphene and molybdenum
disulfide (MoS2), a representative material of the transition-metal dichalcogenide family of 2D semiconductors.
We calculate accurate relaxations for MoS2 even at small twist-angle values, enabled by the fact that our approach
does not rely on empirical atomistic potentials for interlayer coupling. The results demonstrate the efficiency of
the configuration space method by computing relaxations with minimal computational cost. We also outline
a general explanation of domain formation in 2D bilayers with nearly aligned lattices, taking advantage of
the relationship between real space and configuration space. The configuration space approach also enables
calculation of relaxations in incommensurate multilayer systems.
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I. INTRODUCTION

Layered materials consist of two-dimensional (2D)
atomically thin sheets that are weakly coupled by the van der
Waals force. For understanding the electronic and mechanical
properties of multilayered structures of such materials, it is
useful to view them as a series of conventional crystals with a
weak perturbative interaction between sheets [1]. Bilayer sys-
tems with slight lattice misalignment due to differing lattice
constants or relative twist angle are of interest in optical and
transport experiments [2–5]. In small-angle twisted bilayer
graphene (tBLG) and graphene-hBN bilayers, highly regular
domain-wall patterns have been observed experimentally and
studied theoretically [6–9], and they have been attributed
to the general strain-soliton phenomenon [10–12]. The
appearance of domain walls is the result of atomic relaxation,
which serves to minimize the additional energy due to mis-
alignment. Under electric-field gating, the domain walls give
rise to interesting topologically protected edge states [13–18].
Understanding this relaxation and predicting its behavior in
other nearly aligned bilayers may be useful in the search for
topological edge states and quantum information applications.

We study three different bilayer systems, namely graphene
and the two high-symmetry alignments of MoS2, which is a
standard representative of the transition-metal dichalcogenide
family of 2D materials. Bilayer graphene and graphene-
hBN systems have been modeled with a continuum approach
[8,19,20], where the discrete atomic positions are replaced by
a continuous field of displacements. These real-space contin-
uum approaches work well in the case of a twisted bilayer
because any bilayer moiré pattern becomes periodic in the
continuum limit. However, not every incommensurate system
is periodic in a continuum limit. As an example, consider a
three-layer system that is mutually incommensurate (e.g., all

three of the layers’ unit cells are linearly independent). Letting
�ij be the bilayer moiré cell generated by layers i and j , then
�12 and �23 are not guaranteed to form a periodic supercell.
This is not a statement about atomistic commensurability, but
rather commensurability of a pure continuum model. From
this perspective, we argue that existing continuum models
developed for twisted bilayers may not be easily extended
with full generality to multilayer systems.

To address this problem, we revisit the bilayer continuum
relaxation problem, but we introduce a different approach:
consider minimizing total energy over a collection of all pos-
sible local atomic environments, which we call configuration
space [21]. In brief, every atomic site in a real-space bilayer
structure has a corresponding local environment that describes
the relative stacking disregistry. A construction of configu-
ration space is outlined in Fig. 1, and it is explained more
precisely later in the text. We introduce the formalism of con-
figuration space here and discuss some of the challenges of the
multilayer problem, but we leave the multilayer implementa-
tion to a future work. We find that in the twisted bilayer case,
the configuration space methodology reduces to existing real-
space continuum models up to a change of variables while
providing a different physical insight. The bilayer relaxation
patterns in configuration space show high-energy stacking
environments “flowing” to low energy, a phenomenon that is
not as obvious in real-space relaxation patterns.

II. CONTINUUM APPROXIMATION

To begin, we summarize the common continuum approach
to bilayer relaxation in real space before generalizing it for
configuration space. It is convenient to separate the energy
into interlayer (stacking) and intralayer (strain) energy, as
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FIG. 1. How to map the atomic degrees of freedom of a moiré
cell in real space to configuration space. Two triangular lattices (red
and blue) are twisted relative to one another, forming a moiré pattern
(dashed black line). Three blue atoms are highlighted in cyan, purple,
and green, and their stacking relative to the underlying red lattice
is shown in the boxed insets. These environments are described
by vectors that lie within the unit cell of the red layer, allowing
one to translate every atom in real space to a specific point b in
configuration space.

the two layers weakly interact with one another. We will
assume smooth and slowly varying relaxation in each layer,
described by a position-dependent displacement vector field
Ui (r ), where i indexes the layer number. We will only con-
sider in-plane relaxation, which is appropriate for a bilayer
encapsulated in a stiff substrate, although the method can be
extended for out-of-plane relaxations as well. Such encapsu-
lated systems show improved optical and electronic transport
properties [22] and are of great experimental interest.

