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First-principles thermodynamic theory of Seebeck coefficients
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Thermoelectric effects, measured by the Seebeck coefficients, refer to the phenomena in which a temperature
difference or gradient imposed across a thermoelectric material induces an electrical potential difference or
gradient, and vice versa, enabling the direct conversion of thermal and electric energies. All existing first-
principles calculations of Seebeck coefficients have been based on the Boltzmann kinetic transport theory. In this
work, we present a fundamentally different method for the first-principles calculations of Seebeck coefficients
without using any assumptions of the electron-scattering mechanism, being in contrast to the traditional theory
by Cutler and Mott that shows the dependence of the Seebeck coefficient on the scattering mechanisms. It is
shown that the Seebeck coefficient is a well-defined thermodynamic quantity that can be determined from the
change in the chemical potential of electrons induced by the temperature change and thus can be computed
solely based on the electronic density of states through first-principles calculations at different temperatures.
The proposed approach is demonstrated using the prototype PbTe and SnSe thermoelectric materials.
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I. INTRODUCTION

Thermoelectric effects refer to the phenomenon that a
temperature gradient induces an electromotive force across
a thermoelectric material and vice versa, enabling the direct
conversion of thermal and electric energies. It has drawn un-
precedented interests in the field of clean-energy technologies
[1–4]. There have been extensive efforts in the search for ther-
moelectric materials with the best performances quantified by
the figures of merit [5,6]

ZT = σα2

κ
T , (1)

where σ is the electric conductivity, κ is the thermal conduc-
tivity, α is the Seebeck coefficient, and T is temperature.

Among the three physical quantities σ , κ , and α in Eq. (1),
σ and κ are kinetic coefficients. It is more a challenge for
the accurate calculations of the electronic conductivity and
lattice thermal conductivity since the calculation of a kinetic
quantity requires further knowledge of the scattering mecha-
nism, which then depends on the knowledge of relaxation time
and electron group velocity [7,8]. In the existing literature,
the kinetic Boltzmann transport theory [7,9,10] is typically
employed for determining the thermoelectric effects from
first-principles calculations, relying on a further assumption
of the mechanism of electron scattering, e.g., the constant
relaxation time approximation.

Meanwhile, it has not been always clear whether the See-
beck coefficient can be defined purely from thermodynamics
[11]. The main focus of this work is on the understanding
and calculation of the Seebeck coefficient. We present a
purely thermodynamic approach to computing the Seebeck
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coefficient which is independent of scattering mechanisms,
being different from the traditional method by Cutler and Mott
[9] that shows the dependence of the Seebeck coefficient on
the scattering mechanisms.

The Seebeck coefficient α in Eq. (1) measures the magni-
tude of the thermoelectric effect and is given by the ratio of
the induced electric potential difference (�φ) to the imposed
temperature difference (�T ) across a thermoelectric material
[12], i.e.,

α = −
(

�φ

�T

)
p

, (2)

where the subscript p represents the pressure at which the
thermoelectric coefficient is measured at zero current density,
i.e., when the material is at thermodynamic equilibrium at
constant pressure and an imposed temperature difference.
When the temperature difference becomes infinitesimally
small, the Seebeck coefficient becomes

α = −
(

∂φ

∂T

)
P

. (3)

As a result, the Seebeck coefficient is a thermodynamic
property represented by the derivative of electric potential (φ)
with respect to the thermal potential (T ).

II. THERMODYNAMIC THEORY OF THE SEEBECK
COEFFICIENT

There are a number of existing attempts to define the
Seebeck coefficient based on thermodynamics, and the ear-
liest dates back to the work by Callen in 1948 [12]. For
example, Wood [13] defined the Seebeck coefficient as the
total derivative of the electrochemical potential of electrons
with respect to temperature, which was later called the Kelvin
formula by Peterson and Shastry [14], while changing the
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total derivative into a partial derivative at constant volume.
However, as pointed out by Apertet et al. [11], it is not clear
whether the potential gradient in the Kelvin formula is the
chemical potential or the electrochemical potential gradient.
Furthermore, to our knowledge, all existing applications based
on the Kelvin formula have been limited to model systems
[11,14,15].