Under these assumptions, the intralayer energy for a layer
is well described by a linear isotropic continuum approxima-
tion,

Eintra = lim
R→∞

1

|BR|
∫

BR

1

2
E (∇Ui ) Ci E (∇Ui )dr

= lim
R→∞

1

|BR|
∫

BR

1

2
[Ki (∂xUix + ∂yUiy )2

+ Gi[(∂xUix − ∂yUiy )2 + (∂xUiy + ∂yUix )2]]dr,

(1)

where E (∇Ui ) = 1
2 (∇Ui + ∇UT

i ) is the 2 × 2 infinitesimal
strain tensor and BR is a sphere of radius R used to normalize
the integral. The fourth-order stiffness tensor C depends on
the two parameters K (bulk modulus) and G (shear modu-
lus), which represent the energy cost associated with strain.
This approximation does not capture short-range symmetry-
breaking effects such as Peierls distortions, but it can describe
the long-range domain walls observed in twisted bilayer
graphene.

For the interlayer energy, we use the generalized stacking
fault energy (GSFE) surface. This concept was originally used
to describe the energy of defects in bulk crystals [23–26] and
has recently been employed to explain relaxation in graphene
and hBN bilayers [27,28]. The GSFE provides the interlayer
energy per unit cell and depends only on the relative stacking
between two successive layers. We denote this functional by
VGSFE, with the initial local stacking configuration between

layers given by the 2D vector b(r). We can obtain the stacking
after relaxation by adding in the displacement fields Ui (r),
giving a normalized interlayer energy:

Einter = lim
R→∞

1

|BR|
∫

BR

VGSFE[b(r) + U1(r) − U2(r)]dr.

(2)

These intralayer and interlayer couplings are obtained
from total-energy calculations based on density-functional
theory (DFT) with the Vienna Ab initio Simulation Package
(VASP) [29,30]. A unit cell with basis vectors a1 = a(1, 0) and
a2 = a(

√
3/2, 1/2) is used, where the lattice parameter a for

graphene is 2.47 Å and for MoS2 is 3.18 Å. For the intralayer
coupling, isotropic and anisotropic strain are applied to an
optimized monolayer unit cell, distorting the x and y axes by
±1.5% in steps of 0.3%. We obtain K and G of Eq. (1) by
linear fitting of the ground-state energy dependence on this
applied strain. For MoS2, the sulfur atom heights for each
strain sample are relaxed while calculating the ground-state
energy.

For the interlayer GSFE, we use previously reported DFT
results for bilayer graphene stacking [27]. In MoS2, the
GSFE was parametrized by evaluating the energy on a grid
of points for an MoS2 bilayer, with the van der Waals
force implemented through the vdW-DFT method using the
SCAN+rVV10 functional [31,32]. The in-plane positions of
all atoms in the bilayer are fixed, but they are allowed to
relax in the out-of-plane direction. The top layer is shifted
relative to the bottom layer over a 9 × 9 grid in the unit cell to
sample the GSFE energy landscape. To fit the VGSFE to this
set of values, we use a form similar to that used by Zhou
et al. [27], but with modifications that better highlight how the
symmetry of the bilayer affects the GSFE. First, we define two
parameters, (v,w) ∈ [0, 2π ] × [0, 2π ], which describe b(r)
in terms of the unit-cell vectors. For the bilayers studied here,
v and w are related to the stacking vector (bx, by ) by(

v

w

)
= 2π

α

[
1 −1/

√
3

0 2/
√

3

](
bx

by

)
. (3)

The GSFE can then be written in a relatively simple form
in the (v,w) basis:

VGSFE = c0 + c1[cos v + cos w + cos (v + w)]

+ c2[cos(v + 2w) + cos(v − w) + cos(2v + w)]

+ c3[cos(2v) + cos(2w) + cos(2v + 2w)]

+ c4[sin v + sin w − sin(v + w)]

+ c5[sin(2v + 2w) − sin(2v) − sin(2w)] (4)

with the coefficients c0, . . . , c5 given in Table I. For hexagonal
systems like graphene that have symmetry between the AB

and BA stackings, the coefficients of the sine terms are
constrained to be zero as the GSFE functional must be even
around the origin (AA stacking).

There is always a lowest-energy stacking between layers,
and relaxation should distort the layers to maximize the area
of that stacking (or stackings, in the case of degenerate ground
states). Examples of bilayers under lattice mismatches (λ) and
twists (θ ) are displayed in Fig. 2. When the lattices are nearly
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TABLE I. Coefficients for the strain energy and Fourier components of the GSFE in bilayer graphene and the two high-symmetry forms
of bilayer MoS2. All values are in units of meV per unit cell.

Material K G c0 c1 c2 c3 c4 c5

Graphene 69 518 47 352 6.832 4.064 −0.374 −0.095 0.000 0.000
0◦ MoS2 49 866 31 548 27.332 14.02 −2.542 −0.884 0.000 0.000
180◦ MoS2 49 866 31 548 30.423 12.322 −2.077 −0.783 2.397 0.259

aligned, only small amounts of lattice straining are necessary
to form a large area of uniform stacking. As the misalignment
increases, the strain needed for creating uniform stacking
grows larger, making domain formation less favorable. To un-
derstand the stacking energy landscape of layered materials,
we show the GSFE for graphene and the two high-symmetry
stacking orientations of MoS2 (0◦ and 180◦ rotation between
layers) in Fig. 3. The two different orientations in bilayer
MoS2 are due to the presence of different atomic species
(Mo and S) on the two sublattices of the honeycomb lattice.
The 0◦ MoS2 bilayer has two identical low-energy stackings,
similar to graphene, while the 180◦ MoS2 bilayer has only
one low-energy stacking. Symmetry arguments can predict the
critical points of the GSFE, and their relative energies can be
ranked by comparing interlayer distances between atoms at
each stacking. Our use of the GSFE for interlayer interactions
is expected to be more accurate than empirical atomistic
potentials when they exist (for materials such as graphene and
hBN) [33], and it allows for modeling of bilayers where no
such potentials exist to our knowledge (e.g., MoS2).

FIG. 2. Examples of misaligned lattices. Top panels show bi-
layers whose lattice constants differ by a factor of λ while the
bottom panels show bilayers with a relative twist angle θ . The left
panels show misaligned structures with small moiré length (moiré
wavelength given by the black arrow), while the right panels show
nearly aligned structures with large moiré length.

This modeling strategy works best when the twist angle
is close to the one used to fit the GSFE (0◦), and we do not
recommend using the functionals provided here for studying
relaxations at angles larger than 10◦. For larger angles, one
should find a commensurate supercell that is closer to the
angle of interest, and then treat the corresponding bilayer
supercell as an effective untwisted unit cell. The strain energy
and GSFE functional for this enlarged cell can be readily
obtained. If the supercell has many atoms, the GSFE is
likely very smooth and does not lead to appreciable domain

FIG. 3. (a) The generalized stacking fault energy (GSFE) eval-
uated on stackings sampled along the unit-cell diagonal for three
different bilayers. (b)–(d) Side views of the ground-state stacking
orientation for each bilayer, and corresponding GSFE dependence
on configurations in the unit-cell �. The color scale in each case
is chosen to make the saddle point (SP) energy white or bright
yellow.
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formation. However, near angles that form small supercells,
such as 21.78◦ for twisted honeycomb lattices, the GSFE may
still have enough structure to show domain formation. We
leave such investigation to future work.