To understand the thermodynamic nature of the Seebeck
coefficient, we can start by considering the charge carriers
within a thermoelectric material as a thermodynamic system.
The variation of the Gibbs free energy of the system with tem-
perature and amount of charge carriers at constant pressure is
given by

dG = −SdT + μdN, (4)

where G is the Gibbs free energy of the charge-carrier system,
S is entropy, μ is chemical potential, and N is the total number
of charge carriers. The variation of the chemical potential with
respect to temperature is simply related to the entropy per
charge carrier, i.e.,

∂μ/∂T = −∂S/∂N = −θ. (5)

Now we imagine that there are two pieces of the same
thermoelectric solid but one at temperature T1 and the other
at temperature T2, or there are two locations within the same
thermoelectric solid with one location at temperature T1 and
the other at temperature T2. There must be a difference in the
chemical potentials of the charge carriers between these two
pieces of solid or the two locations due to the temperature dif-
ference. This chemical potential difference can be converted
to voltage difference just like in electrochemistry, i.e.,

�φ = �μ/q or dφ = dμ/q, (6)

where q is the amount of charge per charge carrier with −e (e
is the amount of charge for one electron) for electrons and e

for electron holes. As a result, the thermoelectric effect can be
written as entropy per unit charge, i.e.,

α = −∂φ/∂T = −1/q ∂μ/∂T = θ/q. (7)

Therefore, the Seebeck coefficient α is purely a thermody-
namic quantity defined in terms of two potentials, the electric
potential φ and the thermal potential T or in terms of entropy
per particle of charge carrier. It is easy to see that if the charge
carriers are electrons, the Seebeck coefficient is negative,
and if the charge carriers are electron holes, the Seebeck
coefficient is positive since the entropy per charge carrier is
always positive.

We can then formulate a relation between the electric
potential φ in Eq. (3) and the chemical potential of electrons
calculated using Mermin’s finite-temperature extension of
density-functional theory (DFT) [16,17] under the framework
of the modern first-principles approach [18–23]. According
to Ziman [24], the absolute thermal electric force, �, can be
defined as

�(T ) =
∫ T

0
αdt. (8)

Since there are no other mobile charged species in the
system except the electronic charge carriers, the difference

in chemical potential of electrons due to the temperature dif-
ference must be the only thermodynamic source responsible
for the electric potential difference. For a uniform material
with uniform temperature, a temperature change results in the
change in the chemical potential of thermal electrons, i.e.,
the temperature-dependent portion of the free-energy gain per
electron. For a nonuniform system, each point in space can
be considered as a thermodynamic system, and thus a system
with a nonuniform temperature distribution has a nonuniform
distribution of chemical potentials of electrons. The gradient
in chemical potential of electrons is the thermodynamic driv-
ing force for electron transport.

By relating the Ziman equation [Eq. (8)] to the chemical
potential of electrons, we propose to relate the absolute ther-
mal electric force to the chemical potential of electrons,

φ(T ) = 1

q

∫ T

0

∂μ(t )

∂t
dt = 1

q
[μ(T ) − εF ] = 1

q
ζ (T ), (9)

where μ(T ) is the chemical potential of electrons (or Fermi
level) by Mermin’s theory [16,17] and εF is the Fermi energy.
The notation of ζ = μ − εF is reminiscent of that given by
Sommerfeld [25], so that Eq. (9) sets φ = 0 at 0 K. Following
the previous calculations of the thermal electronic contri-
bution to thermodynamic properties at finite temperatures
[26,27] based on Mermin’s theory [16,17], we can obtain the
temperature dependence of chemical potential of electrons
based on the electron density of states.

Considering the fact that the electrons are explicitly treated
in the current implementation [21,22] of DFT, hereafter in all
the formulations we will use q = −e. To obtain the Seebeck
coefficient under Mermin’s theory, we can start from the
conservation equation∫

n(ε, V )f dε = N, (10)

where n(ε, V ) is the electronic density of states (e-DOS), N

is the total number of electrons in the considered system, and
f is the Fermi-Dirac distribution:

f = 1

exp
[

ε+eφ

kBT

] + 1
. (11)

Here we note that in Eqs. (10) and (11), the Fermi energy
εF has been taken as the reference for the band energy ε.

Finding the full derivative of Eq. (10) under the isobaric
condition and noting that N is a constant and V is temperature
dependent, we have

(
∂V

∂T

)
p

∫
∂n(ε, V )

∂V
f dε +

∫
n(ε, V )

∂f

∂T
dε = 0, (12)

with

∂f

∂T
= 1

kB

f (1 − f )

[
−e

T

(
∂φ

∂T

)
p

+ ε − ζ

T 2

]
. (13)

After a few rearrangements, we obtain the formula-
tion to calculate the Seebeck coefficient under the isobaric
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condition, αP :

αP = −
(

∂φ

∂T

)
p

= −kBTβ

eη

∫
∂n(ε, V )

∂V
f dε

− 1

eT ηV

∫
n(ε, V )f (1 − f )(ε − ζ )dε, (14)

where β is the volume thermal expansion coefficient and

η = 1

V

∫
n(ε, V )f (1 − f )dε. (15)

Equation (14) demonstrates that the Seebeck coefficient
can be computed from the e-DOS instead of the electric con-
ductivity used in the Boltzmann transport theory [9,28]. While
e-DOS, n(ε, V ), is readily accessible from first-principles
calculations [29–31], σ in Eq. (1) is a much more challenging
quantity to compute, which requires the calculation of electron
group velocity and the assumption of a constant relaxation
time [32]. Therefore, the present formulation of Eq. (14) pro-
vides a straightforward computational method to calculate the
Seebeck coefficient for thermoelectric materials employing
first-principles calculations. The efficiency of the proposed
approach in comparison with the kinetic Boltzmann transport
theory (using the BOLTZTRAP package [10]) is given in the
Appendix, Table I.

From Eq. (14), it is seen that the constant-pressure Seebeck
coefficient contains two terms: one accounts for the thermal
expansion contribution—-the first term on the right-hand side
of Eq. (14), and the other accounts for the constant volume
contribution—-the second term on the right-hand side of
Eq. (14). Therefore, the effects of thermal expansion on the
Seebeck coefficient are very similar to the classical case of
constant-pressure heat capacity vs the constant-volume heat
capacity. In the case of the Seebeck coefficient, the effects of
thermal expansions can be described as the coupled effects
of the volume dependence of the electronic density of states,
together with temperature and volume expansion coefficients.

From the present approach, we can obtain the finite-
temperature mobile charge-carrier concentration η in Eq. (15).
The integral

∫
n(ε, V )f (1 − f )dε can be considered as the

total number of mobile carriers in a thermoelectric solid—-the
number of electrons participating in the conduction process
at finite temperature. This can be understood in the sense
that the pair product of f (1 − f ) represents the possibility
that the electrons occupied “f number” of electronic states
with energy ε, transmitted to (or vice versa), the “1 − f

number” of unoccupied electronic states with energy ε at
finite temperature. Accordingly, n(ε, V )f (1 − f ) represents
the density of states of charge carriers at finite temperature.

III. COMPARISON WITH THE BOLTZMANN
TRANSPORT THEORY

A. Low-temperature limit

First, we can compare the present formulation with that
derived from the kinetic Boltzmann transport theory [7,9,10]
at the limit of T → 0. Using Sommerfeld’s low-temperature

expansion [25,33], we get

φ = −π2

6e
(kBT )2 ∂ ln n(ε, V )

∂ε

∣∣∣∣
ε=0

. (16)

Therefore at T → 0, we have

αV = −π2k2
BT

3e

∂ ln n(ε, V )

∂ε

∣∣∣∣
ε=0

. (17)

This relation tells that at the limit of T → 0, a thermoelec-
tric material is p type if its e-DOS has a negative slope at
the Fermi energy with increasing band energy whereas it is
n type if its e-DOS has a positive slope at the Fermi energy
with increasing band energy. This is the situation for most
insulators around the top of the valence band and the bottom
of the conduction band.