III. CONFIGURATION SPACE

Since the stacking configurations of untwisted layers give
a clear picture of the bilayer energetic landscape, framing
the relaxation problem entirely in terms of configurations
may prove useful. The collection of all local stackings in
an incommensurate system forms a dense compact domain
called configuration space [34–36], and we now outline its
construction. We define 2 × 2 matrices A1 and A2 as the
Bravais lattice vectors of layer 1 and layer 2, whose unit
cells are labeled as �1 and �2. Any point in the Bravais
lattice of layer 2 is indexed by an integer tuple, n ∈ Z2, and
it will have position r = A2n. We can compute its stacking
configuration relative to layer 1 by b2 : A2Z2 → �1 explicitly
by b2(A2n) = A2n = r(n). Although the function b2 lacks an
explicit modulation in its definition, it is implicitly periodic
over the torus �1. As defined, b2 would vary quickly on the
scale of the unit cell if r is formally substituted for r(n). This
is not desirable, so instead we smoothly interpolate b2(r(n))
between lattice points. We define lattice mismatch matrices
that encode the effective moiré pattern: 1 − A1A

−1
2 = Aδ2 and

1 − A2A
−1
1 = Aδ1, which yield interpolated mappings,

b2(A2n) = (
1 − A1A

−1
2

)
A2n

⇒ b2(r) ≡ Aδ2r, b1(r) ≡ Aδ1r, (5)

where bi (r) will vary slowly on the atomic length scale
and should be considered modulo the unit-cell torus of the
opposite layer. There is also a relationship between atomic
displacements in configuration space, ui (bi ), and those in real
space:

Ui (r) = ui (Aδir) ⇒ ∇Ui = ∇uiAδi . (6)

Each ui is periodic over the unit cell of the opposite
layer, e.g., u1 is periodic on �2. In this way, ui represents a
regular sampling of the atoms that make up layer i, whereas
conventional continuum real-space approaches sample Ui (r)
on a mesh of positions. This difference allows ui to accu-
rately reproduce incommensurate relaxed atomistic structures
where purely real-space approaches are ill-suited. Aδi can
be interpreted as a map from real space to configuration
space, and A−1

δi as the inverse map. This transformation has
been done in previous work for studying electronic structure
in incommensurate materials [34,37], and here it allows for
relaxation of incommensurate bilayers.

To calculate relaxation for twisted bilayers in configura-
tion space, the energy functionals must be defined over the
configuration space {�1,�2}. As each �i is the unit-cell torus
independent of twist angle, the configuration space remains
periodic and compact even when the bilayer is incommen-
surate in real space. Throughout the energy functionals, the
real-space displacement fields Ui (r) must be replaced by the
configuration space displacement fields ui (bi ). This substitu-
tion assumes that if two atoms on layer 2 have similar stacking
relative to layer 1, then they must have similar relaxation. For

two arbitrary lattices, with the GSFE computed over �1, the
total energy is given as

Etot(u1, u2) ≡ Einter(u1, u2) +
2∑

i=1

E
(i)
intra(∇ui ),

E
(i)
intra(∇ui ) =

∫
�ĩ

1

2
[Ec(∇ui ) Ci Ec(∇ui )]dbĩ ,

Ec(∇ui ) = 1

2

(∇uiAδi + AT
δi∇uT

i

)
, (7)

Einter(u1, u2) =
∫

�1

VGSFE[b2 + u2(b2) − ũ1(b2)]db2,

ũ1(b2) ≡ u1
(−A2A

−1
1 b2

)
,

where �ĩ is the unit cell of the layer opposite layer i. The total
interlayer coupling is described by a single integral evaluation
of VGSFE over the configuration space of only one layer. This
works well if the two layers have similar unit cells. Alter-
natively, the interlayer coupling can be split into two equal
components of 1

2VGSFE for each �i . This introduces additional
complexity in the twisted case, as the relative orientations
between the twisted �i’s need to be taken into account.