On the other hand, for the Boltzmann transport theory
[7,9,10] at the limit of T → 0 [34]

αV = −π2k2
BT

3e

[
∂ ln n̄(ε, V )

∂ε

∣∣∣∣
ε=εF

+ ∂ ln v2(ε)

∂ε

∣∣∣∣
ε=εF

+ ∂ ln τ (ε)

∂ε

∣∣∣∣
ε=εF

]
, (18)

where n̄(ε, V ) = n(ε − εF , V ), v is an average electron ve-
locity, and τ is the so-called relaxation time. In recent first-
principles calculations [10,28,35–39], τ is mostly assumed to
be constant. As pointed out by MacDonald [34], the constant
τ approximation is just one of the choices at T → 0. As a
matter of fact, after using a correction for the free electrons
with “screening” charge together with a constant mean-free
path, instead of constant relaxation time, Wilson (see the book
by MacDonald [34]) found that at T → 0

αV = −π2k2
BT

3e

1

εF

, (19)

with the parabolic band approximation [36] that n̄(ε) ∝ ε1/2

and v2(ε) ∝ ε. Note that the evaluation of n̄(ε, V ) in Eqs. (18)
and (19) at ε = εF is equivalent to evaluating n(ε, V ) in
Eq. (17) at ε = 0.

B. Relation between the present formulation and the Boltzmann
transport theory

By the Cutler-Mott theory [9], the Seebeck coefficient was
formulated as

α = 1

qT

∫
[ε − μ]σ (ε)dε∫

σ (ε)dε
, (20)

where q = ±e with the “−” sign for electrons as charge
carriers and the “+” sign for holes, ε represents the electronic
band energy, μ is the Fermi level, and σ (ε) is a kinetic
coefficient called the energy-dependent differential electrical
conductivity.

By the Boltzmann transport theory [7], σ (ε) in Eq. (20) can
be calculated by

σ (ε) = e2f (1 − f )
∑

k

vkvkτk, (21)
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where vk is the group velocity of the charge carriers with the
crystal momentum k. To relate the result from Eq. (20) using
the Boltzmann transport theory to that from Eq. (14) (neglect-
ing the effect of thermal expansion) using the present formu-
lation, we can introduce an approximation by the Heisenberg
uncertainty principle, such that vk and τ in Eq. (18) approxi-
mately satisfy

vkvkτ = mevk

me

· vkτ ∝ �p�l
me

∝ h̄

2me

χ

(
T0

T

)
, (22)

where me is the mass of electrons, h̄ is the reduced Planck
constant, and χ can be a function that only depends on
temperature.

C. Incorporating the effect of thermal expansion
to the Boltzmann transport theory

In case one insists on using the Boltzmann transport theory
to calculate the Seebeck coefficient, the effect of thermal
expansion can be included by

αp = −kBTβ

eη

∫
∂n(ε, V )

∂V
f dε

− 1

eT

∫
[ε − ζ ]f (1 − f )

∑
k vkvkτkdε∫

f (1 − f )
∑

k vkvkτkdε
. (23)

Here, note that the reference point of the band energy ε has
been shifted by treating the Fermi energy as the reference.

IV. COMPUTATIONAL DETAILS

The actual validation of the proposed formalism is carried
out by performing first-principles calculations for the widely
studied thermoelectric material PbTe [40,41] and the new
thermoelectric material SnSe discovered by Zhao et al. [42–
44]. For simplicity, we assume the rigid-band approximation
[7], i.e., the band structure is assumed to remain unchanged
from doping or from the thermal electronic excitation at finite
temperatures. Therefore, a positive doping (p doping or hole
doping) only shifts the Fermi energy toward a low energy,
transforming the insulator into a p-type conductor even at 0 K.
Similarly, a negative doping (n doping or electron doping)
increases the Fermi energy above the (bottom) edge of the
conduction band, transforming the insulator into an n-type
conductor even at 0 K.