To illustrate how to transform the relaxation problem to
configuration space, we focus on a bilayer system with small
twist-angle θ . Letting layer 2 be rotated counterclockwise by θ

relative to layer 1 gives A2 = RθA1, with Rθ the conventional
rotation matrix. Then Aδ1 = 1 − R−1

θ and Aδ2 = 1 − Rθ , and
we can expand the rotation matrix to first order in θ to get
bi (r):

b2(r) ≈ θ

(−ry

rx

)
, b1(r) ≈ θ

(
ry

−rx

)
. (8)

Substituting this approximation for Aδi into Eq. (7) also
shows how the gradient of ui contributes to the strain-energy
Ec with a factor of θ . This scaling predicts that as θ → 0,
eventually ui can balance the intralayer and interlayer energies
by forming strain solitons. The width of the domain walls
in configuration space should diminish like θ , resulting in
constant real-space width.

To further simplify the model in the case of twisted bilay-
ers, notice that VGSFE depends only on the difference of atomic
displacements �u ≡ u2 − ũ1. If we consider a bilayer system
where layer 1 is frozen and only layer 2 can relax, we have
u1 = 0 and �u = u2. As �u minimizes the total stacking
energy, when relaxing both layers we want to obtain a similar
�u while minimizing the strain energy. The two unit cells
are nearly identical, so the true solution is one that splits �u
equally between the two layers. This can be done by setting a
single u field u ≡ u2 = −ũ1 over a single � ≡ �1, leading to
a total energy functional:

Etot(u) = 1

|�|
∫

�

[2Eintra(∇u) + VGSFE(b + 2u)]db. (9)

For the three bilayers studied here, there is also a mirror-
plane symmetry along the vertical plane that bisects the
twist angle, which we will label S. This symmetry gives the
relation u = Su(Sb) as an additional constraint during any
optimization procedure. We minimize the total energy given
in Eq. (9) with a standard optimization routine implemented
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FIG. 4. Relaxation for a graphene and 180◦ MoS2 bilayer with a 3◦ relative twist. Interlayer coupling was amplified by a factor of 100 for
easy visualization. (a) The graphene displacement field u over �. (b) VGSFE[b + 2u1(b)] over � that shows the moiré pattern in configuration
space for graphene. (c) The graphene atomistic positions after applying the displacement fields. Parts (d)–(f) are the corresponding plots for
MoS2

in the OPTIM JULIA package [38] after uniformly sampling
configuration space with a discrete Fourier basis of plane
waves. This yields the smooth displacement field in config-
uration space corresponding to the ground state of the relaxed
bilayer system. The result can then be mapped to real space
for use in other applications (for example, electronic structure
calculation) with Eq. (6).

In summary, this method makes four approximations to
arrive at a greatly simplified configuration space continuum
model: (i) the in-plane and interlayer coupling energies are
well-fitted by the strain moduli and GSFE functionals of the
untwisted bilayer; (ii) short-range symmetry-breaking relax-
ations are ignored; (iii) the relaxation pattern for any con-
figuration can be smoothly interpolated by sampling nearby
configurations (e.g., a smooth and quasiperiodic deformation
field in space); and (iv) the bilayer is made of homogeneous
layers, allowing for the relaxation of both layers to be related
to a single layer’s relaxation by symmetry (only needed if one
wishes to simplify the energy functional).

IV. RESULTS

To illustrate the general nature of domain formation in
incommensurate graphene and TMDC bilayers, we wish to
show domain-wall formation on a scale where both the unit-
cell and the moiré supercell are easily visible. We exaggerate
the interlayer coupling by increasing VGSFE by a factor of
100 for θ = 3◦ twisted bilayers of graphene and 180◦ MoS2

in Fig. 4. For both systems, relaxation causes the regions
of lowest-energy stackings to expand in configuration space
and the higher-energy stackings to reduce in size, producing
thin lines and nodes. In real space, this means the bilayers
form large domains of uniform stacking surrounded by thin
solitons that intersect at “pinned” high-energy stacking nodes.
For bilayer graphene and bilayer 0◦ MoS2, there are two
identical ground-state stackings, commonly referred to as the
AB and BA stackings. These stackings are equal in energy
and compete to create a tiling of AB and BA triangular
domains as observed in dark-field imaging studies of twisted
bilayer graphene [6,9]. For 180◦ bilayer MoS2, there is only
one low-energy stacking. It expands and causes the formation
of hexagonal domains.

Furthermore, due to the antisymmetric nature of b(r) in
Eq. (8), ∇ × U(r) ≈ θ [∇ · u(b)], that is, the local change in
the real-space twist angle (∇ × U) caused by the relaxation
can be computed by taking the divergence of the configuration
space displacement field. The low-energy stackings have ∇ ·
u < 0, which implies an “untwisting” of those areas in real
space. Meanwhile, the high-energy stackings have ∇ · u > 0,
which implies additional twisting. This is why the domains
show almost no local twist angle in real space, while the high-
energy nodes are twisted more. We find that the local twist an-
gle at the AA stacking in twisted bilayer graphene converges
to 1.7◦ as the global twist angle approaches 0◦, which agrees
with the results of a recent real-space approach [9].

At small twist angles, large domains that have 0◦ local
twist angle can appear. This is related to the commensurate-
incommensurate transition that occurs in nearly aligned bi-
layers, such as the graphene-hBN system with lattice size
mismatch [7]. The commensurate-incommensurate transition,
which would cause a discontinuity in our configuration space
model, has been studied rigorously but is only well understood
in the one-dimensional case under certain assumptions (the
Frenkel-Kontorova model) [39]. A discussion of how our
method relates to the Frenkel-Kontorova model is presented
in our formal study of the mathematical problem [35].

To show that these phenomena are general, we calculate
relaxed structures for various twist angles in Fig. 5. We note
that Ui (r) is aperiodic and captures incommensurate structure
even though u(b) is periodic on �. Consequently, the moiré
domains in Figs. 4 and 5 cannot be obtained from a supercell
approach since they do not exactly repeat. The relaxations for
graphene and 0◦ MoS2 are almost indistinguishable, except
the twist angle needed in 0◦ MoS2 is roughly twice what is
needed in graphene for a comparable relaxed structure. For all
three structures, the strain solitons and nodes shrink in config-
uration space proportionally to the twist angle. As translating
the relaxation in configuration space to real space involves a
factor of θ−1, the shape of solitons and nodes in real space is
unaffected by the twist angle at sufficiently small angles. This
is expected, as there is an optimal width for a strain soliton.
As the twist angle decreases, the walls do not change in width,
but only in their length as the domains become larger.

When considering multilayer systems, where the number
of layers p is greater than two, this formalism generalizes
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FIG. 5. Configuration relaxation results for twisted bilayers with five incommensurate twist angles each. The left panel of each column
shows VGSFE[b + 2u(b)] over � (the relaxation pattern in configuration space) and the right panel shows VGSFE(r) (over real space).

but produces a more difficult PDE. In a p-layered system,
each layer has p − 1 unique configurations with respect to
other layers. Therefore, the configuration space is a 2(p − 1)-
dimensional torus [21]. The configuration space can still be
sampled using a uniform mesh, and the interlayer stacking
energy is easy to evaluate once one has defined the proper
interpolation scheme given the system geometry. The in-
tralayer strain energy is less straightforward as the in-plane
connections between lattice sites span a two-dimensional
submanifold of the 2(p − 1)-dimensional torus. This strain
energy, although not impossible to implement, makes the
resulting PDE nonelliptic and may be difficult to properly
optimize. For additional information, please see Ref. [21].

V. CONCLUSION

We have presented an approach for modeling relaxations
in incommensurate systems. The methodology, based on
treating the incommensurate system consistently, has led to
identification of key physical ingredients for predicting what
relaxations may occur. If the lattices are aligned close to
a commensurate angle that yields a small cell, large-scale
domain-wall formation is expected. As the lattices are twisted

away from such an angle, the domains will become smaller
and their boundaries less sharp until almost no relaxation
occurs at large misalignment. The geometry of the domains
and walls is determined by the number and nature of the
critical points in the interlayer energy functional, and their
domain size scales with the twist angle. This naturally creates
regular patterns of uniformly stacked bilayers divided by thin
strain solitons. If the bilayer geometry encodes important
topological information for electrons, or if the strain and
sharp stacking potentials act as a useful source of electron
confinement, small twist angles can create regular networks
of confined 1D states that are easily realized in experiment.
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