In the following we present the computational details for
the first-principles calculations. One needs to first overcome
several issues for the first-principles calculations. The ma-
jor issue is concerned with the band gap, which is mostly
underestimated by the commonly employed generalized gra-
dient approximation [45] and local-density approximation
[46]. Fortunately for PbTe, the pioneering calculations per-
formed by Singh [47] showed that the Engel-Vosko gener-
alized gradient approximation [48] plus spin-orbit coupling
as implemented in WIEN2K package [23] gave an excellent
band structure and reasonable band-gap values. Therefore, we
followed Singh’s work for the e-DOS calculation for both
PbTe and SnSe. For the e-DOS calculation of PbTe using
WIEN2K, we follow exactly the same settings by Singh, i.e.,
linearized augmented plane-wave sphere radii (R) of 2.9 bohr
were used for both Pb and Te; R × kmax = 9.0 where kmax is

e−
D

O
S

(a)
p−doping n−doping 0K

PbTe
 0

 0.2

 0.4

 0.6

 0.8

−0.2  0  0.2  0.4  0.6  0.8

e−
D

O
S

p−type (b)
μ610K0K

1/[e
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 0.1

 0.2

−0.2 −0.1 0.0

εF μ

Band energy ε (eV) Band energy ε (eV) 

n−type (c)
μ610K

0K
1/[e

 0

 0.02

 0.04

 0.06

0.3 0.4 0.5 0.6

μ εF

FIG. 1. Illustration of the Seebeck effect: (a) the calculated elec-
tronic density of states (black curve); the p-doping shifts the Fermi
energy toward lower energy as indicated by the red arrow pointing to
the left; the n-doping increases the Fermi energy as indicated by the
blue arrow pointing to the right; (b) plot of electron density of states
near the Fermi energy for p doping; (c) plot of electron density near
the Fermi energy for n doping. (b), (c) The areas shaded by gray
(partially overlapped by the blue shaded areas) represent the electron
occupation at 0 K and the blue shaded areas indicate the electron
occupation at a finite temperature of 610 K described by the Fermi
distribution.

the interstitial plane-wave cutoff; and 48 × 48 × 48 k mesh.
These settings, together with the Engel-Vosko generalized
gradient approximation plus spin-orbit coupling, are the key
to producing the band gap and e-DOS feature in the range
−0.35 ∼ 0.0 eV as shown in Fig. 1. For the e-DOS calculation
of SnSe using WIEN2K, linearized augmented plane-wave
sphere radii (R) of 2.5 bohr were used for both Sn and
Se together with R × kmax = 7.0 and 28 × 26 × 10 k mesh.
The calculated band gap for SnSn is 0.61 eV, which is the
same as that calculated by Zhao et al. [42]. In comparison,
the reported experimental band gap for SnSe was 0.86 eV
by Zhao et al. [42] while for Ag0.01Sn0.99Se the band gap
was experimentally estimated to be 0.5 eV by Chen et al.
[49].

The second issue is concerned with the calculations of
the lattice parameter as a function of temperature and the
resulting thermal expansion. The good e-DOS from the Engel-
Vosko generalized gradient approximation is at the cost of
losing accuracy for the total energy. We overcame the problem
by invoking the Perdew-Burke-Ernzerhof revised for solids
(PBEsol) [50] exchange-correlational functional as imple-
mented in the Vienna Ab initio Simulation Package (VASP, ver-
sion 5.3) [21,22]. For PbTe, the Pb 5d106s26p2 and Te 6s26p4

electrons have been treated in the valence states; an energy
cutoff of 336.7 eV and 20 × 20 × 20 k mesh was used for
calculating the total energy. At room temperature, aided by
the quasiharmonic phonon approximation, PBEsol provides a
lattice parameter of 0.3242 nm which is within 0.3% of the
experimental value of 0.3232 nm [11] for PbTe. For SnSe,
the Sn 4d105s25p2 and Se 5s25p4 electrons were treated in
the valence states; an energy cutoff of 336.7 eV and 18 × 17 ×
7 k mesh was used for calculating the total energy. At room
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FIG. 2. The calculated Seebeck coefficients for PbTe for p-
type doping levels of 2.0 × 1017, 2.0 × 1018, 8.0 × 1018, and 5.3 ×
1019 cm−3 and n-type doping levels of 1.4 × 1020, 4.0 × 1019, 2.8 ×
1019, 1.7 × 1019, 1.0 × 1019, and 5.8 × 1018 cm−3. Corresponding to
these number sequences, the lines represent the present calculations
while the symbols (with same colors and sequences as the lines)
represent the measured data for p-type PbTe by Heremans and
coauthors [40,41] and n-type PbTe by LaLonde et al. [57].

temperature, using the quasiharmonic phonon approximation,
PBEsol results in lattice parameters of 0.4159, 0.4397, and
1.1469 nm, which are comparable to the experimental values
of 0.4153, 0.4445, and 1.1501 nm [51] for SnSe.

The third issue is about the phonon calculation for polar
insulators in order to obtain the finite-temperature thermo-
dynamic properties. For this issue, the present authors have
proposed a mixed-space approach [52–55] to account for the
dipole-dipole interactions for a phonon calculation in the real
space using the supercell method. The required inputs of Born
effective charge and dielectric constant tensors to the mixed-
space approach are calculated following the linear-response
approach by Gajdoš et al. [56]. For PbTe, an energy cutoff
of 237.8 eV and 3 × 3 × 3 k mesh and a 4 × 4 × 4 supercell
containing 128 atoms were used for phonon calculation. For
SnSe, an energy cutoff of 241.1 eV and 3 × 3 × 3 k mesh
and a 2 × 2 × 2 supercell containing 54 atoms were used for
phonon calculations.

V. NUMERICAL RESULTS AND DISCUSSION

Figure 1 illustrates the evolution of electron density of
states and the corresponding chemical potential as a function
of temperature in single-crystal PbTe. PbTe is an intrinsic
semiconductor as indicated by its 0 K e-DOS shown in
Fig. 1(a). Therefore, at 0 K, PbTe is an insulator since the
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FIG. 3. Comparison among the present approach with consid-
ering the effects of thermal expansion (solid lines), the present
approach without considering the effects of thermal expansion (solid
lines marked by the cross signs), and Boltzmann transport theory
(dashed lines). The dots represent the measured data at p-type doping
levels of 5.3 × 1019 cm−3 by Heremans and coauthors [40,41] and
n-type doping levels of 1.0 × 1019 and 5.8 × 1018 cm−3 by LaLonde
et al. [57].

conduction band is unoccupied and separated by an energy
gap from the completely filled valence band. As temperature
increases, the electron occupation among electronic states
changes. When the e-DOS curve has a negative slope at
the 0 K Fermi energy with respect to the band energy as
in the case of p-type PbTe shown in Fig. 1(a), i.e., there
are fewer states for the electrons to occupy with increas-
ing energy, the chemical potential of electrons will increase
with increasing temperature as shown in Fig. 1(b). Simi-
larly, when the e-DOS curve has a positive slope with in-
creasing energy at the 0 K Fermi energy with respect to
the band energy, i.e., there are more states for the elec-
trons to occupy with increasing energy as in the case of
n-type PbTe in Fig. 1(a), the chemical potential of elec-
trons will decrease with increasing temperature as shown in
Fig. 1(c).

Figure 2 compares the calculated Seebeck coefficients with
measurements for PbTe at a variety of p- and n-doping levels.
The minor difference between the calculated and measured
data for the p-type doping levels of 2.0 × 1017 cm−3 could be
due to the experimental uncertainty, while the slight difference
between the calculated and measured data for the n-type
doping levels of 1.4 × 1020 cm−3 could be due to the rigid-
band approximation at high doping levels.

Figure 3, using PbTe as an example, shows the com-
parison among the present approach with considering the
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FIG. 4. The calculated Seebeck coefficients for p-type SnSe
compared with experiments [42,43,58,59].

effects of thermal expansion (solid lines), without considering
the effects of thermal expansion (solid lines marked by the
cross signs), and Boltzmann transport theory (dashed lines,
BOLTZTRAP [10] by Madsen and Singh), at the same p-type
doping levels of 1.0 × 1018, 5.0 × 1018, and 1.1 × 1019 cm−3,
and n-type doping levels of 1.1 × 1019, 5.0 × 1018, and
1.0 × 1018 cm−3. To support the comparison, also plotted
in Fig. 3 are the available experimentally measured data
with similar carrier concentrations at p-type doping levels
of 5.3 × 1019 cm−3 by Heremans and coauthors [40,41] and
n-type doping levels of 1.0 × 1019 and 5.8 × 1018 cm−3 by
LaLonde et al. [57]. Without considering the effects of thermal
expansion, it is indeed observed that the present approach
produces very similar results with the kinetic approach by
Singh [47]. With considering the effects of thermal expansion,
the calculated Seebeck coefficient is increased by 10–20%
at high temperature. In the moderate temperature range, the
calculated Seebeck coefficients by the present approach have
larger slopes than those calculated by Singh using BOLTZTRAP

[10]. This is likely due to the fact that the thermal expan-
sion effects were not accounted for in the BOLTZTRAP code.
The same is observed for the calculated results for SnSe in
Fig. 4.

Figure 4 illustrates the calculated Seebeck coefficients
for p-type SnSe in comparison with the measured data for
doped SnSe [42–44,58,59]. The calculations were performed
at the p-type doping levels of 4 × 1019, 3 × 1019, and 2 ×
1019 cm−3 to compare with Hall data of 4 × 1019 cm−3. The
selection of these theoretical doping levels was based on the
observations that for the nominated carrier concentration of
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FIG. 5. The mobile charge-carrier concentrations for p-type
SnSe. The open and closed circles represent experimental data for
p-type doping with nominated carrier concentrations, respectively,
of ∼4 × 1019 cm−3 and ∼4 × 1017 cm−3, from Zhao et al. [42].

4 × 1019 cm−3 by Zhao et al. [44], the measured carrier con-
centration has decreased from ∼4 × 1019 to ∼2 × 1019 cm−3

at 800 K. Meanwhile, Zhao et al. [44] showed that for the
measured Seebeck coefficients [42] with the nominated carrier
concentration ∼4 × 1017 cm−3, the real carrier concentration
is ∼3 × 1017 cm−3 at 300 K. To compare with the measured
data for the undoped SnSe [42] with the nominated car-
rier concentration of ∼4 × 1017 cm−3, the calculations were
performed at the p-type doping levels of 3 × 1017 and 4 ×
1017 cm−3. The calculated mobile charge-carrier concentra-
tions for p-type SnSe are illustrated in Fig. 5 and are in
reasonable agreement with experimental data by Zhao et al.
[42].

VI. CONCLUSION

In summary, this work provides an alternative theory to
the traditional kinetic Boltzmann transport theory for the
calculation of the Seebeck coefficient: (i) it demonstrates
that the Seebeck coefficient is a well-defined thermodynamic
quantity; (ii) the present work also provides a theoretical
framework for taking into account the effects of thermal
expansion on the Seebeck coefficient; and (iii) the present
work provides a method for calculating the temperature-
dependent carrier concentrations. Compared with the Boltz-
mann transport theory, the present framework does not re-
quire the parabolic-band approximation or the electron re-
laxation time. The formalism relies only on the e-DOS that
is a routine output from most first-principles calculations in
contrast to the commonly employed approach based on the
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Boltzmann transport theory that requires the calculations of
group velocity of electrons.
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APPENDIX

TABLE I. The efficiency of the present approach in comparison
with BOLTZTRAP (in seconds).a

Approach PbTeb SnSec

This work 1.1 1.0
BOLTZTRAP 209.0 29.2

aFor a fair comparison, the calculations were performed without
considering the effects of thermal expansion, under the condi-
tions of single fixed volume and p-type doping level of 1.0 ×
1018 cm−3, and in a temperature range of 0–1000 K with an in-
crement of 10 K. For programming, the present approach is im-
plemented using PYTHON 3.6 noting that BOLTZTRAP code was in
FORTRAN90.
bFor BOLTZTRAP, the calculation was performed using 48 × 48 ×
48 k mesh in the reciprocal space. For the present work, the calcula-
tions were performed based on the electronic density of states made
of 34 463 energy points accounting for all valence electrons.
cFor BOLTZTRAP, the calculation was performed using 28 × 26 ×
10 k mesh in the reciprocal space. For the present work, the calcula-
tions were performed based on the electronic density of states made
of 20 001 energy points accounting for all valence electrons.
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